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1. Introduction

Fractional calculus is a mathematical field that deals with derivatives and integrals of non-integer
orders. It extends traditional calculus and enables more precise modeling of complex systems
with memory and hereditary characteristics [3, 18, 26, 29, 32, 33]. Various fractional operators have
been proposed to describe different types of fractional derivatives. For instance, Atangana and
Baleanu [10] introduced the concept of the AB-fractional derivative and explored its applications. The
ABC fractional derivative exhibits improved behavior for functions with singularities or non-smooth
features, making it particularly suited for capturing complex dynamics in practical systems [21]. Its
significance extends to a wide range of applications, including signal processing, control systems,
and epidemiological modeling [4–6, 28]. Al-Refai and Baleanu [8] proposed a modification to
ABC fractional operator (MABC), which allows for easier initialization of fractional models. This
modification has been shown to enable the discovery of new solution types, expanding the range of
possible solutions for these equations [7]. The significance of the MABC fractional operator lies in its
ability to accurately represent the behavior of real-world systems and facilitate the analysis and control
of complex nonlinear phenomena. For example, Khan et al. [22] studied the MABC fractional order
smoking model. Khan et al. [23] studied the dynamics of a piecewise MABC fractional-order leukemia
model with symmetric numerical simulations. Rahman [31] studied some theoretical and numerical
investigations of the MABC fractional operator for the spread of polio under the effect of vaccination.
Eiman et al. [17] studied the rotavirus infectious disease model using a piecewise MABC fractional
derivative. Khan et al. [24,25] investigated the existence of solutions for the hybrid class of the MABC
fractional operator with an application to a waterborne disease model.

These studies demonstrate the versatility and effectiveness of the MABC fractional operator
in elucidating the dynamics and mechanisms of infectious diseases, thereby paving the way for
improved disease understanding, control, and prevention strategies. The local and global stability
analyses are important in understanding the behavior and performance of dynamical systems. For
example, the authors [36] investigated less conservative stability conditions for the discrete-time
hidden semi-Markov jump linear systems emission probability matrix, using the eliminating matrix
product technique. They obtained numerically testable conditions for the existence of an observed
mode-dependent control. The authors [27] studied the global dynamics and optimal control of
malicious signal transmission in wireless sensor networks using Pontryagin’s maximum principle.
They examined the local and global stability of two types of steady states in the discontinuous system
through the analysis of the characteristic equation and comparison arguments method, respectively.

On the other hand, the importance of generalized Sturm-Liouville equations [32] lies in their ability
to model a wide range of practical phenomena, including heat conduction, diffusion processes, and
quantum mechanics [26]. By capturing the complex dynamics of such systems, these equations provide
valuable insights that aid in the design and optimization of engineering structures, the understanding
of physical processes, and the development of mathematical models for real-life applications [18].

There are some researchers who have studied the Sturm-Liouville (SL) and generalized Sturm-
Liouville (GSL) equations with different fractional derivatives and various conditions. For example,
Batiha et al. [12] studied the GSL equations with a Hadamard fractional derivative under three
nonlocal Hadamard fractional integral boundary conditions. Boutiara et al. [14] investigated the
existence and uniqueness of solutions to a generalized quantum fractional SL difference problem
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with terminal boundary conditions, utilizing Mönch’s fixed-point theorem, the Kuratowski measure of
noncompactness, and the Banach contraction principle. Boutiara et al. [13] undertook a meticulous
examination of the SL equation, featuring the intriguing p-Laplacian operator, in the context of
a generalized Caputo-type derivative. Ercan in [15] presented a novel methodology known as
the Laplace-Adomian decomposition method, specifically tailored to address two distinct types of
nonlinear fractional SL problems, employing both the Caputo and ABC derivatives. Furthermore,
Baleanu et al. [11] delved into the study of a coupled system comprising GSL problems and Langevin
fractional differential equations, elucidating their behavior under the influence of the ABC fractional
operator. Berhail et al. [16] explored a boundary value problem associated with the system of GSL and
Langevin, employing the Hadamard fractional derivative as a pivotal mathematical tool.

Motivated by the importance of both GSL equations and the MABC fractional derivative, this
research paper aims to extend the works in [11, 12] by investigating the criteria for the existence and
stability of the following n-coupled system of GSL equations utilizing the MABC fractional derivative MABCDηι

[
ςi(ι)MABCD%t ~i (ι) + ρi(ι)~i(ι)

]
= gi (ι, ~1, ~2, · · · , ~n) , ι ∈ Ω := [0, b] ,

~i(0) = 0, ςi(0)MABCD%0~i(ι) + ρi(0)~i(0) = 0, i = 1, 2, · · · , n,
(1.1)

where, MABCDηι and MABCD%ι are MABC fractional derivatives of order η and %, respectively, such that
0 < η, % < 1, the functions ρi : Ω → R+ are continuous such that ρ∗i = maxι∈Ω |ρi(ι)| , and ςi : Ω →

R+ − {0} are continuous functions with ς∗i = minι∈Ω |ςi(ι)| , for all ι ∈ Ω, i = 1, 2, · · · , n. The functions
gi : Ω × Rn → R are continuous such that (gi (ι, ~1, ~2, · · · , ~n))ι=0 = 0. System (1.1) has some special
cases depending on the functions ςi(t) and ρi(t). For example:

• If ρi(t) = 0,∀ι ∈ Ω, then the n-coupled MABC-GSL system (1.1) is reduced to the following
n-coupled MABC-SL fractional system MABCDηι

[
ςi(ι)MABCD%t ~i(ι)

]
= gi (ι, ~1, ~2, · · · , ~n) , ι ∈ Ω := [0, b] ,

~i(0) = 0, ςi(0)MABCD%0~i(ι) = 0, i = 1, 2, · · · , n.
(1.2)

• If ςi(ι) = 1, and ρi(t) = ρi ∈ R, ∀ι ∈ Ω, then the n-coupled MABC-GSL system (1.1) is reduced
to the following n-coupled MABC-Langevin fractional system MABCDηι

[
MABCD%t ~i(t) + ρi~i(t)

]
= gi (ι, ~1, ~2, · · · , ~n) , ι ∈ Ω := [0, b] ,

~i(0) = 0,MABC D%0~i(t) + ρi~i(0) = 0, i = 1, 2, · · · , n.
(1.3)

Our contributions to this work are given as:

• We utilize theoretical analysis to establish the foundations of our research. We employ
mathematical principles, such as MABC fractional operators, an n-coupled system of generalized
Sturm-Liouville (GSL) and Langevin equations, and fixed-point techniques to formulate sufficient
conditions for the existence, uniqueness, and stability of the system (1.1).
• To the best of our knowledge, no previous studies have examined the n-coupled MABC systems

represented by Eq (1.1). Therefore, our work aims to fill this gap in the existing literature by
investigating the behavior of the n-coupled system of GSL equations under the MABC fractional
operator. Through the establishment of rigorous criteria for existence and stability, our research
contributes to a better understanding of the dynamics of n-coupled systems.
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• We introduce a numerical algorithm for the nonlinear MABC-GSL fractional equations by using
Lagrange’s interpolation method and apply this method to produce a numerical scheme for
the influenza epidemic model. By extending the application to infectious disease modeling,
we not only broaden the scope of our research but also demonstrate the practical significance
of the MABC operator. We seek to deepen knowledge and provide broader insights into the
implications of the MABC fractional operator in understanding complex systems and their
potential applications in the field of infectious diseases.
• We discuss numerical simulations of the influenza epidemic model to enhance our understanding

of the model’s behavior. These numerical simulations allow us to investigate the model’s
dynamics, explore parameter spaces, and analyze the effects of various scenarios or interventions.

The construction of the paper is as follows: In Section 2, we provide a comprehensive review of the
basic definitions and lemmas related to the MABC fractional operator. In Section 3, we present our
main results, including converting the nonlinear fractional n-coupled system into an equivalent integral
equation. We then discuss the sufficient conditions for the existence and uniqueness of solutions of
system (1.1) by employing the Banach contraction principle and Leray-Schauder’s alternative fixed-
point theorem. Furthermore, we discuss the system’s stability conditions (1.1). In Section 4, we
introduce a numerical scheme based on Lagrange’s interpolation method for efficient computation and
analysis of the system. In Section 5, we present an application of the numerical scheme to study the
influenza epidemic model. Through this organization, we aim to present a clear and logical progression
of the research, ensuring that readers can easily comprehend and appreciate the significance of our
findings.

2. Auxiliary results

Throughout this paper, we will frequently rely on the fundamental definitions of the MABC
operator, which are presented in this section.

Definition 2.1. [7, 8] For % ∈ (0, 1) and ~ ∈ L1(0, b), the MABC-fractional derivative is given by

MABCD%ι ~ (ι) =
∆(%)
1 − %

[
~(ι) − E%(−µ%ι%)~(0) − µ%

∫ ı

0
(ı − s)%−1E%,%(−µ%(ı − s)%)~(s)ds

]
,

where, µ% =
%

1−% . Given this definition, one can easily verify that MABCD%
ιC = 0.

Definition 2.2. [7, 8] For % ∈ (0, 1) and ~ ∈ L1(0, b), the MAB-fractional integral is given by

mABI%ι ~ (ι) =
1 − %
∆(%)

[
~(ı) + µ%

RLI%ι [~] − ~(0)
(
1 + µ%

ι%

Γ (% + 1)

)]
=

1 − %
∆(%)

[~(ı) − ~(0)] +
%

∆(%)

RL
I%ι [~(ı) − ~(0)] .

Lemma 2.3. [8] For ~′ ∈ L1(0,∞) and % ∈ (0, 1), we have

mABI%ι
MABCD%ι ~ (ι) = ~(ı) − ~(0).

Lemma 2.4. [34] Let βϕ be the closed ball of radius ϕ > 0, centred at zero in a Banach spaceA and
Ψ: βϕ → A is a contraction mapping such that Ψ

(
∂βϕ

)
⊂ βϕ. Then, Ψ has a unique fixed point in βϕ.
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Lemma 2.5. [19] Let βϕ be a non-empty, closed, and convex subset of a Banach space A. If Ψ:
βϕ → A is a completely continuous operator and Φ (Ψ) = {(~ ∈ βϕ, ~ = ξΨ(~), 0 < ξ < 1}, then, either
Φ (Ψ) is unbounded or Ψ has a fixed point.

3. Main results

In this section, we will examine the sufficient conditions that guarantee the existence and uniqueness
of the system solution (1.1), as well as special cases (1.2) and (1.3). Additionally, we will discuss four
types of stability of systems (1.1), (1.2), and (1.3). We will start by converting the nonlinear fractional
n-coupled system (1.1) into an equivalent integral equation to apply fixed-point techniques.

3.1. Nonlinear fractional n-coupled system

Lemma 3.1. For 0 < %, η < 1, let ςi, ρi : Ω → R be continuous functions such that ςi(ι) , 0 for all
ι ∈ Ω and gi : Ω×R→ R be continuous functions with gi (ι, ~1, ~2, · · · , ~n)ι=0 = 0. Then, the n-coupled
MABC-GSL system (1.1) is equivalent to the following integral equation:

~i(ι) =MAB I%ι

[MABIηt gi (ι, ~1, ~2, · · · , ~n) − ρi (ι) ~i (ι)
ςi (ι)

]
. (3.1)

Or

~i(ι) =
1 − %
∆(%)

(MABIηι gi (ι, ~1, ~2, · · · , ~n) − ρi(ι)~i(ι)
ςi(ι)

)
+

%

∆(%)Γ (%)

∫ ι

0
(ι − s)%−1

(MABIηι gi (s, ~1, ~2, · · · , ~n) − ρi(s)~i(s)
ςi(s)

)
ds.

Proof. Let ~i be a solution of system (1.1). Applying the operator MABIηι on both sides of system (1.1)
and using Lemma 2.3, we get[

ςi(ι)MABCD%ι ~i (ι) + ρi(ι)~i(ι)
]

= c1 +MAB Iηι gi (ι, ~1, ~2, · · · , ~n) .

Thus, we have
MABCD%ι ~i (ι) =

c1 +MAB Iηι gi (ι, ~1, ~2, · · · , ~n) − ρi(ι)~i(ι)
ςi(ι)

. (3.2)

By the second condition ςi(0)MABCD%0~i (ι) + ρi(0)~i(0) = 0, we have c1 = 0. Substituting the value of
c1 in (3.2), we get

MABCD%ι ~i (ι) =
MABIηι gi (ι, ~1, ~2, · · · , ~n) − ρi(ι)~i(ι)

ςi(ι)
. (3.3)

Applying the operator MABI%ι on both sides of Eq (3.3) and using Lemma 2.3, we get

~i(ι) = c2 +MAB I%ι

MABIηt gi (ι, ~1, ~2, · · · , ~n) − ρi (ι) ~i (ι)
ςi (ι)

. (3.4)

By assumption gi (ι, ~1, ~2, · · · , ~n)ι=0 = 0, ~i(0) = 0, and by Definition 2.2 in [7], we get c2 = 0.
Substituting the value of c2 in Eq (3.4), we get

~i(ι) =MAB I%ι

MABIηt gi (ι, ~1, ~2, · · · , ~n) − ρi (ι) ~i (ι)
ςi (ι)

.
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By Definition 2.2, we can write the solution as

~i(ι) =
1 − %
∆(%)

(MABIηι gi (ι, ~1, ~2, · · · , ~n) − ρi(ι)~i(ι)
ςi(ι)

)
+

%

∆(%)Γ (%)

∫ ι

0
(ι − s)%−1

(MABIηι gi (s, ~1, ~2, · · · , ~n) − ρi(s)~i(s)
ςi(s)

)
ds

−
1 − %
∆(%)

(MABIηι gi (ι, ~1, ~2, · · · , ~n) − ρi(ι)~i(ι)
ςi(ι)

)
ι=0

(
1 + µ%

ι%

Γ (% + 1)

)
.

Also, by the assumption gi (ι, ~1, ~2, · · · , ~n)ι=0 = 0, ~i(0) = 0, and by Definition 2.2 in [7], we have(MABIηι gi (ι, ~1, ~2, · · · , ~n) − ρi(ι)~i(ι)
ςi(ι)

)
ι=0

= 0.

Thus, the solution of the n-coupled MABC-GSL system (1.1) is given by

~i(ι) =
1 − %
∆(%)

(MABIηι gi (ι, ~1, ~2, · · · , ~n) − ρi(ι)~i(ι)
ςi(ι)

)
+

%

∆(%)Γ (%)

∫ ι

0
(ι − s)%−1

(MABIηι gi (s, ~1, ~2, · · · ~n) − ρi(s)~i(s)
ςi(s)

)
ds.

Conversely, it can be readily demonstrated through direct computation that the integral equation (3.1)
fulfills the requirements of the n-coupled MABC-GSL system (1.1). The proof is complete. �

For our analysis, we shall define the Banach space. Consider an interval Ω = [0, b] ⊂ R, and the
Banach space A = C (Ω,R) which consists of all continuous functions ~ : Ω → R. The norm ‖~‖ of
a function ~ in this space is defined as ‖~‖ = maxι∈Ω |~(ι)|. Therefore, (A, ‖·‖) forms a Banach space.
Define the n-product spaceH =A×A × · · · × A︸                ︷︷                ︸

n times
with the norm

‖~1, ~2, · · · , ~n‖ =

n∑
i=1

‖~i‖ .

Clearly, (H , ‖~1, ~2, · · · , ~n‖) is a Banach space. For i = 1, 2, · · · , n, we define an operator Ψ : H →H
by

Ψ (~1, ~2, · · · , ~n) (ι) = (Ψ1,Ψ2 · · · ,Ψn) , (3.5)

with the norm

‖Ψ (~1, ~2, · · · , ~n)‖ =

n∑
i=1

‖Ψi (~i)‖ , (3.6)

where

Ψi (~i(ι)) =MAB I%ι

MABIηt gi (ι, ~1, ~2, · · · , ~n) − ρi (ι) ~i (ι)
ςi (ι)

, i = 1, 2, · · · , n. (3.7)

So, all the fixed points of (3.7) are the solutions of the system (1.1). In this paper, a closed ball Bϕ with
radius ϕ centered on the zero function in product Banach spaceH is defined by

Bϕ = {(~1, ~2, · · · , ~n) ∈ H : ‖(~1, ~2, · · · ~n)‖ ≤ ϕ} . (3.8)
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For further analysis, the following conditions must be satisfied:
(C1) For all ι ∈ Ω, there exists a positive constant Υ∗i , such that

|gi(ι, ~i(ι))| ≤ Υ∗i .

(C2) For each ι ∈ Ω and ~i, ~̂i ∈ H , there exists constant numbers Ki > 1, i = 1, 2, · · · , n such that

∣∣∣∣gi(ι, ~1, ~2, · · · , ~n) − gi(ι, ~̂1, ~̂2, · · · , ~̂n)
∣∣∣∣ ≤ Ki

n∑
i=1

∣∣∣∣~i − ~̂i

∣∣∣∣ .
For (~1, ~2, · · · , ~n) ∈ Bϕ, ι ∈ Ω, then by condition (C2), we have

|gi(ι, (~1, ~2, · · · , ~n))| = |gi(ι, ~1, ~2, · · · , ~n) − gi(ι, 0, · · · , 0) + gi(ι, 0, · · · , 0)|
≤ |gi(ι, ~1, ~2, · · · ~n) − gi(ι, 0, · · · , 0)| + |gi(ι, 0, · · · , 0)|

≤ Ki

n∑
i=1

|~i(ι)| + |gi(ι, 0, · · · , 0)|

≤ Ki

n∑
i=1

|~i(ι)| + Bi

≤ Kiϕ + Bi, (3.9)

where
Bi = max

ι∈Ω
|gi(ι, 0, · · · , 0)| < ∞, i = 1, 2, · · · , n.

For i = 1, 2, · · · , n, to simplify the analysis, we fix the following notations:

ς∗i = min
ι∈Ω
|ςi(ι)| , 0,

ρ∗i = max
ι∈Ω
|ρi(ι)| ,

Π% =

(
1 − %
∆(%)

+
b%

∆(%)Γ (%)

)
,

Πη =

(
1 − η
∆(η)

+
bη

∆(η)Γ (η)

)
. (3.10)

3.2. Uniqueness of solution

In this subsection, we examine the sufficient conditions that guarantee the uniqueness of the solution
for system (1.1), as well as special cases (1.2) and (1.3) by using the Banach fixed-point Lemma 2.4.

Theorem 3.2. Under the condition (C2) and 0 < Π%

∑n
i=1

1
ς∗i

(
ΠηKi + maxn

i=1

{
ρ∗i

})
< 1, i = 1, 2, · · · , n,

if we choose

ϕ ≥

 Π%

∑n
i=1

Bi
ς∗i

1 − Π%

∑n
i=1

1
ς∗i

(
ΠηKi + maxn

i=1

{
ρ∗i

})
 ,

then, the n-coupled MABC-GSL system (1.1) has a unique solution.
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Proof. Consider the operator Ψ defined by (3.5) and closed ball Bϕ defined by (3.8). To apply Banach
fixed-point Lemma 2.4, we divided the proof into the following steps:

Step 1: In the first step, we prove that Ψ(~1, ~2, · · · , ~n) ⊂ Bϕ.
For i = 1, 2 · · · , n and (~1, ~2, · · · , ~n) ∈ Bϕ, ι ∈ Ω, we have

|Ψi (~i(ι))| =

∣∣∣∣∣∣MABI%ι

MABIηt gi (ι, ~1, ~2, · · · ~n) − ρi (ι) ~i (ι)
ςi (ι)

∣∣∣∣∣∣
≤

1
ς∗i

[
MABI%ι

(
MABIηt |gi (ι, ~1, ~2, · · · , ~n)|

)
+MAB I%ι ρ

∗
i |~i (ι)|

]
. (3.11)

Now, we compute the two integrals in (3.11) separately. By Definition 2.2, with
gi (ι, ~1, ~2, · · · , ~n)ι=0 = 0, we obtain∣∣∣MABIηι gi (ι, ~1, ~2, · · · , ~n)

∣∣∣ ≤ 1 − η
∆(η)

|gi (ι, ~1, ~2, · · · , ~n)|

+
η

∆(η)Γ (η)

∫ ι

0
(ι − s)η−1

|gi (s, ~1, ~2, · · · , ~n)| ds. (3.12)

Putting (3.9) in (3.12), we get∣∣∣MABIηι gi (ι, ~1, ~2, · · · , ~n)
∣∣∣ ≤ (

1 − η
∆(η)

+
bη

∆(η)Γ (η)

)
Kiϕ +

(
1 − η
∆(η)

+
bη

∆(η)Γ (η)

)
Bi

≤ Πη (Kiϕ + Bi) , (3.13)

where Πη is defined by (3.10). By (3.13), we have∣∣∣∣MABI%ι
[

MABIηt gi (ι, ~1, ~2, · · · , ~n)
]∣∣∣∣ ≤ 1 − %

∆(%)
Πη (Kiϕ + Bi) +

Πη (Kiϕ + Bi) %
∆(%)

1
Γ (%)

∫ ı

0
(ı − s)%−1 ds

≤ Π%Πη (Kiϕ + Bi) . (3.14)

In the same manner, we obtain

MABI%ι
[
|ρi~i|

]
≤

1 − %
∆(%)

ρ∗i |~i (ι)| +
ρ∗i %

∆(%)Γ (%)

∫ ı

0
(ı − s)%−1

|~i (s)| ds

≤
1 − %
∆(%)

ρ∗i ‖~i‖ +
ρ∗i b%

∆(%)Γ (%)
‖~i‖ ≤ ρ

∗
i Π% ‖~i‖ . (3.15)

Putting (3.14) and (3.15) in (3.11) and taking the maximum value of both sides, we get

‖Ψi (~i)‖ ≤
1
ς∗i

[
Π%Πη (Kiϕ + Bi) + ρ∗i Π% ‖~i‖

]
.

Thus, by (3.6), we have

‖Ψ (~1, ~2, · · · , ~n)‖ =

n∑
i=1

‖Ψi (~i)‖ ≤ Π%ϕ

n∑
i=1

1
ς∗i

(
ΠηKi +

n
max

i=1

{
ρ∗i

})
+ Π%

n∑
i=1

Bi

ς∗i
≤ ϕ.
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This implies that Ψ (~1, ~2, · · · , ~n) ⊂ Bϕ. Next, let (~1, ~2, · · · , ~n) ,
(̂
~1, ~̂2, · · · , ~̂n

)
∈ Bϕ, ι ∈ Ω, then,

by (3.12), we get

MABIηι

∣∣∣∣gi (ι, ~1, ~2, · · · , ~n) − gi

(
ι, ~̂1, ~̂2, · · · , ~̂n

)∣∣∣∣ ≤ ΠηKi

n∑
i=1

∣∣∣∣~i(ι) − ~̂i(ι)
∣∣∣∣ . (3.16)

In the same manner as in (3.14) and (3.15), we get

MABI%ι

[
MABIηt

∣∣∣∣gi (ι, ~1, ~2, · · · , ~n) − gi

(
ι, ~̂1, ~̂2, · · · , ~̂n

)∣∣∣∣] ≤ Π%ΠηKi

n∑
i=1

∣∣∣∣~i(ι) − ~̂i(ι)
∣∣∣∣ , (3.17)

and
MABI%ι

[
ρi

∣∣∣∣~i(ι) − ~̂i(ι)
∣∣∣∣] ≤ ρ∗i Π%

∣∣∣∣~i(ι) − ~̂i(ι)
∣∣∣∣ . (3.18)

Thus, by (3.17) and (3.18), and taking the maximum value of both sides, we have∥∥∥∥Ψi (~1, ~2, · · · , ~n) − Ψi

(̂
~1, ~̂2, · · · , ~̂n

)∥∥∥∥
≤

Π%

ς∗i
ΠηKi

∥∥∥∥(~1, ~2, · · · , ~n) −
(̂
~1, ~̂2, · · · , ~̂n

)∥∥∥∥ +
ρ∗i
ς∗i

Π%

∥∥∥∥~i − ~̂i

∥∥∥∥ .
Thus, by (3.6), we have∥∥∥∥Ψ (~1, ~2, · · · , ~n) − Ψ

(̂
~1, ~̂2, · · · , ~̂n

)∥∥∥∥
≤ Π%

n∑
i=1

1
ς∗i

(
ΠηKi +

n
max

i=1

{
ρ∗i

}) ∥∥∥∥(~1, ~2, · · · , ~n) −
(̂
~1, ~̂2, · · · , ~̂n

)∥∥∥∥ .
Since, Π%

∑n
i=1

1
ς∗i

(
ΠηKi + maxn

i=1

{
ρ∗i

})
< 1, i = 1, 2, · · · , n, then, we conclude that Ψ is a contraction.

Consequently, the n-coupled MABC-GSL system (1.1) has a unique solution. �

3.3. Uniqueness of solutions for systems (1.2) and (1.3)

As a result of the above uniqueness Theorem 3.2, we have the following two corollaries.

Corollary 3.3. Under the condition (C2) and 0 < Π%

∑n
i=1

1
ς∗i

(
ΠηKi

)
< 1, i = 1, 2, · · · , n, if we choose

ϕ ≥

 Π%

∑n
i=1

Bi
ς∗i

1 − Π%

∑n
i=1

1
ς∗i

(
ΠηKi

)
 ,

then, the n-coupled MABC-SL system (1.2) has a unique solution.

Corollary 3.4. Under the condition (C2) and 0 < Π%

∑n
i=1

(
ΠηKi + maxn

i=1 {ρi}
)
< 1, i = 1, 2, · · · , n, if

we choose

ϕ ≥

 Π%

∑n
i=1 Bi

1 − Π%

∑n
i=1

(
ΠηKi + maxn

i=1 {ρi}
)
 ,

then, the n-coupled MABC- Langevin system (1.3) has a unique solution.
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3.4. Existence of solution

In this subsection, we developed the sufficient conditions for the existence of a solution of
system (1.1) by using Leray-Schauder’s alternative Lemma 2.5.

Theorem 3.5. Under the condition (C1), if 0 < Π% maxn
i=1

{
ρ∗i
ς∗i

}
< 1, then the n-coupled MABC-GSL

system (1.1) has a solution.

Proof. Consider the operator Ψ defined by (3.5) and closed ball Bϕi defined by (3.8). To apply the
Leray-Schauder’s alternative theorem, we divided the proof into the following steps.

Step 1: We shall prove that Ψ is completely continuous (continuous, bounded, and equicontinuous).
The continuity of gi implies that Ψ is continuous too. Let ι ∈ Ω. Then, for i = 1, 2, · · · , n and
(~1, ~2, · · · , ~n) ∈ Bϕ, we have

|Ψi (~i(ι))| =

∣∣∣∣∣∣MABI%ι

[MABIηt gi (ι, ~1, ~2, · · · , ~n) − ρi~i

ςi

]∣∣∣∣∣∣
≤

1
ς∗i

[
MABI%ι

(
MABIηt |gi (ι, ~1, ~2, · · · , ~n)|

)
+MAB I%ι |ρi~i|

]
. (3.19)

By condition (C1) , we have ∣∣∣MABIηt gi (ι, ~1, ~2, · · · , ~n)
∣∣∣ ≤ ΠηΥ

∗
i . (3.20)

Thus, by (3.19) and (3.20), we have

‖Ψi (~i)‖ ≤
1 − %

∆(%)ς∗i
ΠηΥ

∗
i +

b%

∆(%)ς∗i Γ (%)
ΠηΥ

∗
i +

1 − %
∆(%)

ρ∗i
ς∗i
‖~i‖ +

ρ∗i
ς∗i

b% ‖~i‖

∆(%)Γ (%)

≤
Π%

ς∗i

[
ΠηΥ

∗
i +

ρ∗i ‖~i‖

ς∗i

]
.

Hence,

‖Ψ (~1, ~2, · · · , ~n)‖ =

n∑
i=1

‖Ψi (~i)‖ ≤
n∑

i=1

Π%

ς∗i

[
ΠηΥ

∗
i +

ρ∗i ‖~i‖

ς∗i

]
< ∞.

Thus, Ψ is bounded by
∑n

i=1
Π%

ς∗i

[
ΠηΥ

∗
i +

ρ∗i ‖~i‖

ς∗i

]
. Next, for i = 1, 2, · · · , n, let ι1, ι2 ∈ Ω, with 0 < ι1 <

ι2 < b. Then, for (~1, ~2, · · · , ~n) ∈ Bϕ, we have

|Ψi (~i(ι2)) − Ψi (~i(ι1))|

≤
ΠηΥ

∗
i %

∆(%)ς∗i Γ (%)

∫ ι1

0

[
(ι2 − s)%−1

− (ι1 − s)%−1
]

ds +
ΠηΥ

∗
i %

∆(%)ς∗i Γ (%)

∫ ι2

ι1

(ι2 − s)%−1 ds

+
ρ∗i %

∆(%)ς∗i Γ (%)

∫ ι1

0

[
(ι2 − s)%−1

− (ι1 − s)%−1
]
|~i (s)| ds +

ρ∗i %

∆(%)ς∗i Γ (%)

∫ ι2

ι1

(ι2 − s)%−1
|~i (s)| ds

≤
ΠηΥ

∗
i

∆(%)ς∗i Γ (%)

[
ι
%
2 − ι

%
1

]
+

ρ∗i ‖~i‖

∆(%)ς∗i Γ (%)

[
ι
%
2 − ι

%
1

]
.

So, as ι2 → ι1 we conclude that Ψi (~i(ι2))→Ψi (~i(ι1)) , i = 1, 2. Consequently, Ψ is an equicontinuous
operator. Thus, by the above obtained with the Arzelà–Ascoli theorem, we conclude that Ψ is
completely continuous.

AIMS Mathematics Volume 9, Issue 6, 14228–14252.



14238

Step 2: We shall prove that the set Φ is bounded, where

Φ = {(~1, ~2, · · · , ~n) ∈ H ; ~i = αΨi (~i(ι)) , α ∈ (0, 1)} .

By (3.20), we have ∣∣∣∣MABI%ι
[

MABIηt gi (ι, ~1, ~2, · · · , ~n)
]∣∣∣∣ ≤ Π%ΠηΥ

∗
i . (3.21)

In the same manner, we obtain
MABI%ι |ρi~i| ≤ ρ

∗
i Π% ‖~i‖ . (3.22)

Thus, by (3.21) and (3.22) with (3.7), we get

‖~i‖ = |αΨi (~i(ι))|

≤
1
ς∗i

(
MABI%ι

[
MABIηt |gi (ι, ~1, ~2, · · · , ~n)|

]
+MAB I%ι |ρi~i|

)
≤

ρ∗i
ς∗i

Π% ‖~i‖ +
Π%

ς∗i
ΠηΥ

∗
i .

Thus, we have

‖(~1, ~2, · · · , ~2)‖ ≤

∑n
i=1

Π%

ς∗i
ΠηΥ

∗
i

1 − Π% maxn
i=1

{
ρ∗i
ς∗i

} .
Hence, Φ is bounded. Thus, by Leray-Schauder’s alternative theorem, we conclude that the n-coupled
MABC-GSL system (1.1) has a solution. �

3.5. Hyers-Ulam stability

Definition 3.6. [35] The n-coupled MABC-GSL system (1.1) is Hyers-Ulam stable if there exists
constant ψ > 0 such that, for each σ = maxn

i=1 {σi} > 0, and for each (~1, ~2, · · · , ~n) ∈ H satisfying
the following inequality

‖~i − Ψi (~i(ι))‖ ≤ σi, i = 1, 2, · · · , n, (3.23)

there is a unique solution
(̂
~1, ~̂2, · · · , ~̂n

)
of n-coupled MABC-GSL system (1.1) with ~̂i(ι) =Ψi

(̂
~i(ι)

)
and ∥∥∥∥(~1, ~2, · · · , ~n) −

(̂
~1, ~̂2, · · · , ~̂n

)∥∥∥∥ ≤ σψ. (3.24)

The following definition of generalized Hyers-Ulam stability is obtained from Definition 3.6.

Definition 3.7. [35] The n-coupled MABC-GSL system (1.1) is generalized Hyers-Ulam stable, if
there exists a function ψ ∈ C (R+,R+) with ψ (0) = 0 such that, for each σ = maxn

i=1 {σi} > 0, and
for each (~1, ~2, · · · , ~n) ∈ H satisfying (3.23), there is a unique solution

(̂
~1, ~̂2, · · · , ~̂n

)
of n-coupled

MABC-GSL system (1.1) with ~̂i(ι) =Ψi

(̂
~i(ι)

)
and∥∥∥∥(~1, ~2, · · · , ~n) −
(̂
~1, ~̂2, · · · , ~̂n

)∥∥∥∥ ≤ ψ (σ) .

Theorem 3.8. Under the condition (C2), if 0 < Π%

∑n
i=1

1
ς∗i

(
ΠηKi + maxn

i=1

{
ρ∗i

})
< 1, then, the n-

coupled MABC-GSL system (1.1) is Hyers-Ulam stable and is also generalized Hyers-Ulam stable.
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Proof. Let (~1, ~2, · · · , ~n) ∈ H such that ‖~i − Ψi (~i(ι))‖ ≤ σi, i = 1, 2, · · · , n and let ~̂i be a solution
of the n-coupled MABC-GSL system (1.1). Then, we have∣∣∣∣Ψi (~i(ι)) − Ψi

(̂
~i(ι)

)∣∣∣∣
=

∣∣∣∣∣∣∣∣MABI%ι

MABIηt gi (ι, ~1, ~2, · · · , ~n) − ρi~i

ςi
−MABI%ι

MABIηt gi

(
ι, ~̂1, ~̂2, · · · , ~̂n

)
− ρî~i

ςi

∣∣∣∣∣∣∣∣
≤

1
ς∗i

MAB

I%ι

[
MABIηt

∣∣∣∣gi (ι, ~1, ~2, · · · , ~n) − gi

(
ι, ~̂1, ~̂2, · · · , ~̂n

)∣∣∣∣] +
1
ς∗i

MAB

I%ι

[
ρi

∣∣∣∣~i(ι) − ~̂i(ι)
∣∣∣∣] .

By condition (C2) , we have∥∥∥∥Ψi (~i(ι)) − Ψi

(̂
~i(ι)

)∥∥∥∥ ≤ 1
ς∗i

Π%ΠηKi

∥∥∥∥(~1, ~2, · · · , ~n) −
(̂
~1, ~̂2, · · · , ~̂n

)∥∥∥∥ +
ρ∗i Π%

ς∗i

∥∥∥∥~i − ~̂i

∥∥∥∥ . (3.25)

Thus, by (3.23), (3.24), and (3.25), via triangle inequality, we have∥∥∥∥~i − ~̂i

∥∥∥∥ =
∥∥∥∥~i − Ψi (~i(ι)) + Ψi (~i(ι)) − ~̂i

∥∥∥∥
≤ ‖~i − Ψi (~i(ι))‖ +

∥∥∥∥Ψi (~i(ι)) − Ψi

(̂
~i(ι)

)∥∥∥∥
≤ σi + Π%Πη

Ki

ς∗i

∥∥∥∥(~1, ~2, · · · , ~n) −
(̂
~1, ~̂2, · · · , ~̂n

)∥∥∥∥ +
ρ∗i Π%

ς∗i

∥∥∥∥~i − ~̂i

∥∥∥∥ .
Consequently,∥∥∥∥(~1, ~2, · · · , ~n) −

(̂
~1, ~̂2, · · · , ~̂n

)∥∥∥∥ =

n∑
i=1

∥∥∥∥~i − ~̂i

∥∥∥∥
≤

σi

1 − Π%

∑n
i=1

1
ς∗i

(
ΠηKi + maxn

i=1

{
ρ∗i

}) . (3.26)

We put ψ = 1
1−Π%

∑n
i=1

1
ς∗i

(ΠηKi+maxn
i=1{ρ

∗
i })

> 0 and σ = maxn
i=1 {σi} in (3.26). Then, we get

∥∥∥∥(~1, ~2, · · · , ~n) −
(̂
~1, ~̂2, · · · , ~̂n

)∥∥∥∥ ≤ ψσ.
Thus, the n-coupled MABC-GSL system (1.1) is Hyers-Ulam stable.

Now, by assuming
ψ (σi) =

σi

1 − Π%

∑n
i=1

1
ς∗i

(
ΠηKi + maxn

i=1

{
ρ∗i

}) ,
with ψ (0) = 0, then the n-coupled MABC-GSL system (1.1) is generalized Hyers-Ulam stable. �

3.6. Hyers-Ulam-Rassias stability

To prove the Hyers-Ulam-Rassias stability, we assume that there is an increasing function χ ∈

C (Ω,R+) and there is ∆χ > 0 such that MABI%ι χ (ι) = ∆χχ (ι) , for all ι ∈ Ω.
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Definition 3.9. [35] The n-coupled MABC-GSL system (1.1) is Hyers-Ulam-Rassias stable with
respect to an increasing function χ (ι) , if there exists constant ψ > 0 such that, for each σ =

maxn
i=1 {σi} > 0, and for each (~1, ~2, · · · , ~n) ∈ H satisfying the following inequality

‖~i − Ψi (~i(ι))‖ ≤ σi∆χχ (ι) , i = 1, 2, · · · , n, (3.27)

there is a unique solution
(̂
~1, ~̂2, · · · , ~̂n

)
of n-coupled MABC-GSL system (1.1) with ~̂i(ι) =Ψi

(̂
~i(ι)

)
and ∥∥∥∥(~1, ~2, · · · , ~n) −

(̂
~1, ~̂2, · · · , ~̂n

)∥∥∥∥ ≤ ψσχ (ι) . (3.28)

Definition 3.10. [35] The n-coupled MABC-GSL system (1.1) is generalized Hyers-Ulam-Rassias
stable with respect to an increasing function χ (ι) if there exists constant ψ > 0 such that, for each
(~1, ~2, · · · , ~n) ∈ H satisfying (3.27), there is a unique solution

(̂
~1, ~̂2, · · · , ~̂n

)
of n-coupled MABC-

GSL system (1.1) with ∥∥∥∥(~1, ~2, · · · , ~n) −
(̂
~1, ~̂2, · · · , ~̂n

)∥∥∥∥ ≤ ψχ (ι) .

The Ulam-Hyers-Rassias and generalized Hyers-Ulam-Rassias stability for n-coupled MABC-GSL
system (1.1) is discussed in the following theorem.

Theorem 3.11. Under the conditions in Theorem 3.2, the n-coupled MABC-GSL system (1.1) is Hyers-
Ulam-Rassias stable and is also generalized Hyers-Ulam-Rassias stable.

Proof. Let (~1, ~2, · · · , ~n) ∈ H satisfying (3.27) and let ~̂i be a solution of the n-coupled MABC-GSL
system (1.1). Then, by (3.7), we have∥∥∥∥Ψi (~i(ι)) − Ψi

(̂
~i(ι)

)∥∥∥∥ ≤ 1
ς∗i

Π%ΠηKi

∥∥∥∥(~1, ~2, · · · , ~n) −
(̂
~1, ~̂2, · · · , ~̂n

)∥∥∥∥ +
ρ∗i Π%

ς∗i

∥∥∥∥~i − ~̂i

∥∥∥∥ .
Thus, by (3.27) and (3.28), via triangle inequality, we have∥∥∥∥~i − ~̂i

∥∥∥∥ ≤ ‖~i − Ψi (~i(ι))‖ +
∥∥∥∥Ψi (~i(ι)) − Ψi

(̂
~i(ι)

)∥∥∥∥
≤ σi∆χχ (ι) + Π%Πη

Ki

ς∗i

∥∥∥∥(~1, ~2, · · · , ~n) −
(̂
~1, ~̂2, · · · , ~̂n

)∥∥∥∥ +
ρ∗i Π%

ς∗i

∥∥∥∥~i − ~̂i

∥∥∥∥ .
Consequently,∥∥∥∥(~1, ~2, · · · , ~n) −

(̂
~1, ~̂2, · · · , ~̂n

)∥∥∥∥ ≤ σi∆χχ (ι)

1 − Π%

∑n
i=1

1
ς∗i

(
ΠηKi + maxn

i=1

{
ρ∗i

}) .
Putting ψ =

∆χ

1−Π%
∑n

i=1
1
ς∗i

(ΠηKi+maxn
i=1{ρ

∗
i })

> 0 and σ = maxn
i=1 {σi} , then (3.26) becomes∥∥∥∥(~1, ~2, · · · , ~n) −

(̂
~1, ~̂2, · · · , ~̂n

)∥∥∥∥ ≤ ψσχ (ι) .

Thus, the n-coupled MABC-GSL system (1.1) is Hyers-Ulam-Rassias stable. Now, let σ = 1. Then∥∥∥∥(~1, ~2, · · · , ~n) −
(̂
~1, ~̂2, · · · , ~̂n

)∥∥∥∥ ≤ ψχ (ι) .

Then, the n-coupled MABC-GSL system (1.1) is generalized Hyers-Ulam-Rassias stable. �
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4. Numerical algorithm for nonlinear MABC-GSL

A numerical algorithm is a step-by-step procedure or a sequence of computational operations
designed to solve a numerical problem or perform numerical computations. These algorithms
often involve mathematical operations such as arithmetic calculations, numerical approximations,
iterative methods, and numerical techniques for solving equations or systems of equations. They are
implemented using programming languages and are executed on computers or other computational
devices. Numerical algorithms aim to provide efficient and accurate solutions to numerical problems,
taking into consideration factors such as computational complexity, numerical stability, convergence,
and precision. They play a crucial role in various areas of scientific research, engineering design,
data analysis, and computer simulations, enabling researchers and practitioners to solve complex
mathematical problems and make quantitative predictions. For more information, see [1, 2, 20, 30]. In
this work, we apply Lagrange’s interpolation technique to obtain a numerical algorithm for nonlinear
MABC-GSL. Let us consider the MABC-GSL system (1.1) with fixed point ~i such that

~i(ι) =
1 − %
∆(%)

(MABIηι gi (ι, ~1, ~2, · · · , ~n) − ρi(ι)~i(ι)
ςi(ι)

)
+

%

∆(%)Γ (%)

∫ ι

0
(ι − s)%−1

(MABIηι gi (s, ~1, ~2, · · · , ~n) − ρi(s)~i(s)
ςi(s)

)
ds. (4.1)

Define the nonlinear function Fi (ι, ~i(ι)) , i = 1, 2, · · · , n as

Fi (ι, ~i(ι)) =

(MABIηι gi (ι, ~1, ~2, · · · , ~n) − ρi(ι)~i(ι)
ςi(ι)

)
,

where Fi (ι, ~i(ι))|ι=0 = 0. Thus (4.1) becomes

~i(ι) =
1 − %
∆(%)

Fi (ι, ~i(ι)) +
%

∆(%)Γ (%)

∫ ι

0
(ι − s)%−1 Fi (s, ~i(s)) ds. (4.2)

By discretizing Eq (4.2) at ι = ιm+1 = (m + 1)h, where h represents the time step size, we obtain the
following discrete equations:

~i(ιm+1) =
1 − %
∆(%)

Fi (ιm, ~i(ιm)) +
%

∆(%)Γ (%)

∫ ιm+1

0
(ιm+1 − s)%−1 Fi (s, ~i(s)) ds. (4.3)

By the Lagrange’s interpolation, we have

Fi (ı, ~i(ı)) =
Fi(ın, ~i(ın)(ı − ın−1)

ık − ık−1
−
Fi(ın−1, ~i(ın−1))(ı − ın)

ık − ık−1

=
Fi(ın, ~i(ın))(ı − ın−1)

h
−
Fi(ın−1, ~i(ın−1)(ı − ın)

h
. (4.4)

By the help of (4.3) and (4.4), we have
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~i(ιm+1) =
1 − %
∆(%)

Fi (ιm, ~i(ιm)) +
%

∆(%)Γ (%)

m∑
n=1

∫ ın+1

ın

(ım+1 − s)%−1Fi(ın, ~i(ın)(s − ın−1)
h

ds

−
%

∆(%)Γ (%)

m∑
n=1

∫ ın+1

ın

(ım+1 − s)%−1Fi(ın−1, ~i(ın−1)(s − ın)
h

ds.

Now, by computing the above two integrals separately, we get

~i(ιm+1) =
1 − %
∆(%)

Fi (ιm, ~i(ιm)) +
%h%

∆(%)Γ(% + 2)

m∑
n=1

Fi(ın, ~i(ın)

×
[
(m − n + 1)%(2 + m − n + %) − (m − n)%(m − n + 2 + 2%)

]
−

%h%

∆(%)Γ(% + 2)

m∑
n=1

Fi(ın−1, ~i(ın−1)

×
[
(m − n + 1)%+1 − (m − n + 1 + %)(m − n)%

]
. (4.5)

4.1. Application of the numerical scheme to the influenza epidemic model

In this subsection, we present the influenza epidemic model (SEIR) under the MABC fractional
operator

MABCD%ι S (ι) = −
α2

N
I (ι) S (ι) + α0N − α1S (ι) , (4.6)

MABCD%ι E (ι) = − (α1 + α3) E (ι) +
α2

N
I (ι) S (ι) , (4.7)

MABCD%ι I (ι) = − (α1 + α4) I (ι) + α3E (ι) , (4.8)
MABCD%ι R (ι) = −α1R (ι) + α4I (ι) . (4.9)

In the above (SEIR) model, the susceptible S compartment transitions to the exposed E compartment
through effective contact transmission from infected individuals I at a rate of α2. In Eq (4.6): The term
−
α2
N I(ι)S (ι) represents the rate at which susceptible individuals get infected by coming into contact with

infected individuals. The parameter α2 represents the transmission rate and N is the total population
size. The term α0N − α1S (ι) represents the natural birth and death rates affecting the susceptible
population. α0 is the natural birth rate, and α1 is the natural death rate. In Eq (4.7): The term
− (α1 + α3) E(ι) represents the rate at which individuals in the exposed compartment transition to other
compartments. The parameter α1 represents the natural death rate, and α3 represents the incubation
rate. The term α2

N I(ι)S (ι) represents the rate at which susceptible individuals become exposed by
coming into contact with infected individuals. In Eq (4.8): The term − (α1 + α4) I(ι) represents the
rate at which infected individuals recover or die. The parameter α1 is the natural death rate, and α4 is
the recovery rate. The term α3E(ι) represents the rate at which individuals in the exposed compartment
transition to the infected compartment. In Eq (4.9): The term −α1R(ι) represents the rate at which
recovered individuals experience natural death. α1 is the natural death rate. The term α4I(ι) represents
the rate at which infected individuals recover. The model parameters are estimated using a fitting
technique that makes use of the non-linear least squares algorithm [9], which are defined in Table 1.
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Table 1. The parameters and their descriptions for the model under consideration.

Parameter Description Numerical estimation Ref
α0 The natural birth rate 0.001 Estimated
α1 The natural death rate 0.001 Estimated
α2 The transmission rate 0.98 Estimated
α3 The incubation rate 0.78 Estimated
α4 Recovery rate 0.62 Estimated

We present the sensitivity indices of the parameters of the model given in Figure 1.

1

-1.028

0.9999

0.1

-0.984

-1.2

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

1.2

Se
n

si
ti

vi
ty

 in
d

ex

α_0 α_1 α_2 α_3 α_4 Linear (α_0)

Figure 1. Presentation of sensitivity indices involved in the computation of R0.

By (4.5), the numerical scheme of the (SEIR) model is given as follows:

S (ιm+1) − S (0) =
1 − %
∆(%)

(
−
α2

N
I (ιm) S (ιm) + α0N − α1S (ιm)

)
+

%h%

∆(%)Γ(% + 2)

m∑
n=1

(
−
α2

N
I (ın) S (ın) + α0N − α1S (ın)

)
×

[
(m − n + 1)%(2 + m − n + %) − (m − n)%(m − n + 2 + 2%)

]
−

%h%

∆(%)Γ(% + 2)

m∑
n=1

(
−
α2

N
I (ın−1) S (ın−1) + α0N − α1S (ın−1)

)
×

[
(m − n + 1)%+1 − (m − n + 1 + %)(m − n)%

]
. (4.10)
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E(ιm+1) − E(0) =
1 − %
∆(%)

(
− (α1 + α3) E (ιm) +

α2

N
I (ιm) S (ιm)

)
+

%h%

∆(%)Γ(% + 2)

m∑
n=1

(
− (α1 + α3) E (ιn) +

α2

N
I (ιn) S (ιn)

)
×

[
(m − n + 1)%(2 + m − n + %) − (m − n)%(m − n + 2 + 2%)

]
−

%h%

∆(%)Γ(% + 2)

m∑
n=1

(
− (α1 + α3) E (ιn−1) +

α2

N
I (ιn−1) S (ιn−1)

)
×

[
(m − n + 1)%+1 − (m − n + 1 + %)(m − n)%

]
. (4.11)

I(ιm+1) − I(0) =
1 − %
∆(%)

(− (α1 + α4) I (ιm) + α3E (ιm))

+
%h%

∆(%)Γ(% + 2)

m∑
n=1

(− (α1 + α4) I (ιn) + α3E (ιn))

×
[
(m − n + 1)%(2 + m − n + %) − (m − n)%(m − n + 2 + 2%)

]
−

%h%

∆(%)Γ(% + 2)

m∑
n=1

(− (α1 + α4) I (ιn−1) + α3E (ιn−1))

×
[
(m − n + 1)%+1 − (m − n + 1 + %)(m − n)%

]
. (4.12)

R(ιm+1) − R(0) =
1 − %
∆(%)

(−α1R (ιm) + α4I (ιm))

+
%h%

∆(%)Γ(% + 2)

m∑
n=1

(−α1R (ιn) + α4I (ιn))

×
[
(m − n + 1)%(2 + m − n + %) − (m − n)%(m − n + 2 + 2%)

]
−

%h%

∆(%)Γ(% + 2)

m∑
n=1

(−α1R (ιn−1) + α4I (ιn−1))

×
[
(m − n + 1)%+1 − (m − n + 1 + %)(m − n)%

]
. (4.13)

For the initial conditions, we initialize the system as follows: N = 48,000,000, S (0) =

47,999,990, E (0) = 3, I (0) = 7, and R(0) = 0.
We have presented the numerical results for different compartments of the proposed model in

Figures 2–13, respectively, by using three different sets of fractional orders. We see a decline in
the susceptible class as shown in three different figures (Figures 2, 6, and 10) using various fractional
order values. In the same way, we have shown the numerical results for an exposed class using three
different sets of fractional order values in Figures 3, 7, and 11. Proceeding with the same procedures,
we have presented numerically the graphical presentations of infected and recovered classes for various
fractional order values in Figures 4, 8, and 12, and 5, 9, and 13, respectively.

AIMS Mathematics Volume 9, Issue 6, 14228–14252.



14245

Time 
0 50 100 150 200 250 300

 S
us

ci
pt

ib
le

 c
la

ss

×107

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5
0.25
0.35
0.45
0.55

Figure 2. Susceptible populations S for different values of fractional orders.
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Figure 3. Exposed populations E for different values of fractional orders.
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Figure 4. Infected populations I for different values of fractional orders.
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Figure 5. Recovered populations R for different values of fractional orders.

Time
0 50 100 150 200 250 300

 S
us

ci
pt

ib
le

 c
la

ss

×107

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

0.60
0.70
0.80
0.90

Figure 6. Susceptible populations S for different values of fractional orders.
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Figure 7. Exposed populations E for different values of fractional orders.
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Figure 8. Infected populations I for different values of fractional orders.
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Figure 9. Recovered populations R for different values of fractional orders.
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Figure 10. Susceptible populations S for different values of fractional orders.

AIMS Mathematics Volume 9, Issue 6, 14228–14252.



14248

Time
0 50 100 150 200 250 300

 E
xp

os
ed

 c
la

ss

×106

0

1

2

3

4

5

6

7

8

9

10

0.92
0.95
0.98
1.00

Figure 11. Exposed populations E for different values of fractional orders.
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Figure 12. Infected populations I for different values of fractional orders.
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Figure 13. Recovered populations R for different values of fractional orders.

The findings from the sensitivity analysis of the fractional MABC-SEIR model provide valuable
insights into the factors that influence the dynamics of influenza transmission. The identified sensitive
parameters, including the natural birth rate, transmission rate, and incubation rate, play crucial roles
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in shaping the prevalence of influenza. It is important to accurately estimate these parameters, as
even small changes in their values can have a substantial impact on the quantitative outcomes of the
model. By identifying the sensitive parameters, this analysis highlights the importance of collecting
accurate data and conducting precise estimations for these key factors. This information can aid in
developing more effective strategies for controlling and managing the spread of influenza. Public
health interventions can be designed to target these sensitive parameters, focusing on reducing the
transmission rate, implementing preventive measures during the incubation period, and considering
the demographic factors related to the birth rate.

On the other hand, the insensitive parameters identified in the sensitivity analysis do not require
precise estimation. Fluctuations in these parameters have minimal impact on the target variable, and
therefore, their values can be approximated or assumed within a reasonable range without significantly
affecting the model’s predictive capabilities.

Overall, the fractional MABC-SEIR model, coupled with sensitivity analysis, provides a promising
approach for predicting confirmed influenza cases. It allows for a better understanding of the complex
dynamics of influenza transmission and can assist in decision-making processes related to public health
interventions, resource allocation, and outbreak management. However, it is important to note that the
model’s effectiveness relies heavily on the accuracy of parameter estimation and the availability of
reliable data.

5. Conclusions

In this work, we have conducted a comprehensive investigation into a system consisting of n-
coupled equations, specifically generalized Sturm-Liouville and Langevin equations. The primary
focus was on understanding the behavior of this system when subjected to a MABC fractional
derivative. Through rigorous analysis, we have gained valuable insights into the dynamics of the system
and the influence of the modified operator on the existence and uniqueness of solutions. To establish the
uniqueness of solutions, we employed the Banach contraction principle, a powerful mathematical tool.
Additionally, Leray-Schauder’s alternative fixed-point theorem was utilized to determine the existence
of solutions. This theorem provided a robust framework for examining the properties of the solutions
within the system. Furthermore, we discussed the Hyers-Ulam stability of the system, enabling us
to assess the stability properties of the solutions and evaluate their sensitivity to perturbations. By
understanding the stability characteristics, we gained a deeper understanding of the overall behavior of
the system and its response to external influences. In addition to the theoretical analysis, we applied the
numerical scheme of MABC to model and simulate the influenza epidemic. This real-world application
demonstrated the versatility and effectiveness of the MABC method. By successfully applying the
MABC approach, we showcased its potential for capturing and predicting the dynamics of infectious
diseases, offering valuable insights into the field of epidemiology. By combining these approaches,
our study has made significant contributions to the understanding of the behavior of n-coupled systems
under a MABC fractional derivative. We have provided insights into the dynamics of the system, the
uniqueness of solutions, the stability properties, and the practical applications in epidemiology. This
research expands the current knowledge in the field and serves as a foundation for further investigations
and advancements in related areas. In future research, a natural extension of this work would be to
analyze systems of delay equations under the influence of the piecewise MABC fractional operator.
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This extension would allow for a deeper exploration of the behavior of systems with time delays,
providing further insights into complex dynamical phenomena.
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