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Abstract: This paper is devoted to investigating the well-posedness, as well as performing the
numerical analysis, of an inverse source problem for linear pseudoparabolic equations with a memory
term. The investigated inverse problem involves determining a right-hand side that depends on
the spatial variable under the given observation at a final time along with the solution function.
Under suitable assumptions on the problem data, the existence, uniqueness and stability of a strong
generalized solution of the studied inverse problem are obtained. In addition, the pseudoparabolic
problem is discretized using extended cubic B-spline functions and recast as a nonlinear least-squares
minimization of the Tikhonov regularization function. Numerically, this problem is effectively solved
using the MATLAB subroutine lsqnonlin. Both exact and noisy data are inverted. Numerical results for
a benchmark test example are presented and discussed. Moreover, the von Neumann stability analysis
is also discussed.
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1. Introduction

Statement of the problem

Let QT := Ω × [0,T ] be a bounded rectangle, where Ω = (0, l) and 0 < l,T < ∞. Let us
consider the inverse problem of finding a pair (y, f ) that satisfies the following one-dimensional linear
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pseudoparabolic equation with a memory

yt (x, t) − αyxx (x, t) − βyxxt (x, t) − γ

t∫
0

K(t − τ)yxx(x, τ)dτ

= f (x)g(x, t) + h(x, t), (x, t) ∈ QT , (1.1)

subject to the initial condition

y (x, 0) = y0 (x) , x ∈ Ω, (1.2)

the boundary conditions

y (0, t) = y (l, t) = 0, t ∈ [0,T ], (1.3)

and the final overdetermination condition

y (x,T ) = a (x) , x ∈ Ω, (1.4)

where Ω := [0, l], y0(x), a(x), g(x, t), h(x, t), and K(t) are given functions, and α, β, γ are given real
numbers such that α > 0, β ≥ 0, and −∞ < γ < +∞. For simplicity, we take |γ| = 1. The studied
inverse problem given by (1.1)–(1.4) involves determining, in addition to y(x, t), a right-hand side
coefficient f (x) under the given observation (1.4). There are problems that require the determination of
certain parameters, and there are obtainable solutions of direct problems when additional information
is given. Such problems are usually called inverse problems. For instance, in the mathematical
modeling of certain processes, certain physical parameters affecting the process may be unknown
and inaccessible for direct measurement, such as when the environment is underground, or in a place
with high temperatures. In these types of cases, additional information about the phenomenon can
be given, allowing the recovery of the unknown parameters. Such information is usually modeled by
an average value of the sought solution, or by the value at the final time. Pseudoparabolic equations
with nonlocal terms such as (1.1) have various physical applications; for instance, they appear in the
mathematical descriptions of heat conductions and viscous flows in materials with memory, electric
signals in telegraph lines with nonlinear damping [1], non-Newtonian fluid dynamics [35], bidirectional
nonlinear shallow water waves [32], the velocity evolution of ion-acoustic waves in collisionless
plasma [30], population dynamics and plasma physics [21, 33], and so on. Moreover, the physical
meaning of the memory term (integral term) in the equation is important; for instance, in non-
Newtonian fluid models [35], the elastic property of fluids has an indication. However, this term,
along with its physical importance, causes mathematical difficulties in their analytical and numerical
analysis, and requires additional techniques. In the absence of the memory term (i.e., K(t) = 0), the
Eq (1.1) becomes a classical linear pseudoparabolic equation

yt (x, t) − αyxx (x, t) − βyxxt (x, t) = F := f (x)g(x, t) + h(x, t), (1.5)

which are used in the mathematical modeling of phenomena in fields of thermodynamics and filtration,
etc.; see [7, 8, 20, 28].

There are many works on the study of direct and inverse problems for these kinds of pseudoparabolic
equations. Most of the papers on inverse problems for pseudoparabolic equations such as (1.5)
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(without a memory term) address inverse problems, which involve finding a coefficient for the
right-hand side that depends on the time variable t; see [5, 6, 17, 23, 25, 31] and others. However,
the inverse problems that involve determining the right-hand side coefficients that depends on
spatial variables for pseudoparabolic equations have not been studied extensively. For instance,
the existence and uniqueness of classical solutions to the inverse problem for (1.5) with integral
and final overdetermination conditions were established in [18] and [16], respectively. To the best
of our knowledge, the inverse problems that involve determining a right-hand side coefficient that
depends on the spatial variables for pseudoparabolic equations with memory, in particular, the current
statement of the above inverse problem given by (1.1)–(1.4), have not yet been investigated, either
analytically or numerically. Nevertheless, there are some works on the numerical analysis of the inverse
problem for pseudoparabolic-type equations without a memory term; see [11–15, 26]. For example,
in [12, 14], Huntul et al. numerically studied the inverse problems that involve reconstructing the
unknown coefficients in a third-order pseudoparabolic equation from additional and nonlocal integral
observations.

The rest of the paper is organized as follows. Section 2 is devoted to analytically studying the given
inverse problem, i.e., the existence, uniqueness and stability of a strong generalized solution. The
discretization and solution of the direct problem via an extended cubic B-spline (CBS) approach are
given in Section 3, and Section 4 presents the stability analysis of the proposed scheme. The extended
CBS direct solver based on the numerical method is coupled with the Tikhonov regularization method,
as described in Section 5. In Section 6, the computational results for a test example are presented and
discussed. Finally, Section 7 highlights the conclusions.

2. Preliminaries

In this section, we reduce the original inverse problem given by (1.1)–(1.4) to another inverse
problem with homogeneous initial conditions, whose solvability is equivalent to the solvability of
an operator equation of the second kind. Throughout the entire paper, the following abbreviations are
used for precisesness. The norms in the Lebesgue spaces L2(Ω) and L2(QT ) are denoted as follows:

‖u‖2,Ω ≡


∫
Ω

|u(x)|2dx


1
2

, ‖u‖2,QT ≡


T∫

0

∫
Ω

|u(x, t)|2dxdt


1
2

,

and the inner product in L2(Ω) is denoted by

(u, v)2,Ω ≡

∫
Ω

u(x)v(x)dx.

For the definitions, notations of the function spaces and their properties, we refer the reader to the
monographs [2,22]. Since the problem given by (1.1)–(1.4) is linear, we seek a solution to the original
inverse problem given by (1.1)–(1.4) as follows:

{y(x, t), f (x)} = {υ(x, t), h(x, t)} + {u(x, t), f (x)} , (2.1)

AIMS Mathematics Volume 9, Issue 6, 14186–14212.



14189

where {v(x, t), h(x, t)} is a solution to the following direct problem:

vt (x, t) − αvxx(x, t) − βvxxt(x, t) − γ

t∫
0

K(t − τ)vxx(x, τ)dτ = h(x, t), (x, t) ∈ QT , (2.2)

v (x, 0) = y0 (x) , x ∈ Ω, (2.3)

v (0, t) = v (l, t) = 0, t ∈ [0,T ] , (2.4)

while {u(x, t), f (x)} is a solution to the following inverse problem:

ut (x, t) − αuxx (x, t) − βuxxt (x, t) − γ

t∫
0

K(t − τ)uxx (x, τ) dτ = f (x)g(x, t),

(x, t) ∈ QT , (2.5)

u (x, 0) = 0, x ∈ Ω, (2.6)

u (0, t) = u (l, t) = 0, t ∈ [0,T ] , (2.7)

u (x,T ) = φ (x) , x ∈ Ω, (2.8)

where φ(x) = a(x)−v(x,T ), and v(x,T ) is a trace of a solution of the direct problem given by (2.1)–(2.4)
at T . According to [28, 35], the direct problem given by (2.2)–(2.4) has a unique solution

v(x, t) ∈ C(0,T ; W2,1
0 (Ω)) ∩ L2

(
0,T ; W2,2 (Ω) ∩W2,1

0 (Ω)
)
∩W2,1

(
0,T ; W2,2 (Ω)

)
.

Consequently, to investigate the unique solvability of the original inverse problem given by (1.1)–(1.4),
it is sufficient to study the unique solvability given by (2.5)–(2.8).

Definition 1. The pair of functions {u(x, t), f (x)} is said to be a strong generalized solution of the
inverse problem given by (2.5)–(2.8) if

u ∈ L∞
(
0,T ; W2,1

0 (Ω) ∩W2,2 (Ω)
)
∩W2,1

(
0,T ; W2,2 (Ω)

)
, f (x) ∈ L2 (Ω) ,

and all relations given by (2.5)–(2.8) are satisfied almost everywhere in the corresponding domains.

2.1. An equivalent operator equation

Now, we reduce the inverse problem given by (2.5)–(2.8) to an equivalent operator equation of the
second kind for f (x) in L2(Ω). Here, we use the method used in the book [29] with few new techniques,
i.e., here, we derive an operator equation by integrating the equation by t in [0,T ] instead of taking

AIMS Mathematics Volume 9, Issue 6, 14186–14212.



14190

t = T in the equation as in [29]. The latter requires smoother solutions of the corresponding direct
problem, such as uxxt ∈ C(0,T ; L2(Ω)), while uxx ∈ C(0,T ; L2(Ω)) is aready sufficient.

Let us fix an arbitrary function f (x) ∈ L2(Ω). After the substitution of f (x) into (2.5), the problem
given by (2.5)–(2.7) can be considered to be the direct problem of determining u(x, t), and it has a
unique solution:

u(x, t) ∈ C(0,T ; W2,1
0 (Ω) ∩ L2

(
0,T ; W2,2 (Ω) ∩W2,1

0 (Ω)
)
∩W2,1

(
0,T ; W2,2 (Ω)

)
.

Thus, this established correspondence between f (x) and u(x, t) provides us with an operator

A : L2 (Ω)→ L2 (Ω) .

Let us consider the following operator equation of the second kind

f = A f + η, (2.9)

with the operator A defined by the relation

A f = −
1

gT (x)

T∫
0

αuxx(x, t) + γ

t∫
0

K(t − τ)uxx(x, τ)dτ

 dt. (2.10)

Here, u(x, t) is the solution of the direct problem given by (2.5)–(2.7) with the right-hand side F =

f (x)g(x, t) corresponding to the fixed function f (x) ∈ L2 (Ω), η(x) is a given function in L2 (Ω), and

gT (x) =

T∫
0

g(x, t)dt.

Lemma 1. Let the following conditions be satisfied:

g(x, t) ∈ L2(QT ), gT (x) =

T∫
0

g(x, t)dt , 0, ∀x ∈ Ω, (2.11)

φ(x) ∈ W2,1
0 (Ω) ∩W2,2 (Ω) , (2.12)

η(x) =
1

gT (x)
[
φ(x) − βφxx(x)

]
. (2.13)

Then, the unique solvability of the inverse problem given by (2.5)–(2.8) is equivalent to the unique
solvability of the operator (2.9), i.e., the inverse problem given by (2.5)–(2.8) is uniquely solvable, if
and only if, the operator (2.9) is uniquely solvable.

AIMS Mathematics Volume 9, Issue 6, 14186–14212.



14191

Proof. (1) Let (u, f ) be the unique solution of the inverse problem given by (2.5)–(2.8).
Integrating (2.5) by t from 0 to T and using (2.6), (2.8) and (2.12), we have

φ(x) − βφ′′ − α

T∫
0

uxxdt − γ

T∫
0

t∫
0

K(t − τ)uxx(x, τ)dτdt = f (x)

T∫
0

g (x, t) dt. (2.14)

It follows from (2.14) and the assumptions (2.11), (2.13), and (2.10) that (2.9) holds with η defined
by (2.13). This step completes the first part of the proof.
(2) Now, suppose that the operator equation (2.9) is uniquely solvable; let f ∈ L2 (Ω) be a solution.
Substituting f (x) into (2.5), we consider (2.5)–(2.7) to represent a direct problem with a given right-
hand side F (x, t) = f (x) g (x, t), and it has a unique solution u (x, t) ∈ L2

(
0,T ; W2,2 (Ω) ∩W2,1

0 (Ω)
)
∩

W2,1
(
0,T ; W2,2 (Ω)

)
. Therefore, to prove that such a constructed pair (u, f ) is a strong solution

of the inverse problem given by (2.5)–(2.8), it is sufficient to prove that the function u satisfies
the final overdetermination condition (2.8). Let us make an assumption for contradiction, i.e., the
overdetermination condition does not hold. Suppose that

u (x,T ) = φ1(x), x ∈ Ω, (2.15)

where φ1(x) , φ(x) for all x ∈ Ω, and φ1(x) ∈ W2,2 (Ω). By (2.7), we obtain

φ1 (x) = 0, x ∈ ∂Ω. (2.16)

Both sides of (2.5) are integrated by the variable t from 0 to T , and the new overdetermination
condition (2.15) is applied. By setting (2.14) and using (2.10), we obtain

f = A f +
1

gT (x)
[
φ1(x) − βφ1xx(x)

]
. (2.17)

Subtracting (2.9) from (2.17) and applying the condition (2.16) yields the following boundary problem
for the function E(x) = φ(x) − φ1(x)

βE′′(x) − E(x) = 0, E(x) ∈ W2,1
0 (Ω) . (2.18)

By multiplying both sides of (2.18) by E(x), and integrating from 0 to l by the variable x, we have

β ‖E′(x)‖2 + ‖E(x)‖2 = 0, (2.19)

which implies that φ(x) ≡ φ1(x) in Ω. Therefore, the function u satisfies the overdetermination
condition in (2.8), i.e., the pair (u, f ) is a unique solution of the inverse problem given by (2.5)–
(2.8). �

Thus, by Lemma 1, we shall study the solvability of the operator (2.10).

Theorem 1. Assuming that in addition to (2.11)–(2.13), the following conditions are satisfied:

|gT (x)| =

∣∣∣∣∣∣∣∣
T∫

0

g(x, t)dt

∣∣∣∣∣∣∣∣ ≥ g0 > 0; (2.20)
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K(t) ∈ L2([0,T ]) : ‖K(t)‖L2([0,T ]) = K0 < ∞; (2.21)

g(x, t) ∈ C(QT ) : |g(x, t)| ≤ Kg < ∞; (2.22)

µ :=
KgT

(
α + K0

√
T
)

g0
√
α

min


√

2
α

e
K2

0 T

α2 ,

√
T
β

e
K2

0 T2

2αβ

 < 1. (2.23)

Then, the inverse problem given by (2.5)–(2.8) has a unique solution.

Remark 1. The condition (2.23) will be satisfied if we at least choose T to be sufficiently small, i.e.,
the inverse problem is uniquely solvable locally in time.

For example, if K(t) = 1, l = 1, g(x, t) = cos(t) + απ2 sin(t) + βπ2 cos(t) − π2 cos(t) + π2, and φ(x) =

sin(T ) sin(πx) in (2.5)–(2.8), then the exact solution of (2.5)–(2.8) corresponding to these data is the
pair of functions u(x, t) = sin(t) sin(πx) and f (x) = sin(πx). In this case, it is easy to check that
the condition (2.23) holds if α = 1, β = 0.01, and T = 0.5 (here Kg = |g(x, t = 0.5)| ≈ 6.898,

g0 =

∣∣∣∣∣∣ 0.5∫
0

g(x, t)dt

∣∣∣∣∣∣ ≈ 11.390, K0 =
√

T = 0.707) with µ = 0.824 or if α = 1, β = 2.5, and T = 1 (here

Kg = |g(x, t = 0.55)| ≈ 28.47, g0 =

∣∣∣∣∣∣ 1∫
0

g(x, t)dt

∣∣∣∣∣∣ ≈ 44.27, K0 =
√

T = 1) with µ = 0.9936.

Proof. To prove this theorem, Lemma 1 is sufficient to prove the unique solvability of the
operator (2.9). To this end, it is sufficient to show that the operator A is defined by (2.10) and is
a contraction operator in L2 (Ω). Then, by the fixed point principle, the operator (2.9) has a unique
solution in L2(Ω).

Using Holder’s and Young’s inequalities and the conditions (2.20)–(2.23), we have

‖A f1 − A f2‖
2
2,Ω

=

l∫
0

∣∣∣∣∣∣∣∣− 1
gT

T∫
0

α(u1xx − u2xx) + γ

t∫
0

K(t − τ)(u1xx(τ) − u2xx(τ))dτ

 dt

∣∣∣∣∣∣∣∣
2

dx

≤
1
g2

0

l∫
0


T∫

0

α|u1xx − u2xx| + K0|γ|

∣∣∣∣∣∣∣∣
t∫

0

|u1xx(τ) − u2xx(τ)|2 dτ

∣∣∣∣∣∣∣∣
1
2
 dt


2

dx

≤
1
g2

0

l∫
0

α√T


T∫

0

|u1xx − u2xx|
2dt


1
2

+ K0T


T∫

0

|u1xx − u2xx|
2dτ


1
2


2

dx

≤
T

(
α + K0

√
T
)2

g2
0

‖u1xx − u2xx‖
2
L2(QT ) . (2.24)
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Next, we obtain some estimates for ‖u1xx − u2xx‖
2
L2(QT ). By multiplying both sides of (2.5) by uxx :=

u1xx − u2xx, integrating over Ω and applying the formula of integrating by parts, we have

1
2

d
dt

(
‖ux‖

2
2,Ω + β ‖uxx‖

2
2,Ω

)
+ α ‖uxx‖

2
2,Ω

=

l∫
0

f (x) g (x, t) uxxdx + γ

l∫
0

t∫
0

K (t − τ) uxx (x, t) uxx (x, τ) dτ := F(x, t), (2.25)

where

f (x) := f1(x) − f2(x).

Now, we estimate the right hand side of (2.25)

|F(x, t)| =

∣∣∣∣∣∣∣∣
l∫

0

f (x) g (x, t) uxxdx + γ

l∫
0

∫ t

0
K (t − τ) uxx (x, t) uxx (x, τ) dτdx

∣∣∣∣∣∣∣∣
≤ ‖ f (x)g(x, t)‖2,Ω ‖uxx‖2,Ω + |γ|

t∫
0

|K (t − τ)| ‖uxx (τ)‖2,Ω ‖uxx (t)‖2,Ω dτ

≤
K2

g

α
‖ f ‖22,Ω +

α

2
‖uxx‖

2
2,Ω +

1
α


t∫

0

|K (t − τ)| ‖uxx (τ)‖2,Ω dτ


2

≤
K2

g

α
‖ f ‖22,Ω +

α

2
‖uxx‖

2
2,Ω +

K2
0

α

t∫
0

‖uxx (τ)‖22,Ω dτ. (2.26)

Substituting this into (2.25), we obtain

d
dt

(
‖ux‖

2
2,Ω + β ‖uxx‖

2
2,Ω

)
+ α ‖uxx‖

2
2,Ω ≤

2K2
g

α
‖ f ‖22,Ω +

2K2
0

α

t∫
0

‖uxx (τ)‖22,Ω dτ, (2.27)

and integrating (2.27) by s from 0 to t, we obtain

‖ux(t)‖22,Ω + β ‖uxx(t)‖22,Ω + α

t∫
0

‖uxx‖
2
2,Ω ds

≤
2K2

g t

α
‖ f ‖22,Ω +

2K2
0

α

t∫
0

s∫
0

‖uxx (τ)‖22,Ω dτds. (2.28)

Omitting the first and second terms, we obtain the following from (2.28):

α

t∫
0

‖uxx‖
2
2,Ω ≤

2K2
gT

α
‖ f ‖22,Ω +

2K2
0

α

t∫
0

s∫
0

‖uxx (τ)‖22,Ω dτds, (2.29)
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which, after applying Grönwall’s lemma and taking t = T as a result, yields

‖uxx‖
2
QT
≤

2K2
gT

α2 e
2K2

0 T

α2 ‖ f ‖22,Ω . (2.30)

Next, omitting the first and third terms on the left-hand side of (2.28), and integrating by s from 0 to t,
we obtain

t∫
0

‖uxx(s)‖22,Ω ds ≤
K2

gT 2

αβ
‖ f ‖22,Ω +

2K2
0 t

αβ

t∫
0

s∫
0

‖uxx (τ)‖22,Ω dτds, (2.31)

which, by Grönwall’s lemma, gives the following inequality with t = T

‖uxx‖
2
QT
≤

K2
gT 2

αβ
e

K2
0 T2

αβ ‖ f ‖22,Ω . (2.32)

The inequalities (2.30) and (2.32) yield

‖uxx‖
2
QT
≤

K2
gT

α
min

{
2
α

e
2K2

0 T

α2 ,
T
β

e
K2

0 T2

αβ

}
‖ f ‖22,Ω . (2.33)

Plugging the last equation with u := u1 − u2 and f := f1 − f2 into (2.24), we obtain

‖A f1 − A f2‖2,Ω ≤ µ ‖ f1 − f2‖2,Ω , (2.34)

where µ :=
KgT

(
α + K0

√
T
)

g0
√
α

min


√

2
α

e
K2

0 T

α2 ,

√
T
β

e
K2

0 T2

2αβ

 . Thus, by (2.23) with µ < 1, the operator A

is a contraction, and this completes the proof of Theorem 1. �

2.2. Stability results for the inverse problem

In this subsection, we establish the stability results for the inverse problem given by (2.5)–(2.8).

Theorem 2. If the conditions (2.10)–(2.13) hold, then the strong solution of the inverse problem given
by (2.5)–(2.8) is stable, i.e., (ui, fi) , i = 1, 2 are two solutions of the inverse problem given by (2.5)–
(2.8) corresponding to the input data (φi, gi) , i = 1, 2, then, there exists a constant M such that

‖u1 − u2‖L∞(0,T ;W1,2
0 (Ω)∩W2,2(Ω)) + ‖u1 − u2‖W1,2(0,T ;W2,2(Ω)) + ‖ f1 − f2‖L2(Ω)

≤ M
(
‖φ1 − φ2‖W2,2(Ω) + ‖g1 − g2‖C(QT )

)
. (2.35)

Remark 2. If g1 = g, g2 = 0, and φ1 = φ, φ2 = 0, then we obtain the estimates for strong solutions to
the inverse problem given by (2.5)–(2.8):

‖u‖L∞(0,T ;W1,2
0 (Ω)∩W2,2(Ω)) + ‖u‖W1,2(0,T ;W2,2(Ω)) + ‖ f ‖L2(Ω)

≤ M1

(
‖φ‖W2,2(Ω) + ‖g‖C(QT )

)
. (2.36)
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Remark 3. If g1 = g2 and φ1 = φ2, then it follows from (2.35) that the uniqueness of strong solutions
to the inverse problem given by (2.5)–(2.8) holds.

Proof. Let
{
u, fi

}
, i = 1, 2 be two solutions of the inverse problem given by (2.5)–(2.8) corresponding

to the input data (φi, gi) , i = 1, 2. Then, we apply their differences:

u = u1 − u2, f = f1 − f2, φ = φ1 − φ2, g = g1 − g2.

We obtain the following problem:

ut (x, t) − αuxx (x, t) − βuxxt (x, t) − γ

t∫
0

K(t − τ)uxx (x, τ) dτ

= f (x)g1(x, t) + f2(x)g(x, t), (x, t) ∈ QT , (2.37)

u (x, 0) = 0, x ∈ Ω, (2.38)

u (0, t) = u (l, t) = 0, t ∈ [0,T ] , (2.39)

u (x,T ) = φ (x) , x ∈ Ω. (2.40)

Both sides of (2.37) are multiplied by uxx and integrated by x over Ω. Then, estimating the right-hand
side, we have

1
2

d
dt

(
‖ux‖

2
2,Ω + β ‖uxx‖

2
2,Ω

)
+ α ‖uxx‖

2
2,Ω

≤
1
α
‖ f (x)g1(x, t) + f2(x)g(x, t)‖22,Ω +

α

2
‖uxx‖

2
2,Ω +

K2
0

α

t∫
0

‖uxx(τ)‖22,Ω dτ. (2.41)

As we have obtained (2.33) from (2.27), we obtain

‖uxx‖2,QT
≤ δ

[
‖g1‖C(QT ) ‖ f ‖2,Ω + ‖g‖C(QT ) ‖ f2‖2,Ω

]
, (2.42)

where

δ =

√
T
α

min


√

2
α

e
K2

0 T

α2 ,

√
T
β

e
K2

0 T2

2αβ

 .
Then, integrating (2.37) by t from 0 to T , we have

f (x) =
1

g1T

[
φ(x) − βφ′′ − α

T∫
0

uxxdt − γ

T∫
0

t∫
0

K(t − τ)uxx(x, τ)dτ
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−

T∫
0

f2(x)g(x, t)dt
]
. (2.43)

Taking the norm of both sides of the last equality and combining the result with (2.42), we obtain

‖ f (x)‖2,Ω =

∥∥∥∥∥∥ 1
g1T

[
φ(x) − βφ′′(x) −

T∫
0

αuxx +

t∫
0

K(t − τ)uxx(τ)dτ

 dt

−

T∫
0

f2(x)g(x, t)dt
]∥∥∥∥∥∥

2,Ω

≤
1
g0

[∥∥∥∥∥∥φ − βφ′′
∥∥∥∥∥∥

2,Ω

+

∥∥∥∥∥∥∥∥
T∫

0

αuxx + γ

t∫
0

K(t − τ)uxx(τ)dτ

 dt

∥∥∥∥∥∥∥∥
2,Ω

+

∥∥∥∥∥∥∥∥
T∫

0

f2(x)g(x, t)dt

∥∥∥∥∥∥∥∥
2,Ω

]

≤
1
|g0|

(
‖φ‖2,Ω + β ‖φ′′‖2,Ω +

√
T

(
α + K0

√
T
)
‖uxx‖2,QT

+ T ‖g‖C(QT ) ‖ f2‖2,Ω

)
≤

1
|g0|

(
‖φ‖2,Ω + β ‖φ′′‖2,Ω +

√
T

(
α + K0

√
T
)
δ
[
‖g1‖C(QT ) ‖ f ‖2,Ω

+ ‖g‖C(QT ) ‖ f2‖2,Ω

]
+T ‖g‖C(QT ) ‖ f2‖2,Ω

)
≤ µ ‖ f ‖2,Ω +

1
|g0|

(
‖φ‖2,Ω

+ β ‖φ′′‖2,Ω
)

+ µ ‖g‖C(QT ) ‖ f2‖2,Ω . (2.44)

It follows that

‖ f (x)‖2,Ω ≤
1

1 − µ

(
1
|g0|

(
‖φ‖2,Ω + β ‖φ′′‖2,Ω

)
+ µ ‖g‖C(QT ) ‖ f2‖2,Ω

)
. (2.45)

Next, combining (2.41), (2.42), and (2.45), we obtain

‖u‖L∞(0,T ;W1,2
0 (Ω)∩W2,2(Ω)) + ‖u‖L2(0,T ;W2,2(Ω)) ≤ C

(
‖φ‖W2,2(Ω) + ‖g‖C(QT )

)
. (2.46)

Now, taking the derivative of (2.37) with respect to u, we obtain

1
2

d
dt

(
‖u‖22,Ω + β ‖ux‖

2
2,Ω

)
+ α ‖ux‖

2
2,Ω = γ

l∫
0

t∫
0

K(t − τ)ux(x, τ)ux(x, t)dτdx

+

l∫
0

( f (x)g1(x, t) + f2(x)g(x, t)) u(x, t)dx. (2.47)

By estimating the terms on the right-hand side using the Holder and Young inequalities and combining
the result with (2.45), we have

‖u‖L∞(0,T ;W1,2
0 (Ω)) + ‖u‖L2(0,T ;W1,2(Ω)) ≤ C

(
‖φ‖W2,2(Ω) + ‖g‖C(QT )

)
. (2.48)
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Next, multiplying (2.37) by uxxt and integrating over Ω, we obtain

α

2
d
dt
‖uxx‖

2
2,Ω + ‖uxt‖

2
2,Ω + β ‖uxxt‖

2
2,Ω = γ

l∫
0

t∫
0

K(t − τ)uxx(x, τ)uxxt(x, t)dτdx

+

l∫
0

( f (x)g1(x, t) + f2(x)g(x, t)) uxxt(x, t)dx. (2.49)

Likewise, it follows that

‖u‖L∞(0,T ;W2,2(Ω)) + ‖ut‖L2(0,T ;W2,2(Ω)) ≤ C
(
‖φ‖W2,2(Ω) + ‖g‖C(QT )

)
. (2.50)

The inequalities (2.48), (2.46), (2.50), and (2.45) give (2.35). �

3. The numerical scheme for the direct problem

In this section, the numerical scheme for the direct problem is described. The current approach
employs the first-order backward Euler scheme to handle the time derivatives and extended CBS
functions to approximate the unknown function and its spatial derivatives. Initially, the temporal
domain [0,T ] is sliced into N uniform subintervals [tk, tk+1] such that tk = k×∆t, k = 0, 1, 2, · · · ,N −1,
with t0 = 0, tN = T and ∆t = (tN − t0)/N. At t = tk+1, using a theta-weighted scheme, the problem (2.5)
is discretized as follows:

u(x, tk+1) − u(x, tk)
∆t

− α
[
θuxx(x, tk+1) + (1 − θ)uxx(x, tk)

]
−β

[uxx(x, tk+1) − uxx(x, tk)
∆t

]
− γ

tk+1∫
0

K(tk+1 − τ)uxx(x, τ)dτ

= θ f (x)g(x, tk+1) + (1 − θ) f (x)g(x, tk), k = 0, 1, 2, · · · ,N − 1. (3.1)

Moreover, the integral term in (3.1) is discretized as follows [9, 36]:

tk+1∫
0

K(tk+1 − τ)uxx(x, τ)dτ =

tk+1∫
0

K(s)uxx(x, tk+1 − s)ds

=

k∑
j=0

t j+1∫
t j

K(s)uxx(x, tk+1 − s)ds

≈

k∑
j=0

t j+1∫
t j

K(s)uxx(x, tk+1− j)ds

=

k∑
j=0

uxx(x, tk+1− j)

t j+1∫
t j

K(s)ds
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=

k∑
j=0

b juxx(x, tk+1− j), (3.2)

where

b j =

t j+1∫
t j

K(s)ds.

Applying the above result in (3.1), we obtain

u(x, tk+1) − u(x, tk)
∆t

− α
[
θuxx(x, tk+1) + (1 − θ)uxx(x, tk)

]
−β

[uxx(x, tk+1) − uxx(x, tk)
∆t

]
− γ

k∑
j=0

b juxx(x, tk+1− j)

= θ f (x)g(x, tk+1) + (1 − θ) f (x)g(x, tk). (3.3)

Setting θ = 1/2, (3.3) takes the following shape:

u(x, tk+1) − u(x, tk) −
α∆t

2

[
uxx(x, tk+1) + uxx(x, tk)

]
−β

[
uxx(x, tk+1) − uxx(x, tk)

]
− γ∆t

k∑
j=0

b juxx(x, tk+1− j)

=
∆t
2

[
f (x)g(x, tk+1) + f (x)g(x, tk)

]
. (3.4)

By rearranging the terms, we obtain the semidiscretized form from (2.5):

u(x, tk+1) −
[
α∆t

2
+ β + b0∆t

]
uxx(x, tk+1) = u(x, tk) +

[
α∆t

2
− β

]
uxx(x, tk)

+γ∆t
k∑

j=1

b juxx(x, tk+1− j) +
∆t
2

[
f (x)g(x, tk+1) + f (x)g(x, tk)

]
. (3.5)

Now, we subdivide the spatial domain [0, l] into M uniform intervals [xi, xi+1] such that xi = i × ∆x,
i = 0, 1, 2, · · · ,M, with x0 = 0, xM = l and ∆x = (xM − x0)/M. We suppose that the extended CBS
solution for the proposed problem at t = tk+1 is given by

U(x, tk+1) =

M+1∑
p=−1

εp(tk+1)S p(x), (3.6)

AIMS Mathematics Volume 9, Issue 6, 14186–14212.



14199

where S p(x), i.e., the extended B-spline functions, are defined as follows [3, 34]:

S p(x) =
1

24∆x4



4(1 − ζ)∆x(x − xi−2)3 + 3ζ(x − xi−2)4, for x ∈ [xi−2, xi−1)
(4 − ζ)∆x4 + 12∆x3(x − xi−1)
+6∆x2(2 + ζ)(x − xi−1)2

−12∆x(x − xi−1)3 − 3ζ(x − xi−1)4, for x ∈ [xi−1, xi)
(4 − ζ)∆x4 − 12∆x3(x − xi+1)
−6∆x2(2 + ζ)(x − xi+1)2

+12∆x(x − xi+1)3 + 3ζ(x − xi−1)4, for x ∈ [xi, xi+1)
−4∆x(1 − ζ)(x − xi+2)3 − 3ζ(x − xi+2)4, for x ∈ [xi+1, xi+2)
0, elsewhere.

(3.7)

Using (3.6) and (3.7), the unknown function and its first two spatial derivatives at point (xi, tk) can be
approximated as follows [4, 27]:

U(xi, tk) =
4 − ζ

24
εi−1(tk) +

16 + 2ζ
24

εi(tk) +
4 − ζ

24
εi+1(tk), (3.8)

Ux(xi, tk) = −
1

2∆x
εi−1(tk) +

1
2∆x

εi+1(tk), (3.9)

Uxx(xi, tk) =
2 + ζ

2∆x2 εi−1(tk) +
−4 − 2ζ

2∆x2 εi(tk) +
2 + ζ

2∆x2 εi+1(tk), (3.10)

where −8 ≤ ζ ≤ 1 and εi denotes M + 3 unknown control points to be computed by the collocation
of (2.5) and (2.7). Hence, the full discretized form of (2.5) is obtained as follows:

U(xi, tk+1) −
[
α∆t

2
+ β + b0∆t

]
Uxx(xi, tk+1) = U(xi, tk) +

[
α∆t

2
− β

]
Uxx(xi, tk)

+γ∆t
k∑

j=1

b jUxx(xi, tk+1− j) + F(xi, tk+1), (3.11)

where

F(xi, tk+1) =
∆t
2

[
f (xi)g(xi, tk+1) + f (xi)g(xi, tk)

]
.

Now, applying (3.8) and (3.10) in (3.11), we have

4 − ζ
24

εi−1(tk+1) +
16 + 2ζ

24
εi(tk+1) +

4 − ζ
24

εi+1(tk+1)

−

[
α∆t

2
+ β + b0∆t

][2 + ζ

2∆x2 εi−1(tk+1) +
−4 − 2ζ

2∆x2 εi(tk+1) +
2 + ζ

2∆x2 εi+1(tk+1)
]

=
4 − ζ

24
εi−1(tk) +

16 + 2ζ
24

εi(tk) +
4 − ζ

24
εi+1(tk)
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+

[
α∆t

2
− β

][2 + ζ

2∆x2 εi−1(tk) +
−4 − 2ζ

2∆x2 εi(tk) +
2 + ζ

2∆x2 εi+1(tk)
]

+ γ∆t
k∑

j=1

b j

[2 + ζ

2∆x2 εi−1(tk) +
−4 − 2ζ

2∆x2 εi(tk) +
2 + ζ

2∆x2 εi+1(tk)
]

+ F(xi, tk+1). (3.12)

For i = 0, 1, 2, · · · ,M, it follows that (3.12) gives M + 1 linear algebraic equations involving M + 3
unknowns. Two more equations are required to obtain a unique solution to the proposed problem, and
they can be extracted from the given boundary constraints of (2.7) as follows:

4 − ζ
24

ε−1(tk+1) +
16 + 2ζ

24
ε0(tk+1) +

4 − ζ
24

ε1(tk+1) = 0, (3.13)

4 − ζ
24

εM−1(tk+1) +
16 + 2ζ

24
εM(tk+1) +

4 − ζ
24

εM+1(tk+1) = 0. (3.14)

Consequently, we have a system of M + 3 equations, i.e., (3.12)–(3.14), involving M + 3 unknown
control points, ε−1(tk+1), ε0(tk+1), · · · , εM+1(tk+1). This system can be written in matrix form as follows:

L1 ε
k+1 = R1 ε

k + R2

k∑
j=0

∆t b j ε
k− j+1 + Fk+1, k = 0, 1, 2, · · · ,N − 1, (3.15)

where

L1 =



c1 c2 c1 0 · · · 0 0 0 0

q1 q2 q1 0 · · · 0 0 0 0

0 q1 q2 q1 · · · 0 0 0 0
...

. . .
. . .

. . .
. . .

. . .
. . .

...

0 0 0 0 · · · q1 q2 q1 0

0 0 0 0 · · · 0 q1 q2 q1

0 0 0 0 · · · 0 c1 c2 c1


(M+3)×(M+3)

,

R1 =



0 0 0 0 · · · 0 0 0 0

q3 q4 q3 0 · · · 0 0 0 0

0 q3 q4 q3 · · · 0 0 0 0
...

. . .
. . .

. . .
. . .

. . .
. . .

...

0 0 0 0 · · · q3 q4 q3 0

0 0 0 0 · · · 0 q3 q4 q3

0 0 0 0 · · · 0 0 0 0


(M+3)×(M+3)

,
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R2 =



0 0 0 0 · · · 0 0 0 0

q5 q6 q5 0 · · · 0 0 0 0

0 q5 q6 q5 · · · 0 0 0 0
...

. . .
. . .

. . .
. . .

. . .
. . .

...

0 0 0 0 · · · q5 q6 q5 0

0 0 0 0 · · · 0 q5 q6 q5

0 0 0 0 · · · 0 0 0 0


(M+3)×(M+3)

,

εk =



ε−1(tk)
ε0(tk)

ε1(tk)
...

εM−1(tk)

εM(tk)

εM+1(tk)


(M+3)×1

, Fk =



0
F(x0, tk)
F(x1, tk)

...

F(xM−1, tk)

F(xM, tk)

0


(M+3)×1

,

c1 =
4 − ζ

24
, c2 =

16 + 2ζ
24

,

q1 = −
∆x2(−4 + ζ) + 12b0∆t(2 + ζ) + 6(α∆t + 2β)(2 + ζ)

24∆x2 ,

q2 =
12b0∆t(2 + ζ) + 6(α∆t + 2β)(2 + ζ) + ∆x2(8 + ζ)

12∆x2 ,

q3 =
−∆x2(−4 + ζ) + 6(α∆t − 2β)(2 + ζ)

24∆x2 ,

q4 =
−6(α∆t − 2β)(2 + ζ) + ∆x2(8 + ζ)

12∆x2 ,

q5 =
2 + ζ

2∆x2 , q6 =
−4 − 2ζ

2∆x2 .

The approximate solution at t = tk+1 is obtained by solving the system of (3.15) for εi and then
substituting their values into (3.6). However, the control points at the initial time level must be
identified before beginning any computation using (3.15). For this, the given initial condition (2.6)
is transformed into the following system of equations:

Lε0 = R, (3.16)
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where

L =



−1 0 1 0 · · · 0 0 0 0
c1 c2 c1 0 · · · 0 0 0 0

0 c1 c2 c1 · · · 0 0 0 0
...

. . .
. . .

. . .
. . .

. . .
. . .

...

0 0 0 0 · · · c1 c2 c1 0

0 0 0 0 · · · 0 c1 c2 c1

0 0 0 0 · · · 0 −1 0 1



,R =



2∆x u′0(x0)
u0(x0)

u0(x1)
...

u0(xM−1)

u0(xM)

2∆x u′0(xM)



.

4. Stability analysis of the extended CBS scheme

In this section, the von Neumann approach is used to demonstrate the stability of the presented
numerical method for direct computation. For simplicity, we take the full discretized form of (2.5):

Uk+1
m −

[
α∆t

2
+ β + b0∆t

]
(Uxx)k+1

m = Uk
m +

[
α∆t

2
− β

]
(Uxx)k

m + γ∆t
k∑

j=1

b j (Uxx)k+1− j
m , (4.1)

where Uk
m = U(xm, tk). Applying (3.8) and (3.10) in (4.1), we obtain

~1ε
k+1
m−1 + ~2ε

k+1
m + ~1ε

k+1
m+1 = ~3ε

k+1
m−1 + ~4ε

k+1
m + ~3ε

k+1
m+1

+γ∆t
k∑

j=1

b j

[
~5ε

k+1− j
m−1 + ~6ε

k+1− j
m + ~5ε

k+1− j
m+1

]
, (4.2)

where

~1 = −
∆x2(−4 + ζ) + 12b0∆t(2 + ζ) + 6(α∆t + 2β)(2 + ζ)

24∆x2 ,

~2 =
12b0∆t(2 + ζ) + 6(α∆t + 2β)(2 + ζ) + ∆x2(8 + ζ)

12∆x2 ,

~3 =
−∆x2(−4 + ζ) + 6(α∆t − 2β)(2 + ζ)

24∆x2 ,

~4 =
−6(α∆t − 2β)(2 + ζ) + ∆x2(8 + ζ)

12∆x2 ,

~5 =
2 + ζ

2∆x2 , ~6 =
−4 − 2ζ

2∆x2 .

In the context of a von Neumann stability analysis, the Fourier modes represent specific sinusoidal
components resulting from the discretization process. The analysis evaluates the evolution of these
Fourier modes by examining the growth factor associated with each mode during the iterative process.
The growth factor in this context indicates how much an individual Fourier mode amplifies or
diminishes at each iteration of the numerical algorithm. This approach helps one to determine whether
the numerical scheme amplifies the errors or perturbations introduced during discretization, potentially
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impacting the overall stability of the solution. We assume that Uk
m represents the error between the exact

and approximate values of the growth factor in Fourier mode. Hence, using (4.2), the error equation is
formulated as follows:

~1U
k+1
m−1 + ~2U

k+1
m + ~1U

k+1
m+1 = ~3U

k+1
m−1 + ~4U

k+1
m + ~3U

k+1
m+1

+γ∆t
k∑

j=1

b j

[
~5U

k+1− j
m−1 + ~6U

k+1− j
m + ~5U

k+1− j
m+1

]
. (4.3)

Moreover, the initial and boundary conditions are satisfied by the error equation. Now, we introduce
the mesh function in Fourier form:

Uk =

Uk
m, xm −

∆x
2 < x ≤ xm + ∆x

2 , m = 1 : 1 : M − 1,
0, 0 ≤ x ≤ ∆x

2 or ` − ∆x
2 ≤ x ≤ `.

(4.4)

Hence, Uk(x) in terms of the Fourier series is given by

Uk(x) =

∞∑
−∞

ςk(m)e
2iπmx
` , k = 0 : 1 : N, (4.5)

where

ςk(m) =
1
`

∫ `

0
Uk(x)e

−2iπmx
` dx.

By applying the norm, we obtain

‖Uk‖2 =

√√
M∑

m=0

∆x|Uk
m|

2

=

√√∫ ∆x
2

0
|Uk|2dx +

M−1∑
m=1

∫ xm+ ∆x
2

xm−
∆x
2

|Uk|2dx +

∫ `

`− ∆x
2

|Uk|2dx

⇒ ‖Uk‖22 =

∫ `

0
|Uk|2dx.

Hence, by using Parseval’s equality [19], we have

‖Uk‖22 =

∞∑
−∞

|ςn(m)|2. (4.6)

Now, we substitute Uk
m = ςkeiγm∆x into (4.3) to obtain the following relation

~1ςn+1eiγ(m−1)∆x + ~2ςn+1eiγm∆x + ~1ςn+1eiγ(m+1)∆x = ~3ςneiγ(m−1)∆x

+~4ςneiγm∆x + ~3ςneiγ(m+1)∆x + γ∆t
k∑

j=1

b j

[
~5ςk+1− jeiγ(m−1)∆x
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+~6ςn−r+1eiγm∆x + ~5ςk+1− jeiγ(m+1)∆x
]
, (4.7)

where i =
√
−1 and γ = 2πm

`
. After simplification, the last equation takes the following form:[

2~1 cos(γ∆x) + ~2

]
ςk+1 =

[
2~3 cos(γ∆x) + ~4

]
ςk

+γ∆t
k∑

j=1

b j

[
2~5 cos(γ∆x) + ~6

]
ςk+1− j. (4.8)

Hence,

ςk+1 =
a2

a1
ςk +

1
a1

k∑
j=1

b j ςk+1− j, (4.9)

where

a1 = b0 +
∆x2(−4 + ζ) + 6(α∆t + 2β)(2 + ζ) + 6∆x2 csc[(γ∆x)/2]2

12∆t(2 + ζ)
,

a2 =
∆x2(−4 + ζ) − 6(α∆t − 2β)(2 + ζ) + 6∆x2 csc[(γ∆x)/2]2

12∆t(2 + ζ)
.

Now, we demonstrate, using mathematical induction, that |ςk| ≤ |ς0| for all k. For k = 0, it follows
that (4.9) takes the following form:

|ς1| =
a2

a1
|ς0| ≤ |ς0|, ∵ a1 ≥ a2.

Assuming that the required result satisfies that |ςk| ≤ |ς0|, we proceed as follows:

|ςk+1| ≤
a2

a1
|ςk| +

1
a1

k∑
j=1

b j|ςk+1− j| ≤
a2

a1
|ς0| +

1
a1

k∑
j=1

b j|ς0| ≤ |ς0|.

Hence,

|ςk| ≤ |ς0|, for all k. (4.10)

From (4.6) and (4.10), we conclude that

‖Uk‖2 ≤ ‖U
0‖2, ∀k = 0, 1, 2, · · · ,N.

Hence, the proposed scheme is numerically stable.

5. Numerical solution of the inverse problem

In this section, our goal is to obtain simultaneously stable determinations of f (x) and u(x, t),
satisfying (2.5)–(2.8). The inverse problem can be formulated as a nonlinear minimization of the
Tikhonov regularization function given by

J( f ) = ‖u(x,T ) − φ(x)‖2 + δ|| f (x)||2, (5.1)
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where u satisfies the forward problem given by (2.5)–(2.7) for given f (x), and δ is the nonnegative
penalty parameter. The discretized form of above function is given by

J( f ) =

M∑
i=1

[
u(xi,T ) − φ(xi)

]2
+ δ

M∑
i=1

( fi)2. (5.2)

The minimization of the objective function J can be performed by using the MATLAB toolbox routine
lsqnonlin, which does not require the user to supply the gradient of the objective function, [10, 24].
This routine attempts to find the minimum of a sum of squares that are subject to simple bounds on the
variables, starting from an initial guess.

6. Computational results

In this section, we present a numerical test example to illustrate the accuracy and stability of the
numerical methods based on the extended CB-spline technique as described in Section 3 combined
with the minimization of the objective function J, as described in Section 5. We chose to employ the
root mean square error (RMSE) in order to assess the accuracy of the numerical results, defined by

RMSE( f ) =

[
l

M

M∑
i=1

(
f numerical(xi) − f exact(xi)

)2
]1/2

. (6.1)

For simplicity, we take l = 1. The upper and lower bounds for f (x) were assumed to be 102 and −102,
respectively. The inverse problem given by (2.5)–(2.8) was solved for both exact and perturbed data.
The perturbed data were numerically simulated as follows:

φε(xi) = φ(xi) + εi, i = 1, 2, ...,M, (6.2)

where εi denotes the random variables generated from a Gaussian normal distribution with mean zero
and standard deviation σ given by

σ = max
0≤x≤l
|φ(x)| × p, (6.3)

where p represents the percentage of noise. For the perturbed data described by (6.2), φ(xi) is replaced
by φε(xi) in (5.2). Let us investigate the inverse problem given by (2.5)–(2.8) with an unknown space-
dependent coefficient f (x) given by

f (x) = exp(−x) sin(πx), x ∈ [0, 1]. (6.4)

The analytical solution u(x, t) is given by

u(x, t) = t sin(πx), (x, t) ∈ [0, 1] × [0,T ], (6.5)

and the target output (2.8) is given by

φ(x) = u(x,T ) = T sin(πx), x ∈ [0, 1], (6.6)
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with the following input data:

u(x, 0) = 0, u(0, t) = u(1, t) = 0, K(t − τ) = exp(−(t − τ)),
g(x, t) = exp(−t + x)(π2γ + exp(t)(1 + π2(β − γ + t(α + γ)))). (6.7)

First, it can easily be checked that with this data, the condition (2.23) holds if α = 1, γ = 1, β = 24, and

T = 1 (here Kg = |g(x, t = 1)| ≈ 682.6, g0 =

∣∣∣∣∣∣ 1∫
0

g(x, t)dt

∣∣∣∣∣∣ ≈ 243.3, K0 =
√

T = 0.657) with µ = 0.99.

Hence, the uniqueness of the solution is guaranteed. The three dimensional visuals of approximate
and the exact solutions are shown in Figure 1 for different values of ∆x and ∆t. In this figure it can be
seen that the numerical solution for u(x, t) converges to the analytical solution (6.5), as the mesh size
decreases.

Next, we chose to solve the inverse problem given by (2.5)–(2.8) by using the lsqnonlin
minimization of the functional (5.2), with the initial guess for the vector f given by

f 0(xi) = f (0) = 0, i = 1, 2, ...,M. (6.8)
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Figure 1. The analytical solution given by (6.5), the approximate curves and the absolute
computational error for the direct problem given by (2.5)–(2.7) by using ∆x = ∆t = 1
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We set M = N = 80 and began the investigation to determine the unknown space-dependent
coefficient f (x) and the solution function u(x, t) in the case of exact input data, i.e., p = 0 in (6.3).
The objective function (5.2) is depicted in Figure 2(a), where a monotonically decreasing convergence
is achieved in about 20 iterations towards the low value of O(10−26). Figure 2(b) shows the exact
(i.e., (6.4)) and approximate solutions for f (x) without the regularization parameter, i.e., δ = 0
in (5.2). This figure shows an acceptable and stable accurate estimate for the coefficient f (x), yielding
RMSE( f ) =5.6854E-04.

Next, we investigated the stability of the numerical solution with respect to various levels of p ∈
{0.01%, 0.1%} noise in (6.3) included in the input data φ(x) in (6.2), in order to model the errors which
are inherently present in any practical measurement. The exact (i.e., (6.4)) and approximate solutions
for the unknown coefficient f (x), with and without penalty parameter δ, are shown in Figures 3 and 4.
In Figures 3(a) and 4(a) it can be seen that as the noise p is increased, the approximate results start
to build up oscillations with RMSE( f ) ∈ {0.300508, 3.058572}. Figures 3(b) and 4(b) illustrate the
reconstructed coefficient f (x) for various values of δ, and one can observe that the most accurate
solutions are achieved for δ ∈ {10−9, 10−8}, yielding RMSE ( f ) ∈ {0.021935, 0.008473} for p = 0.01%,
and for δ ∈ {10−8, 10−7}, yielding RMSE ( f ) ∈ {0.044552, 0.014704} for p = 0.1%; see Table 1 for
additional details. Finally, Figure 5 shows the absolute error between the analytical solution (6.5) and
approximate solutions for u(x, t) for various values of the penalty parameter δ for p = 0.1%. In this
figure it can be seen that the numerical solution is stable and furthermore, that its accuracy improves
as δ > 0.
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Figure 2. (a) The J from (5.2) and (b) the exact (6.4) and approximate solutions for f (x),
with p = 0 and δ = 0, for (2.5)–(2.8).
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Figure 3. The exact (6.4) and approximate solutions for f (x), for p = 0.01% with (a) δ = 0
and (b) δ ∈ {10−9, 10−8} for (2.5)–(2.8).
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Figure 4. The exact (6.4) and approximate solutions for f (x), for p = 0.1% with (a) δ = 0
and (b) δ ∈ {10−8, 10−7} for (2.5)–(2.8).
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Figure 5. The absolute error between the analytical (6.5) and approximate solutions for
u(x, t), with (a) δ = 0, (b) δ = 10−8 and (c) δ = 10−7 for p = 0.1% noise, for (2.5)–(2.8).

Table 1. The RMSE values according to (6.1), for p ∈ {0.01%, 0.1%} with δ =

0, 10−9, 10−8, 10−7 and 10−6 for (2.5)–(2.8).

δ p = 0.01% p = 0.1%
0 0.300508 3.058572

10−9 0.012935 1.210346
10−8 0.008473 0.044552
10−7 0.014679 0.014704
10−6 0.024831 0.027908

7. Conclusions

In this paper, the inverse source problem for a linear one-dimensional pseudoparabolic equation
with a memory term has been investigated. The inverse problem that involves determining a right-
hand side coefficient f (x), which depends on a spatial variable and the primary dependent variable.
The final overdetermined condition at the final time point has been used as additional information.
The proposed inverse problem has been analyzed both theoretically and numerically. Under the
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appropriate assumptions on the data for the inverse problem, the existence, uniqueness and stability
of a strong generalized solution have been established. For the numerical discretization, the extended
CBS collocation technique has been employed as a direct solver for a specific example. The von
Neumann stability analysis has also been proved. The resulting objective function was penalized
by incorporating a Tikhonov regularization term to ensure stability of the numerical solutions of the
inverse problem. The minimization process has been carried out iteratively through the utilization of
the lsqnonlin routine in the MATLAB optimization toolbox. Finally, the generalization of the proposed
CBS collocation scheme in a fourth-order pseudoparabolic equation without a memory term is an
interesting topic for future research.
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