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Abstract: Immunotherapy is a targeted therapy that can be applied to cervical cancer patients to
prevent DNA damage caused by human papillomavirus (HPV). The HPV infects normal cervical cells
withing a specific cell age interval, i.e., between the G1 to S phase of the cell cycle. In this study, we
developed a new mathematical model of age-dependent immunotherapy for cervical cancer. The model
is a four-dimensional first-order partial differential equation with time- and age-independent variables.
The cell population is divided into four sub-populations, i.e., susceptible cells, cells infected by HPV,
precancerous cells, and cancer cells. The immunotherapy term has been added to precancerous cells
since these cells can experience regression if appointed by proper treatments. The immunotherapy
process is closely related to the rate of T-cell division. The treatment works in the same cell cycle
that stimulates and inhibits the immune system. In our model, immunotherapy is represented as
a periodic function with a small amplitude. It is based on the fluctuating interaction between T-
cells and precancerous cells. We have found that there are two types of steady-state conditions, i.e.,
infection-free and endemic. The local and global stability of an infection-free steady-state has been
analyzed based on basic reproduction numbers. We have solved the Riccati differential equation to
show the existence of an endemic steady-state. The stability analysis of the endemic steady-state has
been determined by using the perturbation approach and solving integral equations. Some numerical
simulations are also presented in this paper to illustrate the behavior of the solutions.
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1. Introduction

Cervical cancer is a type of cancer that can be prevented with screening and vaccines. However, it is
still a significant type of cancer for women. Even though surgery, chemotherapy, and radiation provide
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the potential for survival, the side effects will burden the patient, such as the appearance of secondary
infections, anemia, hair loss, skin rashes, and diarrhea [1].

Like other cancer cells, cervical cancer cells are camouflaged to trick the T-cells so that they cannot
recognize the presence of the cancer cells. Typically, the cells undergo a cyclic process that stimulates
immune cells by strengthening and expanding the response of T-cells. Simultaneously, this process
also considers the inhibiting factors that limit immunity and thus prevent autoimmunity. This cyclic
process is known as the cancer-immunity cycle [2]. The cancer-immunity cycle can be divided into
seven main steps. The first step is the antigen release from cancer cells. The second one involves the
antigen being transported to T-cells. In the third step, the T-cells become active and initiate the immune
system’s fight against the cancer cells. The four-next steps involve active T-cells passing through the
blood vessels to find cancer cells, infiltrate, recognize the cancer cells due to the generated antigens,
and kill cancer cells. Identification of T-cell inhibitory signals by cancer cells drives the development
of immunotherapy.

Immunotherapy treats the cancer cells by stimulating the immune response, where the
immunotherapy drugs will block the cancer cells from deactivating T-cells. There are several types of
immunotherapy, i.e., immune checkpoint inhibitors, T-cell transfer therapy, monoclonal antibodies,
treatment vaccines, and immune system modulators. The T-cell transfer therapy has three approaches,
i.e., the use of tumor-infiltrating lymphocytes, chimeric antigen receptor T-cells, and engineered
T-cell receptor T cells [3]. These procedures entail harvesting the immune cells, multiplying vast
numbers of them ex vivo, and then returning the cells to the host via a vein needle.

In terms of mathematical models, cervical cancer growth models have been developed with several
approaches. The development of cervical cancer at the tissue level can be modeled by a system of
ordinary differential equations; see [4–6]. In those cases, the cell population was divided into
susceptible, infected, precancer, cancer cells, and the virus population. Since HPV infects cells within
a specific age interval, the cervical cancer cell model can be described as age-structured; see [7–10].
The authors of [7] described the dynamics between age- and time-dependent cell population and the
time-dependent free-floating virus population. Age-structured cervical cancer cell models have been
developed and analyzed by numerically modeling the solution behavior [8, 10].

In fact, viruses that have entered the tissue will be reproduced by infected cells; after that, the
infected cells release the virus particles into the extracellular environment, and the virus has the
ability to infect the surrounding susceptible cells [11]. Therefore, the authors of [9] reconsidered the
appearance of the free-floating virus compartment and proposed a new parameter to represent the
infection rate of the viruses, called the force of infection. However, the authors of [7, 9] considered
the interaction between cells without treatment, which is important for the control of cancer cells in
the tissue.

Meanwhile, cancer models with immunotherapy and involve the use of systems of ordinary
differential equations have been discussed in [12–14]. The authors of [12] incorporated
immunotherapy by applying a constant number to represent how the cytokine interleukin-2 boosts the
immune system to fight tumors. A mathematical analysis considering immune checkpoint inhibitors
has been studied and described in [13]. Moreover, a group of scholars have modeled immunotherapy
by using a perturbation term to take into account the protein fluctuations in the cells [14].

Due to the fact that the role of the E2F1 gene is to preserve the code of proteins, E2F1 regulates
cell cycle progression through the G1-to-S transition of the cell cycle, where HPV damages cells when
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cells are in this phase. E2F1 also plays an important role in DNA repair and apoptosis [15]. On the
other hand, the administration of immunotherapy can activate the enhancer of zeste homolog 2 (EZH2)
as a tumor suppressor gene. EZH2 and E2F1 can induce apoptosis in the abnormal cells [16]. Thus,
the immunotherapy process works when the cells are in a specific phase of their life. Therefore, in our
model, immunotherapy is considered as age-dependent.

In this paper, we introduce a new mathematical model for cervical cancer that includes an
age-structured immunotherapy program. We have extended the investigations in [9] by adding an
immunotherapy term. According to the authors of [4], the precancerous cells can be controlled when
the lesions become precancerous. Hence, we chose to apply the immunotherapy term to the
precancerous cells. Motivated by the results in [14, 17], since the levels of stimulation and inhibition
of T-cells fluctuate throughout the cell cycle, we assume that the interaction between the T-cells and
the precancerous cells can be represented by a periodic function with a small amplitude.

Due to the addition of the immunotherapy term, the discussion on an endemic steady-state solution
draws attention to the Riccati differential equation. The characteristics of the Riccati differential
equation are as follows: the coefficient of the dependent variable is a function of the independent
variable, and the highest power of the dependent variable is two. There are some methods for solving
the Riccati differential equation. In [18], the Riccati equation was converted into a differential
equation of the second order with variable coefficients. Commonly, the general solutions of the
second order differential equation with variable coefficients can be calculated by applying a reduction
of order, a change of independent variables, and an undetermined coefficient method. The restrictive
conditions in [19, 20] showed that the method can only be used in some instances. The authors of [21]
provided another alternative for solving the second-order differential equation with variable
coefficients by using an integral series. Apart from the existing procedures, we can solve the Riccati
case in this study by manipulating the algebra such that the equation becomes linear-differential.

Remarkable mathematical models can make contributions toward reducing abnormal cells in the
tissue. It is promising to use age-dependent treatment to interact with age-dependent abnormal cells.
Therefore, in this article, there are three main findings, as follows. The first one is a new mathematical
model that contains the force of infection that represents the infection rate of the free-floating viruses.
Second, the mathematical model considers the age-dependency of immunotherapy. Third, through
theoretical and numerical analysis, we have drawn some conclusions, i.e., the infection rate plays an
important role in reducing precancerous cells when no immunotherapy exists; the higher the infection
rate, the more immunotherapy that is needed; and the best time to apply immunotherapy is the initial
cell cycle phase.

We present the content of this work as follows. Section 2 describes a new age-structured
mathematical model of cervical cancer that incorporates a force of infection parameter and
age-dependent immunotherapy. Section 3 shows that the solution exists and is unique. Detailed steps
for obtaining the basic reproduction numbers are presented in Section 4. This value is important as a
threshold to analyze the stability of infection-free and endemic steady-state solutions. In Section 5,
we provide numerical simulations to verify the results in Section 4. Finally, we give a concluding
remark in the last section.
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2. Formulation of the model

The progression of cervical cancer occurs as follows: HPV infecting susceptible cells, the
transformation of infected cells to precancerous cells, and the formation of cancer. For background
information regarding the interaction of cells at specific ages and with time-dependency, recall the
model in [9]. The susceptible cells, infectious cells, precancerous cells, and cancer cells at age a and
time t are respectively denoted by S (a, t), I(a, t), P(a, t), and C(a, t). The notation N(a, t) expresses the
total population of cells at age a and time t in the cervical tissue. In this paper, the age of a cell that
can be infected by the virus or become abnormal is denoted by a1, and the maximum cell’s age is aσ.

Infected cells will keep producing viruses, and then infect susceptible cells around them. Therefore,
we use the force of infection parameter, instead of applying a virus compartment as in [4, 7]. This
parameter is denoted by β(a, t), which represents the infection rate of a susceptible cell due to the
virus; it is as follows:

β (a, t) = λ (a)

aσ∫
a1

h (b)
[I (b, t) +C (b, t)]

N (b, t)
db, (2.1)

where b ∈ [a1, aσ], λ(a) denotes the innate susceptibility of susceptible cells at age a, and h(b)
represents the innate ability of infected and cancer cells to infect at age b. The infection rate of
susceptible cells at age a due to interaction with infected cells and cancer cells at age b is denoted by
the product of λ(a)h(b).

We have extended the model in [9] by adding an immunotherapy parameter. The precancerous
phase can regress with proper immunotherapy and return to the infected phase. In this model, the
immunotherapy term was designed to depend on cell age to determine the appropriate cell age for
drug administration. This study is focused on analyzing a cervical cancer model with immunotherapy.
Immunotherapy works against abnormal cells by stimulating the immune response system. In this
case, the immunotherapy drugs will activate T-cells. When T-cells are activated, they undergo
proliferation to generate more T-cells. On the other side, the authors of [4] suggested reducing the risk
of cervical cancer by making cells stay longer in the precancerous phase. In the precancerous phase, it
is easier for cells to regress and prevent them from becoming cancer cells by increasing the body’s
immunity. Hence, we have added a new parameter to show the immunotherapy process that affects the
reduction of precancerous cells. The dividing T-cells will be more controlled and become active
against precancerous cells.

Note that ε0 represents the rate of T-cell division after being stimulated by immunotherapy drugs.
The interaction between T-cells and precancerous cells was set to fluctuate according to ε1. We write
ε0 (1 + ε1 cos (2πa)), where ε0 > 0 and 0 < ε1 ≪ 1. If ε0 > 0 and ε1 = 0, the treatment is constant
since the rate of T-cell division is comparable to that for precancerous cells. Furthermore, δ(a) denotes
the age-dependent rate of progression from infected to precancerous, γ(a) denotes the age-dependent
rate of progression from precancerous to cancer, and µ(a) denotes the age-dependent death rate of each
type of cell. Because of the cell division, we denote ΛN(a, t) as the density of new susceptible cells.

Considering that the infection rate of HPV is based on cell age, the growth of the susceptible,
the infected, the precancerous, and the cancer cell densities also depend on cell age. Moreover, the
immunotherapy term and death rate of each cell type depend on the age of the cell as well. Thus, the
densities of susceptible, infected, precancerous, and cancer cells are considered in terms of age and
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time. Figure 1 illustrates the interaction between the densities of susceptible, infected, precancerous,
and cancer cells.

S (a, t) I (a, t) P (a, t) C (a, t)
β (a, t) δ (a) γ (a)

ΛN (a, t)

µ (a) µ (a)

ε0 (1 + ε1 cos (2πa))

µ (a) µ (a)

Figure 1. Transfer diagram of the HPV transmission.

A mathematical model of cervical cancer progression that includes age-dependent immunotherapy
can be formulated as a nonlinear system of partial differential equations as follows:

∂S (a, t)
∂a

+
∂S (a, t)
∂t

=ΛN (a, t) − µ (a) S (a, t) − β (a, t) S (a, t) ,

∂I (a, t)
∂a

+
∂I (a, t)
∂t

=β (a, t) S (a, t) − (δ (a) + µ (a)) I (a, t) ,

∂P (a, t)
∂a

+
∂P (a, t)
∂t

=δ (a) I (a, t) − (γ (a) + µ (a)) P (a, t) − ε0 (1 + ε1 cos (2πa)) P (a, t) , (2.2)

∂C (a, t)
∂a

+
∂C (a, t)
∂t

=γ (a) P (a, t) − µ (a) C (a, t) ,

where the boundary and initial conditions are as follows:

S (a1, t) = µ∗
aσ∫

a1

N (a, t)da, I (a1, t) = P (a1, t) = C (a1, t) = 0,

S (a, 0) = S 0(a), I (a, 0) = I0(a), P (a, 0) = P0(a),C (a, 0) = C0(a). (2.3)

The analysis of System (2.2) is complicated since there is a term that contains N(a, t). Dividing each
of the variables S (a, t), I(a, t), P(a, t), and C(a, t) by the corresponding total population N(a, t) will
transform System (2.2) into a non-dimensional system. It is important to simplify the analysis of the
model, so we can remove the total population N(a, t) on the first line of System (2.2). Therefore, we
use the following coordinate transformation to remove N(a, t) from the system:

s (a, t) =
S (a, t)
N (a, t)

, i (a, t) =
I (a, t)
N (a, t)

, p (a, t) =
P (a, t)
N (a, t)

, c (a, t) =
C (a, t)
N (a, t)

, (2.4)

where s (a, t) + i (a, t) + p (a, t) + c (a, t) = 1. By applying the transformations of (2.4) to the force of
infection parameter (2.1), we acquire

β∗ (a, t) = λ (a)

aσ∫
a1

h (b) [i (b, t) + c (b, t)]db. (2.5)
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If the transformations of (2.4) is substituted into System (2.2) and the boundary-initial conditions
of (2.3), we obtain

∂s (a, t)
∂a

+
∂s (a, t)
∂t

= Λ − Λs (a, t) − β∗ (a, t) s (a, t) + ε0 (1 + ε1 cos (2πa)) p(a, t)s(a, t),

∂i (a, t)
∂a

+
∂i (a, t)
∂t

= β∗ (a, t) s (a, t) − (δ (a) + Λ) i (a, t) + ε0 (1 + ε1 cos (2πa)) p(a, t)i(a, t), (2.6)

∂p (a, t)
∂a

+
∂p (a, t)
∂t

= δ (a) i(a, t) − (γ (a) + Λ) p (a, t) − ε0 (1 + ε1 cos (2πa)) (1 − p(a, t))p (a, t) ,

∂c (a, t)
∂a

+
∂c (a, t)
∂t

= γ (a) p (a, t) − Λc (a, t) + ε0 (1 + ε1 cos (2πa)) p(a, t)c(a, t),

and the boundary-initial values are given by

s (a1, t) = 1, i (a1, t) = 0, p (a1, t) = 0, c (a1, t) = 0,
s (a, 0) = s0 (a) , i (a, 0) = i0 (a) , p (a, 0) = p0 (a) , c (a, 0) = c0 (a) .

As we know, N(a, t) = S (a, t)+ I(a, t)+P(a, t)+C(a, t). Hence, System (2.2) analysis appears complex
since the first equation of System (2.2) contains the dependent variables S (a, t), I(a, t), P(a, t), and
C(a, t). Using the transformations of (2.4), we can obtain System (2.6), which no longer contains
N(a, t); thus, the analysis of System (2.6) is obviously preferable. In the next section, we discuss the
existence and uniqueness of solutions, as well as the steady-state solutions of System (2.6) and their
stability. By applying System (2.6), we can obtain two types of steady-state conditions, i.e., infection-
free and endemic. The local stability of the steady-state can be determined by using the perturbation
approach and solving integral equations. Some numerical simulations are also presented in this paper
to illustrate the behavior of the solutions.

3. Existence and uniqueness of the solutions

In this section, we will discuss whether the solution of System (2.6) exists and is unique. We
use Banach spaces, which possess a complete norm. It implies that every Cauchy sequence in the
space converges to a unique limit in the same space. This property allows for the development of
many important theorems for partial differential equations. We explore the existence and uniqueness
of the solutions of System (2.6) by using the techniques given in [22, 23]. Let the Banach space
Y = L1(a1, aσ) × L1(a1, aσ) × L1(a1, aσ) × L1(a1, aσ), which is the set of Lebesgue integral functions
that are endowed with the norm

∥X∥ =
∫ aσ

a1

|X1(a)|da +
∫ aσ

a1

|X2(a)|da +
∫ aσ

a1

|X3(a)|da +
∫ aσ

a1

|X4(a)|da,

where X(a) = (X1(a), X2(a), X3(a), X4(a))T ∈ Y. In this study, L1 is applied since it can be interpreted as
the total population. Transform System (2.6) into an abstract Cauchy problem by moving the derivative
term for age a on the left-hand side of System (2.6) to the right-hand side such that the independent
variable a is considered to be in the function space. Introducing š(a, t) = s(a, t)−1 into the transformed
System (2.6) gives

∂š (a, t)
∂t

= −
∂š (a, t)
∂a

+ Λ − Λ(š(a, t) + 1) − β∗ (a, t) (š(a, t) + 1) + ε0(1 + ε1 cos(2πa))p(a, t)(š(a, t) + 1),
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∂i (a, t)
∂t

= −
∂i (a, t)
∂a

+ β∗ (a, t) (š(a, t) + 1) − (δ (a) + Λ) i (a, t) + ε0(1 + ε1 cos(2πa))p(a, t)i(a, t),

(3.1)
∂p (a, t)
∂t

= −
∂p (a, t)
∂a

+ δ (a) i (a, t) − (γ (a) + Λ) p (a, t) − ε0(1 + ε1 cos(2πa))(1 − p(a, t))p(a, t),

∂c (a, t)
∂t

= −
∂c (a, t)
∂a

+ γ (a) p (a, t) − Λc (a, t) + ε0(1 + ε1 cos(2πa))p(a, t)c(a, t).

The associated boundary and initial conditions are as follows: š (a1, t) = 0, i (a1, t) = 0, p (a1, t) =
0, c (a1, t) = 0, š (a, 0) = s0 (a) − 1, i (a, 0) = i0 (a) , p (a, 0) = p0 (a) , c (a, 0) = c0 (a). For convenience,
we denote ε̄(a) = ε0(1 + ε1 cos(2πa)). Suppose that the linear operator A is defined by

AX(a) =


−

dX1(a)
da − ΛX1(a)

−
dX2(a)

da − (δ(a) + Λ) X2(a)
−

dX3(a)
da + δ(a)X2(a) − (γ(a) + Λ) X3(a) − ε̄(a)X3(a)

−
dX4(a)

da + γ(a)X4(a) − ΛX4(a)

 (3.2)

and the domain of X(a) as follows:

D(A) =
{
X ∈ Y : X1, X2, X3, X4 are absolutely continuous on [a1, aσ] ,X(0) = 0

}
.

Let G : Y→ Y be a nonlinear operator defined by

G(X(a)) =


−λ(a)((ZX2)(a) + (ZX4)(a))(X1 + 1) + ε̄(a)X3(a)(X1(a) + 1)
λ(a)((ZX2)(a) + (ZX4)(a))(X1 + 1) + ε̄(a)X3(a)X2(a)

ε̄(a)X2
3(a)

ε̄(a)X3(a)X4(a)

 , (3.3)

where Z is a bounded linear operator on L1(a1, aσ) that is defined by

(ZX2)(a) =
∫ aσ

a1

h(b)X2(b)db and (ZX4)(a) =
∫ aσ

a1

h(b)X4(b)db.

If x(t) = (š(·, t), i(·, t), p(·, t), c(·, t))T ∈ Y, then System (3.1) can be written as a Cauchy problem:

dx(t)
dt
= Ax(t) +G(x(t)), x(0) = x0 ∈ Y, (3.4)

where x0(a) = (s0(a) − 1, i0(a), p0(a), c0(a)). According to the work in [23], we have the following
results.

Lemma 3.1. The operator A generates a C0 semigroup eAt.

Definition 3.1. [24] Let Y be a Banach space and V be an open set in Y. An operator G : V → Y is
Fréchet-differentiable at X ∈ V if there exists G1 such that

lim
y→0

∥G(X + y) −G(X) −G1(y)∥
∥y∥

= 0.
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Lemma 3.2. Let G be as shown in (3.3). Then, G is Fréchet-differentiable on Y.

Lemma 3.3. For each x0 ∈ Y, there exists a maximal interval of existence [0, t0) and a unique
continuous (mild) solution t → x(t, x0) from [0, t0) to Y for (2.6) such that

x(t) = eAtx0 +

t∫
0

eA(t−τ)G(x(τ))dτ.

Proof of Lemmas 3.1–3.3 can be achieved by using the Hille-Yosida theorem and the Gâteaux
derivative, which can be seen in [23–26]. Next, a unique global classical solution of (3.4) can be
derived by applying the following theorem. Let ∆ = {(š, i, p, c) ∈ Y : š ≥ −1, i, p, c ≥ 0} and ∆0 =

{(š, i, p, c) ∈ Y : −1 ≤ š ≤ 0, 0 ≤ i, p, c ≤ 1}.

Theorem 3.1. The mild solution x(t) ∈ ∆ of (3.4) where x0 ∈ ∆, enters into ∆0 in finite time, and ∆0 is
positively invariant.

Generally, to prove Theorem 3.1, the first step is to find solutions s(a, t), p(a, t), c(a, t) for
System (2.6) by taking into account the characteristic equation. The next step is to transform i(a, t) in
System (3.1) into the Cauchy problem. Therefore, (3.4) or, equivalently, the initial-boundary value
problem given by System (2.6) has a unique positive global solution on Y with respect to the positive
initial value in D(A) ∩ ∆.

4. Steady-state solutions and their stability

4.1. Infection-free steady-state solution

This subsection will discuss an infection-free steady-state solution, i.e., no virus infection in the cell
population. Let (ŝ∗ (a) , î∗ (a) , p̂∗ (a) , ĉ∗ (a)) be the steady-state solution of System (2.6); then, we have

dŝ∗ (a)
da

= Λ − λ(a)J ŝ∗ (a) − Λŝ∗ (a) + ε0 (1 + ε1 cos (2πa)) p̂∗(a)ŝ∗(a),

dî∗ (a)
da

= λ(a)J ŝ∗ (a) − δ (a) î∗ (a) − Λî∗ (a) + ε0 (1 + ε1 cos (2πa)) p̂∗(a)î∗(a),

dp̂∗ (a)
da

= δ (a) î∗ (a) − (γ (a) + Λ + ε0 (1 + ε1 cos (2πa))) p̂∗ (a) (4.1)

+ ε0 (1 + ε1 cos (2πa)) p̂∗(a)p̂∗(a),
dĉ∗ (a)

da
= γ (a) p̂∗ (a) − Λĉ∗ (a) + ε0 (1 + ε1 cos (2πa)) p̂∗(a)ĉ∗(a),

where

J =

aσ∫
a1

h (b)
[
î∗ (b) + ĉ∗ (b)

]
db. (4.2)

In the case of the absence of infection, the infection-free steady-state solution is E0 = (1, 0, 0, 0).
The coefficient of the left hand side derivative with respect to a of System (2.6) is a diagonal matrix;

then, System (2.6) is a hyperbolic system of partial differential equations [27]. Therefore, we apply
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a perturbation technique to analyze the stability of the infection-free steady-state solution, that is,
(s̃(a)eξt, ĩ(a)eξt, p̃(a)eξt, c̃(a)eξt) near the steady-state solution E0, i.e.,

s (a, t) = 1 + s̃ (a) eξt,

i (a, t) = 0 + ĩ (a) eξt = ĩ (a) eξt,

p (a, t) = 0 + p̃ (a) eξt = p̃ (a) eξt, (4.3)
c (a, t) = 0 + c̃ (a) eξt = c̃ (a) eξt,

β∗ (a, t) = λ (a) Ueξt,

where ξ is a real or complex number, and

U =

aσ∫
a1

h (b)
[
ĩ (b) + c̃ (b)

]
db. (4.4)

By substituting (4.3) and (4.4) into System (2.6), it follows that (s̃(a), ĩ(a), p̃(a), c̃(a)) will satisfy the
conditions of the following linearized system:

ds̃(a)
da
= −(Λ + ξ)s̃(a) − λ(a)U + ε0(1 + ε1 cos 2πa) p̃(a),

dĩ(a)
da
= λ(a)U − (δ(a) + Λ + ξ)ĩ(a), (4.5)

dp̃(a)
da

= δ(a)ĩ(a) − (γ(a) + Λ + ξ)p̃(a) − ε0(1 + ε1 cos 2πa) p̃(a),

dc̃(a)
da
= γ(a) p̃(a) − (Λ + ξ)c̃(a).

The value of U in (4.4) is obtained by solving System (4.5). Considering System (4.5), we get

s̃(a) =

a∫
a1

e−(Λ+ξ)(a−τ) [ε0(1 + ε1 cos 2πτ)p̃(τ) − λ(a)U
]
dτ, (4.6)

ĩ(a) =

a∫
a1

e
−

a∫
τ

(δ( j)+Λ+ξ)d j
λ(τ)Udτ, (4.7)

p̃(a) =

a∫
a1

e
−

a∫
w

(ξ+γ( j)+Λ+ε0(1+ε1 cos 2π j))d j
δ(w)

w∫
a1

e
−

w∫
τ

(δ( j)+Λ+ξ)d j
λ(τ)Udτdw, (4.8)

c̃(a) =

a∫
a1

e
−

a∫
ν

(Λ+ξ)d j
γ(ν)

ν∫
a1

e
−

ν∫
w

(ξ+γ( j)+Λ+ε0(1+ε1 cos 2π j))d j
δ(w)

w∫
a1

e
−

w∫
τ

(δ( j)+Λ+ξ)d j
λ(τ)Udτdwdν. (4.9)

Substituting (4.7) and (4.9) into U, we have

U =

aσ∫
a1

h(b)


b∫

a1

e
−

b∫
τ

(δ( j)+Λ+ξ)d j
λ(τ)Udτ +

b∫
a1

e
−

b∫
ν

(Λ+ξ)d j
γ(ν) ,
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ν∫
a1

e
−

ν∫
w

(ξ+γ( j)+Λ+ε0(1+ε1 cos 2π j))d j
δ(w)

w∫
a1

e
−

w∫
τ

(δ( j)+Λ+ξ)d j
λ(τ)Udτdwdν

 db. (4.10)

We can rewrite (4.10) by applying U = UQ̂(ξ), where

Q̂ (ξ) =

aσ∫
a1

h(b)


b∫

a1

e
−

b∫
τ

(δ( j)+Λ+ξ)d j
λ(τ)dτ +

b∫
a1

e
−

b∫
ν

(Λ+ξ)d j
γ(ν) ,

ν∫
a1

e
−

ν∫
w

(ξ+γ( j)+Λ+ε0(1+ε1 cos 2π j))d j
δ(w)

w∫
a1

e
−

w∫
τ

(δ( j)+Λ+ξ)d j
λ(τ)dτdwdν

 db. (4.11)

Note that U = UQ̂(ξ) is equivalent to U(1 − Q̂(ξ)) = 0. The solution of this equation is U = 0 or

Q̂ (ξ) = 1. (4.12)

Solution U = 0 shows the existence of the infection-free steady-state solution. Meanwhile, Q̂(ξ) = 1
corresponds to the characteristic equation. Considering (4.11), we have

Q̂(0) =

aσ∫
a1

h(b)


b∫

a1

e
−

b∫
τ

(δ( j)+Λ)d j
λ(τ)dτ +

b∫
a1

e
−

b∫
ν

(Λ)d j
γ(ν) ,

ν∫
a1

e
−

ν∫
w

(γ( j)+Λ+ε0(1+ε1 cos 2π j))d j
δ(w)

w∫
a1

e
−

w∫
τ

(δ( j)+Λ)d j
λ(τ)dτdwdν

 db.

Now, we will show the relationship between ξ and Q̂(0) to determine the conditions of ξ that
satisfy (4.12).

Lemma 4.1. Let ξ satisfy Q̂ (ξ) = 1.

(1) If Q̂(0) > 1, then ξ > 0,
(2) If Q̂(0) < 1, then ξ < 0.

We use the reductio ad absurdum method to prove Lemma 4.1. By using Lemma 4.1, we show
that the threshold criterion of Q̂(ξ) = 1 is valid, and we can define the basic reproduction number as
follows:

R0 =

aσ∫
a1

h(b)


b∫

a1

e
−

b∫
τ

(δ( j)+Λ)d j
λ(τ)dτ +

b∫
a1

e
−

b∫
ν

(Λ)d j
γ(ν) ,

ν∫
a1

e
−

ν∫
w

(γ( j)+Λ+ε0(1+ε1 cos 2π j))d j
δ(w)

w∫
a1

e
−

w∫
τ

(δ( j)+Λ)d j
λ(τ)dτdwdν

 db. (4.13)

See [28, 29] for the detailed method. Biologically, the value of R0 represents the average number of
secondary infections by HPV that are produced by one single infected cell or cancer cell during the
period of infection, assuming that all other cells in the population are uninfected.
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4.2. Local stability analysis for infection-free steady-state solutions

The first step in analyzing the stability of an infection-free steady-state solution is to show that (4.12)
has only one real solution.

Lemma 4.2. If 0 < ε1 ≪ 1, ε0, ξ,Λ > 0, and the functions h(a), λ(a), δ(a), γ(a) are continuous, positive
and defined in a1 < τ < w < ν < b < aσ, then Q̂′ (ξ) < 0, lim

ξ→∞
Q̂ (ξ) = 0, and lim

ξ→−∞
Q̂ (ξ) = ∞.

Proof. Let ξ be a real number; then, we obtain

dQ̂
dξ
=

d
dξ


aσ∫

a1

h (b)


b∫

a1

e
−

b∫
τ

(δ( j)+Λ+ξ)d j
λ(τ)dτ +

b∫
a1

e
−

b∫
ν

(Λ+ξ)d j
γ(ν)

ν∫
a1

e
−

ν∫
w

(ξ+γ( j)+Λ+ε0(1+ε1 cos 2π j))d j
δ(w)

w∫
a1

e
−

w∫
τ

(δ( j)+Λ+ξ)d j
λ(τ)dτdwdν

 db


= −

aσ∫
a1

h (b)


b∫

a1

((b − τ)e−ξ(b−τ))e
−

b∫
τ

(δ( j)+µ( j))d j
λ(τ)dτ +

b∫
a1

e
−

b∫
ν

µ( j)d j
γ(ν)

ν∫
a1

e
−

ν∫
w

(γ( j)+µ( j)+ε0(1+ε1 cos 2π j))d j
δ(w)

w∫
a1

((b − τ)e−ξ(b−τ))

e
−

w∫
τ

(δ( j)+µ( j))d j
λ(τ)dτdwdν

 db

<0,

where τ < b. Furthermore, lim
ξ→∞

Q̂ (ξ) = 0 and lim
ξ→−∞

Q̂ (ξ) = ∞.

According to Lemma 4.2, the function Q̂ (ξ) is decreasing monotonically. It implies that the
characteristic Eq (4.12) has a real solution and it is unique, denoted by ξ∗. Next, we will show
that (4.12) has a dominant root, where the real part of the other roots are smaller than ξ∗.

Lemma 4.3. If ξ∗ is the root of (4.12), then ξ∗ is the dominant root.

Proof. Suppose that ξ∗∗ = x + iy is a complex root of (4.12); hence, ξ∗∗ satisfies (4.12). Then

Q̂ (ξ∗∗) =

aσ∫
a1

h (b)


b∫

a1

e
−

b∫
τ

(δ( j)+Λ+ξ∗∗)d j
λ(τ)dτ +

b∫
a1

e
−

b∫
ν

(Λ+ξ∗∗)d j
γ(ν)

ν∫
a1

e
−

ν∫
w

(ξ∗∗+γ( j)+Λ+ε0(1+ε1 cos 2π j))d j
δ(w)

w∫
a1

e
−

w∫
τ

(δ( j)+Λ+ξ∗∗)d j
λ(τ)dτdwdν

 db

=

aσ∫
a1

h (b)


b∫

a1

e−(x+iy)(b−τ)e
−

b∫
τ

(δ( j)+Λ)d j
λ(τ)dτ +

b∫
a1

e
−

b∫
ν

Λd j
γ(ν)
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ν∫
a1

e
−

ν∫
w

(γ( j)+Λ+ε0(1+ε1 cos 2π j))d j
δ(w)

w∫
a1

e−(x+iy)(b−τ)e
−

w∫
τ

(δ( j)+Λ)d j
λ(τ)dτdwdν

 db

=

aσ∫
a1

h (b)


b∫

a1

e−x(b−τ)(cos((b − τ)y) − i sin((b − τ)y))e
−

b∫
τ

(δ( j)+Λ)d j
λ(τ)dτ

+

b∫
a1

e
−

b∫
ν

Λd j
γ(ν)

ν∫
a1

e
−

ν∫
w

(γ( j)+Λ+ε0(1+ε1 cos 2π j))d j
δ(w)

w∫
a1

e−x(b−τ)(cos((b − τ)y) − i sin((b − τ)y))e
−

w∫
τ

(δ( j)+Λ)d j
λ(τ)dτdwdν

 db.

By equating the real and imaginary parts, we observe that

Q̂(ξ∗) =

aσ∫
a1

h (b)


b∫

a1

e−x(b−τ) cos((b − τ)y)e
−

b∫
τ

(δ( j)+Λ)d j
λ(τ)dτ

+

b∫
a1

e
−

b∫
ν

Λd j
γ(ν)

ν∫
a1

e
−

ν∫
w

(γ( j)+Λ+ε0(1+ε1 cos 2π j))d j
δ(w)

w∫
a1

e−x(b−τ) cos((b − τ)y)e
−

w∫
τ

(δ( j)+Λ)d j
λ(τ)dτdwdν

 db

≤

aσ∫
a1

h (b)


b∫

a1

e−x(b−τ)e
−

b∫
τ

(δ( j)+Λ)d j
λ(τ)dτ

+

b∫
a1

e
−

b∫
ν

Λd j
γ(ν)

ν∫
a1

e
−

ν∫
w

(γ( j)+Λ+ε0(1+ε1 cos 2π j))d j
δ(w)

w∫
a1

e−x(b−τ)e
−

w∫
τ

(δ( j)+Λ)d j
λ(τ)dτdwdν

 db

=Q̂(x) = Q̂(Re ξ∗∗).

According to Lemma 4.2, for Q̂′ (ξ) < 0, we acquire that Q̂ (ξ∗) ≤ Q̂ (Re ξ∗∗). Therefore, we obtain
that Re ξ∗∗ ≤ ξ∗.

Theorem 4.1. The infection-free steady-state solution E0 = (1, 0, 0, 0) is locally asymptotically stable
if R0 < 1, and it is unstable if R0 > 1.

Proof. If R0 > 1, according to Lemma 4.1, it follows that Q̂(0) > 1. Considering Lemma 4.2, let
the unique real value root of (4.12) be denoted as ξ∗, which further implies that ξ∗ > 0. Since the
characteristic equation has a positive root, the infection-free steady-state (E0) is unstable.
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On the other hand, if R0 < 1, it follows that Q̂(0) < 1 according to Lemma 4.1, and the root of (4.12)
is real and negative. Let us assume that the root of the characteristic equation is ξ∗. Then, we have that
ξ∗ < 0. Since, as per Lemma 4.3, ξ∗ is the dominant root of (4.12), the infection-free steady-state (E0)
is asymptotically stable.

4.3. Global stability analysis for infection-free steady-state solutions

The term “clearance” is used when HPV can be eliminated from the tissue. This can be numerically
modeled if the initial value of each subpopulation is in the basin of attraction at E0. It means that a
global stability analysis needs to be carried out around E0 to determine the conditions that must be
obtained for HPV clearance to occur.

In order to demonstrate the global stability of E0, it suffices to show that, as time t approaches
infinity, s (a, t) approaches 1, while i (a, t), p (a, t), and c (a, t) all approach 0. Equation (2.5) can be
rewritten as β∗ (a, t) = λ (a) B (t), where

B (t) =

aσ∫
a1

h (b) [i (b, t) + c (b, t)]db. (4.14)

Recall that we use ε̄(a) = ε0(1 + ε1 cos(2πa)) for convenience. Considering (4.14), System (2.6) can
be solved for a < t as follows:

s (a, t) =e
−

a∫
a1

Λ+λ( j)B( j+t−a)−ε̄( j)p( j,t−a+ j)d j
a∫

a1

Λe

τ∫
a1

Λ+λ( j)B( j+t−a)−ε̄( j)p( j,t−a+ j)d j
dτ

+ e
−

a∫
a1

Λ+λ( j)B( j+t−a)−ε̄( j)p( j,t−a+ j)d j
, (4.15)

i (a, t) =e
−

a∫
a1

δ( j)+Λ−ε̄( j)p( j,t−a+ j)d j
a∫

a1

e

τ∫
a1

δ( j)+Λ−ε̄( j)p( j,t−a+ j)d j
λ (τ) B (τ + t − a) s (τ, τ + t − a)dτ, (4.16)

p (a, t) =e
−

a∫
a1

γ( j)+Λ+ε̄( j)(1−p( j,t−a+ j))d j
a∫

a1

e

η∫
a1

γ( j)+Λ+ε̄( j)(1−p( j,t−a+ j))d j
δ (η)

e
−

η∫
a1

δ( j)+Λ−ε̄( j)p( j,t−a+ j)d j
η∫

a1

e

τ∫
a1

δ( j)+Λ−ε̄( j)p( j,t−a+ j)d j
λ (τ) B (τ + t − a) s (τ, τ + t − a) dτdη, (4.17)

c (a, t) =e
−

a∫
a1

Λ−ε̄( j)p( j,t−a+ j)d j
a∫

a1

e

w∫
a1

Λ−ε̄( j)p( j,t−a+ j)d j
γ (w) e

−

w∫
a1

γ( j)+Λ+ε̄( j)(1−p( j,t−a+ j))d j

w∫
a1

e

η∫
a1

γ( j)+Λ+ε̄( j)(1−p( j,t−a+ j))d j
δ (η) e

−

η∫
a1

δ( j)+Λ−ε̄( j)p( j,t−a+ j)d j

η∫
a1

e

τ∫
a1

δ( j)+Λ−ε̄( j)p( j,t−a+ j)d j
λ (τ) B (τ + t − a) s (τ, τ + t − a) dτdηdw. (4.18)
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Substituting (4.16) and (4.18) at E0 into (4.14), we obtain

B (t) =

aσ∫
a1

h (b)


b∫

a1

e
−

b∫
τ

δ( j)+Λd j
λ (τ) B (τ + t − b)dτ

+

b∫
a1

e
−

b∫
w
Λd j
γ (w)

w∫
a1

e
−

w∫
η

γ( j)+Λ+ε̄( j)d j
δ (η)

η∫
a1

e
−

η∫
τ

δ( j)+Λd j
λ (τ) B (τ + t − b) dτdηdw

 db.

Applying the supremum limit t → ∞, we get

lim sup
t→∞

aσ∫
a1

h (b)


b∫

a1

e
−

b∫
τ

δ( j)+Λd j
λ (τ) B (τ + t − b)dτ

+

b∫
a1

e
−

b∫
w
Λd j
γ (w)

w∫
a1

e
−

w∫
η

γ( j)+Λ+ε̄( j)d j
δ (η)

η∫
a1

e
−

η∫
τ

δ( j)+Λd j
λ (τ) B (τ + t − b) dτdηdw

 db

≤

aσ∫
a1

h (b)


b∫

a1

e
−

b∫
τ

δ( j)+Λd j
λ (τ) lim sup

t→∞
B (τ + t − b)dτ

+

b∫
a1

e
−

b∫
w
Λd j
γ (w)

w∫
a1

e
−

w∫
η

γ( j)+Λ+ε̄( j)d j
δ (η)

η∫
a1

e
−

η∫
τ

δ( j)+Λd j
λ (τ) lim sup

t→∞
B (τ + t − b) dτdηdw

 db.

Let V (a) = λ (a) lim sup
t→∞

B (t); then,

V (a)
λ (a)

≤ C1, (4.19)

where

C1 =

aσ∫
a1

h (b)


b∫

a1

e
−

b∫
τ

δ( j)+Λd j
V (τ)dτ

+

b∫
a1

e
−

b∫
w
Λd j
γ (w)

w∫
a1

e
−

w∫
η

γ( j)+Λ+ε̄( j)d j
δ (η)

η∫
a1

e
−

η∫
τ

δ( j)+Λd j
V (τ) dτdηdw

 db. (4.20)

By applying (4.19) and (4.20), we have

C1 ≤

aσ∫
a1

h (b)


b∫

a1

e
−

b∫
τ

δ( j)+Λd j
λ (τ) C1dτ

+

b∫
a1

e
−

b∫
w
Λd j
γ (w)

w∫
a1

e
−

w∫
η

γ( j)+Λ+ε̄( j)d j
δ (η)

η∫
a1

e
−

η∫
τ

δ( j)+Λd j
λ (τ) C1dτdηdw

 db. (4.21)
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Given (4.13), we note that (4.21) is equivalent to C1 ≤ C1R0. Hence, it can be rewritten as C1(1 −
R0) ≤ 0. We maintain the last inequality to show global stability around the infection-free steady-state
through Theorem 4.2.

Theorem 4.2. If R0 < 1, then the infection-free steady-state E0 = (1, 0, 0, 0) is globally asymptotically
stable.

Proof. Since R0 < 1, for the inequality C1(1 − R0) ≤ 0 to be satisfied, it must hold that C1 = 0. It
follows that V (a) = 0. As a consequence, we obtain that lim sup

t→∞
B (t) = 0. Therefore, we acquire that

at E0, the lim
t→∞

i (a, t) = lim
t→∞

p (a, t) = lim
t→∞

c (a, t) = 0 and lim
t→∞

s (a, t) = 1, as required.

We have analyzed the stability when J = 0, that is, in an infection-free steady-state (1, 0, 0, 0). This
means that there are only susceptible cells in the tissue. We analyze the condition for J > 0 and its
stability in the following subsections.

4.4. Existence of endemic steady-state solution

The endemic steady-state solution is obtained by solving System (4.1). Let
E1 =

(
ŝ∗ (a) , î∗ (a) , p̂∗ (a) , ĉ∗ (a)

)
be the endemic steady-state solution. System (4.1) can be

considered as a system of first-order ordinary differential equations in a. Therefore, by multiplying
each equation by a specific integration factor and performing simple algebraic calculations, we obtain
the solution E1 given by (4.22)–(4.25):

ŝ∗(a) =

a∫
a1

e
−

a∫
τ

(λ( j)J+Λ−ε0(1+ε1 cos(2π j)) p̂∗( j))d j
Λdτ + e

−

a∫
a1

(λ( j)J+Λ−ε0(1+ε1 cos(2π j)) p̂∗( j))d j
(4.22)

î∗(a) =

a∫
a1

e
−

a∫
τ

(δ( j)+Λ−ε0(1+ε1 cos(2π j)) p̂∗( j))d j
λ(τ)J ŝ∗(τ)dτ (4.23)

p̂∗(a) =

a∫
a1

e
−

a∫
τ

(γ( j)+Λ+ε0(1+ε1 cos(2π j))−ε0(1+ε1 cos(2π j)) p̂∗( j))d j
δ(τ)î∗(τ)dτ (4.24)

ĉ∗(a) =

a∫
a1

e
−

a∫
τ

(Λ−ε0(1+ε1 cos(2π j)) p̂∗( j))d j
γ(τ)p̂∗(τ)dτ. (4.25)

The solution of E1 exists if ŝ∗ (a) , î∗ (a) , p̂∗ (a), and ĉ∗ (a) are positive. We can see that (4.22) is always
positive. The solution î∗(a) in (4.23) is positive for J that is positive. Moreover, p̂∗(a) > 0 and ĉ∗(a) > 0
if î∗(a) > 0. Therefore, it is necessary to find biologically meaningful conditions for the positive value
of J. Now, substituting î∗(a) in (4.23) into p̂∗(a) in (4.24), we can substitute the resulting p̂∗(a) into
ĉ∗(a) in (4.25); then, (4.2) becomes as follows:

J =

aσ∫
a1

h(b)

b∫
a1

e
−

b∫
w

(δ( j)+Λ−ε0(1+ε1 cos(2π j))p̂∗( j))d j
Jλ(w)ŝ∗(w)dwdb +

aσ∫
a1

h(b)

b∫
a1

e
−

b∫
w

(Λ−ε0(1+ε1 cos(2π j)) p̂∗( j))d j
γ(w)
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w∫
a1

e
−

w∫
η

(γ( j)+Λ+ε0(1+ε1 cos(2π j))−ε0(1+ε1 cos(2π j)) p̂∗( j))d j
δ(η)

η∫
a1

e
−

η∫
τ

(δ( j)+Λ−ε0(1+ε1 cos(2π j)) p̂∗( j))d j
Jλ(τ)ŝ∗(τ)dτdηdwdb.

(4.26)

We denote that

Q̂(J) =

aσ∫
a1

h(b)

b∫
a1

e
−

b∫
w

(δ( j)+Λ−ε0(1+ε1 cos(2π j)) p̂∗( j))d j
λ(w)ŝ∗(w)dwdb

+

aσ∫
a1

h(b)

b∫
a1

e
−

b∫
w

(Λ−ε0(1+ε1 cos(2π j)) p̂∗( j))d j
γ(w)

w∫
a1

e
−

w∫
η

(γ( j)+Λ+ε0(1+ε1 cos(2π j))−ε0(1+ε1 cos(2π j)) p̂∗( j))d j
δ(η)

η∫
a1

e
−

η∫
τ

(δ( j)+Λ−ε0(1+ε1 cos(2π j)) p̂∗( j))d j
λ(τ)ŝ∗(τ)dτdηdwdb. (4.27)

Considering (4.26), (4.27) can be rewritten as J = JQ̂(J) or J(1− Q̂(J)) = 0. Thus, we have that J = 0
or

Q̂(J) = 1. (4.28)

Note that, using (4.27), we obtain

Q̂(0) =

aσ∫
a1

h(b)

b∫
a1

e
−

b∫
w

(δ( j)+Λ)d j
λ(w)dwdb +

aσ∫
a1

h(b)

b∫
a1

e
−

b∫
w

(Λ)d j
γ(w)

w∫
a1

e
−

w∫
η

(γ( j)+Λ+ε0(1+ε1 cos(2π j)))d j
δ(η)

η∫
a1

e
−

η∫
τ

(δ( j)+Λ)d j
λ(τ)dτdηdwdb.

By applying (4.13), we can see that Q̂(0) = R0. On the other hand, since î∗(a) + ĉ∗(a) < 1, then

JQ̂(J) =

aσ∫
a1

h(b)(î∗(b) + ĉ∗(b))db <

aσ∫
a1

h(b)db.

If
aσ∫

a1

h(b)db = h+, then JQ̂(J) < h+. In particular, if J = h+, we have that h+Q̂(h+) < h+, which means

that
Q̂(h+) < 1. (4.29)

The existence of a positive endemic steady-state can be summarized as follows. Since we require the
necessary condition of existence of the endemic steady-state, we will determine the condition for J
to be positive. Considering (4.28), we have that Q̂(J) = 1. It is noteworthy that Q̂(0) = R0 and the
function Q̂(J) is monotonically decreasing. By (4.29), we find that Q̂(h+) < 1. Therefore, the equation
Q̂(J) = 1 will have a positive intersection if Q̂(0) = R0 is greater than 1. The proof of this condition is
in Lemma 4.4, and we note that (4.29) is the inequality used to prove Lemma 4.4.
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Lemma 4.4. If R0 > 1, then the endemic steady-state exists.

Proof. Since R0 = Q̂(0) > 1, (4.29) states that Q̂(h+) < 1, and Q̂(J) is continuous, then the solution
of (4.28) is J > 0. Furthermore, for J > 0, the solution that satisfies the steady-state system (4.1)
is (ŝ∗ (a) , î∗ (a) , p̂∗ (a) , ĉ∗ (a)), as given by (4.22)–(4.25).

4.5. Local stability analysis for endemic steady-state solutions

Stability analysis will be discussed by using the perturbation approach and using the exponential
solutions (s̃∗(a)eξt, ĩ∗(a)eξt, p̃∗(a)eξt, c̃∗(a)eξt) near the steady-state solution (ŝ∗ (a) , î∗ (a) , p̂∗ (a) , ĉ∗ (a)),
as follows:

s (a, t) = ŝ∗ (a) + s̃∗ (a) eξt,

i (a, t) = î∗ (a) + ĩ∗ (a) eξt,

p (a, t) = p̂∗ (a) + p̃∗ (a) eξt, (4.30)
c (a, t) = ĉ∗ (a) + c̃∗ (a) eξt,

where (ŝ∗ (a) , î∗ (a) , p̂∗ (a) , ĉ∗ (a)), as shown in Lemma 4.4. We obtain

β∗ (a, t) = λ (a)

aσ∫
a1

h (b) (î∗ (b) + ĩ∗ (b) eξt + ĉ∗ (b) + c̃∗ (b) eξt)db

= λ(a)J + λ(a)U∗eξt, (4.31)

where

U∗ =

aσ∫
a1

h(b)(ĩ∗(b) + c̃∗(b))db. (4.32)

Using (4.30)–(4.32), the functions (s̃∗(a), ĩ∗(a), p̃∗(a), c̃∗(a)) will satisfy the conditions of the following
linear system:

ds̃∗(a)
da

= −(Λ + λ(a)J + ξ − ε0(1 + ε1 cos 2πa) p̂∗(a))s̃∗(a)

− λ(a)U∗ ŝ∗(a) + ε0(1 + ε1 cos 2πa) p̃∗(a)ŝ∗(a),

dĩ∗(a)
da

= (λ(a)J s̃∗(a) + λ(a)U∗ ŝ∗(a)) − (δ (a) + Λ + ξ − ε0 (1 + ε1 cos (2πa)) p̂∗(a)) ĩ∗(a)

+ ε0 (1 + ε1 cos (2πa)) p̃∗(a)î∗(a),
dp̃∗ (a)

da
= δ (a) ĩ∗ (a) − (ξ + γ (a) + Λ + ε0(1 + ε1 cos (2πa))) p̃∗ (a)

+ 2ε0 (1 + ε1 cos (2πa)) p̂∗(a) p̃∗(a),
dc̃∗(a)

da
= γ(a) p̃∗(a) − (Λ + ξ)c̃∗(a) + ε0 (1 + ε1 cos (2πa)) p̂∗(a)c̃∗(a)

+ ε0 (1 + ε1 cos (2πa)) p̃∗(a)ĉ∗(a).
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Since U∗ , 0, to simplify the analysis, we can apply the following ratio:

s̄(a) =
s̃∗(a)
U∗
, ī(a) =

ĩ∗(a)
U∗
, p̄(a) =

p̃∗(a)
U∗
, c̄(a) =

c̃∗(a)
U∗
.

Furthermore, (4.32) becomes

1 =

aσ∫
a1

h(b)(ī(b) + c̄(b))db, (4.33)

and we obtain the following system:

ds̄(a)
da
= −(Λ + λ(a)J + ξ − ε0(1 + ε1 cos 2πa) p̂∗(a))s̄(a)

− λ(a)ŝ∗(a) + ε0(1 + ε1 cos 2πa)p̄(a)ŝ∗(a),

dī(a)
da
= λ(a)J s̄(a) + λ(a)ŝ∗(a) − (δ (a) + Λ + ξ − ε0 (1 + ε1 cos (2πa)) p̂∗(a)) ī(a)

+ ε0 (1 + ε1 cos (2πa)) p̄(a)î∗(a),
dp̄ (a)

da
= δ (a) ī (a) − (ξ + γ (a) + Λ + ε0(1 + ε1 cos (2πa))) p̄ (a) (4.34)

+ 2ε0 (1 + ε1 cos (2πa)) p̂∗(a) p̄(a),
dc̄(a)

da
= γ(a) p̄(a) − (Λ + ξ)c̄(a) + ε0 (1 + ε1 cos (2πa)) p̂∗(a)c̄(a)

+ ε0 (1 + ε1 cos (2πa)) p̄(a)ĉ∗(a).

The solution of System (4.34) is given by

s̄(a) =

a∫
a1

e−(Λ+ξ)(a−τ)e
−

a∫
τ

(λ( j)J−ε0(1+ε1 cos 2π j) p̂∗( j))d j
(ε0(1 + ε1 cos 2πτ)p̄(τ) − λ(τ)) ŝ∗(τ)dτ, (4.35)

ī(a) =

a∫
a1

e−(Λ+ξ)(a−w)e
−

a∫
w

(δ( j)−ε0(1+ε1 cos(2π j)) p̂∗( j))d j
[λ(w)J s̄(w)

+ λ(w)ŝ∗(w) + ε0 (1 + ε1 cos (2πw)) p̄(w) î∗(w)
]

dw, (4.36)

p̄(a) =

a∫
a1

e−(ξ+Λ)(a−τ)e
−

a∫
τ

(γ( j)+ε0(1+ε1 cos(2π j)−ε0(1+ε1 cos(2π j)) p̂∗( j))d j

(
δ (τ) ī (τ) + ε0 (1 + ε1 cos (2π j)) p̂∗(τ)p̄(τ)

)
dτ, (4.37)

c̄(a) =

a∫
a1

e−(Λ+ξ)(a−w)e

a∫
w
ε0(1+ε1 cos(2π j)) p̂∗( j)d j

γ(w) p̄(w)dw

+

a∫
a1

e−(Λ+ξ)(a−w)e

a∫
w
ε0(1+ε1 cos(2π j)) p̂∗( j)d j

ε0 (1 + ε1 cos (2πw)) ĉ∗(w) p̄(w)dw. (4.38)
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The value of s̄(a) is negative if ε0(1 + ε1 cos 2πa) p̄(a) < λ(a). It can be interpreted that, if the
immunotherapy treatment parameter is less than the virus infection parameter, then an endemic
condition appears in the tissue. To simplify the function in subsequent calculations, (4.36) can be
substituted into (4.37); we get

p̄(a) =

a∫
a1

e−(ξ+Λ)(a−τ)e
−

a∫
τ

(γ( j)+ε0(1+ε1 cos(2π j)−ε0(1+ε1 cos(2π j)) p̂∗( j))d j
δ (τ)

τ∫
a1

e
−

τ∫
w
δ( j)d j

[λ(w)J s̄(w)

+ λ(w)ŝ∗(w) + ε0 (1 + ε1 cos (2πw)) p̄(w) î∗(w)
]

dwdτ

+

a∫
a1

e−(ξ+Λ)(a−τ)e
−

a∫
τ

(γ( j)+ε0(1+ε1 cos(2π j)−ε0(1+ε1 cos(2π j)) p̂∗( j))d j
ε0 (1 + ε1 cos (2π j)) p̂∗(τ)p̄(τ)dτ. (4.39)

If we substitute the solutions of ī(a) and c̄(a) into (4.33), we obtain Q̄(ξ) on the right-hand side of (4.33).
Then, if we further substitute s̄(a) from (4.35) into Q̄(ξ), we obtain

Q̄(ξ) =

aσ∫
a1

h (b)

b∫
a1

e−(Λ+ξ)(b−w)e
−

b∫
w

(δ( j)−ε0(1+ε1 cos(2π j)) p̂∗( j))d j
ε0 (1 + ε1 cos (2πw)) p̄(w)î∗(w)dwdb

+

aσ∫
a1

h (b)

b∫
a1

e−(Λ+ξ)(b−w)e

b∫
w
ε0(1+ε1 cos(2π j)) p̂∗( j)d j

λ(w)ŝ∗(w)

e−
b∫

w
δ( j)d j

− J

w∫
τ

e
−

b∫
τ

δ( j)d j
e
−

w∫
τ

λ( j)Jd j
λ(τ)dτ

 dwdb

+ J

aσ∫
a1

h (b)

b∫
a1

e−(Λ+ξ)(b−w)e
−

b∫
w

(δ( j)−ε0(1+ε1 cos(2π j)) p̂∗( j))d j
λ(w)

w∫
τ

e
−

w∫
τ

λ( j)Jd j
ε0(1 + ε1 cos 2πτ) p̄(τ)ŝ∗(τ)dτdwdb

+

aσ∫
a1

h (b)

b∫
a1

e−(Λ+ξ)(b−w)e

b∫
w
ε0(1+ε1 cos(2π j)) p̂∗( j)d j

γ(w)

w∫
η

e
−

w∫
η

(γ( j)+ε0(1+ε1 cos(2π j))d j

δ (η)

η∫
ν

e
−

η∫
w
δ( j)d j
ε0 (1 + ε1 cos (2πν)) p̄(ν)î∗(ν)dνdηdwdb

+

aσ∫
a1

h (b)

b∫
a1

e−(Λ+ξ)(b−w)e

b∫
w
ε0(1+ε1 cos(2π j)) p̂∗( j)d j

γ(w)

w∫
η

e
−

w∫
η

(γ( j)+ε0(1+ε1 cos(2π j))d j

δ (η)

η∫
ν

λ(ν)ŝ∗(ν)

e−
b∫
ν

δ( j)d j
− J

ν∫
τ

e
−

b∫
τ

δ( j)d j
e
−

ν∫
τ

λ( j)Jd j
λ(τ)dτ

 dνdηdwdb
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+ J

aσ∫
a1

h (b)

b∫
a1

e−(Λ+ξ)(b−w)e

b∫
w
ε0(1+ε1 cos(2π j)) p̂∗( j)d j

γ(w)

w∫
η

e
−

w∫
η

(γ( j)+ε0(1+ε1 cos(2π j))d j

δ (η)

η∫
ν

e
−

η∫
w
δ( j)d j
λ(ν)

ν∫
τ

e
−

ν∫
τ

λ( j)Jd j
ε0(1 + ε1 cos 2πτ)p̄(τ)ŝ∗(τ)dτdνdηdwdb

+

aσ∫
a1

h (b)

b∫
a1

e−(Λ+ξ)(b−w)e

b∫
w
ε0(1+ε1 cos(2π j)) p̂∗( j)d j

γ(w)

w∫
η

e
−

w∫
η

(γ( j)+ε0(1+ε1 cos(2π j))

ε0 (1 + ε1 cos (2πη)) p̂∗(η) p̄(η)dηdwdb

+

aσ∫
a1

h (b)

b∫
a1

e−(Λ+ξ)(b−w)e

b∫
w
ε0(1+ε1 cos(2π j)) p̂∗( j)d j

ε0 (1 + ε1 cos (2πw)) p̄(w)ĉ∗(w)dwdb. (4.40)

If Ψ(b,w) = e
−

b∫
w

(δ( j))d j
− J

w∫
a1

λ(τ)e
−

w∫
τ

(λ( j)J−ε0(1+ε1 cos 2π j) p̂∗( j))d j
e
−

b∫
τ

δ( j)d j
dτ and we let

L1(w) =ε0 (1 + ε1 cos (2πw)) p̄(w)

ĉ∗(w) + e
−

b∫
w
δ( j)d j

î∗(w) +

w∫
η

e
−

w∫
η

(γ( j)+ε0(1+ε1 cos(2π j))d j
γ(η)p̂∗(η)dη

+

w∫
η

e
−

w∫
η

(γ( j)+ε0(1+ε1 cos(2π j))d j
γ(η)δ (η)

η∫
ν

e
−

η∫
w
δ( j)d j

î∗(ν)dνdη

 ,
and

L2(w) =ε0(1 + ε1 cos 2πw) p̄(w)


w∫
τ

λ(τ)e
−

b∫
τ

δ( j)d j
e
−

w∫
τ

λ( j)Jd j
ŝ∗(τ)dτ

+

w∫
η

e
−

w∫
η

(γ( j)+ε0(1+ε1 cos(2π j))d j
γ(η)δ (η)

η∫
ν

e
−

η∫
w
δ( j)d j

ν∫
τ

e
−

ν∫
τ

λ( j)Jd j
λ(τ)ŝ∗(τ)dτdνdη

 ,
then

Q̄(ξ) =

aσ∫
a1

h (b)

b∫
a1

e−(Λ+ξ)(b−w)e

b∫
w
ε0(1+ε1 cos(2π j)) p̂∗( j)d j

L1(w)dwdb

+ J

aσ∫
a1

h (b)

b∫
a1

e−(Λ+ξ)(b−w)e

b∫
w
ε0(1+ε1 cos(2π j)) p̂∗( j)d j

L2(w)dwdb

+

aσ∫
a1

h (b)

b∫
a1

e−(Λ+ξ)(b−w)e

b∫
w
ε0(1+ε1 cos(2π j)) p̂∗( j)d j

λ(w)ŝ∗(w)Ψ(b,w)dwdb
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+

aσ∫
a1

h (b)

b∫
a1

e−(Λ+ξ)(b−w)e

b∫
w
ε0(1+ε1 cos(2π j)) p̂∗( j)d j

λ(w)ŝ∗(w)Ψ(b,w)

w∫
η

e
−

w∫
η

(γ( j)+ε0(1+ε1 cos(2π j))d j
γ(η)δ (η)

η∫
ν

e
−

η∫
w
δ( j)d j

dνdηdwdb.

Thus, Q̄(ξ) can be written as follows:

Q̄(ξ) =

aσ∫
a1

h (b)

b∫
a1

e−(Λ+ξ)(b−w)F(b,w)dwdb, (4.41)

where

F(b,w) =e

b∫
w
ε0(1+ε1 cos(2π j)) p̂∗( j)d j

L1(w) + JL2(w) + λ(w)ŝ∗(w)Ψ(b,w)

1 +
w∫
η

e
−

w∫
η

(γ( j)+ε0(1+ε1 cos(2π j))d j

γ(η)δ (η)

η∫
ν

e
−

η∫
w
δ( j)d j

dνdη


 .

Lemma 4.5 proves that Q̄(ξ) is a monotonically decreasing function. We prove that the first derivative
of Q̄(ξ) is negative, Q̄(ξ) goes to zero as ξ tends to infinity, and Q̄(ξ) goes to infinity as ξ tends to
negative infinity.

Lemma 4.5. If L1(w) < 0 and F(b,w) ≥ 0, then Q̄′(ξ) < 0, lim
ξ→∞

Q̄(ξ) = 0, lim
ξ→−∞

Q̄(ξ) = ∞, and

Q̄(0) < 1.

Proof. We will prove the first statement. If F(b,w) ≥ 0, then Q̄(ξ) ≥ 0 and

d
dξ

Q̄(ξ) =
d
dξ

aσ∫
a1

h (b)

b∫
a1

e−(Λ+ξ)(b−w)F(b,w)dwdb

= −

aσ∫
a1

h (b)

b∫
a1

(b − w)e−(Λ+ξ)(b−w)F(b,w)dwdb

<0,

since b > w. For the second statement, it is easy to see that Q̄′(ξ) < 0, lim
ξ→∞

Q̄(ξ) = 0, and lim
ξ→−∞

Q̄(ξ) =

∞. Now, we will prove that ¯Q(0) < 1. By applying (4.40), we have

Q̄(0) =

aσ∫
a1

h (b)

b∫
a1

e−(Λ)(b−w)e

b∫
w
ε0(1+ε1 cos(2π j)) p̂∗( j)d j

λ(w)ŝ∗(w)e
−

b∫
w
δ( j)d j
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+

aσ∫
a1

h (b)

b∫
a1

e−(Λ)(b−w)e

b∫
w
ε0(1+ε1 cos(2π j))p̂∗( j)d j

γ(w)

w∫
a1

e
−

w∫
η

(γ( j)+ε0(1+ε1 cos(2π j))d j

δ (η)

η∫
a1

e
−

η∫
w
δ( j)d j
λ(ν)ŝ∗(ν)dνdηdwdb

− J

aσ∫
a1

h (b)

b∫
w

e
−

b∫
τ

δ( j)d j
λ(w)

w∫
τ

e−(Λ)(b−w)e
−

w∫
τ

λ( j)Jd j
e

b∫
w
ε0(1+ε1 cos(2π j))p̂∗( j)d j

λ(τ)ŝ∗(τ)dτdwdb + J

aσ∫
a1

h (b)

b∫
w

e
−

b∫
w
δ( j)d j
λ(w)

w∫
τ

e−(Λ)(b−w)e
−

b∫
w
λ( j)Jd j

e

b∫
w
ε0(1+ε1 cos(2π j)) p̂∗( j)d j

ε0(1 + ε1 cos 2πτ) p̄(τ)ŝ∗(τ)dτdwdb

− J

aσ∫
a1

h (b)

b∫
w

e
−

b∫
τ

δ( j)d j
γ(w)

w∫
η

e
−

w∫
η

(γ( j)+ε0(1+ε1 cos(2π j))d j

δ (η)

η∫
ν

e
−

η∫
w
δ( j)d j
λ(ν)

ν∫
τ

e
−

ν∫
τ

λ( j)Jd j
e−(Λ)(b−w)e

b∫
w
ε0(1+ε1 cos(2π j)) p̂∗( j)d j

λ(τ)

ŝ∗(τ)dτdνdηdwdb

+ J

aσ∫
a1

h (b)

b∫
a1

γ(w)

w∫
η

e
−

w∫
η

(γ( j)+ε0(1+ε1 cos(2π j))d j
δ (η)

η∫
ν

e
−

η∫
w
δ( j)d j
λ(ν)

ν∫
τ

e
−

w∫
τ

λ( j)Jd j
e−(Λ)(b−w)e

b∫
w
ε0(1+ε1 cos(2π j)) p̂∗( j)d j

ε0(1 + ε1 cos 2πτ)p̄(τ)ŝ∗(τ)dτdνdηdwdb

+

aσ∫
a1

h (b)

b∫
a1

e−(Λ)(b−w)e
−

b∫
w

(δ( j)−ε0(1+ε1 cos(2π j)) p̂∗( j))d j
ε0 (1 + ε1 cos (2πw)) p̄(w)î∗(w)dwdb

+

aσ∫
a1

h (b)

b∫
a1

e−(Λ)(b−w)e

b∫
w
ε0(1+ε1 cos(2π j)) p̂∗( j)d j

γ(w)

w∫
a1

e
−

w∫
η

(γ( j)+ε0(1+ε1 cos(2π j))d j

δ (η)

η∫
a1

e
−

η∫
w
δ( j)d j
ε0 (1 + ε1 cos (2πν)) p̄(ν)î∗(ν)dνdηdwdb

+

aσ∫
a1

h (b)

b∫
a1

e−(Λ)(b−w)e

b∫
w
ε0(1+ε1 cos(2π j)) p̂∗( j)d j

γ(w)

w∫
a1

e
−

w∫
η

(γ( j)+ε0(1+ε1 cos(2π j))
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ε0 (1 + ε1 cos (2πη)) p̂∗(η) p̄(η)dηdwdb

+

aσ∫
a1

h (b)

b∫
a1

e−(Λ)(b−w)e

b∫
w
ε0(1+ε1 cos(2π j)) p̂∗( j)d j

ε0 (1 + ε1 cos (2πw)) p̄(w)ĉ∗(w)dwdb.

Moreover, by applying (4.28), we notice that the two-first integrals are equal to one. Thus, Q̄(0) can
be written as

Q̄(0) = 1 + J

aσ∫
a1

h (b)

b∫
w

e
−

b∫
τ

δ( j)d j
λ(w)s̄(w)dwdb

+ J

aσ∫
a1

h (b)

b∫
w

e
−

b∫
τ

δ( j)d j
γ(w)

w∫
η

e
−

w∫
η

(γ( j)+ε0(1+ε1 cos(2π j))d j
δ (η)

η∫
ν

e
−

η∫
w
δ( j)d j
λ(ν)s̄(ν)dηdwdb

+

aσ∫
a1

h (b)

b∫
a1

e−Λ(b−w)e

b∫
w
ε0(1+ε1 cos(2π j)) p̂∗( j)d j

L1(w)dwdb.

Since s̄(a) < 0 and L1(w) < 0, then Q̄(0) < 1.

Theorem 4.3. If R0 > 1, then the endemic steady-state is locally asymptotically stable.

Proof. By applying Lemma 4.4, we found that the endemic steady-state exists for R0 > 1. Lemma 4.5
guarantees that Q̄(ξ) is a monotonically decreasing function such that Q̄ (ξ) = 1 has a unique real root.
On the other hand, considering Lemma 4.5, for Q̄(0) < 1, we obtain ξ < 0 as the negative real root.
The appearance of this negative real root means that the endemic steady-state of System (2.6) is locally
asymptotically stable.

5. Numerical simulation for fixed values of parameters

In this simulation, we investigate the model in a constant scenario. This indicates that all parameters
have fixed values. We used the parameter values shown in the Table 1. In this case, different values
of h produce different values of R0. Recall that h denotes the infection rate associated with susceptible
cells being transformed to infected cells; the larger the value of h, the larger the value of R0.

Table 1. Parameter value.

Parameter Value Reference
Λ 0.1 [30]
γ 0.02 [7]
δ 0.15 [7]
h 0.07 Assumed
λ 0.65 Assumed
ε0 0.005-0.123 [31]
ε1 0 < ε1 ≪ 1 [14]
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Figures 2a and 2b align with Theorem 4.1, which states that the solution is an infection-free steady-
state solution if R0 < 1. According to Figures 2c and 2d, the solution tends to the endemic steady-state
solution if R0 > 1, which is in line with Theorem 4.3. In this work, immunotherapy was applied as
the treatment to reduce precancerous cells to control the endemic condition. In Figure 3, the graph for
ε0 = 0 illustrates the density of precancerous cells when no immunotherapy treatment has been given.
When the cell age is between 0 and 10, there is a significant increase in the density of precancerous
cells. This is consistent with the fact that HPV will damage cells when cells are in the initial phase of
their cycle, namely, between the G1 and S phases [32].

(a) Cell profile when R0 < 1
(b) Precancerous cell behavior with both
changes in age (a) and time (t) when R0 < 1

(c) Cell profile when R0 > 1
(d) Precancerous cell behavior with both
changes in age (a) and time (t) when R0 > 1

Figure 2. Given h = 0.07, the value of R0 = 0.88 < 1. The cell population tends to infection-
free steady-state (1, 0, 0, 0). If h = 0.65, then R0 = 8.17 > 1 and the cell population tends to
the endemic steady-state (0.4588, 0.2677, 0.22, 0.053).
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Figure 3. Precancerous cell densitites with and without immunotherapy. In this case, ε0 = 0
is indicated by a dotted line, ε0 = 0.0801 is indicated by a solid line, ε0 = 0.09 is indicated
by a dash-dotted line, and ε0 = 0.123 is indicated by dashed line. The larger the value of ε0,
the faster the rate at which the precancerous cells decrease.

For this reason, it is hoped that immunotherapy can suppress the growth of precancerous cells.
According to the Lemma 4.4, an endemic steady-state condition is defined if R0 > 1. Furthermore,
according to Theorem 4.3, the endemic steady-state conditions are locally asymptotically stable. It
can be interpreted analytically that precancerous cells are still present in the cervical tissue. Figure 3
shows that precancerous cells are still present when ε0 = 0.0801. However, the density is less than the
case without therapy. When ε0 = 0.09 (larger than before), the density of precancerous cells decrease
even more. The precancerous cell population remains in cervical tissue, as indicated for ε0 = 0.123.
Precancerous cells are not entirely eliminated since the R0 value is still larger than one.

Moreover, as h increases, more susceptible cells become infected. Thus, it can be seen in Figure 4a
that a larger ε0 is required through greater T-cell proliferation. If the infection rate for susceptible cells
is h = 0.5625 and the effects of immunotherapy on T-cell proliferation is represented by ε0 = 0.0179,
then the infected, precancerous, and cancerous cells decrease rapidly, as shown in Figure 4b.

When R0 = 1, the dynamical behavior is related to the characteristic root, which has a value of
zero. However, working directly with R0 can be complicated, so it is straightforward to observe the
parameters that form R0. In this case, we chose to use the parameter h to form R0 and then determine
the value of h∗ that makes R0 = 1. On the other hand, the characteristic root is correlated with J
in (4.2). If J = 0, then the system is in an infection-free steady-state condition, while, if J > 0, the
system is in an endemic steady-state condition. To illustrate, we have provided Figure 5, which shows
that h∗ = 0.079 results in R0 = 1. We also show in Figure 6 that a value of h less than or more than h∗

causes the behavior of precancerous and cancer cells to change significantly.

AIMS Mathematics Volume 9, Issue 6, 14075–14105.



14100

0.002 0.004 0.006 0.008 0.01 0.012 0.014 0.016 0.018 0.02

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

0.55

0.6

h

(a) Curve for System (2.6) when ε0 and h varied (b) Infected, precancerous, and cancer cell profiles

Figure 4. The rate of T-cell proliferation as a result of immunotherapy (ε0) is directly
proportional to the infection rate (h). It is to be noted that, although R0 > 1 and there are
some different initial values, the solutions of System (2.6) eventually converge to the same
value at appropriate values of ε0 and h. It suggests that we can control the proliferation of
T-cells to achieve better outcomes for patients.

Figure 5. The value h∗ = 0.079 leads to R0 = 1

AIMS Mathematics Volume 9, Issue 6, 14075–14105.



14101

(a) Precancerous cell profiles for different
values of h

(b) Cancer cell profiles for different values
of h

Figure 6. Precancerous and cancer cell densities for h < h∗ and h > h∗. For h = 0.5 > h∗ and
h = 0.6 > h∗, the densities of precancerous and cancer cells indicate an endemic steady-state.
Meanwhile, for h = 0.03 < h∗, the densities of precancerous and cancer cells indicate an
infection-free steady-state.

6. Concluding remarks

We propose a new mathematical model of age-structured development of cervical cancer cells. We
consider an age-dependent immunotherapy treatment for the precancerous cell population. Regarding
the basic reproduction number, we have examined the existence and stability of the infection-free and
endemic steady-states. Determination of the basic reproduction number in this work began by proofing
Lemma 4.1. Lemma 4.1 provides some insights into the threshold value of the basic reproduction
number, which is important for the stability analysis of the model.

The value of R0 = 1, as shown in Figure 5, can be observed as a bifurcation point since it marks
the boundary between two distinct behaviors. It could happen due to the changes in stability. For
this value of R0, we will have a degenerate case in which linearization near the infection-free steady-
state condition yields a characteristic equation with a zero root. Intuitively, the endemic steady-state is
forwardly bifurcating from the infection-free steady-state at R0 = 1; see [23, 33].

The results of the theoretical analysis and numerical simulation of the model suggest that
immunotherapy is more effective in the initial precancerous phase. Significant changes in
precancerous cell population behavior occur when the cell age is between 0 to 10. This means that the
simulation results provide valuable insights into the behavior of precancerous cells and the
effectiveness of immunotherapy in the early phase of its cycle, namely, the G1-to-S phase.

In a previous model [14], the effects of representing immunotherapy treatment as a periodic function
were examined. However, the model did not specifically provide the therapy based on cell age. On
the other hand, the models in [7, 9] were related to age structure, but the authors did not discuss the
provision of therapy. In contrast, in this research, we indicate that administering therapy based on cell
age is a promising approach that can lead to more optimal results. This study clearly demonstrates the
potential benefits of administering therapy based on cell age, especially in the early phase. Therefore,
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if immunotherapy drugs are given when precancerous cells are in this phase, there is a high probability
of success of immunotherapy. One way to see if a cell is in a particular phase of its cycle is to employ
flow cytometry, which uses light scattering.

However, our work does not take into account some considerable findings, i.e., optimal control,
cervical cancer metastasis condition, and uniform persistence analysis. The concept of persistence in
dynamical systems is of significant importance; see [34]. Persistence is referred to as the long-term
survival of some or all system components when predicting the behavior of systems. Although we have
not addressed this here, it could be addressed in future research.

Moreover, in this research, immunotherapy term involved the assumption of T-cells as immune
cells. Naturally, T-cells have the ability to remember past infection by pathogens upon subsequent
exposures. On the other hand, by allowing the derivative order to be a non-integer value, fractional
derivatives can capture the influence of past states and events on the current state of the system.
Therefore, fractional derivatives can be used to model the dynamics of immune cells, including the
memory response; see [35, 36] for detailed explanations. Hence, for further research, the HPV
infection model with immunotherapy can be developed with fractional derivatives.
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