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of Banach algebras. It replaces the condition of the iterated limits in the definition of multiplicative
instability with conditions that are easier to examine. In particular, special conditions are suggested for
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1. Introduction

Stability theory has caught the attention of mathematicians in many areas, such as in model theory
and functional analysis. In particular, in the early 80’s, J.-L. Krivine and B. Maurey introduced the
concept of stable Banach spaces. This stability has a significant impact on the geometry of such spaces.
They proved that any separable infinite-dimensional stable Banach space contains a copy of lp for some
p ∈ [1,∞) almost isometrically [1, Théorème IV.1]. Recently, S. Ferri and M. Neufang introduced the
notion of multiplicative stability of Banach algebras as an analogue of stability of Banach spaces in
Krivine-Maurey’s sense, to which they refer to as additive stability. They studied the multiplicative
stability of various well-known Banach algebras, such as Fourier algebras and C∗-algebras. As a part
of a PhD thesis, we investigated some properties of additive and multiplicative stability of Banach
algebras. Further, we introduced and studied the hyper-instability of Banach algebras. Moreover,
inspired by function spaces on topological semigroups, we defined weakly almost periodic, almost
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periodic, and tame algebras. This yields a dynamical hierarchy of Banach algebras, a new classification
providing different dividing lines between Banach algebras. In this paper, we present the notion of
hyper-instability and some of our results. Other topics will be discussed in a separate paper, and for
details, see [2]. Throughout the following, by a locally compact space we mean a locally compact
Hausdorff space. We follow the usual notations for the classical sequence spaces l∞, c0, and lp, p ∈
[1,∞), as well as the Lp spaces on locally compact spaces, p ∈ [1,∞].

First, recall that an algebra A over C is a complex vector space with a multiplication, which turns
A into a ring and satisfies α(ab) = (αa)b = a(αb) for all α ∈ C and a, b ∈ A . A Banach algebra is
an algebra A over C with a norm ‖·‖ that turns A into a Banach space and is submultiplicative, i.e.,
‖ab‖ ≤ ‖a‖‖b‖ for all a, b ∈ A. A Banach algebra A is unital if it has an identity element, denoted
by e, and we require that ‖e‖ = 1. A bounded net (ei)i∈I in a Banach algebra A is called a bounded
left approximate identity (BLAI) if lim

i
‖eia − a‖ = 0 ∀a ∈ A. A bounded right approximate identity

(BRAI) is defined in an obvious way. A bounded net (ei)i∈I is called a bounded approximate identity
(BAI) if it is both a left and a right approximate identity.

Let X be a locally compact space. We denote by Cb(X), C0(X), and Cc(X) the algebras of all
continuous complex-valued functions on X that are bounded, vanish at infinity, and have compact
support, respectively. Algebra operations are the usual pointwise addition, multiplication, and scalar
multiplication. Equipped with the supremum norm (sup-norm), i.e., ‖ f ‖∞ = sup

x∈X
| f (x)| ∀ f ∈ Cb(X),

the algebra Cb(X) is a unital commutative Banach algebra with the identity element being the constant
function 1. Further, C0(X) is a closed subalgebra of Cb(X), which is nonunital unless X is compact.
However, it has a BAI that consists of compactly supported functions. Moreover, the algebra Cc(X)
is complete only if X is compact. In this case we have Cb(X) = C0(X) = Cc(X) and we denote
them by C(X). An important class of Banach algebras is the class of C∗-algebras. A Banach algebra
A is called a C∗-algebra if it is equipped with an involution function ∗ : A −→ A which satisfies
(a + b)∗ = a∗ + b∗, (λa)∗ = λ̄a∗, (ab)∗ = b∗a∗, (a∗)∗ = a, ‖a∗a‖ = ‖a‖2 for all a, b ∈ A, λ ∈ C.
For more about the Banach algebra and C∗-algebra theory, we refer to [3].

Next, we recall the definitions of multiplicative and additive stability of Banach algebras as given
in [4].

Definition 1.1. LetA be a Banach algebra. We say thatA is additively (multiplicatively) stable if the
following condition holds:

For any bounded sequences (an), (bm) inA and any free ultrafiltersU,V on N, we have

lim
m,V

lim
n,U
‖an + bm‖ = lim

n,U
lim
m,V
‖an + bm‖, (1.1)

(lim
m,V

lim
n,U
‖anbm‖ = lim

n,U
lim
m,V
‖anbm‖). (1.2)

Otherwise,A is called additively (multiplicatively) unstable.

Example 1.2. (i) lp, 1 ≤ p < ∞ is additively and multiplicaively stable. The first stability was obtained
in [1, 278], while the latter was proved in [2, Theorem 4.1.4] in a more general setup, as we showed
that the lp-direct sum of multiplicatively stable Banach algebras is multiplicatively stable. Another
proof is also provided in the same reference on page 54 after Remark 4.1.2.
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(ii) Another example of additively and multiplicatively stable Banach algebra is the abstract Segal
algebra that was introduced first in [5, p. 4]. Choose ξ ∈ l1 with ‖ξ‖2 = 1. Define a new product on l2

as follows:
a.b = 〈a, ξ〉b ∀a, b ∈ l2,

where 〈., .〉 denotes the inner product in l2. Let A,B denote l2, l1 with this new product, respectively.
Then (B, ‖.‖1) is an abstract Segal algebra with respect to A. In addition, it is noncommutative and
nonunital. Moreover, a direct calculation of the two iterated limits shows it is multiplicatively stable.
However, B cannot contain a subalgebra isomorphic to lp for any p ∈ [1,∞). Indeed, if there would
exist a subalgebra A0 ⊆ B which is isomorphic to lp for some p ∈ [1,∞), then lp would have an
identity. The reason behind this is the existence of a left identity in A0. Indeed, let η ∈ A0 such that
〈η, ξ〉 , 0, then

η

〈η, ξ〉
.b = b ∀b ∈ A0.

Hence,
η

〈η, ξ〉
is a left identity of A0. Thus, lp has an identity - a contradiction. Note that A0

must have such an element with a nonzero inner product, or otherwise the product on A0 is the zero
product. For details, see [2, Example 4.1.5]. This example shows that there is no analogue of Krivine-
Maurey’s famous theorem in the case of multiplicatively stable Banach algebras, at least not without
additional assumptions.

Note that a model-theoretical version of the stability of Banach algebras has been studied by Farah,
Hart, and Sherman in [6, 7]. Stability, in this sense, implies both additive and multiplicative stability
of Banach algebras. For example, it is noted in [7] before Proposition 6.2 that lp for p ∈ [1,∞) with
pointwise multiplication is stable in the model theory’s sense, and so it is multiplicativity stable.

An important example of a multiplicatively unstable Banach algebra is any separable unital infinite-
dimensional C∗-algebra. It has been proved in [6, Lemma 5.3] that such a C∗-algebra is not stable
in the model-theoretical sense. In the proof, the authors used the formula φ(x, y) = ‖xy − y‖ to
witness instability through violation of the double limit criterion. Moreover, it has been shown in [4,
Proposition 2.2] that any infinite-dimensional C∗-algebra is multiplicatively unstable.

2. Hyper-instability of Banach algebras

In this section, we introduce hyper-instability of Banach algebras, which provides a powerful tool
to study multiplicative instability of Banach algebras. Studying multiplicative instability of Banach
algebras relies on the possibility of constructing two bounded sequences in the Banach algebra such
that the two iterated limits are different. However, conditions that are easier to examine may replace
the condition of the iterated limits. By carefully studying the proofs of the multiplicative instability
of the examples provided in [4], we note some common properties of the constructed sequences, such
as using the bounded approximate identity of the Fourier algebra and a sequence that behaves like a
bounded approximate identity in C∗-algebras. Moreover, one of the iterated limits in both examples
equals zero. This gives the motivation to define the hyper-instability of Banach algebras. It turns out
that hyper-instability implies multiplicative instability, and it is preserved under isomorphisms. This
increases the number of studied Banach algebras. We start with the following proposition.
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Proposition 2.1. Let A be a Banach algebra. Assume that there exist two bounded nets (ei)i∈I , ( f j) j∈J

in A, where I, J are directed sets and two ultrafilters U,V which dominate the order filters on I, J,
respectively, and C > 0 such that:

(1) ∀i ∈ I, lim
j,V
‖ei f j‖ = 0;

(2) ∀ j ∈ J, lim
i,U
‖ei f j‖ ≥ C.

Then,A is multiplicatively unstable.

Proof. First, note that condition (1) implies lim
i,U

lim
j,V
‖ei f j‖ = 0.

On the other hand, we get by (2) that lim
j,V

lim
i,U
‖ei f j‖ cannot be zero since C > 0. Thus, A is

multiplicatively unstable. �

Definition 2.2. A Banach algebra that satisfies the conditions in Proposition 2.1 is called hyper-
unstable.

Note that the conditions in Proposition 2.1 can be simplified if the Banach algebra admits a bounded
approximate identity (BAI) or even a right (BRAI) or a left (BLAI) one, as we shall see now.

Corollary 2.3. Let A be a Banach algebra. Assume that A has a BLAI (BRAI) (ei)i∈I and there exist
a bounded net ( f j) j∈J and two ultrafilters U,V which dominate the order filters on I, J, respectively,
such that

(1) ∀i ∈ I, lim
j,V
‖ei f j‖ = 0 (lim

j,V
‖ f jei‖ = 0);

(2) ∃C > 0 such that ∀ j ∈ J, ‖ f j‖ ≥ C.

Then,A is hyper-unstable.

Proof. We prove the corollary in the case that (ei)i∈I is a BLAI. The case of a BRAI follows
analogously. According to Proposition 2.1, to prove hyper-instability of A, we need to prove that
condition (2) holds. Now, since (ei)i∈I is a BLAI, then ∀ j ∈ J we have

lim
i
‖ei f j − f j‖ = 0.

Moreover, ∀i ∈ I, j ∈ J we have

| ‖ei f j‖ − ‖ f j‖ | ≤ ‖ei f j − f j‖, so lim
i
‖ei f j‖ = ‖ f j‖ ≥ C > 0.

AsU dominates the order filter on I, the limits along the order filter and alongU are equal. Therefore,
∀ j ∈ J we have

lim
i,U
‖ei f j‖ = ‖ f j‖ ≥ C > 0.

�

In fact, all that we need from the existence of a BLAI is the last limit in the previous proof. The
next corollary states it formally and gives weaker conditions than Corollary 2.3.
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Corollary 2.4. Let A be a Banach algebra. Assume that there exist two bounded nets (ei)i∈I , ( f j) j∈J

and two ultrafiltersU,V which dominate the order filters on I, J, respectively, such that

(1) ∀i ∈ I, lim
j,V
‖ei f j‖ = 0;

(2) ∀ j ∈ J, lim
i,U
‖ei f j‖ = ‖ f j‖;

(3) ∃C > 0 such that ∀ j ∈ J, ‖ f j‖ ≥ C.

Then,A is hyper-unstable.

It is not difficult to prove that hyper-instability is preserved under isomorphisms, see [2, Proposition
4.3.7]. Clearly, hyper-instability implies multiplicative instability. But, we do not know if the
converse holds.

3. Examples of hyper-unstable Banach algebras

Next, we study the hyper-instability of many well-known Banach algebras. Of course, this
implies multiplicative instability, but we emphasize hyper-instability because we gain the same for
any isomorphic Banach algebra.

3.1. C∗-algebras

The first example is any infinite-dimensional C∗-algebra. Since the two sequences that were
constructed in [4, Proposition 2.2] satisfy the conditions of Proposition 2.1, any such C∗-algebra is
hyper-unstable. Moreover, any C∗-algebra admits a BAI, which, in the case of C0(X), the Banach
algebra of all complex-valued continuous functions on a locally compact space X that vanish at infinity
can be realized as a net of functions ( fK)K∈B, whereB is the set of all compact subsets of X; here, using
Urysohn’s Lemma for locally compact spaces, one defines for each K ∈ B the function fK as being
of compact support, equal to 1 on K and vanishing outside a neighborhood of K. Hence, one may
construct another net that satisfies the conditions of Corollary 2.3 to obtain another proof of hyper-
instability of infinite-dimensional C∗-algebras. Thus, we get the following.

Proposition 3.1. Every infinite-dimensional C∗-algebra is hyper-unstable.

3.2. Fourier and Fourier-Stieltjes algebras

Next we study Fourier and Fourier–Stieltjes algebras on a locally compact group. Recall that on a
locally compact group G, the Fourier algebra, A(G), is defined to be the set of all functions of the form
f ∗ g̃, where f , g ∈ L2(G) and for all X ∈ G we have f ∗ g̃(x) =

∫
f (xy)g(y)dy. Note that A(G) ⊆ C0(G).

When A(G) is endowed with the norm

‖u‖ = inf{‖ f ‖2‖g‖2 : u = 〈λG(·) f , g〉, f , g ∈ L2(G)} ∀u ∈ A(G),

and with pointwise multiplication, it becomes a commutative Banach algebra.
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The Fourier–Stieltjes algebra, B(G), consists of all functions of the form x 7→ 〈π(x)ξ, η〉, where π
is a unitary representation of G on some Hilbert spaceH and ξ, η ∈ H . With the norm

‖u‖ = sup{|
∫

f (x)u(x)dx| : f ∈ L1(G), ‖ f ‖C∗ ≤ 1},

and with pointwise multiplication, B(G) is a unital commutative Banach algebra. Moreover, B(G)
contains A(G) as a closed ideal. Note that the Fourier algebra A(G) is unital if and only if G is compact.
However, A(G) may admit a BAI. Leptin’s theorem shows that this is equivalent to the amenability of
the group G, that is, the existence of a functional m ∈ L∞(G)∗ such that 〈m, 1〉 = ‖m‖ = 1, and for all
f ∈ L∞(G), g ∈ G, 〈m, g f 〉 = 〈m, f 〉, where g f (x) = f (gx) ∀x ∈ G. Moreover, a BAI can be chosen to
consist of compactly supported functions bounded by 1, see [8, Theorem 2.7.2].

In [4, Theorem 2.3], it was proved that Fourier and Fourier-Stieltjes algebras are multiplicatively
unstable on a certain class of locally compact groups. We provide a much similar proof to show that
they are, in fact, hyper-unstable on such groups.

Theorem 3.2. Let G be a locally compact group containing a non-compact amenable open subgroup.
Then the Fourier algebra A(G) is hyper-unstable.

Proof. Let H be a non-compact amenable open subgroup of G. Then, by [8, Proposition 2.4.1], A(H)
can be identified with a closed subalgebra of A(G). The aim is to prove the hyper-instability of A(H).
Note that

H =
⋃
K∈B

K◦, B := {K ⊆ H : K is compact,K◦ , ∅}.

ThenB can be directed by inclusion, so ∀K1,K2 ∈ B, K1 ≤ K2 iff K1 ⊆ K2. Now, for each K ∈ B, pick
xK ∈ H \ K. This is possible due to the non-compactness of H. Choose a neighborhood VK of xK such
that VK∩K = ∅. As in the proof of Lemma 2.9.5 in [9], we define a net of functions ( fK)K∈B as follows.
For K ∈ B, take a compact symmetric neighborhood WK of the identity such that xKW2

K ⊆ VK . Define

fK :=
1
|WK |

χxKWK ∗ ˇχWK .

Then fK ∈ Ac(H), where Ac(H) is the set of functions in A(H) with compact supports. Moreover,
supp fK ⊆ xKW2

K ⊆ VK . Also, ‖ fK‖ = 1; indeed,

1 = | fK(xK)| ≤ ‖ fK‖∞ ≤ ‖ fK‖ ≤
1
|WK |
‖χxKWK‖2‖ ˇχWK‖2 = 1.

In particular, ( fK)K∈B is a bounded net in Ac(H).
Furthermore, since H is amenable, there exists a BAI (ei)i∈I in A(H) which consists of compactly

supported functions; cf. [8, Theorem 2.7.2]. Fix i in I. Since supp ei is compact, it is contained in K0 for
some K0 ∈ B. Now, since for any K ∈ B, supp fK ⊆ VK and VK∩K = ∅, we have K0∩VK = ∅ ∀K ≥ K0.
Thus, supp fK ∩ supp ei = ∅, which implies that ei fK = 0, and

lim
K∈B
‖ei fK‖ = 0 ∀i ∈ I.

Then, by using Corollary 2.3, we obtain the hyper-instability of A(H), as claimed. �
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Corollary 3.3. For a locally compact group G containing a non-compact amenable open subgroup,
the Fourier-Stieltjes algebra B(G) is hyper-unstable.

Example 3.4. (i) In view of Theorem 3.2, the Fourier algebra on any non-compact amenable group
is hyper-unstable.

(ii) The theorem also covers many non-amenable groups, for instance, any discrete group that
contains an infinite amenable subgroup. A notable example of such a group is the free group on two
generators F2, which is non-amenable.

(iii) As any locally compact abelian group is amenable, our theorem also applies to locally compact
non-compact abelian groups. Hence, A(R) and A(Z) are hyper-unstable.

Along these lines, we note that, as the next corollary shows, hyper-instability of the group algebra
L1(G) on a large class of groups can be obtained.

Corollary 3.4. For any locally compact non-discrete abelian group G, the group algebra L1(G)
is hyper-unstable.

The proof follows from the fact that L1(G) is isometrically isomorphic to A(Ĝ) as Banach algebras
via the Fourier transform, where Ĝ is the dual group of G. Direct examples are L1(T) and L1(R). This
implies their instability in the model-theoretical sense. For L1(R), the latter result was established first
in [7].

In [4, Theorem 2.5], multiplicative instability of measure algebras was obtained by identifying
measure algebras and Fourier-Stieltjes algebras on locally compact abelian groups. In fact, a similar
argument gives hyper-instability of these algebras.

Theorem 3.5. Let G be an infinite compact group. Then the measure algebra M(G) is hyper-unstable.

For proofs, see [4, Theorem 2.5] and [2, Theorem 4.4.6].

3.3. Multiplier and completely bounded multiplier algebras of Fourier algebras

In this section, not going far from the Fourier algebra, we consider related Banach algebras, namely,
the algebra of multipliers and the algebra of completely bounded multipliers of the Fourier algebra on a
locally compact group G, denoted by M(A(G)) and Mcb(A(G)), respectively. We shall prove that weaker
assumptions are needed on G than what we assumed in the case of A(G) to prove hyper-instability of
Mcb(A(G)). Recall that the multiplier algebra of the Fourier algebra A(G) on a locally compact group
G consists of bounded continuous functions f on G satisfying f A(G) ⊆ A(G). The multiplier norm of
f is given by

‖ f ‖M(A(G)) = sup{‖ f u‖A(G) : u ∈ A(G), ‖u‖A(G) ≤ 1}.

With this norm and the pointwise product, M(A(G)) is a commutative Banach algebra. We can associate
with f ∈ M(A(G)) the operator T f on A(G) and its adjoint T ∗f , where T f is defined by T f (g) = f g ∀g ∈
A(G), see [8, Proposition 5.1.2]. Moreover, ‖ f ‖M(A(G)) = ‖T f ‖ = ‖T ∗f ‖. One of the subalgebras of
M(A(G)) of interest is the algebra of completely bounded multipliers, that is, the set of multipliers f of
A(G) in which the operator T ∗f is completely bounded. With pointwise multiplication and the norm

‖ f ‖Mcb(A(G)) = ‖T ∗f ‖cb ∀ f ∈ Mcb(A(G)),
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Mcb(A(G)) is a commutative Banach algebra. Further, B(G) ⊆ Mcb(A(G)) ⊆ M(A(G)), and the inclusion
maps are contractive, see [10, 509]; in particular, we have

‖x‖M(A(G)) ≤ ‖x‖Mcb(A(G)) ≤ ‖x‖A(G) ∀x ∈ A(G).

Before stating the theorem, recall the definition of weakly amenable groups. Cowling and Haagerup
first introduced this notion in [10]. A locally compact group G is said to be weakly amenable if there
exists a net (ui)i∈I in A(G) such that

‖ui‖Mcb(A(G)) ≤ L for some L > 0,

lim
i

ui = 1 uniformly on compacta.

Cowling and Haagerup showed in their paper that weak amenability of a locally compact group G
implies the existence of an approximate identity in A(G) with compact supports, which is bounded in
the Mcb(A(G)) norm, see [10, Proposition 1.1].

Theorem 3.6. Let G be a locally compact group containing a non-compact open weakly
amenable subgroup. Then Mcb(A(G)), the Banach algebra of completely bounded multipliers of A(G),
is hyper-unstable.

Proof. Let H be a non-compact open weakly amenable subgroup of G. Then, by [11, Proposition 4.1],
Mcb(A(H)) is a closed subalgebra of Mcb(A(G)), and hence it is enough to prove hyper-instability of
Mcb(A(H)). Now, the weak amenability of H ensures the existence of an approximate identity in A(H)
with compact supports, which is bounded in the Mcb(A(H)) norm. Thus, there exists a net (ui)i∈I in
Ac(H) with the properties

‖ui‖Mcb(A(H)) ≤ L for some L > 0,

lim
i
‖vui − v‖A(H) = 0 ∀v ∈ A(H).

Since ‖·‖Mcb(A(H)) ≤ ‖·‖A(H), we have

lim
i
‖vui − v‖Mcb(A(H)) = 0 ∀v ∈ A(H).

This implies that
lim

i
‖vui‖Mcb(A(H)) = ‖v‖Mcb(A(H)) ∀v ∈ A(H).

Now put B := {K ⊆ H : K compact,K◦ , ∅}. Then (B,≤) is a directed set, where ≤ is the inclusion
relation. The second net ( fK)K∈B in Ac(H), bounded in ‖·‖Mcb(A(H)), can be chosen by following steps as
in the proof of Theorem 3.2 such that

‖ fK‖A(H) = ‖ fK‖∞ = 1 ∀K ∈ B and lim
K∈B
‖ui fK‖A(H) = 0 ∀i ∈ I.

Now, since A(H) ⊆ Mcb(A(H)), the nets (ui)i∈I and ( fK)K∈B satisfy the conditions of Corollary 2.4.
However, we need to prove that ( fK)K∈B has a nonzero lower bound in the Mcb(A(H)) norm. To this
end, first recall that

‖ f ‖M(A(H)) ≤ ‖ f ‖Mcb(A(H)) ≤ ‖ f ‖A(H) ∀ f ∈ A(H).

AIMS Mathematics Volume 9, Issue 6, 14012–14025.
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Moreover, we have ‖ f ‖M(A(H)) = ‖T f ‖, where T f is the map on A(H) such that T f (g) = f g, ∀g ∈ A(H).
Thus, for all K ∈ B,

‖ fK‖M(A(H)) = ‖T fK‖ = sup
‖g‖A(H)≤1

‖ fKg‖A(H).

Since ‖ fK‖A(H) = 1, we have

‖ fK‖M(A(H)) ≥ ‖ f 2
K‖A(H) ≥ ‖ f 2

K‖∞ = 1.

So,

1 ≤ ‖ fK‖M(A(H)) ≤ ‖ fK‖Mcb(A(H)) ≤ ‖ fK‖A(H) = 1.

Thus, for all K ∈ B, ‖ fK‖Mcb(A(H)) = 1, which proves the claim. �

The argument given above also shows the following.

Theorem 3.7. For any locally compact group G which contains a non-compact open weakly amenable
subgroup, the Banach algebra M(A(G)) of multipliers of A(G) is hyper-unstable.

Example 1.2. (i) Obviously, by the above, Mcb(A(G)) and M(A(G)) are hyper-unstable on any non-
compact locally compact weakly amenable group G; in particular, if G is a non-compact locally
compact amenable group. Note that the latter result can be deduced from Theorem 3.2 as, in this
case, we have B(G) = Mcb(A(G)) = M(A(G)) isometrically.

(ii) It is known that Fn, the free group of n generators (n ≥ 2), is non-amenable but weakly
amenable; cf. [12, Corollary 3.9]. Hence, Mcb(A(Fn)) and M(A(Fn)) are hyper-unstable.

3.4. Banach algebras of compact operators on a Banach space

We explore the multiplicative stability of another important class of Banach algebras, namely the
algebraK(E) of compact operators on a Banach space E. We prove thatK(E) is hyper-unstable in two
cases. The first case is when E contains a complemented basic sequence, i.e., if there exists a sequence
(en) in E which is a Schauder basis of F := span{en} and F is complemented in E; in particular, any
Banach space with a Schauder basis. The second case is when E contains a subspace F such that F
has a Schauder basis and F∗∗ = E. An example of this case is E = l∞.

Theorem 3.8. Let E be a Banach space with a complemented basic sequence. Then the algebra of
compact operators K(E) is hyper-unstable.

Proof. Let (en) be a complemented basic sequence in E. Take F := span{en}. Since F is complemented
in E, there exists a bounded projection P : E � F. As (

en

‖en‖
) is also a Schauder basis of F, we may

assume that (en) is normalized. Let (e∗n) be the biorthogonal functionals associated with (en) and Kb be
the basis constant. Define ẽ∗n : E −→ C by ẽ∗n = e∗n ◦ P. Then

‖ẽ∗n‖ ≤ ‖e
∗
n‖‖P‖ ≤ 2Kb‖P‖.
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Further, P(x) =
∞∑

k=1

〈ẽ∗k, x〉ek ∀x ∈ E. To prove the hyper-instability of K(E), we construct two

sequences that satisfy the hypothesis of Corollary 2.4. First, take an =

n∑
k=1

ek ⊗ ẽ∗k. Then

an =

n∑
k=1

ek ⊗ (e∗k ◦ P) = (
n∑

k=1

ek ⊗ e∗k) ◦ P.

Since
n∑

k=1

ek⊗e∗k is uniformly bounded by Kb, we have ‖an‖ ≤ Kb‖P‖. Hence, (an) is a bounded sequence

in K(E). For the other sequence, put bm := em ⊗ ẽ∗m ∀m ∈ N. Then

‖bm‖ = ‖em‖‖ẽ∗m‖ = ‖ẽ
∗
m‖ ≤ 2Kb‖P‖ ∀m ∈ N.

Hence, (bm) is bounded in K(E). Fix m in N. We calculate lim
n→∞
‖anbm‖. To this end, let x ∈ E. Then

anbm(x) = an(em ⊗ ẽ∗m(x)) = an(em ⊗ e∗m(P(x))) = an(〈e∗m, P(x)〉em)

= 〈e∗m, P(x)〉
n∑

k=1

〈ẽ∗k, em〉ek = 〈e∗m, P(x)〉
n∑

k=1

〈e∗k, em〉ek. (3.1)

But, as 〈e∗i , e j〉 = δi, j, if n ≥ m, we get that

anbm(x) = 〈e∗m, P(x)〉em = 〈e∗m,
∞∑

k=1

〈ẽ∗k, x〉ek〉em = 〈ẽ∗m, x〉em = bm(x).

Thus, for n ≥ m, anbm = bm and so lim
n→∞
‖anbm‖ = ‖bm‖. Moreover, as ‖em‖ = 1, we have

‖bm‖ = ‖em‖‖ẽ∗m‖ = ‖ẽ
∗
m‖ ≥ |〈ẽ

∗
m, em〉| = |〈e∗m, em〉| = 1.

On the other hand, fix n and let m > n. Let x ∈ E. We have 〈ẽ∗n, em〉 = 〈e∗n, em〉 = 0. Hence, by
applying this to (3.1), we get that anbm(x) = 0. Thus,

anbm = 0, so lim
m→∞
‖anbm‖ = 0.

Therefore, by Corollary 2.4, K(E) is hyper-unstable. �

Corollary 3.9. If E is a Banach space containing a complemented subspace isomorphic to c0 or lp for
any p ∈ [1,∞), then K(E) is hyper-unstable.

Note that, as K(E) is a closed subalgebra of B(E), under the hypothesis of the previous theorem
we gain hyper-instability of B(E) as a bonus. In addition, the constructed sequences, in fact, consist
of finite-rank operators. Hence, they lie in the Banach algebra of approximable operators A(E) on E.
This leads to the next result.

AIMS Mathematics Volume 9, Issue 6, 14012–14025.



14022

Theorem 3.10. Let E be a Banach space with a complemented basic sequence, then B(E) and A(E)
are hyper-unstable.

As it has been shown, the existence of a complemented basic sequence in E is sufficient for the
hyper-instability ofK(E); however, it is not necessary. This can be illustrated byK(l∞). In fact, l∞ is a
prime Banach space, i.e., every infinite-dimensional complemented subspace of l∞ is isomorphic to l∞.
This well-known result due to Lindenstrauss can be found in [13] as the main theorem of the paper. So,
l∞ does not contain any complemented basic sequence. But, K(l∞) is hyper-unstable. Indeed, K(E) is
hyper-unstable if E contains a subspace that admits a Schauder basis, and whose second dual is E.

Theorem 3.11. Let E be a Banach space and F a closed subspace of E such that F has a Schauder
basis and F∗∗ = E. Then K(E) is hyper-unstable.

Proof. Let (en) be a normalized Schauder basis of F. Let Pn =

n∑
k=1

ek ⊗ e∗k be the canonical projections

associated with (en), and Kb be the basis constant. Consider the adjoint operators P∗n : F∗ −→
F∗ , P∗∗n : E −→ E. Let y ∈ F, y∗ ∈ F∗, and x ∈ E. We have

Pn(y) =
n∑

k=1

〈e∗k, y〉ek , P∗n(y∗) =
n∑

k=1

〈ek, y∗〉e∗k.

Further, 〈P∗∗n (x), y∗〉 =
n∑

k=1

〈x, e∗k〉〈ek, y∗〉. Hence, P∗∗n (x) =
n∑

k=1

〈x, e∗k〉ek. So, P∗∗n may be written as P∗∗n =

n∑
k=1

ek ⊗ e∗k, and one may see the operator ek ⊗ e∗k as a rank one operator on E. See the first paragraph

of the proof of Proposition 4.14 in [14]. Since ‖P∗∗n ‖ = ‖P
∗
n‖ = ‖Pn‖, the sequence (P∗∗n ) is uniformly

bounded by Kb. Now, take

an =

n∑
k=1

ek ⊗ e∗k , bm = em ⊗ e∗m.

For n,m ∈ N, we have ‖an‖ = ‖Pn‖ ≤ Kb, and ‖bm‖ = ‖em‖‖e∗m‖ = ‖e
∗
m‖ ≤ 2Kb. Hence, (an) and (bm) are

bounded in K(E). Next, let x ∈ E, then

anbm(x) = an(〈x, e∗m〉em) = 〈x, e∗m〉
n∑

k=1

〈em, e∗k〉ek.

Since 〈em, e∗n〉 = 0 for m , n , if m > n, we have anbm(x) = 0 ∀x ∈ E. Thus,

anbm = 0, so lim
m→∞
‖anbm‖ = 0.

On the other hand, if m ≤ n, then

anbm(x) = 〈x, e∗m〉em = em ⊗ e∗m(x) = bm(x).

Moreover, ‖bm‖ = ‖e∗m‖ ≥ |〈e
∗
m, em〉| = 1. Thus,

lim
n→∞
‖anbm‖ = ‖bm‖ and ‖bm‖ ≥ 1 ∀m ∈ N.

Therefore, hyper-instability of K(E) follows by Corollary 2.4. �

AIMS Mathematics Volume 9, Issue 6, 14012–14025.



14023

3.5. The Banach algebras Ck
0(R) and Ck

b(R)

In the present section we consider the Banach algebras Ck
b(R) and Ck

0(R), k ∈ N, consisting of all
complex-valued k times continuously differentiable functions f on R such that the function f and its
derivatives f ( j) are bounded, respectively, vanish at infinity, where 1 ≤ j ≤ k. With pointwise addition
and multiplication, scalar multiplication, and the norm

‖ f ‖ =
k∑

j=0

1
j!
‖ f ( j)‖∞ ∀ f ∈ Ck

b(R),

Ck
b(R) is a Banach function algebra on R and Ck

0(R) is a closed ideal in Ck
b(R); cf. [15, Proposition 2,

Proposition 3]. It follows from the same article (Theorem 1) that the algebra Ck
0(R) has a bounded

approximate identity consisting of functions with compact support. We show that C1
0(R) is hyper-

unstable as we construct a sequence which, along with the BAI, satisfies the conditions of Corollary 2.3.
Moreover, we generalize the result to Ck

0(R).

Theorem 3.12. The Banach algebras C1
0(R) and C1

b(R) are hyper-unstable.

Proof. It is enough to show the hyper-instability of C1
0(R). By [15, Theorem 1], C1

0(R) has a BAI
(en)n∈N such that

en(x) = 1 ∀x ∈ [−n, n], and supp en ⊆ [−n − 2, n + 2],

see the first paragraph of the proof of the mentioned theorem. Now, choose a function f in C1
0(R)

such that

• supp f ⊆ [4, 5];
• f (4) = f (5) = 0, f ′(4) = f ′(5) = 0;
• f ′ . 0,

(e.g., put f (x) = (x − 4)2(x − 5)2 ∀x ∈ [4, 5] and 0 otherwise). For all m ∈ N, define

fm : R −→ C, fm(x) = f (x − m + 1),

i.e., fm is a translation of f . Note that supp fm ⊆ [m + 3,m + 4] and

fm(m + 3) = fm(m + 4) = 0, fm
′(m + 3) = fm

′(m + 4) = 0.

Moreover, for all m ∈ N, we have

‖ fm‖ = ‖ fm‖∞ + ‖ fm
′‖∞ = ‖ f ‖∞ + ‖ f ′‖∞ > 0.

In particular, ( fm) is a bounded sequence in C1
0(R), and ‖ fm‖ = C > 0 ∀m ∈ N, where C = ‖ f ‖∞+‖ f ′‖∞.

Now, fix n ∈ N. As

supp en ⊆ [−n − 2, n + 2], and supp fm ⊆ [m + 3,m + 4],

we have supp en ∩ supp fm = ∅ for all m ≥ n. Thus, en fm = 0 ∀m ≥ n, which implies that
lim

m→∞
‖en fm‖ = 0. Therefore, the claim holds by Corollary 2.3. �
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Remark 3.13. Generally, Ck
0(R) for k ∈ N is hyper-unstable. This can be proved by using, for example,

the sequence of translations by 2n − 2 of the function

f (x) =
{

xk+1(x − 1)k+1 if x ∈ [0, 1]
0 if x < [0, 1]

,

i.e.,
en(x) = f (x − 2n + 2) ∀x ∈ R, n ∈ N, and

fm =

m∑
k=1

ek ∀m ∈ N.

4. Conclusions

Our work introduces the concept of hyper-instability, which offers an alternative technique to study
the multiplicative instability of Banach algebras. The conditions, which do not include iterated limits,
are more applicable and straightforward to examine. Furthermore, these conditions can be simplified
if the Banach algebra admits a bounded approximate identity (BAI) or even a right or a left one.
In addition, hyper-instability implies multiplicative instability and is preserved under isomorphisms
between Banach algebras. By examining the conditions of hyper-instability, we proved that infinite-
dimensional C∗-algebras, Fourier and Fourier-Stieltjes algebras on a locally compact group, the algebra
of compact operators on a Banach space, and the Banach algebras Ck

0(R) and Ck
b(R) are hyper-unstable

under certain conditions. This new concept opens up numerous ventures for further research problems.
Some of these problems are mentioned next.

• Is hyper-instability strictly stronger than multiplicative instability?
• Theorem 3.2 shows hyper-instability of A(G) when G is a locally compact group containing

a non-compact, open, amenable subgroup, particularly when G itself is non-compact and
amenable. What about other groups?

• Corollary 3.4 shows that L1(G) is hyper-unstable for any locally compact, non-discrete, abelian
group G. What about other groups?
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