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Abstract: As is well known, it is impossible to model reality with its true level of detail. Additionally,
it is impossible to make an infinite number of observations, which are always contaminated by noise.
These circumstances imply that, in an inverse problem, the misfit of the best estimated model will
always be less than that of the true one. Therefore, it is not possible to reconstruct the model that
actually generated the collected observations. The best way to express the solution of an inverse
problem is as a collection of models that explain the observations at a certain misfit level according to
a defined cost function. One of the main advantages of global search methods over local ones is that,
in addition to not depending on an initial model, they provide a set of generated models with which
statistics can be made. In this paper we present a technique for analyzing the results of any global
search method, particularized to the particle swarm optimization algorithm applied to the solution of
a two-dimensional gravity inverse problem in sedimentary basins. Starting with the set of generated
models, we build the equivalence region of a predefined tolerance which contains the best estimated
model, i.e., which involves the estimated global minimum of the cost function. The presented algorithm
improves the efficiency of the equivalence region detection compared to our previous works.
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1. Introduction

From a very general perspective, solving an inverse problem involves the integration of
methodologies aimed at determining the causes given the effects. This can be exemplified by scenarios
such as diagnosing a disease based on symptoms or designing engineering solutions within certain
constraints. Common inverse problems in geophysics are the determination of the density distribution
in the subsoil using gravity observations at the terrain surface (gravimetric inverse problem [1]), using
magnetic observations for mineral prospecting [2], the problem of finding the velocity distribution of
a geological medium [3], the seismic reflection inverse problem (which maps the Earth sedimentary
crust from transient near-surface recording of echoes, stimulated by explosions or other controlled
seismic sources positioned near the surface) [4], the determination of fault parameters using ground
deformation [5], or the monitoring of magma volumes and their supply rates in volcanic areas also
using ground deformation [6]. Some of these problems are ill-posed, i.e., either the inverse problem
does not admit solution, the solution exists but is not unique, or finally, the solution exists and is unique
but is unstable, that is, a small change in the data produces a big change in the solution [7, pp. 7-8].

Many inverse problems in geophysics and other fields involve a high number of parameters due
to the complexity of the problem and/or the need to model phenomena with high degree of detail.
Despite this complexity, physical models are often simplified for ease of formulation and due to
the inability to account for all real-world details in a model. There are also problems, such as ones
based on potential fields (gravity, magnetics), whose solutions have inherent non-uniqueness (see, for
example, [8, pp. 214–217] or [9, pp. 20–22]). Finally, the observed data set is always incomplete
and noisy. All these circumstances contribute to the ill-posedness of the problem, leading to many
solutions (called equivalent), all of them compatible with the observed data set and, in the case of
nonlinear inverse problems, probably located in disconnected curvilinear valleys of the cost function
topography [10]. It was said by Parker in [11] that “the goal of inverse theory is to determine the
parameters from the observations or, in the face of the inevitable limitations of actual measurement, to
find out as much as possible about them”.

Traditionally, the ill-posed nature of inverse problems has been addressed (selection of best
model and its uncertainty estimation) through the combined use of local optimization methods and
regularization techniques (see, for example, [12]). Although this approach is fast, it can have, for some
nonlinear inverse problems, the drawback of providing a solution that depends strongly on an initial
model, resulting in an obtained solution that is not the global minimum of the cost function, but a local
one. Also, as important as the global minimum estimation, the uncertainty appraisal is a key task in
any inverse problem, but the results based on local optimization methods are, in the case of nonlinear
problems, only valid in the neighborhood of the solution that has been found [10].

Global search methods such as genetic algorithms [13], simulated annealing [14] or particle swarm
optimization [15] (among others) offer advantages over local optimization methods as they do not rely
on an initial model and explore the entire parameter space, thereby enabling estimation of the global
minimum of the cost function. After their execution they provide a collection of samples (models)
from the parameter space together with their misfit values, from which the user can select the subset of
models whose misfit are below a predefined tolerance. The solution of the inverse problem can then be
expressed, as it stated by Albert Tarantola in [16], as “the collection of all the models that have not been
falsified” (that are compatible with all the a priori information and have a misfit below a predefined
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tolerance). This is of particular importance in the case of nonlinear inverse problems, where, using
these compatible models, the topography of the cost function lower than the prescribed tolerance can
be depicted, making uncertainty appraisal more realistic than using local optimization methods [10].

In some inverse problems, especially in highly dimensional ones, performing posterior analysis and
uncertainty appraisal can be challenging. Using only statistics referring to each individual parameter
could not be adequate when a global analysis of the entire set of parameters is needed. This is the case
with gravity inversion in sedimentary basins, and in this paper we introduce a methodology designed
in order to make posterior analysis easily feasible.

2. Cost function landscape in nonlinear inverse problems

In its more general form, a discrete nonlinear inverse problem is presented as

F(m) = d + ε, (2.1)

where vector m belongs to the parameter space M, m ∈ M, and is composed of a finite number of
parameters, m = {m1,m2, . . . ,mn}; vector d ∈ D represents the observed data, d = {d1, d2, . . . , dl},
belonging to the data space D; and ε is the observational noise, always present. The direct problem
functional F :M→D is considered in this paper as nonlinear.

An inverse problem, linear or not, has many equivalent solutions since they are able to predict
the observed data to within some misfit tolerance and are compatible with some prior knowledge.
Then, uncertainty estimation in discrete inverse problems involves finding the family Mtol of models
compatible (below a predefined tolerance value, tol) with the observations and other a priori
information, i.e., finding all m ∈ Mtol subject to ‖F(m) − d‖p ≤ tol. By selecting p = 2, a least
squares problem is proposed, i.e., the model m which minimizes the cost function

c(m) = ‖F(m) − d‖2 (2.2)

is determined. The cost function (2.2) is in most cases complemented with a regularization term
(see [12] for example) in order to stabilize the inversion, but as this does not affect our discussion
about the existence of disconnected equivalence regions in the cost function landscape of nonlinear
inverse problems, we will ignore it in order to simplify the notation.

One common method for solving a nonlinear inverse problem using local optimization is Newton’s
method, which implies the linearization of the forward operator F around an initial model m0, so

F(m) = F(m0) + JFm0(m −m0) + o(‖m −m0‖2), (2.3)

where JFm0 is the Jacobian of F in m0, and o(‖m−m0‖2) represents the terms of order greater than 1 in
the Taylor expansion. Taking into account Eqs (2.1)–(2.3), the solution of a discrete nonlinear inverse
problem consists of finding the model m which minimizes the cost function

c(m) = ‖JFm0(m −m0) − d + F(m0)‖2. (2.4)

As the problem is now linear, well known linear algebra techniques can be employed in order to solve
it through an iterative procedure, where the initial model m0 is updated at each step (see [12]).
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Once the model m that minimizes c(m) is determined, the error analysis can be performed. The
boundary of the region ‖JFm0(m − m0) − d + F(m0)‖2 ≤ tol is a hyper-quadric whose axis can be
determined in order to provide the uncertainty appraisal (see [10]). However, in the Taylor expansion
of the forward operator (Eq (2.3)), the terms of order greater than 1 have been neglected, so this
truncation will introduce an error in the approximation of the cost function landscape of the original
nonlinear problem. For a deeper understanding of the cost function landscape in linear and nonlinear
inverse problems, readers can consult [10, 17].

We will illustrate the preceding statements with a synthetic example. Let a nonlinear function be
y = eαx + 2eβx. For values (α, β) = (10, 1), a set of 51 equally spaced values for y have been generated
for x ∈ [−0.25, 0.25] using ∆x = 0.01. Then, the computed y values have been contaminated with
white noise of distribution N(µ, σ2) = N(0, 5%2), where 5% means a standard deviation of 5% of the
value of y. With the noisy y values, we have applied Newton’s method in order to estimate m, and
we have obtained the results presented in Figure 1. The upper pictures represent the same solution,
but the upper left one shows as background the real nonlinear cost function topography, while the
upper right one shows the linearized cost function; the lower picture shows the linearized cost function
for other starting guess m0, as will be explained. The equivalence regions of 10% relative misfit
(100 · ‖F(m)−d‖2/‖d‖2) are shown, and it can be seen that in the case of the original nonlinear problem
two regions are present (green lines).

However, the estimation using a local optimization method depends for this problem strongly on
the location of the initial guess m0. The result corresponding to the upper right plot in Figure 1 was
obtained using m0 = (α0, β0) = (6, 2), and the solution is enclosed in the equivalence region containing
the global minimum of the cost function. It can also be seen that the estimated solution (black circle)
does not match the true solution (black dot), which is a consequence of the presence of noise in the
data (see [10] for details). However, if the initial guess is m0 = (α0, β0) = (−2, 6), as can be seen in
the lower picture of Figure 1, the solution is enclosed in the equivalence region of the upper part of the
figure, which is a local minimum that is far from the true solution m = (α, β) = (10, 1).

About the cost function topography, we can see in Figure 1 (upper left) its main characteristic in the
case of nonlinear problems: isolines of equal misfit are arbitrary bent curves. In linear problems, equal
misfit isolines are in the general case hyper-ellipsoids (tending to be elliptic hyper-cylinders for ill-
posed problems), but this landscape is totally different in the nonlinear case (see [10, 17] for details).
It can be seen (Figure 1, upper left) how the two 10% nonlinear equivalence regions have different
sizes and shapes, and the problem solution does not have to be in its center. On the contrary, when a
local optimization method is employed, we linearize the problem around the best estimation, and the
cost function topography corresponds to a linear problem, as can be seen in Figure 1 (upper right and
lower). In this particular example the isolines of equal misfit are ellipses centered in the estimated
solution, as we are dealing with a two-dimensional problem. When we apply a local optimization
method to a nonlinear inverse problem, two important and general conclusions related to error analysis
can be derived:

• Only one equivalence region (around the estimated solution) will be determined, ignoring other
possible regions included in the cost function topography. Furthermore, if the initial guess m0 is
far from the region containing the global minimum, the algorithm could be trapped in a local one
with its own linearized equivalence region, making both the estimation and the posterior error
analysis useless (this is the case with the example in the lower part of Figure 1).
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• Although the estimated solution corresponds to the cost function global minimum, the linearized
equivalence region is different in shape from the nonlinear one, as can be seen in Figure 1.
All models inside an equivalence region of prescribed tolerance must be taken into account,
as they can explain the observations (see [16, 18, 19]). However, when we compare the linear
and nonlinear regions, we can see that (1) the linearized equivalence region contains models
that are outside the true nonlinear equivalence region, and (2) models belonging to the nonlinear
equivalence region are located outside the linearized one, so they will be ignored.

These facts are much more pronounced in highly nonlinear problems, so the error analysis based
on the linearized cost function topography is valid only in the very near surroundings of the estimated
solution, making, in many cases, the uncertainty appraisal useless.

Figure 1. Least squares relative cost function topography (100 · ‖F(m) − d‖2/‖d‖2) of the
synthetic example y = eαx + 2eβx + N(0, 5%2). Upper left: real nonlinear cost function
topography. Upper right: linearized cost function topography for a solution starting with
point m0 = (6, 2). Lower: linearized cost function topography for a solution starting with
point m0 = (−2, 6). Color bars represent the relative misfit as percentages.
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Global optimization methods can have significant improvements over local optimization ones in
certain cases. First of all, it is not necessary to have an initial guess for the solution, as these methods
explore the entire parameter space (actually a predefined subset of it, based on the knowledge of the
problem), so it is difficult to get trapped in cost function local minima. This is excellent for nonlinear
inverse problems and their complex cost function topographies. Also, these methods are based on
the evaluation of the forward problem, so neither linearization nor big systems of equations and their
factorization are needed. On the contrary, when the problem is highly dimensional, and/or the forward
problem is computationally expensive, global optimization methods can be slow. Some techniques can
be applied in order to mitigate this drawback [20], although not always is possible.

Nevertheless, it is in the uncertainty analysis where global optimization methods have their principal
strengths. During the execution, a set of models is generated covering the parameter space following
the rules of each method (genetic algorithms, simulated annealing, particle swarm optimization, etc.),
i.e., the cost function topography is sampled following certain rules and focusing on the equivalence
regions containing the minima. Then, by selecting the models with a misfit below a predefined
tolerance, the real nonlinear equivalence regions can be depicted. In the following sections, we
present a methodology designed in order to select the corresponding models for a correct uncertainty
representation in a gravity inversion method applied to sedimentary basins.

3. Two-dimensional gravity inversion in sedimentary basins

In [21], GravPSO2D, a software for the solution of the two-dimensional gravity inversion problem
in sedimentary basins based on the particle swarm optimization (PSO) algorithm, was presented (some
other studies have been developed in recent years about this topic, such as [22–25], for example). The
2D approximation can be used for gravity when a dimension of an anomalous body is much larger
than the other two, which is common in sedimentary basins, where the depth is generally less than
the horizontal dimensions (Nettleton suggested in [26, p. 206] that a 2× or 3× factor is enough). The
basin is then modeled as a set of rectangles [27–30], and after the prescription of density values, the
rectangles’ thickness (i.e., the sediment depths) are determined. The observations are gravity anomalies
derived from gravity observations at the terrain surface level.

Figure 2 shows a schematic representation of the model. The basin, as stated in the previous
paragraph, is composed of a set of M rectangles with known density contrast (it can be constant or
variable in depth), whose lower sides represent the interface between the basement and the sediments,
and their upper sides are coincident with the terrain surface (which does not need to be planar as in the
example of Figure 2). The observed points form a set of N elements located at the terrain surface level.
The gravitational anomaly ∆g generated by a set of M rectangles over each observation point is

∆gi =

M∑
j=1

F
(
∆ρ j, ri j, z j

)
, i = 1, 2, . . .N, (3.1)

where ∆ρ j is the density contrast (ρsediments − ρbasement) of each rectangle j, ri j is the top side position of
each rectangle j with respect each point i, and z j is the z lower side coordinate of each rectangle j (the
problem unknowns). The expression for F

(
∆ρ j, ri j, z j

)
can be seen in [31, pp. 524-525] or [32] and is

nonlinear with respect to r and z. Equation (3.1) can be extended with the inclusion of a term in order
to take into account a regional trend in the gravity anomaly, and, in order to reduce the non-uniqueness
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of the problem, several kind of constraints can be applied to the prisms, such as fixed depths (data from
boreholes, for example) [21]. In this paper we work with Eq (3.1) for the sake of simplicity, since
the inclusion of other terms does not affect the discussion. Also, a filtering step is needed in order to
produce geologically meaningful results (see [21] for details).

Figure 2. Two-dimensional model of a sedimentary basin as a set of rectangles.

The first step before the PSO execution is the selection of the search space for the parameters. In our
case, this means definitions of upper and lower limits for the prisms’ z coordinates in Figure 2. During
the execution of PSO, a set of models is generated, all enclosed inside the search space. Among these
models, the one with the lowest misfit (Eq (2.2)) is considered as the global minimum of the cost
function. Also we have at our disposal all the other models, so posterior statistics can be made.

Figure 3 shows a synthetic example where a basin is modeled as a set of 80 rectangles of 1000 m
horizontal width, with upper sides at height 0 m, and density contrast ∆ρ = −500 kg m−3. Their
true depths are shown as the solid black line in Figure 3 (left). The horizontal positions of a set
of 70 points at height 0 m were randomly generated, and gravity anomaly induced by the basin was
computed in each one. These observations were contaminated with random white noise of distribution
N(0, 0.752) mGal. In order to recover the true model, a population of 400 models with density contrast
∆ρ = −500 kg m−3 was generated inside the search bounds, selected wide enough to contain all
geologically plausible models (red dotted lines in Figure 3, left), and 200 iterations were performed, so
a total of 80 000 models were created using the CP-PSO member in its cloud version, i.e., no parameter
tuning must be configured as each particle has its own PSO parameters, automatically chosen [33].

The inversion took a time of about 35 s to be completed,* and the best generated model can be
shown in Figure 3 (left) as a blue line and has a relative misfit of 4.19%, which is an estimation of
the global minimum of the cost function. This misfit value is smaller than that corresponding to the
true model (black line, labeled as reference model in the figure, misfit of 5.44%), which is an effect of
the presence of N(0, 0.752) mGal noise in data [10]. Still, we are interested in models with a relative
misfit below a predefined tolerance, 10% for example, so all of them are extracted from the whole set
of 80 000 generated models. In our case the number of models belonging to the equivalence regions
with relative misfit below 10% is 51 612, and Figure 3 (right) shows the statistics that can be made for
each element (rectangle number 54 as an example in this case). With the empirical cumulative density

*The computations were performed on a laptop equipped with an Intel Core i7-4800MQ CPU with four cores at 2.70 GHz, running
Debian GNU/Linux and MATLAB R2017a. The function for the direct problem solution was written in C and compiled using OpenMP,
so all four cores of the CPU were used. After several runs we can conclude that the time spent in the uncertainty analysis is about 10%
of the total time, showing that the forward modelling step is the bottleneck of any global search algorithm.
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function, ECDF, (upper right panel) the probability of a depth range can be easily computed, while
the histogram (lower right panel), which actually is another way to represent the ECDF, allows us to
analyze in a more efficient way the frequencies of different depths. In this example we can see in the
histogram the depth of the best model together with the depths of the mean, median, and mode models
for rectangle 54. Such models do not have to be coincident, and, as can be seen, the best model does
not have to be composed by the ensemble of most frequent depths in each rectangle.

The range of variation for each rectangle depth is shown in Figure 3 (left) as yellow bars. These
bars could be seen as the limits of an equiprobable range, but this is not true in the general case, as
is shown in the lower right panel of Figure 3. So, ECDFs and histograms must be carefully inspected
in order to provide a detailed behavior of the problem solution, revealing the importance of both as
support to the global view.

Figure 3. Synthetic example of a sedimentary basin. Left: general overview of the solution
containing the best estimated model together with the true model and residuals (red dots
for the best and black dots for the true model), and the uncertainty region composed by
all generated models with relative misfit below 10% (51 612). Right: empirical cumulative
density function and histogram for depth of rectangle number 54 in the profile.

The uncertainty analysis for this kind of problem is sometimes absent in the literature or, in
most cases, restricted to the comparison of the inversion results with other information such as
previous models, data from boreholes, and/or other geological information. In other cases (see, for
example, [22, 23]) it is performed by computing the standard deviation for each rectangle, taking into
account all models with misfit below the prescribed tolerance, i.e., using the range of variation depicted
in Figure 3 (left). On the other hand, [25] makes the uncertainty assessment via principal component
analysis, building the 2D cost function topography corresponding to the two principal components
of the solutions. Other authors make cross-plots between different unknowns in order to see their
correlation, such as in [34], although in problems with a high number of parameters it may not be
practical due to the high number of combinations between them (in problems involving few unknowns
it can be a valid option, such as in [35]).
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4. Determining the equivalence region containing the best model

As was stated in the previous section, yellow bars in Figure 3 (left) show the limits between each
rectangle depth varies for all the models below 10% relative misfit tolerance. Nevertheless, this set can
contain models belonging to several disjointed equivalence regions, as we are dealing with a nonlinear
problem. This can be proven by the fact that in our example, the models composed of the ensembles of
all upper and lower limits of the yellow bars have relative misfits of 31.73% and 33.64%, greater than
the tolerance of 10%. However, in order to depict correctly an estimation of the equivalence region of
10% relative misfit where the global minimum is contained, we must extract only the models belonging
to this region. We have developed an algorithm in order to do so, based on the information provided
by the empirical cumulative density functions previously computed for each rectangle.

The algorithm works on the ECDF functions computed for each rectangle using the models below
the predefined tolerance (51 612 models in our exercise). It can be summarized in the following steps
(we search for the upper bound depths, but in the case of lower bound the framework is the same except
for minor changes in some comparisons):

(1) Select all models of relative misfit around the objective equivalence region: for example, between
9% and 11% if we are looking for the 10% region. From these models, select those completely
above the best estimated model.

(2) Compute the Euclidean distance from each of the previous selected models to the estimated best
model and select a small set (10 models, for example) of the closest ones. Compute the mean
of such models in order to obtain a first approximation to the upper bound of the equivalence
region, upper bound. The misfit of this model will not be exactly the searched value. We can
use the closest model as first approximation, but experience demostrated that the algorithm is
more efficient by using the described way.

(3) Extract from ECDFs the probability of depth for each rectangle in the previous upper bound
candidate model.

(4) Add a small probability increment, IncProb (experience has shown that 0.01 is a good value), to
the extracted probabilities and interpolate in the ECDFs their corresponding depths. We have a
new upper bound candidate. Compute its new misfit.

(5) Start an infinite loop while the misfit of the upper bound is different than the misfit of the
equivalence region to search (in practice, a small tolerance must be employed, as it is almost
impossible to get an upper bound misfit identical to any prescribed value).

(a) Update the value of IncProb to IncProb/1.25 (1.25 is a good value, again estimated by
experience, after performing a lot of inversions in very different environments and using
very different numbers of observations and basin models) in order to gradually get closer to
algorithm convergence. If IncProb takes a very small value (10−8 for example), its original
value is restored.

(b) If the misfit of upper bound is lower than the equivalence region to search, we add again the
IncProb value to the candidate model. If it is greater, we subtract the IncProb value. We
interpolate new depth values with the updated probability values. Increments and decrements
of probability do not mean increments or decrements of the same values in depth, as each
rectangle has its own empirical cumulative distribution function.

(c) The upper bound model must have for each rectangle a depth value lower than that
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corresponding to the same rectangle in the best model, so if any of them is deeper, the value
of the best model is assigned.

(d) Compute the new misfit of upper bound.

It must be stressed that taking different values than the presented in the previous algorithm
description for the IncProb parameter and its updating factor does not mean that the algorithm fails,
but rather that it will execute less efficiently. These values, as was explained, come from experience
and must be understood as suboptimal ones. The pseudocode presented in Algorithm 1 shows the
described steps in order to determine the depths of the upper bound.

Algorithm 1: Upper bound of equivalence region containing the best model.
Data: equivalent models, ECDFs, equivalence region to search
Extract first candidate for upper bound and the probabilities of their depths;
Add probability increment and compute new upper bound depths;
Compute misfit for new depths;
while misfit of upper bound different from misfit of the equivalence region to search do

Update probability increment;
if misfit of upper bound lower than misfit of the equivalence region to search then

Add probability increment;
else

Subtract probability increment;
end
Compute new depths with the new probability values;
Check depths according to best model;
Compute new misfit for the updated upper bound model;

end

Figure 4 shows the same synthetic example as in Figure 3 after applying the described algorithm.
We can see (left panel) how the 10% equivalence region is now narrower than the one in the previous
example, as it corresponds to only one region, the one where the best model is included. Their upper
and lower bounds have now a relative misfit of 10%, and any other model inside these bounds has a
misfit lower than this value. From the original 51 612 models with relative misfit lower than 10%, only
16 194 are totally inside the bounds, which means that the remaining 35 418 models belong to other
equivalent regions containing local minima of the cost function, as they are not fully contained in the
bounds (this is a proof of the excellent exploratory character of the CP-PSO family member employed
in the inversion). In the lower right panel of Figure 4, we can see the histogram of rectangle 54, where
we can appreciate that the range in depths has diminished from approximately [925 m, 1650 m] in
Figure 3 to approximately [1220 m, 1400 m] (if we take into account the 80% most frequent depths, the
ranges change from [1190 m, 1450 m] to [1290 m, 1340 m]). Also, the histogram is not as symmetrical
as the one in Figure 3, showing that in nonlinear inverse problems the minimum of the cost function is
not placed in general at the geometrical center of the equivalence region (see also Figure 1).
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Figure 4. Synthetic example of a sedimentary basin. Left: general overview of the solution
containing the best estimated model together with the true model and residuals (red dots
for the best and black dots for the true model), and the equivalence region of 10% relative
misfit, which encloses entirely 16 194 of the 51 612 models below the 10% tolerance. Right:
empirical cumulative density function and histogram for depth of rectangle number 54.

5. Real example: profile inversion in the Argelès-Gazost basin

In this section, we apply our methodology to a gravity profile in the Argelès-Gazost basin, an
ancient glacial valley located in the French Pyrenees that is now occupied by the Gave de Pau River.
In this area, formed by a glacier that belonged to a larger ice tongue overlying this Pyrenean region
in the Quaternary period, various gravity surveys and inversions have been carried out in order to
determine the geometry of the basement relief [36–38]. A 3D inversion using PSO was also carried
out previously in [39], and in this work we have selected a profile crossing the deepest area in order to
check the presented methodology, as well as to compare the 3D and 2D approaches.

The Argelès-Gazost basin is a flat and elongated valley located at an elevation of about 450 m above
mean sea level, filled by Quaternary deposits and surrounded by limestones and flysches [38, 40]. It
has a length of about 7 km along a NNW direction and a width varying between 1 km and 2 km (see
Figure 5, left). Its deepest area is located in the southern part, between the towns of Argelès-Gazost
and Pierrefitte-Nestalas. In this area, there are 9 gravity observations almost aligned forming a profile
about 1600 m long, which we have used in the inversion (Figure 5, left, red line). The profile is located
in such a way that the longest dimension of the basin is perpendicular to it, so this situation is optimal
for a 2D inversion. In order to perform the inversion as close as possible to [39], we have used the same
value for density contrast, ∆ρ = −600 kg m−3 (also the same value as the one employed by Moussirou
in [36] and Perrouty in [37, 38]). As in [39], a regional trend for the gravity anomalies was modeled
using a plane, and we have applied the same model for our profile in this experiment in order to obtain
the same residual anomaly as for the 3D inversion. The basin was modeled as a set of 12 rectangles
of 150 m width, and the CP-PSO family member was employed in the inversion using a population of
600 models and 400 iterations, so a total of 240 000 models was generated.
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Figure 5. Left: Argelès-Gazost basin localization and gravity observations (black dots)
employed in [39]. In this study a profile of 9 points crossing the deepest area (red line),
between Argelès-Gazost and Pierrefitte-Nestalas, is used in the inversion. Right: best model
and 15% equivalence region (upper), and ECDF and histogram for rectangle number 4
(lower).

Figure 5 (right) shows the results of the inversion for the profile. The best model reached a relative
misfit of 1.00%, which is lower than the misfit obtained in [39] for the 3D inversion (9.72%). This
was expected, as the 3D inversion comprised the whole basin, and our profile is small and has a very
good concentration of observations. About the deepest point in the profile, it corresponds to rectangle
number 4 and reaches a depth of 335 m for the best model with a range of [280 m, 370 m] for the 15%
equivalence region (the range [315 m, 350 m] comprises 80% of models). These values are almost the
same as those obtained in the 3D inversion, where the maximum estimated depth was 333 m with a
range of [288 m, 379 m] for the same 15% equivalence region. A total of 91 565 models are inside the
15% equivalence region containing the best model, indicating the good explorative character of the
inversion, as the remaining 148 435 models explored the rest of the parameter space.
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Moussirou obtained a maximum depth value of 300 m in [36] using a 2.5D modeling based on [41],
while Perrouty in [38] obtained a value of 232 m using VPmg inversion (Virtual Prism magnetic and
gravity inversion), [42]. The value of 300 m by Moussirou lies in our depth range estimation for the
15% equivalence region, although the depth computed by Perrouty is outside this region. This is not
due to the inversion method but due to the regional trend elimination in the gravity signal, as in [38] a
3rd degree surface was applied to model the trend, absorbing part of the residual Bouguer signal. As
a consequence, the amplitude of the residual anomaly obtained in [38] reaches only −4.2 mGal, while
in this work and in [39], where a plane was set to model the regional trend, the amplitude reaches
−5.98 mGal, reflecting a deeper sediments-basement interface.

6. Conclusions

Uncertainty analysis is a crucial task in any type of inverse problem. Due to the nature of the cost
function topography in nonlinear problems, where multiple minima exist (in cases involving potential
fields, there are infinitely many global minima) and the equivalence regions have arbitrarily curved
shapes, local optimization methods based on the linearization of the forward operator lack the ability
to produce precise uncertainty analysis of the results. Global optimization methods such as particle
swarm optimization offer an excellent alternative to local ones, as they explore the entire parameter
space and are not constrained by any initial model or by the linearization of the problem. They provide
a collection of models, which is valuable information that must be carefully examined to perform
uncertainty analysis.

These models generally belong to various equivalence regions of the cost function, each of them
with its local minimum, but our interest lies in the one containing the global minimum. Conducting
statistics with the entire set of equivalent solutions can lead to erroneous results as models from
different equivalence regions may be mixed. Therefore, a methodology for selecting the correct
models, regardless of the inverse problem being addressed, must be developed. We have proposed an
algorithm tailored for a gravity inverse problem to perform this selection based on the analysis of the
empirical cumulative distribution function (ECDF) of each parameter. The proposed algorithm works
for the gravity inversion problem in sedimentary basins and improves the efficiency of equivalence
region detection compared to our previous version of the software. However, this does not imply that
it is suitable for other problems, which must be carefully analyzed to develop the most appropriate
procedure. We also emphasized the importance of analyzing not only the overall view of the solution
but also the ECDF and the histogram of each individual parameter to illustrate its particular distribution.

Finally, a real example was presented where a profile in the Argelès-Gazost basin was inverted,
analyzed using the proposed methodology, and compared with previous results. The 2D inversion
produces a result fully compatible with the 3D inversion previously performed, demonstrating that,
under suitable conditions, the 2D approach to the gravity inverse problem applied to sedimentary basins
is as feasible as 3D inversion.

The proposed algorithm for uncertainty analysis in the two-dimensional gravity inverse
problem applied to sedimentary basins has been implemented in versions ≥ 2 of GravPSO2D,
which can be downloaded, together with a detailed 54-page user manual, from the web
page of the Bureau Gravimétrique International: https://bgi.obs-mip.fr/catalogue/?uuid=
9ce23226-bb75-462e-bd60-5997a768a359.
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