
http://www.aimspress.com/journal/Math

AIMS Mathematics, 9(6): 13874–13893.
DOI:10.3934/math.2024675
Received: 14 January 2024
Revised: 29 March 2024
Accepted: 09 April 2024
Published: 15 April 2024

Research article

Douglas–Rachford algorithm for control- and state-constrained optimal
control problems

Regina S. Burachik∗, Bethany I. Caldwell and C. Yalçın Kaya

Mathematics, UniSA STEM, University of South Australia, Mawson Lakes, S.A. 5095, Australia

* Correspondence: Email: regina.burachik@unisa.edu.au.

Abstract: We consider the application of the Douglas–Rachford (DR) algorithm to solve linear-
quadratic (LQ) control problems with box constraints on the state and control variables. We have split
the constraints of the optimal control problem into two sets: one involving the ordinary differential
equation with boundary conditions, which is affine, and the other, a box. We have rewritten the
LQ control problems as the minimization of the sum of two convex functions. We have found the
proximal mappings of these functions, which we then employ for the projections in the DR iterations.
We propose a numerical algorithm for computing the projection onto the affine set. We present a
conjecture for finding the costates and the state constraint multipliers of the optimal control problem,
which can, in turn, be used to verify the optimality conditions. We conducted numerical experiments
with two constrained optimal control problems to illustrate the performance and the efficiency of the
DR algorithm in comparison with the traditional approach of direct discretization.

Keywords: optimal control; Douglas–Rachford algorithm; harmonic oscillator; control constraints;
state constraints; numerical methods
Mathematics Subject Classification: 34H05, 49M37, 49N10, 65K10, 65L10

1. Introduction

Many of the problems we encounter in the world that can be presented as optimal control problems
contain constraints on both the state and control variables. Imagine a scheduling problem whereby the
aim is to maximize profits, such as in [26], in which the control variable is the production rate and the
state variable is the inventory level. Naively, one may want to greatly increase both the inventory level
and production rate to maximize profits, but, in practice, there is a limit to the amount of inventory a
factory can hold, as well as a limit on how quickly humans or machines can work. In order to accurately
model this problem, and many others from a wide range of application areas, such as manufacturing,
engineering, science, economics, etc., we must use an optimal control problem with both state and

http://www.aimspress.com/journal/Math
http://dx.doi.org/10.3934/math.2024675

13875

control constraints. Although these problems are commonly found in applications, they are much
more difficult to solve than those optimal control problems which purely have control constraints.

We focus our attention on linear-quadratic (LQ) state- and control-constrained optimal control
problems. These are infinite-dimensional optimization problems that involve the minimization of
a quadratic objective function that is subject to linear differential equation (DE) constraints, affine
constraints on the state variables, and affine constraints on the control variables. There is extensive
literature on LQ control problems, as they can model many problems from a wide variety of disciplines
(see [1, 14–16, 24, 27, 28]). Though many of the LQ control problems posed in the literature contain
control constraints along with the linear DE constraints, it is rarer to see state constraints included since,
as mentioned above, they are much more difficult to manage. Here, we propose a unique approach for
solving state-constrained problems by applying the Douglas–Rachford (DR) algorithm.

The DR algorithm is a projection algorithm that is used to minimize the sum of two convex
functions. In order to apply the algorithm one needs the proximal operators of the two convex functions.
Splitting and projection methods such as the DR algorithm constitute a popular area of research in
optimization, with a variety of applications (see [2,3,6,9,20]) for their use in sphere packing problems,
protein reconstruction, etc. The use of these methods to solve discrete-time optimal control problems
is not new, but there are very few applications of these methods to continuous-time optimal control
problems. In [7], projection methods were used to solve the energy-minimizing double integrator
problem with control constraints. Other papers [11–13] address more general energy-minimizing LQ
control problems with control constraints. Additionally, a collection of general projection methods is
used in [11], and the DR algorithm is used in [12, 13].

Following the promising numerical results observed in [12, 13], here, we have used the DR
algorithm to address the more challenging control- and state-constrained LQ control problems.

The current technique for solving these control- and state-constrained LQ problems is a direct
discretization approach whereby the infinite-dimensional problem is reduced to a large-scale finite-
dimensional problem by using a discretization scheme, e.g., a Runge–Kutta method [5, 22]. This
discretized problem is then solved through the use of an optimization modelling language such as
AMPL [19], paired with (finite-dimensional) large-scale optimization software such as Ipopt [33].

Through the present paper (as was done in [7, 11] for control constraints only), we present the
following contributions to research on the numerical solution of LQ control problems with state and
control constraints.

(i) We rewrite the original LQ control problem as the minimization of the sum of two convex
functions. This reformulation addresses much more general problems than those considered
in [7,11]. Our setting encompasses important practical problems, such as those referenced above
(i.e., problems that have constraints on the state variables).

(ii) We find the proximal mappings of these functions by solving the resulting calculus of variations
subproblems (Theorems 1 and 2). Although the proof of Theorem 1 is straightforward thanks to
the separability of the variables x and u, the proof of Theorem 2 is more involved due to a new
LQ control subproblem that needs to be solved.

(iii) We define and apply the DR algorithm to the constrained LQ control problem. We define and
calculate proximal mappings at (x, u), rather than just u, as in [7, 12]. Thus, we describe the DR
algorithm for the iterate (xk, uk) rather than for uk alone.

(iv) We propose an algorithm for computing the projection of an iterate (x−, u−) onto the affine

AIMS Mathematics Volume 9, Issue 6, 13874–13893.

13876

constraint set defined by the ordinary differential equations (ODEs). The procedure is an
extension of [12, Algorithm 2], which projects only u−. The current algorithm involves a more
complicated two-point boundary-value problem to solve.

(v) We perform numerical experiments to illustrate the higher efficiency of the DR algorithm as
compared to the traditional approach of direct discretization. Solving optimal control problems
with state constraints is well known to be more challenging than those without them. We
demonstrate the value of the new approach in solving a class of such problems.

In addition to these, we also present the following contribution, which is new even for the purely
control-constrained LQ control problems.

(vi) We present a conjecture for finding the costates. Moreover, we present a technique for finding
the multiplier for the state constraints in the case that only one state constraint is active at a given
time. We have effectively employed the costates and the state control multiplier for numerical
verification of the optimality conditions.

The two convex functions mentioned above are defined as follows: the information from the ODE
constraints appears in one function, while the information from the control and state constraints,
along with the objective functional appear in the other. We derive the proximal mappings of the two
convex functions without reducing the original infinite-dimensional optimization problem to a finite-
dimensional one, though we need to discretize the state and control variables over a partition of time
when implementing the DR algorithm since a digital computer cannot iterate with functions.

The paper is structured as follows. In Section 2, we give the problem formulation and optimality
conditions for the optimal control problem. In Section 3, we derive the proximal mappings used in the
implementation of the DR algorithm. Section 4 introduces the DR algorithm. Then, Section 5 begins
with an algorithm for computing one of the proximal mappings (namely, the projection onto an affine
set) and a conjecture that is used to obtain the costate variable of the original LQ control problem.
Next, this section introduces two example problems, a harmonic oscillator and a mass-spring system.
At the end of this section, numerical experiments for the DR algorithm and the AMPL–Ipopt suite and
their comparisons are given for these two problems. Finally, concluding remarks and comments for
future work are provided in Section 6.

2. Optimal control problem

In this, section we formulate the general optimal control problem that will be the focus of this paper.
We give some necessary definitions and provide conditions for optimality from optimal control theory.

Before introducing the optimal control problem, we will give some standard definitions. Unless
otherwise stated, all vectors are column vectors. Let L2([t0, t f];Rq) be the Banach space of Lebesgue
measurable functions given by z : [t0, t f]→ Rq, with a finite L2 norm, namely,

L2([t0, t f];Rq) :=

z : [t0, t f]→ Rq | ‖z‖L2 :=
(∫ t f

t0
‖z(t)‖2 dt

)1/2

< ∞

 ,
where ‖ · ‖ is the `2 norm in Rq. Furthermore, W1,2([t0, t f];Rq) is the Sobolev space of absolutely
continuous functions, namely,

W1,2([t0, t f];Rq) :=
{
z ∈ L2([t0, t f];Rq) | ż := dz/dt ∈ L2([t0, t f];Rq)

}
,

AIMS Mathematics Volume 9, Issue 6, 13874–13893.

13877

endowed with the norm
‖z‖W1,2 := (‖z‖2

L2 + ‖ż‖2
L2)1/2.

With these definitions, we can now state the general LQ control problem as follows:

(P)

min

1
2

∫ t f

t0

(
x(t)T Q(t)x(t) + u(t)T R(t)u(t)

)
dt,

subject to ẋ(t) = A(t)x(t) + B(t)u(t) , x(t0) = x0 , x(t f) = x f ,

u ≤ u(t) ≤ u , x ≤ x(t) ≤ x .

The state variable x ∈ W1,2([t0, t f];Rn), with x(t) := (x1(t), . . . , xn(t)) ∈ Rn, and the control variable
u ∈ L2([t0, t f];Rm), with u(t) := (u1(t), . . . , um(t)) ∈ Rm. The time-varying matrices A : [t0, t f]→ Rn×n,
B : [t0, t f]→ Rn×m, Q : [t0, t f]→ Rn×n, and R : [t0, t f]→ Rm×m are continuous. For every t ∈ [t0, t f], the
matrices Q(t) and R(t) are symmetric and respectively positive semi-definite and positive definite. For
clarity of argument, these matrices are assumed to be diagonal, namely, Q(t) := diag(q1(t), . . . , qn(t))
and R(t) := diag(r1(t), . . . , rm(t)). These diagonality assumptions particularly simplify proximal
mapping expressions that appear later. The initial and terminal states are given as x0 and x f ,
respectively.

2.1. Optimality conditions

In this section, we state the maximum principle by using the direct adjoining approach from [21,
Theorem 4.1]. We note that the authors of [21] designate Theorem 4.1 in their paper as an “informal
theorem” since it has not been proved fully (for the case of pure state and mixed control and state
constraints). However, they also point to a paper by Maurer as an exception where Theorem 4.1 has
been proved for the case of pure state and pure control constraints, which is exactly our setting. We
start by defining the extended Hamiltonian function H : Rn × Rm × Rn × Rn × Rn × [t0, t f] → R for
Problem (P) as follows:

H(x(t), u(t), λ(t), µ1(t), µ2(t), t) :=
λ0

2
(x(t)T Q(t)x(t) + u(t)T R(t)u(t)) + λ(t)T (A(t)x(t) + B(t)u(t)) + µ1(t)T (x(t) − x(t)) + µ2(t)T (x(t) − x(t)),

where the multiplier λ0 ≥ 0, the adjoint variable vector λ : [t0, t f]→ Rn with λ(t) := (λ1(t), . . . , λn(t)) ∈
Rn, and the state constraint multiplier vectors µ1, µ2 : [t0, t f]→ Rn with µi(t) := (µi

1(t), . . . , µi
n(t)) ∈ Rn,

i = 1, 2. For brevity, we use the following notation:

H[t] := H(x(t), u(t), λ(t), µ1(t), µ2(t), t).

The adjoint variable vector is assumed to satisfy

λ̇(t) := −Hx[t] = −Q(t)x(t) − A(t)Tλ(t) − µ1(t) + µ2(t), (2.1)

for almost every t ∈ [t0, t f], where Hx := ∂H/∂x.
We assume that the problem we are solving is normal, so we set λ0 = 1.

Maximum Principle. Suppose that the pair

(x, u) ∈ W1,2([t0, t f];Rn) × L2([t0, t f];Rm)

AIMS Mathematics Volume 9, Issue 6, 13874–13893.

13878

is optimal for Problem (P). Then, there exists a piecewise absolutely continuous adjoint variable vector
λ, as defined in (2.1), and piecewise continuous multipliers µ1, µ2 ∈ L2([t0, t f];Rn), such that, for
almost every t ∈ [t0, t f],

ui(t) = argmin
ui≤vi≤ui

H(x(t), u1(t), . . . , vi, . . . , um(t), λ(t), µ1(t), µ2(t), t)

= argmin
ui≤vi≤ui

1
2

ri(t)v2
i + λ(t)T bi(t)vi , (2.2)

for i = 1, . . . ,m, where bi(t) is the ith column of the matrix B(t) and ri(t) is the ith diagonal element of
R(t). Moreover, the multipliers µ1(t), µ2(t) must satisfy the complementarity conditions given by

µ1
i (t) ≥ 0, µ1

i (t)(xi(t) − xi(t)) = 0, (2.3)

µ2
i (t) ≥ 0, µ2

i (t)(xi(t) − xi(t)) = 0, (2.4)

for all i = 1, . . . , n.
Suppose that ui = −∞, ui = ∞, i = 1, . . . ,m, i.e., the control vector is unconstrained. Then, (2.2)

becomes
Hui[t] = 0,

i.e.,
ri(t)ui(t) + bi(t)Tλ(t) = 0 , (2.5)

i = 1, . . . ,m. Then, (2.5) can be solved for ui(t) as follows:

ui(t) = −
1

ri(t)
bi(t)Tλ(t) , (2.6)

for i = 1, . . . ,m; or by using the matrices B(t) and R(t):

u(t) = −[R(t)]−1B(t)Tλ(t) . (2.7)

When we consider the constraints on u, one gets the following from (2.2):

u j(t) =

u j, if 1

r j(t)
b j(t)Tλ(t) ≥ u j,

− 1
r j(t)

b j(t)Tλ(t), if u j ≤ −
1

r j(t)
b j(t)Tλ(t) ≤ u j,

u j, if 1
r j(t)

b j(t)Tλ(t) ≤ u j,

(2.8)

for almost every t ∈ [t0, t f], j = 1, . . . ,m.

3. Splitting and proximal mappings

In this section, we rewrite Problem (P) as the minimization of the sum of two convex functions f
and g, and we give the proximal mappings for these functions in Theorems 1 and 2.

We split the constraints from (P) into two setsA,B, given as

A :=
{
(x, u) ∈ L2([t0, t f];Rn) × L2([t0, t f];Rm) |, which solves

AIMS Mathematics Volume 9, Issue 6, 13874–13893.

13879

ẋ(t) = A(t)x(t) + B(t)u(t), x(t0) = x0, x(t f) = x f , a.e. t ∈ [t0, t f]
}
, (3.1)

B :=
{
(x, u) ∈ L2([t0, t f];Rn) × L2([t0, t f];Rm) | xi ≤ xi(t) ≤ xi , u j ≤ u j(t) ≤ u j,

a.e. t ∈ [t0, t f], i = 1, . . . , n, j = 1, . . . ,m
}
. (3.2)

Despite previously defining x ∈ W1,2([t0, t f];Rn) in our setsA,B, we let x ∈ L2([t0, t f];Rn) to simplify
the calculation of the proximal mappings. By the definition of W1,2([t0, t f];Rn), if x ∈ A, then x ∈
W1,2([t0, t f];Rn).

We assume that the control system ẋ(t) = A(t)x(t) + B(t)u(t) is controllable; in other words, the
control system can be driven from any x0 to any other x f ; for a precise definition of controllability and
the tests for controllability, see [29]. Then, there exists a (possibly not unique) u(·) such that, when this
u(·) is substituted, the boundary-value problem given in the expression for A has a solution x(·). In
other words,A , ∅. Also, clearly,B , ∅. We note that the constraint setA is an affine subspace. Given
that B is a box, the constraints turn out to be two convex sets in Hilbert space. Since every sequence
converging in L2 has a subsequence converging pointwise almost everywhere, it is straightforward to
see that the set B is closed in L2. The closedness of A will be established later as a consequence of
Theorem 2 (see Remark 2).

Fix β > 0 and let

f (x, u) := ιB(x, u) +
β

2

∫ t f

t0

(
x(t)T Q(t)x(t) + u(t)T R(t)u(t)

)
dt and g(x, u) := ιA(x, u), (3.3)

where ιC is the indicator function of the set C, namely,

ιC(x, u) :=
{

0, if (x, u) ∈ C,
∞, otherwise.

We note that the DE constraint in Problem (P) is represented by the indicator function ιA(x, u) and the
box constraints on (x, u) in Problem (P) are represented by the indicator function ιB(x, u). Problem (P)
is then equivalent to the following problem:

min
x,u

f (x, u) + g(x, u). (3.4)

The equivalence between Problem (P) and (3.4) follows from the fact that the objective function in (3.4)
is the sum of the β weighted objective function of Problem (P) and the indicator functions of the
constraints. Although the parameter β does not change the solution of the problem, it will have a role
in the performance of the algorithm we study.

In our setting, we assume that we are able to compute the projector operators PA and PB. These
operators project a given point onto each of the constraint sets A and B, respectively. Recall that the
proximal mapping of a functional h is defined by [8, Definition 24.1]. For our setting,

Proxh(x, u) := argmin
y∈L2([t0 ,t f];Rn)

v∈L2([t0 ,t f];Rm)

(
h(y, v) +

1
2
‖y − x‖2

L2 +
1
2
‖v − u‖2

L2

)
, (3.5)

for any (x, u) ∈ L2([t0, t f];Rn) × L2([t0, t f];Rm). Recall that the projection PC(x, u) of a point (x, u)
onto C is characterized by PC(x, u) ∈ C and that ∀(y, v) ∈ C, 〈(y, v) − PC(x, u)|(x, u) − PC(x, u)〉 ≤ 0 [8,
Theorem 3.16].

AIMS Mathematics Volume 9, Issue 6, 13874–13893.

13880

Note that ProxιC = PC.
In order to implement the DR algorithm, we must write the proximal mappings f and g. The proofs

of Theorems 1 and 2 below follow the broad lines of proof of Lemma 2 in [13]. In both theorems,
the major difference from [13] is that the proximal operators in the current paper have two variables
x− and u−. Thanks to separability, the proof of Theorem 1 is a straightforward modification of the
corresponding part of the proof of [13, Lemma 2]. We include a full proof of Theorem 1 for the
convenience of the reader. On the other hand, the proof of Theorem 2 deals with the solution of a more
involved optimal control subproblem, namely, Problem (Pg).

Theorem 1. The proximal mapping of f is given as Prox f (x−, u−) = (y, v) such that the components of
y and v are respectively expressed as follows

yi(t) =

xi, if 1

βqi+1 x−i (t) ≥ xi,

1
βqi+1 x−i (t), if xi ≤

1
βqi+1 x−i (t) ≤ xi,

xi, if 1
βqi+1 x−i (t) ≤ xi,

(3.6)

v j(t) =

u j, if 1

βr j+1u−j (t) ≥ u j,

1
βr j+1u−j (t), if u j ≤

1
βr j+1u−j (t) ≤ u j,

u j, if 1
βr j+1u−j (t) ≤ u j,

(3.7)

for all t ∈ [t0, t f], i = 1, . . . , n, j = 1, . . . ,m.

Proof. From (3.5) and the definition of f in (3.3), we have that

Prox f (x−, u−) = argmin
x,u

ιB(x, u) +
1
2

∫ t f

t0

(
βx(t)T Q(t)x(t) + ‖x(t) − x−(t)‖2

+ βu(t)T R(t)u(t) + ‖u(t) − u−(t)‖2
)

dt.

In other words, to find Prox f (x−, u−) we need to find (y, v) that solves the following problem:

(Pf)

min

1
2

∫ t f

t0

(
βy(t)T Q(t)y(t) + ‖y(t) − x−(t)‖2 + βv(t)T R(t)v(t) + ‖v(t) − u−(t)‖2

)
dt,

subject to xi ≤ yi(t) ≤ xi , u j ≤ v j(t) ≤ u j for all t ∈ [t0, t f], i = 1, . . . , n, j = 1, . . . ,m.

Problem (Pf) is separable in the variables y and v, so we can consider the problems of minimizing with
respect to y and v individually, and thus solve the following two subproblems:

(Pf1)

min

1
2

∫ t f

t0
βy(t)T Q(t)y(t) + ‖y(t) − x−(t)‖2 dt,

subject to xi ≤ yi(t) ≤ xi , for all t ∈ [t0, t f], i = 1, . . . , n,

and

(Pf2)

min

1
2

∫ t f

t0
βv(t)T R(t)v(t) + ‖v(t) − u−(t)‖2 dt,

subject to u j ≤ v j(t) ≤ u j for all t ∈ [t0, t f], j = 1, . . . ,m.

AIMS Mathematics Volume 9, Issue 6, 13874–13893.

13881

The solution to Problem (Pf1) is given by

yi(t) = argmin
xi≤zi≤xi

(
β qi z2

i + (zi − x−i (t))2)
,

i = 1, . . . , n, which, after straightforward manipulations, yields (3.6). The solution to Problem (Pf2) is
obtained similarly as:

v j(t) = argmin
u j≤w j≤u j

(
β r j w2

j + (w j − u−j (t))2)
,

j = 1, . . . ,m, which yields (3.7) after straightforward manipulations. �

Theorem 2. The proximal mapping of g is given as Proxg(x−, u−) = PA(x−, u−) = (y, v) such that

y(t) = x(t), (3.8)
v(t) = u−(t) − B(t)Tλ(t), (3.9)

where x(t), λ(t) are obtained by solving the following two-point boundary-value problem (TPBVP):

ẋ(t) = A(t)x(t) + B(t)u−(t) − B(t)B(t)Tλ(t) , x(t0) = x0 , x(t f) = x f ,

λ̇(t) = −x(t) + x−(t) − A(t)Tλ(t) .
(3.10)

Proof. Using [8, Example 12.25], and the definition of g in (3.3),

Proxg(x−, u−) = ProxιA(x−, u−) = PA(x−, u−),

which verifies the very first assertion. From (3.5) and the definition of g in (3.3), we have that

Proxg(x−, u−) = argmin
x,u

ιA(x, u) +
1
2

∫ t f

t0
(‖x(t) − x−(t)‖2 + ‖u(t) − u−(t)‖2) dt.

In other words, to find Proxg(x−, u−), we need to find (y, v) that solves the following problem:

(Pg)

min

1
2

∫ t f

t0
‖y(t) − x−(t)‖2 + ‖v(t) − u−(t)‖2 dt,

subject to ẏ(t) = A(t)y(t) + B(t)v(t) , y(t0) = x0 , y(t f) = x f .

Problem (Pg) is an optimal control problem wherein y(t) is the state variable and v(t) is the control
variable. The Hamiltonian for Problem (Pg) is given by

H(y(t), v(t), λ(t), t) :=
1
2

(‖y(t) − x−(t)‖2 + ‖v(t) − u−(t)‖2) + λ(t)T (A(t)y(t) + B(t)v(t)),

and the associated costate equation is given by

λ̇(t) = −∂H/∂y = −y(t) + x−(t) − A(t)Tλ(t). (3.11)

If v is the optimal control for Problem (Pg), then, by the maximum principle, Hv[t] = 0 for all t ∈ [t0, t f].
In other words,

v(t) − u−(t) + B(t)Tλ(t) = 0 ,

for all t ∈ [t0, t f], a re-arrangement of which yields (3.9). Collecting together the ODE in Problem (Pg)
and the ODE in (3.11), substituting v(t) from (3.9), and assigning y(t) = x(t), we can obtain the TPBVP
in (3.10). �

AIMS Mathematics Volume 9, Issue 6, 13874–13893.

13882

Remark 1. We note from Theorem 2 that Proxg is the projection onto the affine set A. Unlike Prox f ,
in general, we cannot find an analytical solution to (3.10) to obtain Proxg (or the projection onto A)
thus for this purpose, we will propose Algorithm 2 in Section 4.1 to get a numerical solution.

Remark 2. From Theorem 2, we see that every pair (x, u) ∈ L2 × L2 has a projection onto A. In
other words, A is a Chebyshev set. It is well known that every Chebyshev set is closed (see [8,
Remark 3.11(i)]). Hence, the setA is closed in the topology of L2 × L2.

4. Douglas–Rachford algorithm

The application of the DR algorithm to our problem is slightly different from that in [7, 12]. Since
we are solving control- and state-constrained optimal control problems, we must define the proximal
mappings at the pair (x, u), rather than just at u, as in [7, 12]. Thus, in the implementation of the DR
algorithm, we give the iterations for the pair (xk, uk), rather than for uk alone.

Given β > 0, we specialize the DR algorithm (see [17,18,25]) to the case of minimizing the sum of
the two functions f and g as in (3.3) and (3.4). The DR operator associated with the ordered pair (f , g)
is defined by

T := Id−Prox f + Proxg(2 Prox f − Id) .

Application of the operator to our case is given by

T (x, u) = (x, u) − Prox f (x, u) + PA(2 Prox f (x, u) − (x, u)) , (4.1)

where the proximal mappings of f and g are provided as in Theorems 1 and 2. Let X be an arbitrary
Hilbert space. Now, fix x0 ∈ X. Given xn ∈ X, k ≥ 0, the DR iterations are set as follows:

(bx,k, bu,k) := Prox f (xk, uk) ,
(xk+1, uk+1) := T (xk, uk) = (xk, uk) − (bx,k, bu,k) + PA(2(bx,k, bu,k) − (xk, uk)) .

The DR algorithm is implemented as Algorithm 1. We define a new parameter γ := 1/(1 + β), where
β is the parameter that multiplies the objective as in (3.3) and Theorem 1. The choice of γ ∈]0, 1[can
be made because changing β does not affect the solution of Problem (P).

Algorithm 1. (DR)

Step 1. (Initialization) Choose a parameter γ ∈]0, 1[and the initial iterate (x0, u0) arbitrarily. Choose
a small parameter ε > 0, and set k = 0.

Step 2. (Projection onto B) Set (x−, u−) = γ (xk, uk). Compute (x̃, ũ) = PB(x−, u−) by using (3.6)
and (3.7).

Step 3. (Projection onto A) Set (x−, u−) := 2 (x̃, ũ) − (xk, uk). Compute (x̂, û) = PA(x−, u−) by
using (3.8) and (3.9) or Algorithm 2.

Step 4. (Update) Set (xk+1, uk+1) := (xk, uk) + (x̂, û) − (x̃, ũ).

Step 5. (Stopping criterion) If max(‖xk+1 − xk‖L∞ , ‖uk+1 − uk‖L∞) ≤ ε or k >= 200, then return (x̃, ũ)
and stop. Otherwise, set k := k + 1 and go to Step 2.

AIMS Mathematics Volume 9, Issue 6, 13874–13893.

13883

Remark 3. We point out that, in general, only weak convergence is guaranteed for the DR algorithm
(see [32, Theorem 1] or [10, Theorem 4.4]). It should be noted that the final iterate of the state-control
pair in the box B is returned by the algorithm.

4.1. Algorithm for projector ontoA

We introduce a procedure for numerically projecting onto A, that is, an extension of Algorithm 2
from [12] to the case of LQ control problems with state and control constraints. The procedure
below (Algorithm 2) can be employed in Step 3 of the DR algorithm. In the procedure, we effectively
solve the TPBVP in (3.10) by implementing the standard shooting method [4, 23, 31]. Throughout the
steps of Algorithm 2 below, we will solve the ODEs in (3.10), rewritten here in matrix form as follows:[

ẋ(t)
λ̇DR(t)

]
=

[
A(t) −B(t)B(t)T

−In×n −A(t)T

] [
x(t)
λDR(t)

]
+

[
0n×n B(t)
In×n 0n×m

] [
x−(t)
u−(t)

]
, (4.2)

with various initial conditions (ICs):

(i)
[

x(t0)
λDR(t0)

]
=

[
x0

0

]
, (ii)

[
x(t0)
λDR(t0)

]
=

[
x0

ei

]
, (iii)

[
x(t0)
λDR(t0)

]
=

[
x0

λDR
0

]
. (4.3)

In the above equations, we use λDR, instead of just λ, to emphasize the fact that λDR is the costate
variable that results from solving Problem (Pg) to compute the projection onto A within the DR
algorithm. We reiterate that Problem (Pg) is more involved than its counterpart in [13], which leads to
the ODE in (4.2), which, in turn, is more complicated than its counterpart in [12].

Algorithm 2. (Numerical Computation of the Projector ontoA)

Step 0. (Initialization) The following parameters are given: Current iterate u−, the system and control
matrices A(t) and B(t), the numbers of state and control variables n and m, and the initial and
terminal states x0 and x f , respectively. Define z(t, λ0) := x(t).

Step 1. (Near-miss function) Solve (4.2) with ICs in (4.3)(i) to find z(t f , 0) = x(t f).
Set ϕ(0) := z(t f , 0) − x f .

Step 2. (Jacobian) For i = 1, . . . , n, solve (4.2) with ICs in (4.3)(ii) to get z(t f , ei).
Set βi(t) := z(t f , ei) − z(t f , 0) and Jϕ(0) :=

[
β1(t) | . . . | βn(t)

]
.

Step 3. (Missing IC) Solve Jϕ(0) λDR
0 := −ϕ(0) for λDR

0 .

Step 4. (Projector ontoA) Solve (4.2) with ICs in (4.3)(iii) to find x(t) and λDR(t).
Set PA(x−, u−)(t) := (y(t), v(t)), where y(t) = x(t) and v(t) = u−(t) − B(t)TλDR(t).

4.2. A conjecture for the costates for Problem (P)

Recall that the optimal control for Problem (P) is given by the cases in (2.8).
A junction time t j is a time when the control u j(t) falls into two cases of (2.8) simultaneously, i.e.,

a point in time when a control constraint transitions from “active” to “inactive”, or vice versa. This
definition of a junction time becomes important in the following conjecture, which has been formulated
and tested by means of extensive numerical experiments.

AIMS Mathematics Volume 9, Issue 6, 13874–13893.

13884

Conjecture 1. Let λDR(t) be the costate variable emerging from the projection into A as computed in
Algorithm 2, and λ(t) be the costate variable that results from Problem (P). Let t j be a junction time
for some u j, j = 1, . . . ,m, such that b j(t j)TλDR(t j) , 0. Define

α :=
−r j(t j)u j(t j)

b j(t j)TλDR(t j)
.

Then,
λ(t) = αλDR(t) . (4.4)

Remark 4. The ability to obtain the costate variable by Conjecture 1 is desirable as a tool for checking
that the necessary condition of optimality in (2.8) is satisfied. Without this conjecture, we are unable to
verify whether the optimality condition is satisfied when using the DR algorithm, except when a dual
version of the DR algorithm is employed, as in [13].

Once we have calculated λ in this way, we can also find a multiplier µk, k = 1, 2, numerically, for
the case in which only one state constraint is active at a given time. Suppose that only the ith state
box constraint becomes active. By rearranging (2.1), using numerical differentiation to find λ̇, and
assuming µ2

i (t) = 0, we have that

µ1
i (t) = −Q(t)x(t) − A(t)Tλ(t) − λ̇(t). (4.5)

If µ1
i (t) = 0, then we compute the following:

µ2
i (t) = Q(t)x(t) + A(t)Tλ(t) + λ̇(t). (4.6)

With (4.5), or with (4.6), the complementarity conditions in (2.3) or (2.4) can now be checked
numerically.

5. Numerical experiments

We will now introduce two example problems. Along with posing the optimal control problems, we
also give plots of their optimal controls, states, costates, and multipliers, with vertical lines signifying
the regions in which the state constraints become active.

5.1. Harmonic oscillator

Problem (PHO) below contains the dynamics of a harmonic oscillator which, is typically used to
model a point mass with a spring. The dynamics are given as ÿ(t) + ω2

0y(t) = f (t), where ω0 > 0 is
known as the natural frequency and f (t) is some forcing. In a physical system, y represents the position
of a unit mass, ẏ is the velocity of said mass, the natural frequency is defined as ω0 =

√
k, where k

is the stiffness of the spring producing the harmonic motion, and f is the restoring force. In addition
to the restoring force, we will introduce another force u1 that will affect the velocity ẏ directly. We let
x1 := y, x2 := ẏ, and u2 := f to arrive at ẋ1(t) = x2(t) + u1(t), ẋ2(t) = −ω2

0x1(t) + u2(t).
In this example problem, the objective contains the squared sum of all four variables in the system.

It is common to consider this problem with the objective of minimizing the energy of the control

AIMS Mathematics Volume 9, Issue 6, 13874–13893.

13885

variable, but, in this case, we have also included the state variables to test the algorithm with a slightly
more involved objective. The focus of this research is control- and state-constrained problems, so the
constraints have been added as in Problem (P):

(PHO)

min
1
2

∫ 2π

0
x2

1(t) + x2
2(t) + u2

1(t) + u2
2(t) dt,

subject to ẋ1(t) = x2(t) + u1(t) , x1(0) = 0 , x2(2π) = 0,

ẋ2(t) = −4x1(t) + u2(t) , x2(0) = 1 , x(2π) = 0,

u ≤ u(t) ≤ u , x ≤ x(t) ≤ x.

5.2. Simple spring-mass system

The simple spring-mass system is another physical system that can be easily visualized, see [30].
This problem contains two masses and two springs that are connected in sequence with the dynamics
given by m1ÿ1(t) + (k1 + k2)y1(t) − k2y2 = f1(t), m2ÿ2(t) − k2y1(t) + k2y2(t) = f2(t), where m1,m2 are the
two masses, k1, k2 are the spring coefficients (stiffness), and f1(t), f2(t) are the forces applied to m1,m2,
respectively. Let x1 := y1, x2 := ẏ1, x3 := y2, x4 := ẏ2, u1 := f1, u2 := f2, m1 = m2 = 1, k1 = 1, and
k2 = 2; then, we retrieve the system in Problem (PSM). This dynamical system furnishes an optimal
control problem with four state variables and two control variables. As in (PHO), we have added state
and control constraints and set the objective as the integral of the squared sum of the state and control
variables:

(PSM)

min
1
2

∫ 2π

0
x2

1(t) + x2
2(t) + x2

3(t) + x2
4(t) + u2

1(t) + u2
2(t) dt,

subject to ẋ1(t) = x2(t) , x1(0) = 0 , x1(2π) = 0,

ẋ2(t) = −3x1(t) + 2x3(t) + u1(t) , x2(0) = 1 , x2(2π) = 0,

ẋ3(t) = x4(t) , x3(0) = 1 , x3(2π) = 0,

ẋ4(t) = 2x1(t) − 2x3(t) + u2(t) , x4(0) = −1 , x4(2π) = 0,

u ≤ u(t) ≤ u , x ≤ x(t) ≤ x.

5.3. Numerical discussion and comparisons

Technical specifications. In the numerical experiments, we used Matlab version 2023b with the
DR algorithm and compared its performance with that of the AMPL–Ipopt optimization computational
suite [19, 33] with Ipopt version 3.12.13. We chose to make comparisons to Ipopt since it is a free and
easily obtainable solver that is used for problems such as those presented in this paper (also see [5]).
All computations applied ε = 10−8 from Algorithm 1 or, in the case of Ipopt, tol = 10−8, and were
run on a PC with an i5-10500T 2.30GHz processor with 8GB RAM. For the two examples (PHO) and
(PSM), we experimented with a case with only control constraints and a case in which there was also
an added state constraint. The problem specifications can be found in Table 1, along with the choices
of γ that were used in the implementation of the DR algorithm.

AIMS Mathematics Volume 9, Issue 6, 13874–13893.

13886

Table 1. Problem cases.

Problem Case γ Constraints

(PHO)
Case 1 0.60 −0.4 ≤ u1(t) ≤ 0.1, −0.5 ≤ u2(t) ≤ 0.1
Case 2 0.95 −0.4 ≤ u1(t) ≤ 0.1, −0.5 ≤ u2(t) ≤ 0.1, −0.025 ≤ x1(t)

(PSM)
Case 1 0.55 −0.5 ≤ u1(t) ≤ 0.5, −0.4 ≤ u2(t) ≤ 0.4
Case 2 0.95 −0.5 ≤ u1(t) ≤ 0.5, −0.4 ≤ u2(t) ≤ 0.4, −0.2 ≤ x1(t)

Generation of “true” solutions. Since we did not have analytical solutions to these problems, we
generated higher-accuracy numerical solutions to our problems that we will use as “true” solutions in
our error calculations. In the Case 1 examples (only control constraints present) the DR algorithm
was able to successfully converge to an acceptable solution by using N = 107 and ε = 10−12, without
reaching 200 iterations (the maximum number of iterations we allowed). The 8 GB of RAM provided
insufficient memory for Ipopt to generate a solution with such a high number of discretization points,
so the DR algorithm was used to generate the “true” solutions in this case. In Case 2 (state-constrained
case), the DR algorithm was unable to converge to an accepted solution in less than 200 iterations, so
we instead relied on Ipopt. Due to the memory limitations, the “true” solution for (PHO) Case 2 was
generated with N = 106, ε = 10−12, and (PSM) Case 2 used N = 7 × 105, ε = 10−12.

Choice of an algorithmic parameter. The values of γ in Table 1 were decided by generating plots
that display the number of iterations required for the DR algorithm to find an acceptable solution for
500 values of γ in the interval (0, 1). For both (PHO) and (PSM) in Case 2, for all values of γ that were
tested the DR algorithm required more than the maximum 200 iterations to converge. For these cases,
we instead generated plots that compared the errors in the states and controls for the different values
of γ. A specific value of γ that would provide the smallest errors was not obvious since many values
provided similar performance; but, values closer to 1 appeared optimal; thus, the choice of γ = 0.95
was made for these experiments.

Graphical results. In Figures 1 and 2, we have plots for (PHO) and (PSM) using the DR algorithm.
We have generated similar figures based on the results of Ipopt as well, but, since they mostly overlap
Figures 1 and 2, we will not show them all here but will point out the differences. In Figure 3, we
give the multiplier vector µ2 components for Case 2 (PHO) as obtained by using the DR algorithm and
Ipopt. As indicated by the black vertical lines in the bottom left plot of Figure 1, when using the DR
algorithm the constraint on x1 is active over a time interval that aligns with the interval in which µ2

1 is
positive, as expected from (2.3) and (2.4).

In the results from Ipopt, we observe that the state constraint only became active at a single point
in time, but Figure 3 shows that µ2

1 from Ipopt (yellow dotted line) is positive for a larger interval of
time; thus, (2.4) is violated. This appears to be a numerical error that is not present in the DR results
since there is an interval of points around the spike where the state constraint −0.025 ≤ x1(t) becomes
active. When N = 104, 105, for (PHO), we observe that, when using Ipopt, the lower bound on x1 is
never reached, though, again, we see the interval of points that are almost equal to the lower bound.

In Figure 3, we also see a discrepancy in µ2
2 since we have not imposed a constraint on the variable

x2. Equation (2.4) implies that µ2
2(t) = 0 for all t ∈ [t0, t f]. We can see in Figure 3 that µ2

2 from Ipopt
(purple dotted line) fails to satisfy this requirement, while µ2

2 from the DR algorithm is, at least to the
eye, equal to zero.

Another difference between the multipliers µ from the DR algorithm and Ipopt can be seen in

AIMS Mathematics Volume 9, Issue 6, 13874–13893.

13887

the maximum values reached by the functions. In Figure 3, we see that µ2
1 obtained via the DR

algorithm and Ipopt have similar shapes in their plots, but the maximum value reached by using
the DR algorithm is approximately 0.7, while, from Ipopt, the maximum value is approximately 33.
For (PSM) Case 2 with N = 103, the maximum value for µ2

1 that was obtained by using the DR
algorithm was approximately 16, while Ipopt yielded a maximum value of approximately 310. Along
with the functions having very different maximum values, we noted that, when generating these plots
for N = 103, 104, 105, the results from the DR algorithm were clearly converging to a single function
µ2

1, while this was not obvious from the Ipopt results. For (PSM), we see the approximate maximum
values of µ2

1 that were obtained when using Ipopt were 310 for N = 103, 2500 for N = 104, and 3000
for N = 105. In the same example, using the DR algorithm, the maximum values of the function
were 16 for N = 103, 14 for N = 104, and 14 for N = 105.

Figure 1. (PHO) Case 2 plots (see Table 1) using the DR algorithm with N = 103,−0.025 ≤
x1(t). Vertical lines indicate the interval in which the state constraint becomes active.

Figure 2. (PSM) Case 2 plots (see Table 1) using the DR algorithm with N = 103,−0.2 ≤
x1(t). Vertical lines indicate the interval in which the state constraint becomes active.

AIMS Mathematics Volume 9, Issue 6, 13874–13893.

13888

Figure 3. Multipliers µ2
1, µ

2
2 for Case 2 (PHO) with N = 103; as obtained by using the DR

algorithm (solid lines) and Ipopt (dotted lines). Note that µ2
1(t) found by Ipopt attained a

maximum value of 33, which is not shown in the graph.

We also observed some slight variation between the plots obtained using the DR algorithm and
Ipopt at the junction times in the control variables (not shown in this paper in order to avoid excessive
amount of visual material). The intervals in which the control variables reached their boundaries via
the DR algorithm always appeared slightly larger than those obtained from Ipopt. The control variables
in the region in which they transition between active and inactive constraints appeared more rounded
at these corners when using Ipopt and exhibited a sharper transition when using the DR algorithm.

Errors and CPU times. Table 2 contains the errors in the controls, states, and costates for the DR
algorithm and Ipopt, while Table 3 contains the errors in the multipliers, objective values, and CPU
times. The CPU times were computed as averages of over 200 runs (up to 1,000 runs in the faster
examples). The values within boxes are the smaller errors and CPU times between the DR algorithm
and Ipopt. At a glance, we can see that, more often than not, the DR algorithm produced smaller errors
and faster CPU times than Ipopt. Upon closer inspection, we see that, in many of the Case 2 results,
the errors from the DR algorithm and Ipopt are comparable. We note that the “true” solutions used to
calculate these errors are those explained earlier in this subsection, except for the multipliers µ2 in the
Case 1 examples. In those examples, we applied the zero vector as our “true” solution.

We observe that most of the results in Table 2 show a smaller error in the control variable from the
DR algorithm, especially in the Case 1 examples where there are no state constraints. Regarding the
state variables, we see that Ipopt has smaller errors when N = 103, 104, though there is little difference
from the DR algorithm results, and we see an improvement in the DR algorithm when N = 105.
Like with the error in the control variables, we see that the error in the costates is smaller for the DR
algorithm in almost all examples.

From Table 3, the errors in the multipliers show an improvement in the DR results realtive to Ipopt,
though the “true” solution in the Case 2 examples was obtained by using results from Ipopt, which, as
previously mentioned, did not appear to converge to a specific value as we increased N thus, the quality
of this “true” solution is not guaranteed. The DR algorithm produced slightly smaller objective values
that were closest to the “true” solution in almost all cases, though the difference compared with Ipopt
was marginal. We see that the CPU times were faster for the DR algorithm, especially in the examples
where N = 105.

AIMS Mathematics Volume 9, Issue 6, 13874–13893.

13889

Table 2. Errors in controls u, states x, and costates λ and CPU times for the DR algorithm
and AMPL–Ipopt, with ε = 10−8 and specifications from Table 1.

L∞ error in control L∞ error in states L∞ error in costates
N Problem DR Ipopt DR Ipopt DR Ipopt

103 (PHO)-Case 1 7.9 × 10−3 1.4 × 10−2 6.9 × 10−3 2.7 × 10−3 6.3 × 10−3 1.4 × 10−2

(PHO)-Case 2 1.4 × 10−2 1.6 × 10−2 4.5 × 10−3 2.9 × 10−3 1.4 × 10−2 1.6 × 10−2

(PSM)-Case 1 2.3 × 10−2 3.8 × 10−2 2.0 × 10−2 1.8 × 10−2 5.5 × 10−2 1.5 × 10−1

(PSM)-Case 2 7.1 × 10−2 1.1 × 10−1 3.8 × 10−1 3.7 × 10−1 8.4 × 10−1 1.5 × 100

104 (PHO)-Case 1 7.8 × 10−4 3.4 × 10−3 6.7 × 10−4 3.6 × 10−4 7.5 × 10−4 1.6 × 10−3

(PHO)-Case 2 1.3 × 10−3 3.0 × 10−3 4.7 × 10−4 4.2 × 10−4 5.0 × 10−3 4.8 × 10−3

(PSM)-Case 1 2.2 × 10−3 3.6 × 10−3 2.0 × 10−3 1.8 × 10−3 4.8 × 10−3 1.5 × 10−2

(PSM)-Case 2 2.4 × 10−2 1.1 × 10−2 3.7 × 10−1 3.7 × 10−1 7.9 × 10−1 1.5 × 100

105 (PHO)-Case 1 7.7 × 10−5 6.3 × 10−3 6.7 × 10−5 9.5 × 10−4 6.5 × 10−5 2.1 × 10−3

(PHO)-Case 2 7.8 × 10−4 7.5 × 10−3 6.4 × 10−5 1.4 × 10−3 5.7 × 10−3 7.3 × 10−3

(PSM)-Case 1 2.2 × 10−4 1.1 × 10−2 2.0 × 10−4 6.8 × 10−4 4.3 × 10−4 4.0 × 10−3

(PSM)-Case 2 2.6 × 10−2 6.0 × 10−3 3.7 × 10−1 3.7 × 10−1 8.0 × 10−1 7.9 × 10−1

Table 3. Errors in multipliers µ, errors in objective values, and CPU times for the DR
algorithm and AMPL–Ipopt, with ε = 10−8 and specifications from Table 1.

L∞ error in µ L∞ error in objective values CPU time [s]
N Problem DR Ipopt DR Ipopt DR Ipopt

103 (PHO)-Case 1 4.9 × 10−3 3.1 × 10−2 2.9 × 10−3 4.8 × 10−3 4.8 × 10−2 2.9× 10−1

(PHO)-Case 2 5.4 × 10−1 1.5 × 100 2.9 × 10−3 4.9 × 10−3 3.3 × 10−1 3.7× 10−1

(PSM)-Case 1 2.4 × 10−3 8.6 × 10−2 4.8 × 10−2 5.1 × 10−2 1.0 × 10−1 4.4× 10−1

(PSM)-Case 2 1.6 × 101 3.1 × 100 6.8 × 10−2 7.4 × 10−2 5.2 × 10−1 5.3× 10−1

104 (PHO)-Case 1 1.5 × 10−4 3.0 × 10−3 2.8 × 10−4 4.8 × 10−4 4.7 × 10−1 2.7 × 100

(PHO)-Case 2 1.7 × 101 1.7 × 101 2.8 × 10−4 4.9 × 10−4 3.5 × 100 3.3 × 100

(PSM)-Case 1 7.1 × 10−4 8.2 × 10−3 4.6 × 10−3 5.0 × 10−3 1.1 × 100 4.6 × 100

(PSM)-Case 2 1.4 × 101 2.5 × 100 4.4 × 10−3 6.9 × 10−3 5.9 × 100 6.4 × 100

105 (PHO)-Case 1 3.7 × 10−5 3.0 × 10−4 2.8 × 10−5 7.7 × 10−5 5.1 × 100 2.6 × 101

(PHO)-Case 2 1.8 × 101 1.8 × 101 2.4 × 10−5 1.4 × 10−4 3.7 × 101 3.1 × 101

(PSM)-Case 1 1.1 × 10−4 8.2 × 10−4 4.5 × 10−4 5.3 × 10−4 1.2 × 101 1.2 × 102

(PSM)-Case 2 2.2 × 102 3.7 × 103 1.5 × 10−3 7.2 × 10−4 6.6 × 101 1.6 × 102

AIMS Mathematics Volume 9, Issue 6, 13874–13893.

13890

6. Conclusions

We have applied the DR algorithm to find a numerical solution of LQ control problems with state
and control constraints after re-formulating these problems as the sum of two convex functions and
deriving expressions for the proximal mappings of these functions (Theorems 1 and 2). These proximal
mappings were used in the DR iterations. Within the DR algorithm (Algorithm 1), we proposed a
procedure (Algorithm 2) for finding the projection onto the affine set defined by the ODEs numerically.

We carried out extensive numerical experiments on two nontrivial example problems and illustrated
both the performance of the algorithm and its efficiency (in both accuracy and speed) compared to the
traditional approach of direct discretization. We observed that, in general, the DR algorithm produced
smaller errors and faster run times for these problems, most notably in the examples where we have
increased the number of discretization points. From these numerical results, the DR algorithm could,
in general, be recommended over Ipopt when high-quality solutions are desired.

Based on further extensive experiments, we conjectured on how the costate variables can be
determined. We successfully used the costate variables constructed as in the conjecture, as well as
the state constraint multipliers that can be calculated by using these costate variables, for the numerical
verification of the optimality conditions.

We recall that Algorithm 2 involves repeated numerical solution of the ODEs in (4.2) with various
ICs. To solve (4.2), we implemented the (explicit) Euler’s method, which requires only a continuous
right-hand side of the ODEs. Algorithm 2 appears to be successful for the examples partly owing to
the fact that, in these examples, the optimal control is continuous. We tried to apply our approach to
the machine tool manipulator problem from [16], which has 7 state variables, one control variable, and
upper and lower bounds imposed on the single control variable and one of the state variables. However,
our approach did not seem to yield a solution (so far) for this problem, conceivably owing to the fact
that the optimal control variable, as well as the optimal costate variable vector, is not continuous, in that
these variables jump a number of times during the process (see [16, Figure 5]). Note that discontinuities
in the control make the right-hand side of (4.2) discontinuous, rendering Euler’s method ineffective.
Therefore, problems of the kind in [16] require further investigation.

We believe that our approach can be extended to more general convex optimal control problems,
such as those with a non-quadratic objective function or mixed state and control constraints, as long as
the pertaining proximal operators are not too challenging to derive.

It would also be interesting to employ and test, in the future, other projection-type methods, such
as the Peaceman-Rachford algorithm [8, Section 26.4 and Proposition 28.8], which, to the best of the
knowledge of the authors, has not been applied to optimal control problems.

Use of AI tools declaration

The authors declare that they have not used artificial intelligence tools in the creation of this article.

Acknowledgments

The authors thank the two anonymous reviewers whose comments and suggestions improved the
paper. BIC was supported by an Australian government research training program scholarship.

AIMS Mathematics Volume 9, Issue 6, 13874–13893.

13891

Conflict of interest

The authors have no competing interests to declare that are relevant to the content of this article.

References

1. H. M. Amman, D. A. Kendrick, Computing the steady state of linear quadratic optimization models
with rational expectations, Econ. Lett., 58 (1998), 185–191. http://dx.doi.org/10.1016/S0165-
1765(97)00263-2

2. F. J. Aragón Artacho, J. M. Borwein, M. K. Tam, Douglas–Rachford feasibility
methods For matrix completion problems, ANZIAM J., 55 (2014), 299–326.
http://dx.doi.org/10.1017/S1446181114000145

3. F. J. Aragón Artacho, R. Campoy, V. Elser, An enhanced formulation for solving graph
coloring problems with the Douglas–Rachford algorithm, J. Glob. Optim., 77 (2020), 383–403.
http://dx.doi.org/10.1007/s10898-019-00867-x

4. U. M. Ascher, R. M. M. Mattheij, R. D. Russell, Numerical Solution of Boundary Value
Problems for Ordinary Differential Equations, Philadelphia: SIAM Publications, 1995.
http://dx.doi.org/10.1137/1.9781611971231

5. N. Banihashemi, C. Y. Kaya, Inexact restoration for Euler discretization of box-constrained optimal
control problems, J. Optim. Theory Appl., 156 (2013), 726–760. http://dx.doi.org/10.1007/s10957-
012-0140-4

6. H. H. Bauschke, 8 queens, sudoku, and projection methods, The Mathematical Interests of Peter
Borwein, The IRMACS Centre, 2008. Available from:
https://carmamaths.org/resources/jon/Preprints/Talks/InverseProbs/Earlier/

Bauschke-IRMACS08.pdf.

7. H. H. Bauschke, R. S. Burachik, C. Y. Kaya, Constraint splitting and projection methods for
optimal control of double integrator, In: Splitting Algorithms, Modern Operator Theory, and
Applications, Cham: Springer, 45–68, 2019. http://dx.doi.org/10.1007/978-3-030-25939-6 2

8. H. H. Bauschke, P. L. Combettes, Convex Analysis and Monotone Operator Theory in Hilbert
Spaces, Cham: Springer, 2017. http://dx.doi.org/10.1007/978-3-319-48311-5

9. H. H. Bauschke, V. R. Koch, Projection methods: Swiss Army knives for solving feasibility and
best approximation problems with halfspaces, arXiv: 1301.4506.

10. H. H. Bauschke, W. M. Moursi, On the Douglas–Rachford algorithm, Math. Program., 164 (2017),
263–284. http://dx.doi.org/10.1007/s10107-016-1086-3

11. R. S. Burachik, B. I. Caldwell, C. Y. Kaya, Projection methods for control-constrained minimum-
energy control problems, arXiv: 2210.17279.

12. R. S. Burachik, B. I. Caldwell, C. Y. Kaya, Douglas–Rachford algorithm for control-
constrained minimum-energy control problems, ESAIM: COCV, 30 (2024), 18
http://dx.doi.org/10.1051/cocv/2024004

AIMS Mathematics Volume 9, Issue 6, 13874–13893.

http://dx.doi.org/http://dx.doi.org/10.1016/S0165-1765(97)00263-2
http://dx.doi.org/http://dx.doi.org/10.1016/S0165-1765(97)00263-2
http://dx.doi.org/http://dx.doi.org/10.1017/S1446181114000145
http://dx.doi.org/http://dx.doi.org/10.1007/s10898-019-00867-x
http://dx.doi.org/http://dx.doi.org/10.1137/1.9781611971231
http://dx.doi.org/http://dx.doi.org/10.1007/s10957-012-0140-4
http://dx.doi.org/http://dx.doi.org/10.1007/s10957-012-0140-4
https://carmamaths.org/resources/jon/Preprints/Talks/Inverse Probs/Earlier/Bauschke-IRMACS08.pdf
https://carmamaths.org/resources/jon/Preprints/Talks/Inverse Probs/Earlier/Bauschke-IRMACS08.pdf
http://dx.doi.org/http://dx.doi.org/10.1007/978-3-030-25939-6_2
http://dx.doi.org/http://dx.doi.org/10.1007/978-3-319-48311-5
http://dx.doi.org/http://dx.doi.org/10.1007/s10107-016-1086-3
http://dx.doi.org/http://dx.doi.org/10.1051/cocv/2024004

13892

13. R. S. Burachik, B. I. Caldwell, C. Y. Kaya, W. M. Moursi, Optimal control duality
and the Douglas–Rachford algorithm, SIAM J. Control Optim., 62 (2024), 680–698.
http://dx.doi.org/10.1137/23M1558549

14. R. S. Burachik, C. Y. Kaya, S. N. Majeed, A duality approach for solving control-constrained
linear-quadratic optimal control problems, SIAM J. Control Optim., 52 (2014), 1423–1456.
http://dx.doi.org/10.1137/130910221

15. C. Büskens, H. Maurer, SQP-methods for solving optimal control problems with control and state
constraints: adjoint variables, sensitivity analysis and real-time control, J. Comput. Appl. Math.,
120 (2000), 85–108. http://dx.doi.org/10.1016/S0377-0427(00)00305-8

16. B. Christiansen, H. Maurer, O. Zirn, Optimal control of machine tool manipulators, In: Recent
Advances in Optimization and Its Applications in Engineering, Berlin: Springer, 2010, 451–460.
http://dx.doi.org/10.1007/978-3-642-12598-0 39

17. J. Douglas, H. H. Rachford, On the numerical solution of heat conduction problems in two and three
space variables, Trans. Amer. Math. Soc., 82 (1956), 421–439. http://dx.doi.org/10.2307/1993056

18. J. Eckstein, D. P. Bertsekas, On the Douglas–Rachford splitting method and the proximal
point algorithm for maximal monotone operators, Math. Program., 55 (1992), 293–318.
http://dx.doi.org/10.1007/BF01581204

19. R. Fourer, D. M. Gay, B. W. Kernighan, AMPL: A Modeling Language for Mathematical
Programming, 2 Eds., New York: Duxbury/Thomson, 2003. Available from:
https://ampl.com/wp-content/uploads/BOOK.pdf.

20. S. Gravel, V. Elser, Divide and concur: a general approach to constraint satisfaction, Phys. Rev. E,
78 (2008), 036706. http://dx.doi.org/10.1103/PhysRevE.78.036706

21. R. F. Hartl, S. P. Sethi, R. G. Vickson, A survey of the maximum principles
for optimal control problems with state constraints, SIAM Rev., 37 (1995), 181–218.
http://dx.doi.org/10.1137/1037043

22. C. Y. Kaya, Inexact restoration for Runge-Kutta discretization of optimal control problems, SIAM
J. Numer. Anal., 48 (2010), 1492–1517. http://dx.doi.org/10.1137/090766668

23. H. B. Keller, Numerical Methods for Two-point Boundary-Value Problems, Philadelphia: Society
for Industrial and Applied Mathematics, 1972.

24. B. Kugelmann, H. J. Pesch, New general guidance method in constrained optimal
control, part 1: numerical method, J. Optim. Theory Appl., 67 (1990), 421–435.
http://dx.doi.org/10.1007/BF00939642

25. P.-L. Lions, B. Mercier, Splitting algorithms for the sum of two nonlinear operators, SIAM J.
Numer. Anal., 16 (1979), 964–979. http://dx.doi.org/10.1137/0716071

26. H. Maurer, J.-H. R. Kim, G. Vossen, On a state-constrained control problem in optimal production
and maintenance, In: Optimal Control and Dynamic Games, Boston: Springer Verlag, 2005, 289–
308. http://dx.doi.org/10.1007/0-387-25805-1 17

27. H. Maurer, H. J. Oberle, Second order sufficient conditions for optimal control problems
with free final time: the Riccati approach, SIAM J. Control Optim., 41 (2002), 380–403.
http://dx.doi.org/10.1137/S0363012900377419

AIMS Mathematics Volume 9, Issue 6, 13874–13893.

http://dx.doi.org/http://dx.doi.org/10.1137/23M1558549
http://dx.doi.org/http://dx.doi.org/10.1137/130910221
http://dx.doi.org/http://dx.doi.org/10.1016/S0377-0427(00)00305-8
http://dx.doi.org/http://dx.doi.org/10.1007/978-3-642-12598-0_39
http://dx.doi.org/http://dx.doi.org/10.2307/1993056
http://dx.doi.org/http://dx.doi.org/10.1007/BF01581204
https://ampl.com/wp-content/uploads/BOOK.pdf
http://dx.doi.org/http://dx.doi.org/10.1103/PhysRevE.78.036706
http://dx.doi.org/http://dx.doi.org/10.1137/1037043
http://dx.doi.org/http://dx.doi.org/10.1137/090766668
http://dx.doi.org/http://dx.doi.org/10.1007/BF00939642
http://dx.doi.org/http://dx.doi.org/10.1137/0716071
http://dx.doi.org/http://dx.doi.org/10.1007/0-387-25805-1_17
http://dx.doi.org/http://dx.doi.org/10.1137/S0363012900377419

13893

28. T. Mouktonglang, Innate immune response via perturbed LQ-control problem, Advanced Studies
in Biology, 3 (2011), 327–332.

29. W. J. Rugh, Linear system theory, 2 Eds., London: Pearson, 1996.

30. T. L. Schmitz, K. S. Smith, Mechanical vibrations modeling and measurement, New York:
Springer, 2011. http://dx.doi.org/10.1007/978-1-4614-0460-6

31. J. Stoer, R. Bulirsch, Introduction to numerical analysis, 3 Eds., New York: Springer-Verlag, 2002.
http://dx.doi.org/10.1007/978-0-387-21738-3

32. B. F. Svaiter, On weak convergence of the Douglas–Rachford method, SIAM J. Control Optim., 49
(2011), 280–287. http://dx.doi.org/10.1137/100788100

33. A. Wächter, L. T. Biegler, On the implementation of a primal-dual interior point filter line
search algorithm for large-scale nonlinear programming, Math. Program., 106 (2006), 25–57.
http://dx.doi.org/10.1007/s10107-004-0559-y

c© 2024 the Author(s), licensee AIMS Press. This
is an open access article distributed under the
terms of the Creative Commons Attribution License
(http://creativecommons.org/licenses/by/4.0)

AIMS Mathematics Volume 9, Issue 6, 13874–13893.

http://dx.doi.org/http://dx.doi.org/10.1007/978-1-4614-0460-6
http://dx.doi.org/http://dx.doi.org/10.1007/978-0-387-21738-3
http://dx.doi.org/http://dx.doi.org/10.1137/100788100
http://dx.doi.org/http://dx.doi.org/10.1007/s10107-004-0559-y
http://creativecommons.org/licenses/by/4.0

	Introduction
	Optimal control problem
	Optimality conditions

	Splitting and proximal mappings
	Douglas–Rachford algorithm
	Algorithm for projector onto A
	A conjecture for the costates for Problem (P)

	Numerical experiments
	Harmonic oscillator
	Simple spring-mass system
	Numerical discussion and comparisons

	Conclusions

