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Abstract: Several mathematical models of two competing viruses (or viral strains) that have been
published in the literature assume that the infection rate is determined by bilinear incidence. These
models do not show co-existence equilibrium; moreover, they might not be applicable in situations
where the virus concentration is high. In this paper, we developed a mathematical model for the
co-dynamics of two competing viruses with saturated incidence. The model included the latently
infected cells and three types of time delays: discrete (or distributed): (i) The formation time of latently
infected cells; (ii) The activation time of latently infected cells; (iii) The maturation time of newly
released virions. We established the mathematical well-posedness and biological acceptability of the
model by examining the boundedness and nonnegativity of the solutions. Four equilibrium points
were identified, and their stability was examined. Through the application of Lyapunov’s approach
and LaSalle’s invariance principle, we demonstrated the global stability of equilibria. The impact of
saturation incidence, latently infected cells, and time delay on the viral co-dynamics was examined. We
demonstrated that the saturation could result in persistent viral coinfections. We established conditions
under which these types of viruses could coexist. The coexistence conditions were formulated in terms
of saturation constants. These findings offered new perspectives on the circumstances under which
coexisting viruses (or strains) could live in stable viral populations. It was shown that adding the class
of latently infected cells and time delay to the coinfection model reduced the basic reproduction number
for each virus type. Therefore, fewer treatment efficacies would be needed to keep the system at the
infection-free equilibrium and remove the viral coinfection from the body when utilizing a model with
latently infected cells and time delay. To demonstrate the associated mathematical outcomes, numerical
simulations were conducted for the model with discrete delays.

Keywords: viral coinfection; saturated incidence; time delay; global stability; Lyapunov function;
LaSalle’s invariance principle
Mathematical Subject Classification: 34D20, 34D23, 37N25, 92B05



http://www.aimspress.com/journal/Math
http://dx.doi.org/ 10.3934/math.2024671

13771

1. Introduction

Human viral infections such as human immunodeficiency virus (HIV), hepatitis B virus (HBV),
hepatitis C virus (HCV), ebola virus, influenza A virus (IAV), influenza B virus (IBV), chikungunya
virus (CHIKV), middle east respiratory syndrome coronavirus (MERS-CoV), human T-cell
lymphotropic virus (HTLV), zika virus (ZIKV), dengue virus (DENV), and severe acute respiratory
syndrome coronavirus 2 (SARS-CoV-2) are a global health concern. It is possible for a person to be
infected with two or more types of viruses (or different viral strains) simultaneously or successively.
This situation is defined as viral coinfection [1]. Examples of viral coinfections include: HIV and
viral hepatitis [2]; HBV and HCV [3]; different strains of SARS-CoV-2 [4]; and SARS-CoV-2 and
HBV [5].

Many researchers are interested in mathematical modeling of viral infections within the host. The
development of antiviral drug therapies and vaccines, the understanding of the dynamics of viral
infection and the immune system’s response to viruses, and the identification of the minimum number
of variables needed to analyze experimental data and explain biological phenomena are all made
possible by mathematical models. In [6], a basic model for viral single-infection within a host has
been formulated. A mathematical model that describes competition of two virus types (or virus
variants) for uninfected cells can be given as [7]:

production of uninfected cells death infection via virus type C  infection via virus type B
. — — — —_—
H(r) = ¢ —nuH@®) - yucHOC®) -  yupHOB{@) (1.1)
growth of infected cells by virus type C death
. — — =
Y(r) = YucH®C(1) —nyY(0), (1.2)
growth of infected cells by virus type B death
. —_—— —
(1) = yusH()B(?) — 1zZ(1), (1.3)
generation of virus type C  viral clearance
. —_— —_—
C@ = OcY (1) - ncC@) (1.4)
generation of virus type B viral clearance
. — —
B(1) = 0pZ(t) - n8BQ®) , (1.5)

where H(t), Y(t), Z(t), C(t), and B(¢) are the concentrations of the uninfected cells, infected cells by
virus type C, infected cells by virus type B, free virus type C particles, and free virus type B particles
at time t, respectively.

Examples of viruses (or virus strains) which compete for the same target cells including:

e Respiratory viruses: Such SARS-CoV-2 and IAV which compete for the epithelial cells in the
respiratory tract [1,8]. Human rhinovirus, respiratory syncytial virus, human enterovirus, human
metapneumovirus, influenza A/B viruses, parainfluenza virus, coronavirus, and human bocavirus
and adenovirus are among the respiratory viruses that have been found to be able to participate in
simultaneous infections [9].

e Chronic viruses: HIV and HTLV infect the CD4* T cells, often known as “helper” T cells which
play a central role in immune system [10]. HBV and HCV target hepatocytes in the human
liver [11].
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e Victor-born infections: Both DENV and CHIKYV infect the monocytes [12].

e Virus strains: As new mutants continue to evolve, the genotypes of the same virus in infected hosts
that are wild-type and mutant overlap [13]. A number of recombinant viral strains of worldwide
epidemiologic significance have been observed as a result of co-occurring HIV infections, which
has significant implications for our knowledge of HIV transmission and the development of the
AIDS vaccine [14]. Recent research has shown that coinfection can act as a catalyst for the
recombination of distinct SARS-CoV-2 subtypes [15].

Several mathematical models have been developed for viral coinfections including:
HIV-1/HTLV-I [16], SARS-CoV-2/IAV [8,17], SARS-CoV-2/HTLV-I [18], SARS-CoV-2/HIV-1 [19],
HIV-1/HBV [20] and HIV-1/HCV [21]. Moreover, coinfection with two viral strains have been
modeled in several works (see e.g., [13,22,23]).

In the case of HIV infection, there is no medicine to cure acquired immune deficiency syndrome
(AIDS) completely to date, but highly active antiretroviral therapy (HAART) has been used for the last
two decades to treat HIV patients, and it has been found successful in suppressing HIV replication and
reconstituting the immune system in the human body. However, using HAART cannot eradicate the
virus completely [24]. An important reason is that HIV provirus can reside in latently infected cells,
which live long, but can be activated to produce virus by relevant antigens, [25]. It has been reported
in [26] that a coexistence of two HIV strains in the latent reservoirs is possible.

Models (1.1)—(1.5) operate under the premise that, upon entry of the virus into an uninfected cell, the
cell becomes infected and produces new mature viruses. It is commonly recognized that the infection of
free viruses into uninfected cells and the generation of new mature viruses often do not occur instantly
but develop over a period of time [27]. Regarding HIV infection, it is believed that the duration
between HIV entry into an uninfected cell and the production of new mature HIV particles is around 0.9
days [28]. Consequently, the delay finds extensive application in several models of viral infection,
which are essential for studying biological processes that are more like reality (see e.g., [29-31]).

The infection rate is one important factor influencing the propagation of viruses [32]. A number
of mathematical models of two competing viruses (or strains of viruses) that have appeared in the
literature (see, e.g., [7,23]) include the assumption that bilinear incidence determines the infection
rate. In this case, the infection rate per target cell and per virus is a constant. This situation implies
that the rate of infection is precisely proportional to the product of the concentrations of the viruses B
(or C) interacting with uninfected cells (H), a phenomenon known as the mass-action principle. The
incidence rate is linear in each variable over the entire range of B (or C) and H. However, as reported
in [33], experiments have demonstrated that the infection rate of microparasitic infections generally
increases with the parasite dose and typically exhibits a sigmoidal shape. The law of mass action, for
instance, will not apply if the concentration of viruses is higher than the concentration of uninfected
cells. In such a scenario, an increase in virus concentration will not result in a rise in infection. A
sublinear response in virus concentration might arise from saturation at high virus concentrations,
where the infectious fraction is high, leading to a high likelihood of exposure [34]. The goal of the
saturation incidence function in epidemiology is to characterize the variance in infection force brought
on by the crowding impact of infectious [35]. It is important to note that the models of two competing
viruses with bilinear incidences shown in [7,23] do not exhibit the co-existence equilibrium. As a
result, these models might not be able to explain situations in which two chronic viruses co-exist, such
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as HIV, HTLV, HBYV, and HCV.

Papers [27,36,37] studied two strain viral dynamics models with saturated incidence. Nevertheless,
these models do not incorporate latently infected cells. Further, the maturation delay of newly released
virions was not included in the model given in [27]. Furthermore, it has not been addressed how
saturation affects the conditions in which the two strains coexist. Thus, the aim of this study is to
construct and analyze mathematical models that characterize the co-dynamics of two competing viruses
(or virus variants) with saturated incidence and latently infected cells. The paper’s novelty resides in
the following aspects:

A1l: Two models (one with discrete delay and the other with distributed delay) have been developed
to describe the co-dynamics of two competing viruses within a host.

A2: Three kinds of discrete (or distributed) time delays have been incorporated into the model: (i)
The formation delay of latently infected cells; (ii) the activation delay of latently infected cells; and
(ii1) the maturation delay of newly released virions.

A3: The non-negativity and boundedness of the model’s solutions are rigorously analyzed,
confirming that the presented models are both mathematically well-posed and biologically plausible.

A4: Global stability analysis has been presented for both models.

AS: Conditions for the co-existence of competing viruses that target the same host cells have been
established.

A6: The theoretical findings have been validated through numerical simulations.

Our proposed model could be valuable for modeling the competitive transmission dynamics of
different strains of COVID-19, such as Omicron and Delta [38,39].

The paper is organized as follows: Sections 2 and 4 focus on formulating the two models, proving
the non-negativity and boundedness of the model’s solutions, determining the model’s equilibria and
threshold parameters, and establishing the global stability of the equilibria. Section 3 contains
comparison results. Section 5 presents numerical simulations for the model with discrete delays,
while Section 6 summarizes our findings and outlines future perspectives.

2. Model with discrete-time delays

2.1. Model formulation

In this section, we develop a two-virus co-dynamics model with a saturated incidence rate, latently
infection cells, and six discrete-time delays as follows:

YucH@OC®)  yupH(D)B()

H(t) = ¢ —nuH (1) — L+ 0cCQ) 1+ 0BQ) 2.1
o e YHCH( — 0)C( —wy)

L) = e T+ 0cCl =) (1. + 0L L(D), 2.2)
Y(t) = e ™5 L(t — w,) — nyY (1), (2.3)
con s YEBH( — 04) B(t — wy) a

EQ®) =e T+ UpB— ) (e + 6p)E(), (2.4)
Z(t) = e “SpE(t — ws) — nzZ(1), (2.5)
C(t) = e G Y(t — w3) — ncC(b), (2.6)
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B(t) = e"*“*0,7Z(t — we) — nB(@), 2.7

where L and E are the concentrations of the latent cells infected by virus types C and B, respectively.
The activation and death rate constants of compartments (L, E) are denoted by (6., 0g) and (17.,7E),

; yucHC yusHB .. .
respectively. The terms 5 4cC and 7% Jp5 Tepresent saturated incidence for virus types C and B,

respectively, where ¢ > 0 and ¢ > 0 are saturation parameters. Saturated incidence leads to bilinear
incidence when ¥ = 5 = 0. There are three types of time delays:
(i) w; and wy, the formation times of latent cells infected by viruses type C and B, respectively;

(i1) w, and ws, the activation times of latent cells infected by viruses type C and B, respectively;
(111) w3 and we, the maturation times of newly released virions type C and B, respectively.

The factor e, i = 1,2,...,6 represents the probability of survival of a cell or virion throughout
the delay time [ — w;, t], and @; > 0.
The initial conditions for system (2.1)—(2.7) are:

H@u) = 0(w), L) =06, Y =6Gw), E@W) =),
Z(u) = ts(w), Cu) = Le(w),  B(u) = t(u),

Ci(u) >0, u € [-w,0],
€l(u) € C([—(l)*, O]’ RZO)? l = la 2, ceey 7, (28)
where
w" = max{wy, W, . .., We},

and C is the Banach space of continuous functions mapping the interval [-w*, 0] into Ry, with

lI6ill = sup [£i(w)l

—w*<u<0

for {; € C. System (2.1)—(2.7), with initial conditions (2.8), has a unique solution [40,41].

Remark 1. The production rate of uninfected cells has been represented by a variety of functions in
virology literature, including: constant, ¢, saturated, % [42], exponential, ¢e~¢ [43], decreasing,

iiv [44], and general, HE(H) [45], where € is constant and E is a general function.

2.2. Preliminaries
Proposition 1. The solutions of system (2.1)—(2.7) with initial (2.8) are nonnegative and ultimately
bounded.
Proof. We have that
H |g=0= ¢ > 0.
Hence, H(¢) > O for all r > 0. Moreover, for all ¢ € [0, w*], we have:

t

L(t) = 52(0)8—(71L+6L)t + e—mwlyHcfe—(nﬁﬁL)(t—r)
0

H(r — w)C(r — wy) .
1+ ycClr—wy)
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t
Y (1) = 63(0)e ™™ + 72925, f e D L(r — wy)dr,
0

t

- - - _nH(r — wy)B(r — wy4)
E(1) = £4(0)e METOE) | pmaws fe (e+0E)(t=r) dr,
(1) = £4(0) YHB 1+ ypB(r — wa)

0
t

Z(t) = t5(0)e ™™ + &6 f e ""DE(r - ws)dr,

0
t

C(1) = L6(0)e™™" + &0 f e 1Y (r — ws)dr,

0
t

B(t) = £,(0)e™™" + e~ 0 f e Z(r — wedr.
0
Hence, L(t), Y (1), E(t), Z(1), C(¢), B(t) > 0 for all ¢ € [0, w*]. Through recursive argumentation, we get

L(1), Y(t), E(1), Z(t), C(t), B(¢) for all > 0. Therefore, H,L, Y, E,Z, C and B are nonnegative.
The nonnegativity of the system’s solution implies that

Ht) <¢p—-nyHlH) = tlim sup H(?) = ﬂ = ay.

NH

Let us define
Wi(t) = e H(t — wy) + L(1),

then
Y1) = e " H(t — wy) + L)
g o vacH(t - w)C( —wi)  yupH(t — w)B(t — w))
- ¢ ¢ UHH(t @) 1+ l/lcC(l - wl) 1+ VﬁBB(t — (L)l)
ey YHCH( — 0)C( —wy)
e oo oL
H(t - B(t —
= e MG — MWL H(E — wy) — e MY YHB] -EtlpBZéz _(i)l)wl) —(n + 6p)L(1)
Sp—o[e " H({t - w) - L(1)]
= ¢ - Ul\Pl(t)a
where

o1 = min{nH, nL+ 6L}

It follows that

lim sup ¥, (¢) < ﬂ = a; = limsup L(t) < a;.
t—o0 (on] t—o00

Let
Wy (t) = e H(t — wg) + E(1),
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then,
Po(t) = e ™ H(t — wy) + E()
= e | ¢ — pyHE — ws) — YucH( — w)C(t —wy)  yupH(t — wy)B(t — wy)
1+ ycC(t — ws) 1+ ypB(t — w4)
—wws YuBH(t — 4) B(f — wy4)
+ o M4 — +0p)E(t
e CruBi—on B
Hit—w)C(t—w

— e—a4w4¢ _ e—a4w4nHH(t _ w4) — o aws )/Hcl -i(_wccég _(w4) 4) _ (nE +0p)E(®)

L<¢p—0, [e_a4w4H(t —wy) — E([)]

= ¢ — 01 (0),
where

0, = min{ny, ng + Og}.

Thus

lim sup W (7) < i =a, = limsup E(t) < a,.
t—o00 () —oo

From Eq (2.3) we get

' o
Y(t) = e 6 Lt — w,) — nyY () < 6par — nyY(H) = lim sup ¥(6) <~ = g,
—o00 nY
Equation (2.5) implies that
Z() = e SpEt — ws) = nzZ(1)
0
< dpay —nzZ(t) = lim sup Z(¢) < £G ay.
[—00 TIZ
Similarly from Egs (2.6) and (2.7) we get
s . Qcag
C(t) < 6caz — neC(t) = limsup C(1) < —= = as,
—00 nc
» . 93614
B(¢) < Ogay — npB(t) = lim sup B(t) < — = as.
—00 nB
This completes the proof. -

Based on Proposition 1 we can show that
I'= {(H, LY,E,Z.C,B) € CL; : |HI < ao, |ILIl < ay, ||Y|| < a3, ||E|| < a2, ||ZI| < a4, |IC|| < as, ||B]| < aa}
is positively invariant for system (2.1)—(2.7).
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2.3. Egquilibria

We calculate the model’s equilibria and deduce the conditions of their existence. Any equilibrium
point 2 = (H,L, Y, E, Z, C, B) satisfies

yucHC  yusHB

O0=¢—nyH — ,
Ot e T 1+ ugB
ey, YHCHC
0= e XHETZ ) 4 6))L,
e 1+ 0cC (me +61)
0=e""6,L—-nyY,
- vupHB
0= g e YHBID (4 5)E.
e I+ 0B (Mg + Ok)
0= e—a5w55EE - ﬂzz,
0= e‘““‘”@cY - nCC,
0= 6_%w695Z - I]BB (29)

System (2.9) admits four equilibria.
(I) Infection-free equilibrium, =y = (Hy,0,0,0,0,0,0), where Hy = ¢/ng.
(II) Virus type C single-infection equilibrium =, = (H,, L, Y;,0,0, Cy,0), where

H, = ez?ﬂ“"‘“inync(m +0.) + l//C¢5L9C, L= 2alwl77Y77C77H (R, - 1),
010c(Mu¥c + yuc) 5L90(77H¢c + YHc)
e nenu NH
Y, = R - 1), Cl=—M (R, -1
YT Bc(ue + yue) Ri-1) 1 (77H¢c + Yuc) Ri-1),
and .
L Fos,
R, = e “i=l 00L C'}’HC’ (2.10)
nync(ne +6r)

which represents the basic reproduction number for virus type C single-infection. It follows that,
=, existsif Ry > 1.
(IIT) Virus type B single-infection equilibrium =, = (H,,0,0, E, Z,,0, B,), where

H, = eFainmp(ng + 6F) + 5E'7”B¢93, E, = e =M NN H (R, - 1)
O0pO0p(MuY + Yup) O0p0p(MuY + Yup)
266
7, = T (R, 1), By=— _(R,-1),

Os(Mu¥s + Yup) (MuYe + Yup)

and
e T Ho5 5 0py
nzns(E + 0)
which represents the basic reproduction number for virus type B single-infection. Therefore, =, exists
if %2 > 1.
(IV) Coexistence equilibrium =3 = (Hs, L3 Y3, E3, Z3, C3, B3), where

He = Y coL0cypOEOp + nyncypdelp(nr + 5L)€’Z N+ Yo Oc(Me + 5E)€Z"6:4aiwi
3= ,

O0r0B0L0c(NuYcYs + YucYs + YupYc)

R, = (2.11)
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Z L i W; + a3w3 +
L= Myiic(May¥s + Yis) (Rs—1), ;= NcMu¥s + Yup) (Rs— 1),
010cMuc¥p + Yucys + Yup¥c) OcMuyc + Yuc¥s + yuplc)
56 s QWi Q6We
__ ¢ nzn5(Ma¥c + Yuc) Ra-1), Z = e ng(Muc + ¥Yuc) (Ra— 1)
00Ny c¥s + Yuc¥s + Yus¥c) Os(Muc¥s + Yacys + YupYc)
+ +
C, = (¥ + Yus) (Rs— 1), B, = (e + yue) (Ri—1),
(MuYcYs + Yuc¥s + Yup¥c) (Mu¥c¥p + Yucys + Yus¥c)
and

YucOLOc oY ol + nzng(Me + 5E)€Z"6:4aiwi ]
eZ=1iy neS (N1 + 61) s + Yis)
7HB5EQB[¢’#C5LHC + nyne(nL + 6,)e5 a"”’]

a8, 0c(ME + 62)Mue + Yac)

%3:

Ry=

Clearly, =5 exists when R; > 1 and Ry > 1.

Remark 2. We note that we have calculated the basic reproduction numbers R; and R, from the
existence’s conditions of equilibria Z; and Z,, respectively. It is worth noting that R, and R, can also
be calculated using the next-generation matrix method of van den Driessche and Watmough [46] or by
analyzing the local stability of the infection-free equilibrium.

2.4. Global stability analysis

In this part, we use the Lyapunov function construction approach described in [47] to demonstrate
the global asymptotic stability of all equilibria. Let A;(H,L,Y,E,Z,C, B) be a Lyapunov function
candidate and Q; be the largest invariant subset of

dA;
{(HLYEZCB) w7 —O},]—0124
Define a function

F : (0, c0) — [0, )

as
Fv)=v—-1-Inv.

We denote
(H,L,Y,E,Z,C,B) = (H(), L(1), Y(1), E(1), Z(1), C(2), B(1)),
Hw| = H(t — wy), Hw4 = H(t - (JJ4), sz = L(t - wZ),
Yo, =Yt —w3), E, =E({-ws), Z, =Z(t—-we),
Cor = Cli =), Bo, = B - wy).

Theorem 1. Consider (2.1)—(2.7) and suppose that R; < 1 and R, < 1, then E, is globally
asymptotically stable (GAS).
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Proof. Define

2 alw,(nL + 5L) S Z alwz(nE + 5E)
(5L 6E

t
QWi H
ny(ne + 5L)C + nz(ne + 5E)B +yue (u)C(u) "
Ocor 00K 1 +ycCu)

I—w1

H
A() = HOF(F

) + e +
0

2 | QWi

1 H(u)B
+e (L +61) fL(u)du + Yusp %du + e (e + Ok) fE(”)d”

I—wy I—w4 I—ws

E 1 XiWi 6 2 4 QWi 5
N Ug(’h"‘ L) Y(u)du + 776(77E+ E)

—w3 1—

Z(u)du.

It is seen that, Ag > O forall H,L,Y,E,Z,C,B > 0, and Ay(Hy,0,0,0,0,0,0) = 0. We calculate ‘%
along the solutions of system (2.1)—(2.7) as:

dA H 2 | QWi +0 . Ef: QWi +0 .
0 (1 _ —O)H+ ea1w1L+ (nL L) a4w4E + eri=4 (77E E)Z
dt H oL g5
i1 +0 Tz @it +0g) . HC
1"y (L, L)C+ = nz(ne E)B+ YHC
9C6L HB(SE 1+ lﬂCC
)/HClecwl ’)’HBHB ’}/HBHw4Bw4

+e""(mp+ o)L - L, 1+

+ e"(ng + 0p)|E - E,,
1+ l//ccwl 2 1+ l//BB 1+ l.!/BBa,4 ¢ (nE E)[ 5]

eFi-a0ici mz(Me + 0k)
Ok

+ i i my(mL +6r)
or

From Egs (2.1)—(2.7), we obtain

[Y - sz] [Z - Zw(,]-

e | e e e M ern AL
+ e lalwlgzL +0u) [ 2?6, Ly, —nyY] + % — "' (ng + 0p)E
" €2f=4mwi((;zE 08 sy, ) + - gcYgL £ [0, — neC]
i, (g + OF) [ 0,Z.,, — nuB] + yucHC — yucHo Co,

9355 1+ lﬁCC 1+ wCCwl
vyupHB VHBHw4Bw4

1+;//BB 1+¢/BB

+ emwl(nL + 5L)L_ e(tlan(nL + 6L)Lw2 + + ea4w4(nE + 6E)E

i it my(nL + 5L) 8 1 my(nL + 5L)
5. Sy Yor
nz(ne + 5E) € =i, (g + OF)
Zisg-
O Ok

— " (g + 0p)Es, +

2w
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Then, we collect terms as:

dAy H, Yuc¥cHoC? YupypHoB?
——:1——) H) + yucHoC — YYo= _ YusYETT0D.
7 ( (¢ —nuH) + yuc I+ 0cC YusHy I+ 0B
egl“”“nync(nL4-5L)C, 614“””nzn3(nE-+5E)B
Ocor, O0F '
Using the equilibrium condition ¢ = nyH,, we get
dAo __ (H — Hy)* 3 YucycHoC? B YupypHoB?
a - Mg 1+ ¢cC 1+¢BB
2! | QWi +(5 I ;w; +(5
e Nyic(e L)(?al__l)cj+_ (i E)(?a 1)B.
Ocor Op0E

Since R; < 1 and R, < 1, then dﬁ“ < 0 for all H,C,B > 0. In addition dA" = 0 when H = H, and
C = B = 0. The solutions of system (2.1)—(2.7) tend to Q, [40] where C = B 0. Thus, C=B =0
and from Eqgs (2.6) and (2.7) we have

0=C-= e %0cY,, = Y(t) =0, forany ¢,
0=B=e*%037, = Z(t) =0, foranyt.

Then from Eqgs (2.3) and (2.5) we get

0=Y= e 2§ L, = L(t) =0, foranyt,

0=27=e"%6E, = E(t) =0, forany 1.
Therefore, Qy = {Z,} and applying LaSalle’s invariance principle (LIP) [48], we obtain that = is
GAS. |

Theorem 2. Consider (2.1)—(2.7) and suppose that R; > 1 and R4 < 1, then E, is GAS.
Proof. Define A, as:

H L\ i +6 Y
Al = HlF — |+ ealwlLlF — |+ e (UL L) YlF — |+ eM™“E
H,; Ly oy Y
.\ eZ?=4t1iwi(nE + 6E)Z N 62’ JG,w,nY(nL + 5L)C F( ) 4a,wznz(nE + 6E)
6E 0C6L 1 635E

1 +ycCy Ci(1 +ycCw) I

1—wi —wy

, YucHiC) fF(HPE”)C(”)(”‘*C‘C”) i+ e (ny, + )L f (?)du
1

t

CHWBW . 1 oy + 1), (Y@
T+ ypBa T e 000 f Fldu 6, n f : (Tl)d”

—w4 —ws —w3

N 82?=4a’w"772(7712 + 0g)
OF

Z(u)du.
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dA1

We calculate as:

dA H Ly, ehmgy +6 Y .
(- (1- 214 e + L)( ) et
dr H L . Y

g + ), Ty + 61) (1- G e ez?w‘"izz((sng +08) 4
BVE

O Ocor C
YucHC, [HC(l +ycC) ln( HC(1 +ycCy) ) _H, Co, (1 +ycCy)
L+ ¢cCi [HICi(1+¢cC) H\Ci(1 +ycC))]  HiCi(1+ycCy,)

+1n(Hw‘Cwl(l ” lﬁccl))] "' (L + 61)L, [£ - ln( L ) - lﬁ + ln(Lw2 )]
H\Ci(1 +¢cCy,)) L, Ly Ly 1

HB H,,B.,
1+¢BB_ 1 +gbBBw

2 | @iwj +6 Y Y, Y, 2 aiw; +6
+ rlY(nL L) [— - hl( ) - = +1In (—3):| + e nZ(nE E) [Z — Zws] .
6L Y] 1 é‘E

+ YHB

+ (g + 05) [E - E,, |

So, we get

dh; Hl VHCHC YupHB
—=|1- ¢ —nuH -
dt 1+ YeC 1 +ypB

Li\| _a0, YHCH,, Co
+ Yo (] = ) ) £ "W WO +6;)L
¢ ( L [e T+gcC, mHoV ]
S, 4 6 Y
+ e ;_nL L) (1 - 71) [e_azwzéLsz - UYY]
L
YisHo,Bo, | EH s + 8r)

+ Qa4 —4Ww4 _ +5 E —fYSOUSé‘ Ew — Z
‘ [6 T+ ggB, TR o e 0k, =22
3w
e“i=1%i lnY(nL +5L)( Cl) _

1= 2\ [e 50X, — neC
Zl ;w; +§
+ e~i=4 nZ(nE E) [e_aéw()eBZwG _ r]BB]
00k

+ YucHC _ YucHu,,Co, 4 YucHCy ln(Hw'Cwl(l + WCC))
1+ycC 1+ ycCy, 1 +¢cCy HC( +ycCy))
L“’z
)

: + €a4w4(77E + 5E)E — €a4w4(77E + 5E)Ew5

+ ealwl(nL + 5L)L_ edlwl(nL + 6L)Lw2 + ealwl(nL + 6L)L1 ln(

vupHB YupHu, B
1+ wBB 1+ WBBQ)

Z alwlnY(nL + 5L) € nl lalwlnY(T]L + 6L)Y Zi lalwlnY(TIL + 6L) a)3
w3 + In
(SL 5L 5L
ZL 4 QWi + (5 4 QiW; + (5
| EHng 00 + 05) €1 + O) Z,. (2.12)
65 5E
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Simplifying Eq (2.12), and using the equilibrium conditions for Z;:
YucHiCy yucH Cy

=nyH; + , =" (n, + 61)Ly,
¢ =nuH, T+9eC 140 "' (ny + 1)L,
oLy = eazwzﬂlea OcY, = eaw}ﬂccl,
we obtain
dA H - H))? H, LH,C,(+ycC Y\L,
1 _ 1 1) ey + 6Ly |4 — T Eifey (I +ycC) Nk,
dt H H LH,C{(1 + !//ch]) YL,

C\Y,, H, C, (1+yc0) sz Y.,
- -~ +In +Inl—|+1In :
CY, HC( +ycCy)) L Y

1
+ ealwl(nL + 6L)Ll( ( + wCCI)C _ £)

(IT+ycOC G
4“’”’772773(775“ +0g) H\yupOpoE _ 1] B— 7’HB¢//BHlB2
00 i, (g + OF) 1 +y3B

Using the following equalities:

H,, C,, (1 +¢cC) LiH,,Cy, (1 + ¢cC)) L +ycC H; CiL
In =In +In{——— +ln(—) In|—1,
HC(1 +ycC,)) LH.C,(1 +ycC,,) 1 +¢cC; H CL,
L, YL, YL;
In|—=|=1n )+ In[—],
L YL, Y.L
Y, CiY, Y;
In[—=]|=1In 2]+ 1n bl , (2.13)
Y CY; c)Y

where i = 1, 3, we get

dA, _ nu(H - Hl)2

alan(nL + 6L, [ (H1)+F(HMCML1(1 + lﬁccl))

dr H H H\CL(1 +ycC,)
+F(Y1Lw2 ) +F(C1Yw3) +F( 1 + l/’CC )] _ ealwll,//c(UL + 6L)(C - C])ZLl
YL, cY, 1 +ycC (I +¢cC)A +ycCr)Cy
N (e + Ok) (Ra—1)B - yupysH\ B
0BOF I +ypB

Since R4 < 1 then, dAl <Oforall H,L,Y,E,Z,C, B > 0. Moreover, dA‘ =0when H=H,,L=1L;,
Y=Y,C=Ci,and B 0. The solutions of system (2.1)—(2.7) tend to Q1 which includes elements
with B = 0 which gives B = 0. From Eq (2.7) we get

0=B=e*%037, = Z(t) =0, foranyt.
Then from Eq (2.5) we have

0=Z7-= e " 6gE, = E(t) =0, forany .
Hence, Q, = {Z,} and Z, is GAS using LIP. O
Theorem 3. Consider (2.1)—(2.7) and suppose that R, > 1 and R < 1, then E, is GAS.
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Proof. Consider

H LT E\ (g +6 z
Hz 6L 2 6E ZZ
t
+ e iy (L + 5L)C + e nz(ne + 5E)B ,_—( ) —H(u)C(u) u
OcoL Opor 2 1+ ycCu)

—wi

YusH,>B, fF(H(M)B(M)(l +lﬁ332))du
+ YpB, HyBy(1 + ypB(u))

I—w4

2 | QWi
a4w4(nE + 5E)E2f ( ;ju)) Ug(ﬂL + 5L) Y( )du
2

—ws —w3

+ ealwl(nL + 6L)fL(M)d +

t

EEin (g + Or) z f F(Zw)
6E 22

—we

We calculate =2 as:

dA, H, _ yucHC  yugHB oo YHCH,, Coy)
= -[1-= ) _ + o191 @ w) _ +6)L
di ( H [‘/’ Ml = e T TrunB| T | 14uec, mtou)
Z Nz
! '(UL + 5L) _ E, _ yHBHw4Bw4
+ @26, L, —nyY |+ e™ (1 ——) e +6p)E
5, [ tLo, =1y ] e G [+ 0B, (e + 0k)
5 ajw;
=1 (ng + Of) D\ e
Z: @iw; +0
e~=1"ny(nL + 01) [ 0cY,, - neC]
6c0r,
0 aiw;
== nz(ng +5E)( Bz) _ YucHC
| = 22 [ g,z7,, —npB] + LHC=
050k B )l 02— MBI+ 7R
'}’HCHanCwl w VHBHB
- + M +6;)L — ™! +06;)L, + ——
I+ 0cC,, e (L + 6 )L — e (L + 61) Lo, I+ 0B
YupHu, B, H,B H,, B, (1 +ypB)
_ e e, | YHBT 2ln( M " ey + 60)E
L+ypB,, 1+ypB; HB(1 + y5B.,,)
Ew Z | Qiw; +9
= " + 5p)E, + € (e + 05)E> 1n( 5)+ i+ 00y
5 E or
e~ =1y (L, + 5L)Y 32?:4aiw’772(77E +0k) e 4&’w’ﬂz(ﬂE + 5E)
- wy T Z — i
oL O Op
2 4 QWi +5 ”
N nz(Me E) (_6) (2.14)
O
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Then simplifying Eq (2.14) and using the equilibrium conditions for Z,:

YupH>By,  ywpHoB, .
=nyH, + , = ™™ + 0p)Es,
¢ =nuH, [+0pB° 1+0sB, e (ng + op)E,

OpE, = €™ ny2,, OpZ, = €"“*ngB,,

and using the following equalities:

H,,B,, (1 +ypB) EH, B, +ysB) 1 +ypB H; B,E
=In +In| ——— +ln(—)+ln—,
HB(1 + ygB,,) EH;Bi(1 + y3B,,) 1 +ypB; H BE;
E, ZE, ZE;
In|—]=1In >+ In[=—=],
E ZE; Z;E
Z. BiZ, BZ;
In[—=2|=1In 1+ In[=—=], (2.15)
Z BZ; B.Z

where i = 2,3, we get:

dN, _ nu(H - Hy)?

H,,B., Ex(1 +y3B
_e“4“"‘(77E+6E)Ez[F( o 2)J (Hz)

dr H H,BE(1 + y5B.,) H
+F (ZZE(US ) + F(BZZ%) + F( L +ysB )] e Yp(ng + 6p)(B — B,)* E,
ZE, BZ, 1 +¢pB,; (I +ygB)(1 + ¢y pB,)B,
3 aiw; 2
Lo +5 H,C
e =1 meny(n + 61) (Rs— 1)C - YucYcH> ‘
HC(SL 1+ lﬁCC

Since R; < 1 then, 2 < 0 for all H,L,Y,E,Z,C,B > 0. Further, 2 = 0 when H = H,,

E =E, Z=12,, B= B;and C = 0. The solutions of system (2.1)—(2.7) tend to Q, which contains
elements with C = 0, which gives C = 0. Equation (2.6) implies

0=C=e"0Y,, = Y(t)=0, foranyt.
Then, Eq (2.3) becomes
0=Y=e""5L, = L(t)=0, foranyr.

Therefore, Q, = {Z,}. Applying LIP, we get Z, is GAS. |

Proof. Define

Theorem 4. Consider (2.1)—(2.7) and suppose that R3 > 1 and R4 > 1, then E; is GAS.
H L 21 | Qiw; )
A3:H3F(H )+e (@ + 01)

E
ol esely
3 Ly or Y3 E;

e 4“’“(’7 + 5E)Z Fl£ o™ Sy (e + 5L)C Fl&
OF Zs Ocor, ’ C3

) YreHCs f . (H(u)au)(l ¥ ¢CC3)) "
I +ycCs H;C5(1 + ¢y cC(u))

—w1

) + ML F(

50 aiw;

=4 ¥tV +0

e~ ="z (nE E)B3F
93(51;
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o " (LW . yusHBs [, (HGB@( +yyBs)
+ e (L + 5L)L3IJF( L )du + 108, lﬁBB3_‘fF( HiBA(1 + U5BGD) )du
w4 (l/t) eZ, '(I'w’UY(TIL + 6L) t Y(l/t)
(nE +6E)E3f ( E3 ) u+ (5L Y3 fF (73) du

t

L ¢ Zai UZ(UE+5E) 3fF(Z(u))du
O /3

—we

We calculate % as:

dA3 H3 )’HCH C  yupHB
1 ——||¢—nuH =
dl 1 + lﬂcc 1+ I,[/BB

L 1 + lr//CCau

22 qiw;
e zzla’w’(nL + 61) Y3 —aw
s (=g lemats, —m]

(L + 5L)L]

E; ) [e_‘“‘““ )’HBHw4B

+ ™ (1 - —
1+ lﬁBB

Z - (e + 5E)El

5 o
e :=4a’w’(77E + 6E) Z3 0w
(1= 7l onta, —nez]

ny(ne +0r) ( C3) _
1 - 2 )[e ™6, - ncC
Hch C [e C 3 Nc ]

0 qiw;
oy iw; +6 B
N e==4"nz(ng + Og) (1 _ _3)[ T p 2 — B
0p0E

YucHC — YucHo Co, N YucH3C3 In H, C,,(1+y¢c0)
1+ lﬁcc 1+ l//ccwl 1+ !ﬁcC3 HC(I + 1//ch1)

E QWi

L,
+ e (np + 0)L — €' (n, + 01) Ly, + €' (72 + 61)L3 In (Tz)

’)/HBHB )/HBHw4Bw4 + yHBH3B3 1 Hw4Bw4(1 + wBB)
- n
l+ypB  1+ypB,  1+ypB; HB(1 +y3B,,)

E,
+ M (g + 6p)E — e (g + 6p)E., + €M (g + 6p)Es ln( ES )

+ €Z?=la’w'77Y(77L + 5L) 6’ i Ny + 01)
or oL

@i, S @iw;
+ e my(me +5L)Y In & + =i (g +5E)Z
6L 6E

6’2'5:40"“)"772(775 + 0g) i Mz(Me + Ok) 7. 1n ( w6)
_ A )

Yo,

Ly +
(5 E 6E

(2.16)
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Then collecting terms of Eq (2.16) and using the equilibrium conditions for =j:

YucH3C3 +7HBH333 YucH3C3

= nuHs + , = " (5, + 6,)Ls,
¢ = nyHs; T+0cCs T+0sBs 1+ 00Cs "' (my + o)L

51 Lx = M2 YHBH3B3 _ aws _ asws
Ly = e nyYs, T+ 0B UaBy e (Mg + 0p)Es, OpEs; = e nyZ;,

OcYs = e ncCs, OpZs = e npBs,

and equalities (2.13) and (2.15), we get:

dAs _ nu(H - H;)? H3) F(lecw1L3(1 + lﬁcC3))

_ _ Laiwg +67)L F(— +
" o e (nL +61) 3[ H H3C5L(1 + ¢ cCy,))

Yi;L, CiY, 1 C

|22 p P2 ) o F e
YL, CY; 1 +4¢cCs
(E) L F Hw4Bw4E3(1 + wBB3) L F Z3Ew5
H3B3E(1 + yigB,,,) ZE;

— €a4w4(ﬂE + 6E)E3 F

H
, (Bgzwé) . F( I +ysB )] e+ 61)(C = C5)?

L
BZ; 1 +ypBs (I +ycO)d + ¢cC3)C3 :

e Y p(nE + 0g)(B — B3)?
(I +ypB)(1 + YpB3)B;3

3.

So, we get % < Oforall H,L,Y,E,Z,C,B > 0. Further, % =0when H = H;, L = L3, Y = Y3,

E =Es, Z =17, C = C; and Z = Z;. Therefore, Q5 = {Z;). Applying LIP, we find that Z; is GAS. O

We have compiled the existence and global stability conditions for each equilibrium point in Table 1
based on the aforementioned results.

Table 1. Existence and global stability conditions of the equilibria of system (2.1)—(2.7).

Equilibrium point Existence conditions Global stability conditions
Ey = (Ho,0,0,0,0,0,0) None Ri<landR, <1
&, =(H,,L,Y,0,0,Cy,0) Ri>1 Ri>land R, <1
&, = (H,,0,0,E,,7,,0,B,) Ry > 1 R,>land R; < 1
E3 = (Hs, L3, Y3, E5, 75, C3, By) Rs; > 1and Ry > 1 Rz >1and Ry > 1

3. Model with distributed-time delays

In the preceding section, we assumed that:

(1) The formation time of each latently infected cell is fixed;

(i1) The activation time of each latently infected cell is fixed;

(iii) The maturation time of each newly released viron is fixed. It is evident from a mathematical
and biological perspective that the distributed delay (where the time delay is taken as a random variable
drawn from the probability distribution function) is more appropriate in real-world scenarios than the

discrete delay. There have been several studies on virus infection models with distributed-time delays
(see [27,31]).
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3.1. Model formulation

In this section, we extend the two-virus model presented in the previous section by including six
distributed-time delays as:

H(1) = ¢ —nuyH(®) -

YucH@)C(1) _ YupH()B(1)
L +ycC() 1+ ypB@)’
H(t — w)C(t — w)

L(r) = )’Hcfo Pi(w)e™ [+ 0cCl—) dw — (n, + 6.)L(),

Y(t) =6, f%z Pry(w)e ™“L(t — w)dw — nyY (1),
0

0o %4 s H(t — W)B(t — w) B
E@) = 7HBJ; Py(w)e 1+ UpBl—w) dw — (Mg + 6p)E(1),

Z(t) = 6g fﬂs Ps(w)e™ @YE(t — w)dw — nzZ(t),
0

C(t) =6 fm P3(w)e” @Y (t — w)dw — ncC(1),
0

B(r) = 6 f% Po(w)e™ “Z(t — w)dw — nB(t).
0

(3.1

(3.2)

(3.3)

(3.4)

(3.5)

(3.6)

(3.7)

Here w is random taken from probability distributed function P;(w) during time interval [0, %;], where

%; 1s the limit superior of the delay period, i = 1,2,...,6. We have the assumptions:

(i) The probability of uninfected cells touched by viral types C and B at time ¢ — w surviving w time
units and becoming latent infected cells at time ¢ are represented by factors P;(w)e ““, where i = 1

and 4, respectively

(ii) The probability that latent cells infected with viruses type C and B at time ¢ — w would survive

w time units and become active are shown by factors P;(w)e™*“, where i = 2 and 35, respectively.

(ii1) The probability that immature viruses type C and B at time 7 — w survive w time units to become

mature viruses at time ¢ are shown by factors P;(w)e™*“, where i = 3 and 6, respectively.

Function P;(w),

i=1,2,...,6satisfy P;(w) > 0 and

f P(w)dw =1, f Pi(w)e"“dw < oo,
0 0

where n > 0. Let us denote that

g:j‘a@y%%@i:LGqﬁ
0

This implies that 0 < #; < 1. The initial conditions for system (3.1)—(3.7) are the same as given by

Eq (2.8), where w*

3.2. Preliminaries

= max{x, %2, ...,%e}.

Proposition 2. The solutions of system (3.1)—(3.7) with initial (2.8) are nonnegative and ultimately

bounded.

AIMS Mathematics
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Proof. We have that
H |p-o= ¢ > 0.

Hence, H(¢) > O for all # > 0. Moreover, for all ¢ € [0, w*], we have:

t

%1
L(t) = 52(0)6—(TIL+5L)t +yHCfe_(UL+5L)(t_r)f Pi(w)e™@¢
0
0

H(r— w)C(r-w)
T+ 00C(r =) i

t

72
Y(t) = 63(0)e™™" + 5Lfe_'"(’_”)f Pr(w)e™ ™ L(r — w)dwdr,
0

0
1

74
E(t) = 54(0)8_(T]E+6E)t + ')/HBfe_(UE+5E)(l—r) f P4(w)e—a/4a)
0
0

H(r — w)B(r — w) dodr.
1+ t//BB(r - C())

t

25
Z(t) = t5(0)e™™" + 6 f e f Ps(w)e”“E(r — w)dwdr,
0
0

t
C(t) = Lo(0)e ™ + ¢ f £ et f @)Y (r — w)dawdr,
0
0

t
%6
B(t) = €7(0)e™ ™" + 05 f e =" f Pe(w)e ™ Z(r — w)dwdr.
0
0

Hence, L(t), Y(¢), E(t), Z(t), C(t), B(t) > 0 for all ¢ € [0, w*]. Through recursive argumentation, we get
L(t), Y(1), E(t), Z(t), C(t), B(¢t) for all t > 0. Therefore, H,L, Y, E,Z, C and B are nonnegative.
The nonnegativity of the system’s solution implies that:

H(t) <¢—-nyH({t) = limsup H(t) = Uﬂ = ap.
1—00 H

Let us define ”
D) = f Pi(w)e ™ “H(t — w)dw + L(t).
0

Then

b, (1) = fﬂl Pi(w)e ™ H(t — w)dw + L(1)
0

B YucH(t — w)C(t — w) B vupH(t — W)B(t — w)
1 +ycC(t — w) 1 +ypB(t — w)

s f Py(w)e ™ [¢—nHH<r—w>
0

H(t - w)C(t - w)

LT 0ot o e 1+ 0L

73
+ Ve f Py(w)e™
0

=¢ " Pi(w)e "“dw — ny fﬂl Pi(w)e " H(t — w)dw
0 0
H(t — w)B(t — w)

1+ UpB( - ) dw — (. + 61)L(2)

%
_7HBf Pi(w)e™®
0
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<¢—nu f Pi(w)e " H(t — w)dw — (n, + 61)L(2)
0
<¢—-o0 U% Pi(w)e ™ “H(t — w)dw — L(z)] = ¢ — oD(2).
0

It follows that

lim sup @, (¢) < i = a; = limsup L(?) < a;.
t—00 (on] t—oco

Let »
Dy(1) = f Pi(w)e “H(t — w)dw + E(1),
0

then,

b,(1) = f N Pi(w)e ™ H(t — w)dw + E(t)
0

YucH(t = w)C(t —w)  yupH(t — W)B(t — w)

o e e s Y TR
"4 e HE-—WBl-w)
ey [ Patore e SR b~ (1 + o))

V7 24
= ¢f Py(w)e *“dw — ny f Py(w)e ™ H(t — w)dw
0 0

H({t - w)C(t - w)

—)’Hcfo Py(w)e” ™ T+ 0cCl— ) — (e +0p)E(D)

<¢—1u f Py(w)e™H(t — w)dw — (ng + 6p)E(1)
0
<¢p-0, [fm Piy(w)e  ““H(t — w)dw + E(t)] = ¢ — o, O(1).
0

It follows that

lim sup @, (1) < i = a, = limsup E(t) < a,.
—0o0 () t—o0

From Eq (3.3) we get

Y(t) =6, fﬂz Pr(w)e™®“L(t — w)dw — nyY(t)
0

5
< Spar - myY(t) = limsup (1) < 222 = g,
t—o0 nY

Equation (3.5) implies that

Z(t) = 0g f”s Ps(w)e “E(t — w)dw — nzZ(t)
0

Opay

< 0pa; — nzZ(t) = limsup Z(¢t) < = a,.
t—o00

nz
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Similarly from Eqgs (3.6) and (3.7) we get

. 0
C(t) < Ocas — neC(t) = limsup C(¢) < €8 = g,
t—o00 nc

: 0
B(1) < Opay — npB(r) = lim sup B(r) < = = g,
t—o0 nB

Based on Proposition 2 we can show that I' is positively invariant for system (3.1)—(3.7). |

3.3. Equilibria

We calculate the model’s equilibria deduce when they exist. Any equilibria point
E=(H,L Y E,Z C,B) satisfies:

yucHC  yusHB

0=¢—nuH - ,
O A e T 14 ugB
YacHC
0=P — +0,)L,
11+lﬂcc (mr +61)
0=%P0.L~-nyY,
vusHB
0= — +0p)E,
7’41_'_'7[/33 (Mg + Ok)

0 =Ps0cE —nzZ,
0 =P30cY —ncC,
0 = PelsZ — nsB. (3.8)

System (3.8) admits four equilibria.
(D) Infection-free equilibrium, =y = (H,, 0,0, 0, 0,0, 0), where Hy = ¢/ny.

—
=

(II) Virus type C single-infection equilibrium =, = (H,, L, Y;,0,0, Cy,0), where

+9d7) + 0.0 H3_ 7),'
H, = NyNc(Mr +01) + Ycddy, gc S nyNcnu : R, - 1).
0L0c(muc + yuc)l;_ Pi 0L0c(Muc + yuc )T, P
N NH
= R -1, Ci=—®R -1,
P30cMuc + Yuc) : : (Mu¥c + Yuc) :

where, R; is given by
B Hob10cyncIl_ P

b nync(n +6r)

It follows that, Z; exists if R; > 1.

(IIT) Virus type B single-infection equilibrium =, = (H,,0,0, E, Z,,0, B,), where

+0p)+6 0110 P;
H, = nzns(Me + 0g) + OpYpd 63 U NzNBNH : Ro— 1),
Opbp(uyp + VHB)H,-:ﬂ)i Opbp(uyp + VHB)Hi:57)i
nBNH NH
= R, - 1), Bh=— (R -1,
PeOp(Mup + YHB) ? ? (MuYB + yup) ?
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where
B Hobp0gyusle P

2T nzns(Me + Ok)

Therefore, =, exists if R, > 1.
(IV) Coexistence equilibrium Eg = (Hg, L3,Y3, Es, 75, C3, B3), where

B QY 6100y O 0TI\ P; + nyncypde0p(ny, + SIS, P; + nznpdcd0c(E + 6p)IL_ | P;

6£056.0c(Muyc¥s + Yuc¥s + YL P
nyNcMuys + Yus)

3

2

Ly = — R - D),
0L0c(Mucds + Yuc¥s + Yupb o)L, P;
+
Y; = Nc(Mu¥p + Yup) Rs — 1),
P30c(Muycp + Yuc¥s + Yup¥c)
By = nzneMu¥e + Yuc) _ Ry — 1),
OeOp(Mucys + Yuc¥s + Yupb ol P
+
7 = nsMu¥c + vuc) Ry —1).
PeOsMuyc¥p + Yucys + yupbc)
+
C, = 11Y's + Vit R — 1),
NuYcYs + YucYs + Yuplc
B, = nuYc + Yuc R — 1),
NuYcYs + YucyYs + Yuplc
where
R YucoL0cl¢w pdp0pI1S P + nznp(ne + 6p) I P;
3= ,
nyncde0p(L + 6L )Muys + yup)C,P;
R, — YupSeOpldwcd L 0cIL | P + nync(n, + 6,)1, P
4 = .

nznE610c (e + 6) e + yuo)IL | P;

Clearly, Z5 exists when R; > 1 and Ry > 1.

3.4. Global stability analysis

Let ®,(H,L,Y, E,Z,C, B) be a Lyapunov function candidate and T ; be the largest invariant subset
of

do; ,
Ty = (HLY.EZCB): — =01, j=0.124

We denote
(H,L,Y,E,Z,C,B) = (H(), L), Y(t), E(t), Z(1), C(¢), B(t))

and

(H,,L,,Y,,E,,Zy,,C,,B,) = (H(t — w), L(t — w), Y(t — w), E(t — w), Z(t — w), C(t — w), B(t — w)).

Theorem 5. For system (3.1)—(3.7) suppose that R; < 1 and R, < 1, then &, is GAS.
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Proof. Define

H (ML +01) (Mg + Ok)
®y = HyF — L+ ——"Y + E —_—7
’ ( )+ P P1P201, Py P,PsOr
t
ny(ne +6r) nz(Me + Og) f I _ H(u)C(u)
C B+ — P @~ dud
PP, PO, PaPPelsor sol yHe Hw)e 1+ gcC)
—w
t t
(L +0) (™ _ f 1 f ”4 _ H(u)B(u)
R P @O L(w)dud — P @ ——— —dud
+ PP, ) H(w)e (w)dudw + 7)47;,3 ) wW(w)e T+ 0pBGD) udw

—w —w
(e +65) [ 1 (1 +61) 1
NE + 0k ’ _ ny(me +61) (7 _
—_ P @ E(u)dud _— P YN Y(u)dud

+ PP ) s(w)e f (w)dudw + P PPor o s(w)e f (u)dudw
—w —w
t

nz(me +6g) (¢ _ f
—_ Pos(w)e™ ™ | Z(w)dudw.
PisPsPeor Jo () )

t—w

It is seen that, ®y > O forall H,L, Y, E,Z C,B > 0, and ®y(H,, 0, 0,0, 0,0, 0) = 0. Calculate @ as:

d®, _(1 Ho) . _ yucHC  yupgHB
dr H Mt = eC T 1+ upB

1
+ _
P
(nr +61)
P1P261
1
+ _

4
P P
P, YHB‘fO s(w)e 1+ 5B, w
+0
4 VIE T OF) (e E)

5
1) P TBCE dw —ngzZ
PP, [Ef s(w)e w =1z ]

ny(me +06r)
P1P2P30c0,

nz(Me + Ok) f%(’ _ YucHC
T2E 2 08) g [ po(w)e ™9 Z, dw — npB| + L=
P1PsP60p0E [ ? e @ 1 +ycC

- %IYHC fm Pl(w)e_‘”“’—1 f‘;cc‘éwda) + —(UL;I(SL)L

(n;);;)(zL) ) Py(w)e ™“L,dw + B/ZBZBB
- %47113 f(; N Py(w)e ™ Tou B fuli%w dw + —(nE;fE) E
- (]7;)4—;)?5) 0%5 Ps(w)e ““E dw + —77)’;717;);?)

ny(nr +6r) %3 ~ n7(ng + SF) n7(E + 6) 26 )
T oo 5 P Q3wad + Z _ P abewd .
P1PP361 Jo s(w)e @ P,PsOk PP Pebs c(w)e w

1 H,C
P me 278 dw—(n,+6;)L
YHC fo 1(w)e e w— (1 +0r) ]

2
or f Pr(w)e ™ L,dw — nyY]
0

—(ne + 6E)E]

%3
[Hcf Py(w)e @Y, dw — nCC]

Y
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Collecting terms and using the equilibrium condition ¢ = nyH,, we get:

d® _ (H-Ho? yuc¥cHoC® _ yupysHoB®
a MR 1+ ¢cC 1+ 5B
nync(ne +6r) nzns(Me + Ok)
+—— R -1)C+ ————(R, - 1B.
PPProco, VT D p pgs, 2

Since R; < 1 and R, < 1, then % < O forall H C,B > 0. In addition % = 0 when H = H,
and C = B = 0. The solutions of system (3.1)—(3.7) tend to Ty [40] which includes elements with
C = B=0. Thus, C = B = 0 and from Eqs (3.6) and (3.7) we have:

%3
0=C= ch P3(w)e Y, ,dw = Y(t) = 0, for any t,
0
%6
0=B=6; f Pe(w)e™ ™“Z,dw = Z(t) = 0, for any t.
0
Then from Egs (3.3) and (3.5) we get
%
0=Y= 6Lf Py(w)e ™ L,dw = L(t) = 0, for any 1,
0

%5
0=Z7Z=56g f Ps(w)e ™“E, dw = E(t) = 0, for any ¢.
0

Therefore, To = {Z,} and applying LIP, we obtain that &, is GAS. O
Theorem 6. For system (3.1)—(3.7) suppose that R; > 1 and Ry < 1, then Z; is GAS.

Proof. Let us formulate a Lyapunov function ®, as:

HY 1 5 1
o =urF( L)y Lo (L) @toy (V) L g
H, L1 Yl

1 P P1P20L, Ps
(me + 5E)Z 4 ny(nL +96r) cF (= C 772(7715 + 0g)
PsPs50E P1P2P36c61 C, 1 P4P5P69B5E

1 yucH,C, (™ —w Hw)Cu)(1 +ycCy)
P T+ ucC fo Prlw)e fF( H Cr(1 + 9cCl) )d”d‘“

—w

(m +61) —w ()
e, Llfo Prwe f(Ll )dd

—w
t

t
1 %4 H B 5 75
+ —VHBf Py(w)e ™" Mdudw + (1 + 0p) P5(w)e_“5‘”fE(u)dudw
0

Py 1 + ypB(u) P1Ps
t—w t—w
t t
ny(ne +96r) f _ nze +0g) ¢ _ f
+ ——271Y, Pi(w)e ¢ | + ——= Pe(w)e ¥ | Z(u)dudow.
PP P35, 0 () PsPsPeor Jo () 0
—w —w
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dO,

We calculate = as:

@ :( B _) - B YucHC B vupHB
dr H T T T3 weC 1+ usB
1 L, 1 chw
— (1= P MY~ dw - L
+ ( )[?’Hcfo 1(w)e T+ 0cC, w— (L +0r) ]
Y
N (m +61) ( !

)
——1- —) 1) P “ner dw —nyY
P P05, 1% [L‘f(; 2(w)e W — Ny ]

1 4 H,_B

— Py(w)e™ ™ —""—dw — 6p)E
+p4 YHB fo s(w)e T+ UsB, w— Mg + 0F) ]

(Mg + 0k) f”s _

£ _2s P SO dw—n,Z

PP, [0k ; s(w)e w — nzZ]

ny(nL +6L) ( C ) fm —a
p DAL EOD (1 Tl [ p “Y,dw - neC
P PP0CO, C C . 3(w)e W —1c

nz(Me + OF) f o _
|0 P ¥6wz dw—ngB
PP PeOsor [ B . s(w)e W —1np

YucHC 1 f’“ _ H,C,
; _ Pi(w)e o —2=e_g
L+ycC P e 0 1(e)e 1 +ycCy, v

1 yucH\C, f%' Pl(a))e_“‘wln(HwC“’(l + 'J’cc))

Pr1+ycC Jo HC( +ycC,)
e ;1 ou)y _ ('7;);‘?) 0%2 Py(w)e L, dw
+ —(n;);)iL)Ll fo N Pr(w)e™ ™ In (%) dw + f/iBZi
- 5%4)’15{3 fo’“ P4(w)€_a“”%dw + %E
_ —(’7;):25) 0%5 Ps(w)e™ " E ydw + DI T OL) Y;)’Z;): (;L) Y
- —UPYI(UPZ;;ZLL) 0%3 P3(w)e @Y dw + —];I;I(ZDLQ;ELL) Y f(; N P3(w)e”“ In (Y—;)dw

%6

+ ”Z;J’Z’;;?)z - ’Zﬁ”?“;;;;’;) - Plw)e " Zydo (3.9)

Simplifying Eq (3.9) and using the equilibrium conditions for Z;:
¢ = nuH, + yucHC) ’ YucHC,
L+ycCi 1+y¢cC

ProLLy = nyYy, Ps0cY) =ncCy,

1
= — + 7))L,
Pl(nL L1

and the following equalities:

(Hwa(l + Ll'cC)) (LinCw(l + lﬁcCi)) ( 1+ t//cC) H; (CiL)
In =In +In| ———— +ln(—)+ln— ,
HC(1 +ycC,) LH,.Ci(1 +ycC,) 1+ ycC; H CL;
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C,Y Y,
ln( ):ln Gl (€Y, (3.10)
CY; cCY
where i = 1, 3, we get:
doe H — H,)? H,B H 1 C
1 :_UH( )" yus¥sH, ——(77L+5L)L1 ( 1)+F +¥c
dt H 1+l//BB H 1+lﬂcC1

Ye(n, +6,)(C — Cy)? “ —oror [ HoCoLi(1 + ¢ cCy)
TP+ 0O + 9l 7¢m+mul:mwy F@MMM+%@J

) L
(L + 6L f Pz(a))e_”z“’F( ! )dw
0

B 7)17)2 YLI
1 % _ CiY, nzne(Me + Ok)
- S)L P BOL d -1)B
PP (L +61) 1£ 3(w)e (CY1 ) w + PP Pebsds Ry = 1)

Since R4 < 1 then, d®1 <Oforall H,L,Y,E,Z C,B > 0. Moreover, ®‘ =0when H=H,,L=1,,

Y=Y,C=C,and B = 0. The solutions of system (3.1)—(3.7) tend to Y, which includes elements
with B = 0 which gives B = 0. From Eq (3.7) we get

%6
0=B= Ggf Pe(w)e ™ “Z,dw = Z(t) = 0, for any t.
0

Then from Eq (3.5) we have
0=Z-= 6Ef ; Ps(w)e “E,dw = E(t) = 0, for any t.
0

Hence, T = {Z,} and Z, is GAS using LIP. m|
Theorem 7. For system (3.1)—(3.7) suppose that R, > 1 and R; < 1, then =, is GAS.
Proof. Consider

o =mr(L) s Loy —("L o0y L pp(E), eton), (2

N ny(ne +96r) C4 UZ(UE+5E) B.F B
P1P2P30c01 PiPs5P60p0E B,

t
23

dudw + P 09 | T (w)dud
T+ ucca et ~p o |, Pk jw”””

—w I—w

I HB, (M (H@BGu)( + 5B)
Eﬁwﬁ+w&l:m@k J}(m&a+wmw)w“’

1
+ —YHC

f”l P (w)e-1 H(u)C(u) (ML +61)
Py 0

—w

t
(e + OF) f _ f E(u)
———F P e F dud
+ PP 5 | s(w)e E udw

—w

AIMS Mathematics Volume 9, Issue 6, 13770-13818.
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t

t
ny(me+01) (7 _ f nz(Ne + 6k) f“ - f Z(u)
—_— P SN Ywdudw + ————Z, P ®@ | F| —=—|dudw.
+ P PPor o 3(w)e (u)dudw + PPPeo, 2 ; c(w)e Z udw

—w —w

We calculate % as:

d@2 _ H2 ’}/HCHC ’)/HBHB
—2 =(1-22|¢—nuH - -
dt H 1+ycC 1+ypB
" 1 f%l p ( ) W Hwa d ( +5 )L
— w)e —dw —
P YHC . 1 1+ucC, L + oL
(L +61) fm -
+—=10 P QL dw —nyY
P95, |°F ; 2(w)e w =Ty
1 E, "4 H,B,
+ — 1——) P Y —— —dw — +0p)E
P, ( 5 [VHBJ(; s(w)e 1+ UsB, w — (Mg + Ok) ]

(Mg + 0F) ( Z,

%5
— 1 - —) 1) f P TSR dw —nzZ
PP, 7 [E . s(w)e w =71z ]

ny(me +06r) f 3 _
LY 00 fo | py(w)e Y, dw — eC
P PrP00, [ c . 3(w)e w —T1c
nz(Me + Ok) ( Bz) f%(’ _
1280 ¥ OF) (1 22V g [ Po(w)e ™z, dw — npB
PP sPeOsox 5|0 | Powe @B
YucHC 1 f”l _ H,C, (m +61)
G yuemt Pi(w)e 0@ dw + L
LrgeC 20 )y DO T
(77L + 6L) "2 — )/HBHB 1 fM — Hwa
_HTOU T b (w)e L dw + - Py(w)e e B0y
PPy Jy TN Ot B P ) P T s,
1 yugHyBy (™ H,B,(1 + 3B
. L yusHBs f Pu(w)e ™ In (1 +y5B) dw
Psl+ypB, Jy HB(1 + yB,,)
(Mg + Ok) (e + ) (7 _
+ E- Ps(w)e UE, d
Ps PisPs  Jo sw)e @
(Mg + Ok) f”s _ (Ew) ny(nr +96r)
L ETOB) g [ pyw)e s In (22 ) doy + PEIL T OL)y
pps ), DPWeTINE )t T o,
ny(L +6) (7 _ nz(Me + 0k)
AT OU T p ()Y, dw + TEIET OB 5
PP, Jy | T T Ppor
_ nz(g + 9E) e nz(Me + Ok)

Po(w)e " Z, dw + TIE T OF)
P.PsPeoe Jo slw)e v P1PsPeOE

Then simplifying Eq (3.11) and using the equilibrium conditions for =,:

16 Z
A f Pe(w)e ™™ In (—‘“)dw. G.11)
; Z

H,B H,B 1
Yuptls 2, YHBI12D2 = — (g + 6p)Es,
L+ypB, 1+ypB, Py
Psopk, = Uzzz, PeOpZy = 77332,

¢ =nuH, +

and the following equalities:

ln(Hwa(l + wBB)) — ln(EinBw(l + wBBt)) + 11'1( 1+ '//BB) + ln(ﬂ) + ln(@) i
HB(1 + y3B,,) EH;B;(1 +ygB,) 1 + ypB; H BE;
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)- m(%) . m(%), (3.12)

where i = 2,3, we get:
do® H — H,)? H,C? 1 H 1 B
2 :_UH( )" YucYcHs ——(77E+5E)E2 F(—2)+F + g
dt H 1+ycC H 1 +ygpB,

_ V(e + 6p)(B — 32)2
P41 + ypB)(1 + YpBy)B;

15 E
Ey [ Ps(we ™“F|==2|d
(e + 0k) 2](; s(w)e (ZEZ ) w

%4 H,B,E,(1 B
E2 P2(nE+6E)E2f P4(w)e—(l4a)F( wPw 2( +lr//B 2))
0

H,BE(1 + y5B,)

- PuPs

%6 ~ 2Ly, neny(me + 6r)
+6p)E P WOF do+ 5 b paes, Vo~ DE
(Mg + OF) 2‘f0 s(w)e (BZz) w PP P3061 (R =D

PP

Since R; < 1 then, @ < Oforall H L Y,E,Z,C,B > 0. Further, d—gtz = 0 when H = H,,
E=E, 7Z =12, B= B;and C = 0. The solutions of system (3.1)—(3.7) tend to Y, which contains
elements with C = 0, which gives C = 0. Equation (3.6) implies

3
0=C-= Hcf Piy(w)e ™Y, dw = Y(t) = 0, for any .
0
Then, Eq (3.3) becomes
%2
0=Y= 5Lf Pr(w)e ™“L,dw = L(t) = 0, for any t.
0

Therefore, 1> = {Z,}. Applying LIP, we get =, is GAS. O
Theorem 8. For system (3.1)—(3.7) assume that R; > 1 and R, > 1, then =3 is GAS.
Proof. Define a function ®j3 as:
H 1 +0 1 E
@3 = H3F —L3F MYﬂ: —E3F
H) P L3 PP Ys) Pu Es

N (77E+6E)Z3F Z\. ny(n +0r) CoF c N nz(Me + k) BiF B
PsPs50E Z3)  P1P2P30c6L Ci)  PsPs5Pebpok B;

1 yucHsCs (™ o (o (H@C@)( + 9 Cy)
+¢Tll+wccsfo Sl f F( HyCA(1 + yeC(u) )d”d"’

—w

(ML +61) —w L(u)
+—P1P2 L3L Pz(a))e f ( L3 )d dw

—w

U yusHsBy (o (HB@)(1 + 5B)
+¢T41+w333f0 Putwe f : ( HBy(1 + 4 5B(w) )d”d“’

—w
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t
(ne + 6k) f - f E(u)
+ ——-F P e IF dud
P 3 ; s(w)e ) udw

—w

p Lt o), f Pa(w)e f F(@)dudw
0

P1P2P301 3
—w
t
nzMe + 0k) f _ f Z(M))
+— "7 P ¥ | Fl —= | dudw.
Py PsPebr 0 slw)e Z3 Haw
-w

We calculate =3 as:

d®3 _ H3 ’}/HcHC ’)/HBHB
I 1- ¢ ﬂHH -
dt H 1+ lﬂcc 1+ l//BB

1 Ls f”' 3 H,C, ]
1- —) Pi(w)e alw—du) +06;)L
7')1( 7 [YHC ; 1(w) T U, (mr +61)

(n +0r) ( 1%) f”z _
PRy R | P P L dw —nyY
PleéL % L . z(a))e w Ny

1 E; a H,B,
1——) P e T = do — orp)E
(1= E )y [ P e s+ e
(77E+5E)( Z3

%5
| - —) 5p | Psw)e ™ E dw—n,7
PPop 7 [EI) s(w)e w—1z ]

ny(ne +6r) ( C3) fm _
00 (1 - =3 )6 | Paw)e Y odw - 5cC
+ PP Pr0cs, c)lb | 3(w)e w —1c

nz(Me + Ok) ( 33) f’“ _ YucHC
L 208 (1 P go | pe(w)eZ, dw — nsB| +
PPPetgon \\ B)|% | Felwe ARl RS

1 %1 _ cha) 1 ’)/HcH3C3 f”l _ chw(l + l//cC)
- P alw—d - AavTToo P alwl d
p, THC f e e e Pl + e we “( HC(1+ycCy) )™

(nr +61) (L +61) _ (mr +61) f _ (Lw)
+ L - P @el . dw+ ————=L P Q29In| —=|d
P PPy Jy T e M W

’)/HBHB 1 f%4 _ Hwa
4 . Py(w)e o202y
1+ WBB 7)4)/HB 4(w)e I+ wBBa) @

N 1 yupH3B; f Py(@)e ™ In H,B,(1 +y3B) doo + (e + 5E)E
P4 1+ WBB3 HB(] + WBBQ)) PA,

+0 %s +0 E, +6
_ 08 7 e, de + TETOE) f Ps(w)e ™ In (f)dw 4 UL+ 1)
0

P.sPs Jo P1Ps P1P201
ny(nL +61) _ ny(nr +6r) f _ ( ) nz(Me + Ok)
L - P3(w)e ®°Y, dw + ————=Y Pi(w)e @ In| -2 |dw + 22— =27
P1P2P301 Jo () PP, P36, 0 () Y PsPs0k
nzme +6g) (¢ _ nz(Me + Ok) f _ (Za))
- P ¥wz d _—7 P @ n [ — | dw. 3.13
P1PsPeor Jo s(w)e @ P,PsPep 0 slw)e "Nz ) ©.13)
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Then collecting terms of Eq (3.13) and using the equilibrium conditions for =;

YucH3Cs  yupH3Bs  yucH3C3 1
=nuH; + + , = —(nL +0.)Ls,
¢ = nuts 1+ycCs  1+ypBy 1+ ycCs 501('” ks
H>B 1
P, oLz = nyYs, % = ?T(TIE +0p)Es, PsopEs =173,
8B;3 4

P30cYs =ncCs, PebpZs = npBs,
and equalities (3.10) and (3.12), we get:

— Hy) PN
d®; _  nu(H - H;) —%(nL+6L)L3[F(E)+F(1+¢'Cc)]_ We(n + 6.)(C — C3)

3

dt H H 1 +ycCs P1(1 + ycC)(1 + cC3)C3
1 H; 1 +ypB Ys(nE + 6p)(B — B3)?
=i, e+ On)Es [F(E) i (1 + ypBs )] P41 +yB)(1 + ypB3)Bs

(m +61) f’” _ (HwaL3 I+ lﬁcCs))
SO Py wyeeF d
e ’ 0 w)e H3C3L(1 + ¢ cC,,) “

_ (7L +61) f _ YsL,
Ly | Pyw)e ™ F|=22]d
pp, ), PH@e YL, )4

_ (e +25E) E f P4(w)e_“4“’F(H°’B“’E3 (1+ l//BBs)) do
P 0 H3B5E(1 + y5B,,)

_ et 08) f Ps(w)e_C‘S“’F(Z3E‘")dw +o0), f Py(w)e “’3“’F(CY )da)
0 0

PP ZE; P1Ps CY;
(ng + 0k) f _ B3Z,
-———F P WL dw.

PP 3 . s(w)e ( BZ, ) w

So, we get ©2 < 0 for all H,L,Y,E,Z,C,B > 0. Further, ©£2 = Owhen H = H3, L = L, Y = Y3,

E=E; 7Z= Z3, C = C; and Z = Z;. Therefore, 15 = {Z3). Applying LIP, we find that 25 is GAS. O
4. Comparison results

We compare our model (2.1)—(2.7) with the following model, where saturation is ignored:

H=¢—nuH - yucHC — yupHB, 4.1)
L=e""yycH,, Co — (L + 6L)L, (4.2)
Y =e 5. L, —nyY, (4.3)
E= a4w47HBHw4 B, —(ne + 6p)E, 4.4)
Z = e 6 E,, — n7Z, 4.5)
C = e 0cY,, —ncC, (4.6)
B= e %02, — npB. 4.7

Model (4.1)—(4.7) has only three equilibria:
(D) Infection-free equilibrium, = (H,,0,0,0,0,0,0), where Hy = o/ny.
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(II) Virus type C single-infection equilibrium =, =(H,,L,,Y,,0,0,C,,0), where

- 2 | QiW; +6 - l ;jw;
i, = nync(e L)’ I = = ey (R, —1).
010cyHC 5LQC)’HC
. a3w3 y
YI:#(*R—U Gr=T (R, 1),
CYHC YHC

(IIT) Virus type B single-infection equilibrium =, = (H,,0,0, E,,7,,0, B,), where

~ (x,w, + 5 - Zt Wi
a, = nzns(Me E)’ B, = € =5 Nz BN H (R, - 1),
O0rOpyns Orbpyus
- f6w6 »
zz_#(% 1), B=TL(R,-1).
BYHB YHB

We note that the basic reproduction numbers R and R, do not depend on the saturation parameters
Y and Y. It should be noted that the co-existence equilibrium is absent from this model and a number
of other models that have been published in the literature (see, for example, [7,23]). Consequently, one
of the elements that can lead to the coexistence of the two rival viruses is saturation.

Remark 1. When /3 = 0 and ¢ = 0, then R3 = and Ry = 52
Corollary 1. Consider (4.1)—(4.7) then:

() If R, < 1and R, < I, then &, is GAS;

(ii) If R; > 1 and R| > R,, then Z, is GAS;

(iii) If R, > 1 and R, > R4, then =, is GAS.

Next we show the range of the saturation parameters g and ¢ that ensure the coexistence
equilibrium will appear.

4.1. Coexistence conditions of the two competing viruses in terms of the saturation parameters g
and Y ¢

We have shown that the coexistence equilibrium Z3 appears when R; > 1 and R, > 1. When all
other parameters are fixed, R; and R, are functions of 3 and Y, respectively. In addition, we have

IRy s + 00 g
pr 2 ) ,

g e Ela “”5E77C77YGB(77L + L)Y + Yip)®

O0R, _ 4“!“”)’HB5E77077H77Y93(77L +01) (Ri— D).

W L5 nen,0c(ME + 65)Madc + Yrc)?

Hence, if R > 1 and R, > 1, then R; and R, are increasing functions of ¢z and ¥/¢, respectively.
Let us compute ™" and wg‘i“ such that

R; > 1, for all Y > Yo,
Ry > 1, for all ye > i,
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. +6p) (R, - R
min _ max {0’ UB’ZZ(UE E) ( 2 1)} ,
e_2f=4"i‘”i§EQB¢ sy\l -1

min _ neny(ne +6) (R — R,
C —max{O, — (‘Rz—l .

3
T 5 e

Then the coexistence conditions are
Ri>1, Ry>1, yp>yp™ and e > oo, (4.8)

We have two cases:
1) If R, >R, > 1, then

min _ 18Nz(NE + OF) (‘Rz - sRl)

B e_2?=4aiwié‘EgB¢ R, -1
Wz = 0.
(i) If Ry > R, > 1, then
?in — O,

neny(ne + 61) (%1 - 9%2)

Yoo = e—E;LI(l/iwié‘Lng) R, -1

We see that model (4.1)—(4.7) does not include the scenario where two types of viruses coexist. It
was noted that several patients in the studies reported in [14] had co-infections with two different strains
of HIV. As such, ignoring saturation might not provide an adequate description of the coinfection
dynamics between the two types of viruses (or strains). This lends credence to the notion of including
saturation in the coinfection model of two types of viruses, in which the coexistence of two types
of viruses is seen. Chronic viral coinfections can also result from other reasons, including immune
response [16] and superinfection [49].

4.2. Models under the influence of antiviral treatment

To demonstrate why it is crucial to incorporate latently infected cells and time delays in our
proposed model, we examine the model (2.1)—(2.7) in the presence of reverse transcriptase inhibitors
(RTIs), a class of medications that may effectively block the free viral infection of target cells. Let
ec € [0,1] and e€g € [0, 1] be the efficacies of RTIs for the viruses types C and B, respectively [22].
Under the effect of RTIs, model (2.1)-(2.7) becomes:

Yuc(l —ec)HC  yup(l — eg) HB

H=¢—nyH- : 4.9
¢~ 1+ ycC 1+ yyB 49)
. 1 - Hu) Cw
L = e 1 )/HC(l " ;C)C 1 [ (nL + 5L)L, (410)
C w1
Y = e 26, L, —nyY, 4.11)
. _ Yup(l — eB)Hw4Bw4
E = o %4 — +6p)E, 4.12
e T+ UsB., (e + Ok) 4.12)
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Z = e—stwS(SEEwS - nZZ, (413)
C = e *0cY,, —ncC, (4.14)
B = e %07, — nzB. 4.15)

The basic reproduction numbers of system (4.9)—(4.15) are:

-3 aw;
e == Hyo10cyVuc
RE =(1-¢€) =(1-€e)Ry,
! ¢ nync(me +96r) NS
-3° iw;
e == HyorOpyup
RE =(1-€p) =(1-¢ep)R,.
2 ? nzns(Me + Ok) B

We now compute the drug efficacies ec and €5, which make R{® < 1 and R{® < 1, and then stabilize
system (4.9)—(4.15) about the infection-free equilibrium =

: Ri-1
RE<les l2e 2= maX{lT,O}, (4.16)
I
. R, -1
%§B§1<=>126326§““:max{ ; ,O}. 4.17)
2

If the latently infected cells in model (4.9)—(4.15) are disregarded, we get

yuc(l —ec)HC — yup(l — €g) HB

H=¢-nyH - , 4.18
¢~ 1+ ¢cC 1+ y5B (4.13)
. 1 - e)H,, C,,
Y — e—(llwl )/HC(l " ;C)C' 1 _ UYY, (419)
CLYw;
. 1 —€)H,,B,
7 = emu YHB(l n ;B)B O 7, (4.20)
BDw,
C = e 4cY,, — ncC, 4.21)
B = e_aﬁw6932w6 - I]BB, (422)

and the basic reproduction numbers of model (4.18)—(4.22) are given by

e—(dlw1+d3w3)H09CyHC

‘RTC =(1-¢€) =(-e)R,
Uhyle

_ ~(awataswe) I 0 _

‘R;B =(1- EB)e WUBYHE = (1 - ep)Ro.
nz1nB

We determine the drug efficacies e- and €z, which make ‘RTC < 1 and ‘Rf‘* < 1 and stabilizes the
infection-free equilibrium of system (4.18)—(4.22) as:

_ . R, -1
9&?s1=>1zecz€?‘"=ma><{ % ,0}, (4.23)
1

_ . R, — 1
‘P\f“£1<=>12632€g‘1“:max{ ;\ ,o}. (4.24)
2
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Since 0 < 7“2 < 1 and 0 < ¢7*%5 < 1, then

e Ho5 Oy e < e MBS HS Ocyne  e” Y Hobcyne

%1 = = = %1’
nync(ne +6) nync(ne +0) Nyfc
_ e T oS Opyps e T HoS gy e @) HOgyyp @
%2 = < < - %2-
nzns(Me + Ok) nzns(Me + Ok) nzNes

Hence, R < anic and RS < 93\53 and thus eliminating the latently infected cells from the two-virus
co-dynamics model would lead to an overestimation of the basic reproduction numbers. By comparing
Eqs (4.16), (4.17) and (4.23), (4.24) we get that €™ < " and ej'" < €. Thus, in order to keep
the system at the infection-free equilibrium and remove the two types of viruses from the body, fewer
treatment efficacies will be needed when utilizing a model with latently infected cells.

Similar to the discussion, one can find that the presence of time delays reduces the basic
reproduction numbers. Then, when using a model with time delays, fewer treatment efficacies will be
needed to keep the system at infection-free equilibrium and remove the two types of viruses from the
body.

5. Numerical simulations

We perform numerical simulation for the model with discrete-time delays (2.1)—(2.7) in this section.
We use the values of the parameters given in Table 2. Using MATLAB’s dde23 solver, the system of
DDEs is numerically solved.

Table 2. The values of parameters of system (2.1)—(2.7).

Parameter Value Source Parameter Value Source Parameter Value Source
1) 10 [29,44,50] 6O¢ 1 [30] 7] 0.2 [51]
Nu 0.01 [50,52] 0p 1.2 Assumed 0.3 [51]
Yuc Varied - Ne 2.4 [29,44] ;3 0.4 [51]
YuB Varied - 1B 2.4 [29,44] y 0.5 [51]
Ye Varied - n 0.02  [44,53] as 0.6 [51]
Up Varied - nE 0.01  [50] g 0.9 [51]

Ny 0.5 [28,30] or 0.2 [53]

nz 0.2 [54] 5 0.003 [55]

5.1. Stability of the equilibria

In this subsection, we fix the delay parameters as: w; = 1, w, = 0.8, w3 = 0.6, w4 = 0.4, ws = 0.2,
and we = 0.1. Moreover, we solve system (2.1)—(2.7) with the following initial conditions:

I-1: (H(u), L(w), Y(u), E(u), Z(u), C(u), B(u)) = (800,5,1.5,100,1, 1,0.6),

I-2: (H(u), L(u), Y(u), E(u), Z(u), C(u), B(u)) = (600, 10, 3,150,2, 1.5, 1),

I-3: (H(u), L(n), Y(u), E(u), Z(u), C(u), B(u)) = (300, 15, 4.5, 200, 3,2, 1.4),
where u € [—1, 0].

Selecting the values of yyc, Yup,¥¢ and g leads to the following plans:

Plan 1. y5c = 0.001, vy = 0.0003 and ¢ = 3 = 0.01. These values yield R; = 0.38 < 1
and R, = 0.11 < 1. Figure 1 displays that the solutions initiating with I-1, I-2 and I-3 converge the
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equilibrium =, = (1000,0,0,0,0,0,0). This illustrates the global asymptotic stability of =, proven
Theorem 1. Both virus types C and B will finally be eradicated in this case.
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1.4

400 600

(g) Free viruses type B
Figure 1. Numerical solutions of system (2.1)—(2.7) when R < 1 and R, < 1 (Plan 1).

Plan 2. yyc = 0.005, yyp = 0.0005 and ¢ = ¢z = 0.01. For such choice, we have R = 1.92 > 1
and R4 = 0.10 < 1. It is evident from Figure 2 that for the three selected initial values, the system’s
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solutions converge to the equilibrium Z; = (530.5,17.47,5.5,0,0, 1.8,0). This shows that Z; is GAS,
according to Theorem 2. This situation represents the infection of virus type C only.
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(g) Free viruses type B
Figure 2. Numerical solutions of system (2.1)—(2.7) when R; > 1 and R4 < 1 (Plan 2).

Plan 3. yyc = 0.001,y5p = 0.005 and ¥ = ¥ = 0.01. These parameters provide that
Ry, = 191 > 1 and R; = 020 < 1. In Figure 3, we display that the equilibrium
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=, = (531.73,0,0,294.91,3.92,0, 1.79) is reached for all initials I-1, I-2 and I-3. This shows that =,
is GAS, according to Theorem 3. This situation represents the infection of virus type B only.
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Figure 3. Numerical solutions of system (2.1)—(2.7) when R, > 1 and R; < 1 (Plan 3).

Plan 4. yyc = yup = 0.01 and ¥¢ = ¢y = 0.9. For such values, we get that R3 = 2.35 > 1 and
Ra = 2.34 > 1. From Figure 4, we can see that the equilibrium
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3 = (490.25,9.5,2.99,160.3,2.13,0.98,0.97) is reached for the three selected initials. This
illustrates the global asymptotic stability of Z;3 proven Theorem 1. This case show the coexistence of
the two type of viruses.
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Figure 4. Numerical solutions of system (2.1)—(2.7) when R3 > 1 and R, > 1 (Plan 4).
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5.2. Impact of saturation on viral co-dynamics

In this part we show the effect of the saturation parameters ¢ and /¢ on viral co-dynamics. Here,
we fix the delay parameters as

w =1, w,=08, w;=06, ws;=04, ws=0.2 and we=0.1.

We have two situations to identify the values of /3 and /¢ that lead to the coexistence of the two types
of viruses:

Situation (I). R, > R > 1. In this case we choose
vac = 0.008 and 7ygp = 0.009.
Then we get
R =3.07041 > 1, R, =3.44588 > 1, ¢"™ =0.0473656 and " = 0.

Therefore, Z5 exists when

Yp > 0.0473656 and ¢ > 0.

Situation (II). R; > R, > 1. We take
vre = 0.009 and yyp = 0.008.
Then we get
R =3.45421, R, =3.063, ¢5"=00 and ¢2" =0.0494083.

It follows that, =5 exists when

Yp >0 and Y > 0.0494083.

Now we show the effect of the saturation parameters 5 and ¢ on the solutions of model (2.1)—(2.7)
in case of Situation (II). We consider the initial condition

I-4: (H(w), L(u), Y (u), E(u), Z(u), C(u), B(u)) = (600, 10,3,80,1,1,0.5), u € [-w",0].

Figure 5 shows the effect of saturation on the viral co-dynamics. We note that a rise in ¢ and ¥
results in a drop in the incidence rate between uninfected cells and the two types of viruses. This
decrease is followed by an increase in the concentration of uninfected cells and a decrease in the
concentrations of infected cells and free viruses. The infection-free equilibrium Z, will not be
maintained by raising ¢ and /¢ because the basic reproduction numbers R and R, are independent
of the saturation parameters.
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Figure 5. Numerical solutions of system (2.1)—(2.7) with different saturation parameters
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5.3. Effect of the delay parameters on viral co-dynamics

In this subsection, we analyze the impact of time delay parameters w;, i = 1,2,...,6 on the co-
dynamics of the two types of viruses. We fix the parameters that yyc = 0.009, yzp = 0.08, and
Ye =¥ =0.9. We consider the scenarios given in Table 3.

Table 3. Different scenarios for the delay parameters.

Scenario [} wy w3 Wy ws We
S1 1 0.9 0.8 0.7 0.6 0.5
S2 1.5 1.4 1.3 1.2 1 0.9
S3 2 1.8 1.7 1.6 1.5 1.4
S4 2.1329 2.1329 2.1329 1.916 1.916 1.916
S5 7 6 5 4 3 2

S6 9 8 7 6 5 4

We solve the system (2.1)—(2.7) under the following initial condition:

I-5: (H(u), L(u), Y(u), E(u), Z(u), C(u), B(u)) = (600, 10, 3,150,2,1.5,1), u € [-w*,0].

The numerical results are shown in Figure 6. It is observed that time delays might lead to a notable
rise in the quantity of uninfected cells and a decrease in the quantity of remaining compartments. We
note that, R; and R, given by Egs (2.10) and (2.11) depend on w;, i = 1,2,...,6 when all other
parameters are fixed. We observe from Table 4 that R, and R, decrease if w; increases; hence, the
stability of &, will be changed.

Now, we need to calculate the critical values of the delay parameters w;, i = 1,2,...,6 that make
the system stable around the equilibrium point Zy. Let we = w; = wy = w3 and wp = Wy = W5 = We,
and we write R (wc¢) and R, (wp) as:

"t Hyb1 ey ne

nync(n +61)

e—(a4+a5 +a6)wp H06E987HB

R =
1(we) nzne(Me + Ok)

, Ro(wp) =

Clearly, when all other parameters are fixed, R and R, are decreasing functions of w¢ and wp,
respectively. Let us calculate w™™ and 3™ such that R (™) = 1 and Ro(wy™) = 1 as:

min _ { 1 ( Hoo10cyHc )}
we" = max10, In ,
ay+ay+az  \nync(np +96r)
min _ { 1 ( Ho6r0yus )}
wp " =maxJ0, In .
as+as+as  \nzme(Me + OF)

Consequently,

Ri(we) < 1, for all we > wgi“,

Ro(wp) < 1, forall wp > W™,

Therefore, Zj is GAS when w¢ > w?i“ and wg > w'gi“. Using the values of the parameters in Table 2,
we get we = 2.1329 and wg = 1.9160. It follows that:

(i) If we > 2.1329 and wp > 1.9160, then R |(wc) < 1 and Ry (wp) < 1, and then Ey is GAS.
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(ii) If we < 2.1329 and/or wp < 1.9160, then R (we) > 1 and/or R,(wpg) > 1. In this case, Zg will
lose its stability. We see that the effects of antiviral medications and time delays can be comparable.
This can help scientists develop novel therapies that lengthen time delays in cases of coinfection
between the C and B viruses.
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Figure 6. The impact of the delay on the co-infection dynamics.
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Table 4. The values of parameters of system (2.1)—(2.7).

Delay parameters R R,
w=1,w=09,0;3=08, wy=0.7, ws=0.6, wsg=0.5 3.09 14.47
w =15 w =14 w;=13, wy=12, ws=1, wsg=0.9 1.97 6.18
w) = 2, wy = 18, w3 = 17, Wy = 1.6, ws = 15, We = 1.4 1.35 2.39
w1 :w2:w3:2.1329, W4 = W5 = Wg = 1.916 1 1
0)1=7, U)2=6, 0)3=5, a)4=4, (1)5=3, (4)6=2 0.038 0.17
w) = 9, wy = 8, w3 = 7, Wy = 6, w5 = 5, wWe = 4 0.006 0.003

6. Conclusions and future perspectives

In this work, we examined a mathematical model of the population co-dynamics of two types of
viruses (or virus variants) infecting the same target cells. The infection rate is given by the saturated
incidence. The model included the latently infected cells. Three kinds of discrete (or distributed) time
delays were incorporated into the model:

(1) The formation delay of latently infected cells;

(i1) The activation delay of latently infected cells;

(iii) The maturation delay of newly released virions.

First, we demonstrated nonnegativity and boundedness, which are the key characteristics of the
solutions. Second, we proved that the model admits four equilibria. We derived four threshold
parameters, which decide whether the model’s equilibria exist and are globally asymptotically stable.
We demonstrated the global asymptotic stability for every equilibrium point using the Lyapunov
approach. We used a numerical method to solve the model, and then we displayed the findings
graphically. We found a correlation between the theoretical and numerical results. Our findings are
contrasted with models that do not account for saturation incidence, latently infected cells, or time
delays. We have the following observations:

e When saturation is not present, only one type of virus with the highest reproduction number can
survive in equilibrium. The rivalry between two virus kinds for shared resources leads to the
survival of just one viral type with the highest reproduction number. In our proposed model with
saturated incidence, two types of viruses can coexist in equilibrium. We can think of this situation
as follows: Two viral kinds can coexist because saturation incidence lowers infection rates, which
also lessens rivalry between the two virus types. We established conditions under which these
types of viruses can coexist. The coexistence conditions are formulated in terms of saturation
constants.

e The presence of latently infected cells and/or time delays reduces the basic reproduction
numbers. Then, when using a model with latently infected cells and/or time delays, fewer
treatment efficacies will be needed to keep the system at infection-free equilibrium and remove
the two types of viruses from the body. This may help scientists develop novel therapies that
lengthen time delays.

e Our results indicate that saturated, latently infected cells and time delay are essential elements of
the two-virus model that cannot be ignored.
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Our study’s main flaw is that we were unable to use actual data to estimate the model’s parameter
values. The following are the causes:

(i) Genuine data on two-virus infections is lacking;

(11) Comparing our findings to a limited number of genuine studies may not be particularly reliable;

(ii1) It can be challenging to collect real data from patients who have two virus infections.

Our proposed model can be extended by considereing different incidene rate forms, such as:

Beddington-DeAngelis incidence % [56]; Crowley-Martin incidence % [57];
Hattaf-Yousf incidence ot WVVZ’;VIZ: w— [58]; general incidence &(H,V) [59], where V is the

concentration of the viruses, Yo, Yy, ¥y, ¥yy > 0 and & is a general function. Investigating the
memory effect on the dynamics of our model using fractional differential equations (FDEs) sounds
like a fascinating direction [60]. FDEs can capture non-local and memory-dependent effects, which
are often crucial in viological systems [61], and epidemical systems [62,63]. Additionally, we would
like to contrast the results with real data from people who have the infection.

We observe that active-particle methods have recently been used to model epidemics through a
detailed description of the immune competition at the cellular scale. Specifically, the competition
between the primary virus and variants has been considered, see [64,65]. This approach has not yet
considered comorbidities. We believe that our approach can contribute to include different types of
viruses within the model proposed in [64, 65].
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