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Abstract: Recently, max-min fuzzy relation inequalities (FRIs) have been used to model a (peer-to-
peer) P2P network system. Any feasible scheme in the P2P network system is reflected by a solution
of the max-min FRIs. One of the objectives of system managers is to decrease network congestion.
To satisfy this objective, we attempt to minimize a weighted minimax function motivated by existing
research. As a consequence, we establish a weighted minimax programming model in which the
constraint is the max-min FRIs. Our goal in this work is to develop an effective algorithm to obtain the
optimal solution of the optimization model. The so-called SCP-based algorithm is proposed to find the
optimal solution. A numerical example shows the efficiency of our proposed SCP-based algorithm.
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1. Introduction

In recent years, the addition-min fuzzy relation inequality (FRI) was first introduced in [1, 2] for
describing the flow constraints in the peer-to-peer (P2P) network system. Since the minimal solutions
play a key role in constructing the complete solution set for the addition-min FRIs [3–5], Li et al. [1]
proposed a feasible approach to find some specific minimal solutions. However, as shown in [2],
the addition-min FRIs usually have an infinite number of minimal solutions, and it is difficult to
determine all the minimal solutions. To obtain specific minimal solutions, various approaches have
been developed. In [6], the lexicographic minimum solution was defined and studied. An effective
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resolution algorithm and some illustrative numerical examples were provided. The concept of the
lexicographic minimum solution was also extended to random-term-absent addition-min FRIs [7]. It
can be formally proven that any lexicography minimum solution should also be a minimal solution in
the addition-min FRI system. In [8], Li et al. investigated another kind of minimal solution for addition-
min FRIs. The authors attempted to find a minimal solution that was less than or equal to a given
solution [8]. Moreover, to obtain specific minimal solutions, solving an optimization problem is also an
effective approach. For instance, the optimization problem with a linear objective function was studied
in [9, 10], with addition-min FRIs constraints. Considering the fairness among the terminals in the
P2P network system, Yang et al. [11] and Chiu et al. [12] further investigated fuzzy relation minimax
programming with addition-min composition. However, it was shown that its optimal solutions were
usually nonunique. Thus, Wu et al. [13] and Yang et al. [14] further searched for the minimal optimal
solutions. By adding some weighted factors to the terminals, the corresponding fuzzy relation weighted
minimax programming was also investigated [15–17].

In references [1–17], addition-min FRIs were introduced to investigate the P2P network system. As
noted in [18–21], by applying the addition-min FRIs to model the P2P network system, the authors
considered the total download speed of each terminal and downloaded its requested data from other
terminals. However, it was also indicated in [18–21] that, in some cases, the highest download speed
should be considered. Next, we describe the requirements of the highest download speed for the
terminals in a P2P network system. Similarly, it is assumed that there are n terminals in the system,
represented by T1,T2, · · · ,Tn (see Figure 1). After accepting the downloading request from other
terminals, we suppose that terminal T j transmits its local file to any other terminal at quality level t j. If
the bandwidth between Ti and T j (exactly from T j to Ti) is ai j (see Figure 2), then the actual download
traffic of Ti from T j is ai j ∧ t j.

T1

Ti

Ti−1

...

T2

Ti+1

...
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Figure 1. The P2P (Peer-to-Peer) network system.
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Figure 2. The bandwidths between Ti and the other terminals.

Considering the total download traffic of each terminal, the P2P network system can be modeled by
the addition-min FRIs. However, in some cases, the specific file should be downloaded from a single
terminal. In such cases, Ti downloads its requested file from the terminal with the highest download
traffic, i.e., ai1∧ t1∨ai2∧ t2∨ · · ·∨ain∧ tn. Let us suppose that the requirement of the highest download
traffic of Ti is no less than bi, i = 1, 2, · · · ,m. Then the requirements of all the terminals in a P2P
network system should be modeled by the following max-min FRIs:

ai1 ∧ t1 ∨ ai2 ∧ t2 ∨ · · · ∨ ain ∧ tn ≥ bi, i = 1, 2, · · · ,m. (1.1)

Moreover, if the requirement of each terminal for the highest download speed has both an upper bound
and a lower bound, then the corresponding max-min FRIs should be further written as

bi ≤ ai1 ∧ t1 ∨ ai2 ∧ t2 ∨ · · · ∨ ain ∧ tn ≤ di, i = 1, 2, · · · ,m. (1.2)

For inconsistent system (1.1), Yang established an evaluation model for a given vector, based on
which the approximate solution was defined and investigated [22]. For the consistent system (1.1),
Zhong et al. [23] focused on the lexicographic minimum solution. Xiao et al. investigated the
evaluation and derived a classification of system solutions (1.1) [24]. A resolution algorithm was
developed with an illustrative example. Moreover, the lexicographic minimum solution was also
introduced for the above system (1.2) [25]. Then considering the stability of the P2P network system,
Chen et al. [26] defined the concept of interval solutions for system (1.2). The authors proposed an
effective algorithm to find the so-called widest interval solution of system (1.2) in [26].

As mentioned above, with the constraint system of addition-min FRIs, weighted minimax
programming, or even minimax programming as its specific form, has been studied, providing some
efficient resolution algorithms [11–17]. However, when considering the highest download speed,
the relevant weighted minimax programming has not been studied for the corresponding max-min
system (1.2). Consequently, we focus on such an optimization problem in this work. The formulistic
form of the weighted minimax programming subject to system (1.2) is

min z(t) = c1t1 ∨ c2t2 ∨ · · · ∨ cntn,

s.t.

bi ≤ ai1 ∧ t1 ∨ ai2 ∧ t2 ∨ · · · ∨ ain ∧ tn ≤ di,

i = 1, 2, · · · ,m.

(1.3)

As shown in [11–17], in system (1.2) or problem (1.3), t j (measure: Mbps) represents the quality level
on which the jth terminal shares (sends out) its local resources with the other terminals. To decrease
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network congestion, system managers usually try to minimize the values of t1, t2, · · · , tn. However,
in most cases, these values cannot be minimized simultaneously. Instead of minimizing all these
variables, minimizing a specific function with the variables t1, t2, · · · , tn is much more realistic. For
instance, in problem (1.3), we adopt the weighted minimax function. In such a weighted minimax
function in (1.3), the parameter c j represents the weighted factor of the jth terminal in the P2P network
system. In this work, we design several effective algorithms for identifying the optimal solution.

In summary, the innovations and contributions of this work can be summarized as follows:
(i) Instead of the total download traffic of the terminal, we consider the highest download traffic.
Consequently, the corresponding max-min FRIs are employed.
(ii) To decrease network congestion in the P2P network system, we consider a given weighted factor
for each terminal. Moreover, we further establish a relevant weighted minimax programming problem
with max-min FRI constraints.
(iii) To solve our established weighted minimax optimization model, we propose the so-called single-
constraint programming approach for identifying the optimal solution.

The following content is organized as follows. In Section 2, we describe some foundational concepts
and results on max-min FRIs, i.e., system (1.2). Our major results are presented in Section 3. In this
section, we introduce the single-constraint programming (SCP) approach for addressing our studied
problem (1.3). The original problem (1.3) is separated into several subproblems and solved. Moreover,
our proposed approach is a step-by-step SCP-based algorithm. In Section 4, a detailed numerical
example is provided to demonstrate the SCP-based algorithm. In Section 5, we compare our problem
and the proposed method to the existing ones. Section 6 provides a simple conclusion.

2. On the max-min fuzzy relation inequalities

In this section, we provide some foundational results on the max-min fuzzy relation inequalities,
i.e., system (1.2). These existing results are helpful for the resolution of problem (1.3).

Let us denote

A = (ai j)m×n, t = (t1, · · · , tn), b = (b1, · · · , bm), d = (d1, · · · , dm).

Then we represent system (1.2) as
b ≤ A ◦ t ≤ d. (2.1)

Moreover, the solution set of system (1.2) is indeed

T A,b,d = {t ∈ [0, 1]n|b ≤ A ◦ t ≤ d}.

For convenience, we let
I = {1, 2, · · · ,m}, J = {1, 2, · · · , n}.

Definition 1. (Consistent; Maximum solution [25]) System (1.2) is said to be consistent when its
solution set is nonempty, i.e., T A,b,d , ∅; otherwise, system (1.2) is inconsistent. When system (1.2) is
consistent and there exists a solution t ∈ T A,b,d such that t ≥ t for any t ∈ T A,b,d, then we say t is the
maximum solution of (1.2).
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In system (1.2), we construct the vector t̂ = (t̂1, t̂2, · · · , t̂n) as follows:

t̂ j =


∧

i∈I j

di, if I j , ∅,

1, if I j = ∅,
(2.2)

where I j = {i ∈ I|ai j > di}, ∀ j ∈ J . The vector t̂ is important to determine whether system (1.2) is
consistent.

Proposition 1. [25] Let t ∈ T A,b,d be a solution of system (1.2), and the vector t̂ is defined by (2.2).
Then, we have t ≤ t̂.

Theorem 1. [25] System (1.2) is consistent, i.e., T A,b,d , ∅, if and only if t̂ ∈ T A,b,d.

According to Proposition 1 and Theorem 1, we know that when T A,b,d , ∅, t̂ should be the unique
maximum solution of system (1.2). The potential maximum solution t̂ can be used to check the
consistency of (1.2).

Definition 2. (Minimal solution [25]) Let (1.2) be consistent and ť ∈ T A,b,d. We say that ť is a minimal
solution if there is no t ∈ T A,b,d such that t ≤ ť and t , ť.

The conservative path approach was proposed in [27, 28] to obtain all the minimal solutions of the
system (1.2). Moreover, it was shown that system (1.2) has a finite number of minimal solutions when
it is consistent. For system (1.2), we denote the set of all minimal solutions by

Ť A,b,d = {ť ∈ T A,b,d|ť is a minimal solution}.

Based on the maximum solution t̂ and the minimal solution set Ť A,b,d, the complete solution set to (1.2)
can be characterized by Theorem 2.

Theorem 2. [25] When system (1.2) is consistent, the solution set T A,b,d is

T A,b,d =
⋃

ť∈Ť A,b,d

[ť, t̂]. (2.3)

Since all minimal solutions can be found by the conservative path approach [27,28], one can obtain
the complete solution set T A,b,d for system (1.2).

3. Resolution of problem (1.3)

3.1. Existence of the optimal solution and the SCP-based approach to solve problem (1.3)

In this subsection, we first illustrate the existence of the optimal solution for problem (1.3). The
optimal solution exists if and only if the feasible domain, i.e., T A,b,d, is nonempty. Afterward, we
assume T A,b,d , ∅, and we attempt to solve problem (1.3). The original problem (1.3) is separated
into m subproblems according to the constraints, i.e., system (1.2). Each subproblem has the same
objective function as problem (1.3) and a single inequality in the constraint. Thus, each subproblem
is indeed a single-constraint programming (SCP) problem. The optimal solution of problem (1.3) can
be generated by the optimal solutions of the subproblems. Since problem (1.3) is solved via single-
constraint programming, we refer to our resolution method as the SCP-based approach.
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Theorem 3. (Existence of the optimal solution) System (1.2) is consistent, i.e., T A,b,d , ∅, if and only
if problem (1.3) has at least one optimal solution.

Proof. It has been shown previously that system (1.2) has a finite number of minimal solutions since it
is consistent. Without loss of generality, we denote the minimal solution set by

Ť A,b,d = {ť1, ť2, · · · , ťs}.

The objective function values of {ť1, ť2, · · · , ťs} can be found as {z(ť1), z(ť2), · · · , z(ťs)}. Let us denote

z∗ = min{z(ť1), z(ť2), · · · , z(ťs)}. (3.1)

Moreover, there exists l∗ ∈ {1, 2, · · · , s} such that z(ťl∗) = z∗, and

z∗ ≤ z(ťl), ∀l ∈ {1, 2, · · · , s}. (3.2)

Obviously, the minimal solution ťl∗ is also a feasible solution to problem (1.3). Next, we further verified
that it is an optimal solution.

Let t ∈ T A,b,d be an arbitrary solution of (1.2). According to Theorem 2, l′ ∈ {1, 2, · · · , s} and
ťl′ ∈ Ť A,b,d, such that t ∈ [ťl′ , t̂], i.e., ťl′ ≤ t ≤ t̂. Thus,

z(ťl′) = c1ťl′
1 ∨ · · · ∨ cnťl′

n ≤ c1t1 ∨ · · · ∨ cntn = z(t). (3.3)

Let us note that l′ ∈ {1, 2, · · · , s}. The inequalities (3.2) and (3.3) imply that z∗ ≤ z(t), i.e., z(ťl∗) ≤ z(t).
As a result, ťl∗ is an optimal solution of (1.3). �

It has been shown in Theorem 3 that the optimal solution of problem (1.3) should exist when
system (1.2) is consistent. Next, we consider the resolution of problem (1.3) with the assumption
that T A,b,d , ∅.

Based on the maximum solution t̂ and the formulae in problem (1.3), we construct the following
single-constraint programming problem:

(Pi) min z(t) = c1t1 ∨ c2t2 ∨ · · · ∨ cntn,

s.t.

bi ≤ ai1 ∧ t1 ∨ ai2 ∧ t2 ∨ · · · ∨ ain ∧ tn ≤ di,

t ≤ t̂,

(3.4)

for each i ∈ I. Then, we obtain m subproblems, denoted by {(P1), (P2), · · · , (Pm)}, corresponding to
the original problem (1.3).

In fact, the optimal solution of problem (1.3) can be generated by the optimal solutions of these
subproblems, as indicated in what follows. Next, we provide an algorithm to obtain the optimal solution
of each subproblem, and then we show the relationship between the original problem (1.3) and the
subproblems {(P1), (P2), · · · , (Pm)}.

3.2. Algorithm for obtaining an optimal solution to subproblem (Pi)

Let i ∈ I be an arbitrary index in I. In this subsection, we propose an effective approach to obtain
an optimal solution of subproblem (Pi), i.e., problem (3.4). In the remainder of this subsection, we
always assume that i is a given index.
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We denote the index set as
J t̂

i = { j ∈ J|ai j ≥ bi, t̂ j ≥ bi}. (3.5)

It is clear that j ∈ J t̂
i if and only if ai j ∧ t̂ j ≥ bi.

Proposition 2. t̂ is a solution of system (1.2), if and only if J t̂
k , ∅ holds for any k ∈ I.

Proof. (⇒) If t̂ is a solution of system (1.2), we have

ak1 ∧ t̂1 ∨ ak2 ∧ t̂2 ∨ · · · ∨ akn ∧ t̂n ≥ bk,∀k ∈ I. (3.6)

Hence, there exists j′ ∈ J such that ak j′ ∧ t̂ j′ ≥ bk. This implies that j′ ∈ J t̂
k, i.e., J t̂

k , ∅.
(⇐) If J t̂

k , ∅, ∀k ∈ I, then there exists jk ∈ J
t̂
k for each k. Since jk ∈ J

t̂
k ⊆ J , by (3.5) we have

ak1 ∧ t̂1 ∨ ak2 ∧ t̂2 ∨ · · · ∨ akn ∧ t̂n ≥ ak jk ∧ t̂ jk ≥ bk,∀k ∈ I. (3.7)

Therefore, t̂ is a solution of system (1.2). �
According to Theorem 1 and Proposition 2, we find Corollary 1.

Corollary 1. T A,b,d , ∅ if and only if J t̂
kneq∅ holds for any k ∈ I.

Obviously, Corollary 1 can also be used to check the consistency of system (1.2) through the index
sets {J t̂

1,J
t̂
2, · · · ,J

t̂
m}.

Based on the index set J t̂
i , defined by (3.5), we find the optimal index as

p∗i = arg min
j∈J t̂

i

{c j}. (3.8)

Then we have p∗i ∈ J
t̂
i and cp∗i = min{c j| j ∈ J t̂

i }. Furthermore, we construct the vector t∗i =

(t∗i1 , t
∗i
2 , · · · , t

∗i
n ) as

t∗ij =

bi, if j = p∗i ,

0, if j , p∗i .
(3.9)

We show that the vector t∗i is indeed an optimal solution of the subproblem (Pi).

Theorem 4. (Optimal solution of (Pi)) Let us suppose T A,b,d , ∅. Then, the vector t∗i defined above is
an optimal solution of the subproblem (Pi).

Proof. (Feasibility) Let j′ = p∗i ∈ J
t̂
i . By (3.5), we have

ai j′ ≥ bi, t̂ j′ ≥ bi. (3.10)

By (3.9), we also have
t∗ij′ = bi, (3.11)

and
t∗ij = 0, ∀ j , j′, j ∈ J . (3.12)

Since ai j′ ≥ bi, it is immediate that ai j′ ∧ bi = bi. Considering (3.12), we have

ai1 ∧ t∗i1 ∨ · · · ∨ ain ∧ t∗in = ai j′ ∧ bi = bi. (3.13)
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According to (3.10)–(3.12), we have
t̂ j′ ≥ bi = t∗ij′ , (3.14)

and
t̂ j ≥ 0 = t∗ij , ∀ j , j′, j ∈ J . (3.15)

Formulae (3.14) and (3.15) imply that t∗i ≤ t̂. Combining formula (3.13), t∗i is a feasible solution of
subproblem (Pi).

According to (3.11) and (3.12), z(t∗i) = c j′bi. Let us take an arbitrary feasible solution of (1.3) as t.
Then, it holds that bi ≤ ai1 ∧ t1 ∨ ai2 ∧ t2 ∨ · · · ∨ ain ∧ tn ≤ di,

t ≤ t̂.
(3.16)

There exists j′′ ∈ J such that ai j′′ ∧ t j′′ ≥ bi, i.e., ai j′′ ≥ bi and t j′′ ≥ bi. By (3.5), we have j′′ ∈ J t̂
i .

Since j′ = p∗i , by (3.8) we have

c j′ = cp∗i = min{c j| j ∈ J t̂
i } ≤ c j′′ . (3.17)

However, considering t j′′ ≥ bi, we have

z(t) = c1t1 ∨ · · · ∨ cntn ≥ c j′′t j′′ ≥ c j′bi = z(t∗i). (3.18)

As a consequence, t∗i is an optimal solution of subproblem (Pi). �
Summarizing the above results, we develop Algorithm I to solve subproblem (Pi).

Algorithm I: To calculate an optimal solution of the subproblem (Pi)

Step 1: Construct the vector t̂ = (t̂1, t̂2, · · · , t̂n) following (2.2).
Step 2: Apply the vector t̂; check the consistency of system (1.2) following Theorem 1. If t̂ ∈ T A,b,d,

then T A,b,d , ∅ and problem (1.3) is solvable. Continue to the next step. Otherwise, problem (1.3) is
unsolvable; stop.

Step 3: Find the index set J t̂
i according to (3.5).

Step 4: Find the optimal index p∗i according to J t̂
i and (3.8).

Step 5: Find the vector t∗i = (t∗i1 , t
∗i
2 , · · · , t

∗i
n ) according to the optimal indices p∗i and (3.9). Then, by

Theorem 4, t∗i is an optimal solution of subproblem (Pi).

Example 1. Let us consider the following single-constraint programming problem:

(P0) min z(t) = 0.4t1 ∨ 0.5t2 ∨ 0.7t3 ∨ 0.3t4 ∨ 0.5t5 ∨ 0.6t6,

s.t.

0.38 ≤ 0.9 ∧ t1 ∨ 0.6 ∧ t2 ∨ 0.8 ∧ t3 ∨ 0.2 ∧ t4 ∨ 0.3 ∧ t5 ∨ 0.4 ∧ t6 ≤ 0.76,
t ≤ (0.76, 0.77, 0.76, 0.75, 0.85, 1).

(3.19)

Algorithm I is applied to find an optimal solution to problem (3.19), i.e., problem (P0).

Solution. Steps 1 and 2: The constraint is extracted from system (4.1) appearing in
Example 2 below. We verify that system (4.1) is consistent, with the maximum solution t̂ =

(0.76, 0.77, 0.76, 0.75, 0.85, 1). Hence, we go directly to Step 3.
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Step 3: Since 

0.9 ∧ t̂1 = 0.9 ∧ 0.76 = 0.76 > 0.38,
0.6 ∧ t̂2 = 0.6 ∧ 0.77 = 0.6 > 0.38,
0.8 ∧ t̂3 = 0.8 ∧ 0.76 = 0.76 > 0.38,
0.2 ∧ t̂4 = 0.2 ∧ 0.75 = 0.2 < 0.38,
0.3 ∧ t̂5 = 0.3 ∧ 0.85 = 0.3 < 0.38,
0.4 ∧ t̂6 = 0.4 ∧ 1 = 0.4 > 0.38,

(3.20)

by (3.5) we have J t̂
0 = {1, 2, 3, 6}.

Step 4: Here, c = (0.4, 0.5, 0.7, 0.3, 0.5, 0.6). Since

p∗0 = arg min
j∈J t̂

0

{c j} = arg min{c1, c2, c3, c6}

= arg min{0.4, 0.5, 0.7, 0.6} = 0.4 = c1,
(3.21)

by (3.8), we find the optimal index as p∗0 = 1.
Step 5: Since p∗0 = 1, we find the vector t∗0 by (3.9) as t∗0 = (0.38, 0, 0, 0, 0, 0). According to

Theorem 4, t∗0 = (0.38, 0, 0, 0, 0, 0) is an optimal solution of subproblem (P0), i.e., problem (3.19). �

3.3. The SCP-based algorithm for solving problem (1.3)

In Subsection 3.2, we find an optimal solution for each subproblem (Pi), denoted by t∗i. Based
on these optimal solutions {t∗1, t∗2, · · · , t∗m}, we generate the optimal solution of problem (1.3) in
this subsection.

For x1 = (x1
1, · · · , x

1
n), x2 = (x2

1, · · · , x
2
n) ∈ [0, 1]n, let

x1 ∨ x2 = (x1
1 ∨ x2

1, · · · , x
1
n ∨ x2

n). (3.22)

Lemma 1. For arbitrary x1, x2, · · · , xm ∈ [0, 1]n, we have z(x1∨x2∨· · ·∨xm) = z(x1)∨z(x2)∨· · ·∨z(xm).

Proof. In fact, we have to prove only that z(x1 ∨ x2) = z(x1) ∨ z(x2).

z(x1 ∨ x2) = c1(x1
1 ∨ x2

1) ∨ · · · ∨ cn(x1
n ∨ x2

n)
= (c1x1

1 ∨ c1x2
1) ∨ · · · ∨ (cnx1

n ∨ cnx2
n)

= (c1x1
1 ∨ · · · ∨ cnx1

n) ∨ (c1x2
1 ∨ · · · ∨ cnx2

n)
= z(x1) ∨ z(x2).

(3.23)

�

Lemma 2. Let t ∈ [0, 1] be an arbitrary real number. Then, we have t ∈ T A,b,d if and only if A ◦ t ≥ b
and t ≤ t̂.

Proof. (⇒) This is evident, according to Proposition 1 and the expression of system (1.2).
(⇐) Let us consider, arbitrarily, i′ ∈ I and j′ ∈ J . Let us recall that I j′ = {i ∈ I|ai j′ > di}.
If i′ < I j′ , then we have

ai′ j′ ∧ t̂ j′ ≤ ai′ j′ ≤ di′ . (3.24)
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If i′ ∈ I j′ , then by (2.2) we have I j′ , ∅ and t̂ j′ =
∧

i∈I j′

di ≤ di′ . Thus,

ai′ j′ ∧ t̂ j′ ≤ t̂ j′ ≤ di′ . (3.25)

Due to the arbitrariness of i and j, we have

ai′ j′ ∧ t̂ j′ ≤ di′ , ∀i′ ∈ I, j′ ∈ J . (3.26)

Hence,
ai′1 ∧ t̂1 ∨ · · · ∨ ai′n ∧ t̂n ≤ di′ , ∀i′ ∈ I. (3.27)

That is, A ◦ t̂ ≤ d. Since t ≤ t̂, we have A ◦ t ≤ A ◦ t̂ ≤ d. Combining A ◦ t ≥ b, it is immediate that
t ∈ T A,b,d. �

Theorem 5. Let t∗i be an optimal solution of subproblem (Pi) for each i ∈ I. Then, t∗ = t∗1∨t∗2∨· · ·∨t∗m

is an optimal solution of problem (1.3).

Proof. (Feasibility) For arbitrarily given i ∈ I, we verified in Theorem 4 that t∗i ≤ t̂. Hence,

t∗ = t∗1 ∨ t∗2 ∨ · · · ∨ t∗m ≤ t̂. (3.28)

Since t∗ = t∗1 ∨ t∗2 ∨ · · · ∨ t∗m, it is obvious that t∗j =
∨
k∈I

t∗kj ≥ t∗ij , ∀i ∈ I, j ∈ J . Hence, by (3.13),

ai1 ∧ t∗1 ∨ · · · ∨ ain ∧ t∗n ≥ ai1 ∧ t∗i1 ∨ · · · ∨ ain ∧ t∗in = bi, ∀i ∈ I. (3.29)

That is, A ◦ t∗ ≥ b. Considering t∗ ≤ t̂, it follows from Lemma 2 that t∗ ∈ T A,b,d. That is, t∗ is a feasible
solution to problem (1.3).

(Optimality) Let t ∈ T A,b,d be an arbitrary feasible solution of problem (1.3). By observing
system (1.2), it is clear that

bi ≤ ai1 ∧ t1 ∨ ai2 ∧ t2 ∨ · · · ∨ ain ∧ tn ≤ di, ∀i ∈ I. (3.30)

Moreover, by Proposition 1, we have t ≤ t̂. Hence, t is a feasible solution of subproblem (Pi) for any
i ∈ I. Let us note that t∗i is the optimal solution of (Pi). We have

z(t) ≥ z(t∗i), ∀i ∈ I. (3.31)

Following Lemma 1, we have

z(t) ≥ z(t∗1) ∨ z(t∗2) ∨ · · · ∨ z(t∗m) = z(t∗1 ∨ t∗2 ∨ · · · ∨ t∗m) = z(t∗). (3.32)

As a consequence, t∗ is an optimal solution of problem (1.3). �
According to Theorem 5, if we can determine the optimal solutions of all the subproblems

{P1, P2, · · · , Pm}, then the optimal solution of problem (1.3) can be generated by those m
optimal solutions. The resolution approach indicated in Theorem 5 is based on single-constraint
programming (SCP), i.e., subproblems {P1, P2, · · · , Pm}. Thus, we call this the SCP-based resolution
approach. Moreover, we summarize the resolution approach as the following SCP-based algorithm.
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SCP-based Algorithm to obtain an optimal solution of problem (1.3)
Step 1: Construct the vector t̂ = (t̂1, t̂2, · · · , t̂n) following (2.2).
Step 2: Apply the vector t̂; check the consistency of system (1.2) following Theorem 1. If t̂ ∈ T A,b,d,

then T A,b,d , ∅ and problem (1.3) is solvable. Continue to the next step. Otherwise, problem (1.3) is
unsolvable; stop.

Step 3: Construct m subproblems as (3.4), denoted by {(P1), (P2), · · · , (Pm)}.
Step 4: For each i ∈ I, find an optimal solution of the subproblem (Pi) by applying the proposed

Algorithm I presented in Subsection 3.2. Suppose the obtained optimal solution of (Pi) is t∗i, ∀i ∈ I.
Then, find m optimal solutions as {t∗1, t∗2, · · · , t∗m}.

Step 5: Generate the vector t∗ = t∗1 ∨ t∗2 ∨ · · · ∨ t∗m. Then, by Theorem 5, t∗ is an optimal solution
of problem (1.3).

4. Numerical example

In this section, we provide an illustrative example of our proposed SCP-based algorithm.

Example 2. We consider a P2P network system with 6 terminals. Let us suppose the P2P network
system is described by the max-min FRI system as

b ≤ A ◦ t ≤ d, (4.1)

where

A =



0.3 0.7 0.6 0.8 0.6 0.7
0.8 0.2 0.6 0.3 0.4 0.6
0.3 0.4 0.2 0.5 0.9 0.6
0.9 0.6 0.8 0.2 0.3 0.4
0.4 0.8 0.6 0.3 0.2 0.5
0.4 0.5 0.8 0.2 0.8 0.3


, (4.2)

b = (0.45, 0.37, 0.52, 0.38, 0.42, 0.48), d = (0.75, 0.78, 0.85, 0.76, 0.77, 0.89), t = (t1, t2, · · · , t6). We
find an optimal solution of the following weighted minimax programming problem:

min z(t) = c1t1 ∨ c2t2 ∨ · · · ∨ c6t6,

s.t. b ≤ A ◦ t ≤ d,
(4.3)

where c = (c1, c2, · · · , c6) = (0.5, 0.6, 0.8, 0.4, 0.6, 0.7).
Solution. Step 1: According to I j = {i ∈ I|ai j > di}, I1 = {2, 4}, I2 = {5}, I3 = {4}, I4 = {1},
I5 = {3}, and I6 = ∅. Based on these index sets, we can calculate the vector t̂ by (2.2). After
calculation, we have t̂ = (t̂1, t̂2, · · · , t̂6) = (0.76, 0.77, 0.76, 0.75, 0.85, 1).

Step 2: We compute A ◦ t̂ as follows:

A ◦ t̂ =



0.3 0.7 0.6 0.8 0.6 0.7
0.8 0.2 0.6 0.3 0.4 0.6
0.3 0.4 0.2 0.5 0.9 0.6
0.9 0.6 0.8 0.2 0.3 0.4
0.4 0.8 0.6 0.3 0.2 0.5
0.4 0.5 0.8 0.2 0.8 0.3


◦ (0.76, 0.77, 0.76, 0.75, 0.85, 1)

= (0.75, 0.76, 0.85, 0.76, 0.77, 0.8).

(4.4)
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We know that b ≤ A ◦ t̂ ≤ d, i.e., t̂ fulfills system (4.1). Hence, system (4.1) is consistent, and
problem (4.3) is solvable. We continue to the next step.

Step 3: Following (3.4), we construct the subproblems as follows.

(P1) min z(t) = 0.5t1 ∨ 0.6t2 ∨ 0.8t3 ∨ 0.4t4 ∨ 0.6t5 ∨ 0.7t6,

s.t.

0.45 ≤ 0.3 ∧ t1 ∨ 0.7 ∧ t2 ∨ 0.6 ∧ t3 ∨ 0.8 ∧ t4 ∨ 0.6 ∧ t5 ∨ 0.7 ∧ t6 ≤ 0.75,
t ≤ (0.76, 0.77, 0.76, 0.75, 0.85, 1).

(P2) min z(t) = 0.5t1 ∨ 0.6t2 ∨ 0.8t3 ∨ 0.4t4 ∨ 0.6t5 ∨ 0.7t6,

s.t.

0.37 ≤ 0.8 ∧ t1 ∨ 0.2 ∧ t2 ∨ 0.6 ∧ t3 ∨ 0.3 ∧ t4 ∨ 0.4 ∧ t5 ∨ 0.6 ∧ t6 ≤ 0.78,
t ≤ (0.76, 0.77, 0.76, 0.75, 0.85, 1).

(P3) min z(t) = 0.5t1 ∨ 0.6t2 ∨ 0.8t3 ∨ 0.4t4 ∨ 0.6t5 ∨ 0.7t6,

s.t.

0.52 ≤ 0.3 ∧ t1 ∨ 0.4 ∧ t2 ∨ 0.2 ∧ t3 ∨ 0.5 ∧ t4 ∨ 0.9 ∧ t5 ∨ 0.6 ∧ t6 ≤ 0.85,
t ≤ (0.76, 0.77, 0.76, 0.75, 0.85, 1).

(P4) min z(t) = 0.5t1 ∨ 0.6t2 ∨ 0.8t3 ∨ 0.4t4 ∨ 0.6t5 ∨ 0.7t6,

s.t.

0.38 ≤ 0.9 ∧ t1 ∨ 0.6 ∧ t2 ∨ 0.8 ∧ t3 ∨ 0.2 ∧ t4 ∨ 0.3 ∧ t5 ∨ 0.4 ∧ t6 ≤ 0.76,
t ≤ (0.76, 0.77, 0.76, 0.75, 0.85, 1).

(P5) min z(t) = 0.5t1 ∨ 0.6t2 ∨ 0.8t3 ∨ 0.4t4 ∨ 0.6t5 ∨ 0.7t6,

s.t.

0.42 ≤ 0.4 ∧ t1 ∨ 0.8 ∧ t2 ∨ 0.6 ∧ t3 ∨ 0.3 ∧ t4 ∨ 0.2 ∧ t5 ∨ 0.5 ∧ t6 ≤ 0.77,
t ≤ (0.76, 0.77, 0.76, 0.75, 0.85, 1).

(P6) min z(t) = 0.5t1 ∨ 0.6t2 ∨ 0.8t3 ∨ 0.4t4 ∨ 0.6t5 ∨ 0.7t6,

s.t.

0.48 ≤ 0.4 ∧ t1 ∨ 0.5 ∧ t2 ∨ 0.8 ∧ t3 ∨ 0.2 ∧ t4 ∨ 0.8 ∧ t5 ∨ 0.3 ∧ t6 ≤ 0.89,
t ≤ (0.76, 0.77, 0.76, 0.75, 0.85, 1).

Step 4: In this step, we apply our proposed Algorithm I to find the optimal solutions of the
subproblems {(P1), (P2), · · · , (P6)}.

According to (3.5), we find the index sets as J t̂
1 = {2, 3, 4, 5, 6}, J t̂

2 = {1, 3, 5, 6}, J t̂
3 = {5, 6},J t̂

4 =

{1, 2, 3, 6}, J t̂
5 = {2, 3, 6}, and J t̂

1 = {2, 3, 5}.
Based on these index sets, we further compute the optimal indices by (3.8) as p∗1 = 4, p∗2 = 1,

p∗3 = 5, p∗4 = 1, p∗5 = 2, and p∗6 = 2 or 5.
As a result, we can find the optimal solutions {t∗1, t∗2, · · · , t∗6} following (3.9). Since p∗1 = 4, we

find the optimal solution to (P1) as

t∗1 = (0, 0, 0, b1, 0, 0) = (0, 0, 0, 0.45, 0, 0).
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Since p∗2 = 1, we find the optimal solution to (P2) as

t∗2 = (b2, 0, 0, 0, 0, 0) = (0.37, 0, 0, 0, 0, 0).

Since p∗3 = 5, we find the optimal solution to (P3) as

t∗3 = (0, 0, 0, 0, b3, 0) = (0, 0, 0, 0, 0.52, 0).

Since p∗4 = 1, we find the optimal solution to (P4) as

t∗4 = (b4, 0, 0, 0, 0, 0) = (0.38, 0, 0, 0, 0, 0).

Since p∗5 = 2, we find the optimal solution to (P5) as

t∗5 = (0, b5, 0, 0, 0, 0) = (0, 0.42, 0, 0, 0, 0).

Since p∗6 = 2 or 5, we find the optimal solution to (P6) as

t∗6 = (0, b6, 0, 0, 0, 0) = (0, 0.48, 0, 0, 0, 0),

or
t∗6 = (0, 0, 0, 0, b6, 0) = (0, 0, 0, 0, 0.48, 0).

Step 5: We generate the vector t∗ = t∗1 ∨ t∗2 ∨ · · · ∨ t∗6. When t∗6 = (0, b6, 0, 0, 0, 0) =

(0, 0.48, 0, 0, 0, 0), we have

t∗ =t∗1 ∨ t∗2 ∨ · · · ∨ t∗6

=(0, 0, 0, 0.45, 0, 0) ∨ (0.37, 0, 0, 0, 0, 0) ∨ (0, 0, 0, 0, 0.52, 0) ∨ (0.38, 0, 0, 0, 0, 0)
∨ (0, 0.42, 0, 0, 0, 0) ∨ (0, 0.48, 0, 0, 0, 0)

=(0.38, 0.48, 0, 0.45, 0.52, 0).

When t∗6 = (0, 0, 0, 0, b6, 0) = (0, 0, 0, 0, 0.48, 0), we have

t∗′ =t∗1 ∨ t∗2 ∨ · · · ∨ t∗6

=(0, 0, 0, 0.45, 0, 0) ∨ (0.37, 0, 0, 0, 0, 0) ∨ (0, 0, 0, 0, 0.52, 0) ∨ (0.38, 0, 0, 0, 0, 0)
∨ (0, 0.42, 0, 0, 0, 0) ∨ (0, 0, 0, 0, 0.48, 0)

=(0.38, 0.42, 0, 0.45, 0.52, 0).

According to Theorem 5, both t∗ and t∗′ are the optimal solutions of problem (4.3). �

5. Comparing our problem and the proposed method to that in existing research

In this work, we establish a minimax program with max-min FRI constraints. Moreover, we
propose the so-called SCP-based algorithm to identify an optimal solution. In the following section,
we compare our problem and the proposed resolution algorithm to those presented in several
existing works.
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(i) The optimization problem investigated in this work has not been studied previously. This result
is different from those reported in existing research.

In fact, minimax programming problems subject to addition-min FRIs were studied in [11–17].
In those problems, the optimization objective was a minimax function, but the constraints were the
addition-min FRIs; they are different from those in our studied problem. Moreover, [28–34] minimized
a linear objective function under the constraints of max-min FRIs, while [18, 19, 35–37] optimized a
geometric objective function under the same constraints. Although the constraints are the same as
those in our studied problem, the linear or geometric objective function is different from the minimax
objective function, which appears in our problem. Consequently, our minimax programming problem
with the addition-min FRI constraints is different from those presented in [11–19, 28–37].

(ii) The feasible domain of our optimization model is different from those employed in some
relevant published works.

In the minimax optimization problems studied in [11–17], the feasible domain is the solution set
to the addition-min FRIs. It has been formally proven that such a feasible domain is a convex set [2].
However, the feasible domain of our problem, i.e., the solution set to the max-min FRIs, should be
nonconvex when the minimum is not unique [38]. In addition, a system of addition-min FRIs usually
has infinitely many minimal solutions [2], in most cases. However, the number of minimal solutions
to the max-min FRIs is always finite. Consequently, the properties of the feasible domain with an
addition-min composition are much different from those with a max-min composition.

(iii) The SCP-based algorithm is proposed for our optimization model; this approach is different
from the existing resolution methods adopted for the relevant fuzzy relation optimization models
in [11–19, 28–37].

In [15], the dichotomy algorithm was proposed for searching for optimal solutions. The subproblem
and single-variable approach was also proposed in [11–13, 16, 17]. In addition, [14] developed the so-
called optimal-vector-based algorithm for minimax programming with addition-min FRI constraints.
However, the branch and bound method [28–34], which is suitable for linear programming with
max-min FRI constraints, and the value-matrix-based iterative method [35–37], which is suitable for
geometric programming with max-min FRI constraints, are ineffective for our minimax programming
problem with max-min FRI constraints. All of these existing methods for the relevant fuzzy relation
optimization models are no longer effective for our problem due to their different optimization
scenarios and properties of the feasible domains.

6. Conclusions

The P2P network system has been reduced to the max-min FRIs, i.e., system (1.2). To decrease
network congestion in the P2P network system, we constructed and investigated a weighted minimax
programming problem subject to system (1.2), i.e., problem (1.3). The purpose of this work is to
propose an effective algorithm to produce an optimal solution of (1.3). We divided the original
problem (1.3) into m subproblems. Each subproblem involves single-constraint programming.
Algorithm I was designed to find one of the optimal solutions of each subproblem. The optimal solution
can be generated by the optimal solutions from those m subproblems. We further proposed the SCP-
based algorithm to find an optimal solution to the original problem (1.3). A numerical example was
given to verify the validity of the SCP-based algorithm. Moreover, Example 2 showed that the optimal
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solutions might not be unique.
In the future, based on the max-min FRIs for modeling the P2P network system, we plan to further

consider the stability with respect to some given solutions of the max-min FRIs.
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