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1. Introduction

In time division multiple access (TpMa) communication networks, each communicating station uses
the whole communication channel for a time slot. Therefore, in a Tpma network, time is divided
into k equal time slots; data is transmitted in the time slots. Thus, the communication channel is
sequentially time-shared among many stations through nonoverlapping time slots. TpmMa networks have
received significant attention over the years from researchers worldwide; see, e.g., the excellent reviews
of [9,29,34].

We view a TpMA communication network, denoted by N, as a pair N = (S, 7"), where S is a set of n
communicating stations and 7~ C S X S is a set of m transmission links. For a transmission link ¢ € 77,
we denote by s(¢) the sender station of ¢ and by r(¢) the receiver station of ¢. In TpMA, transmissions
that do not collide are assigned the same time slot. Following [23], we specify the notion of collision in
two different scenarios. Concerning the scenarios in which a station can transmit at most one message
during a time slot, transmission collisions can be prevented if the following five constraints are all
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satisfied:

C.1 for all (a,b) € T, if (a,b) is assigned a time slot ¢, then for all (b,c) € 7, (b,c) cannot be
assigned 7.

C.2 forall (a,b) € T, if (a, b) is assigned a time slot ¢, then for all (¢, b) € 7 with ¢ # a, (¢, b) cannot
be assigned z.

C.3 for all (a,b) € T, if (a,b) is assigned a time slot ¢, then for all (c,a) € 7, (c,a) cannot be
assigned z.

C.4 forall (a,b) € T, if (a, b) is assigned a time slot ¢, then for all (a,c) € 7 with ¢ # b, (a, ¢) cannot
be assigned ¢.

C.5 forall (a,b) € T, if (a, b) is assigned a time slot #, then for every (c,d) € 7 with ¢ # a such that
(c,b) € T, (c,d) cannot be assigned t.

In less formal words, the constraints C.1 and C.3 ensure that a station cannot send and receive
messages simultaneously. C.2 states that a station cannot receive multiple messages simultaneously.
C.4 indicates that a station cannot send multiple messages simultaneously. C.5 handles the following:
When a station sends a message to another station, the sender station broadcasts to all linked stations,
so we want to ensure that all linked stations are not busy receiving messages from other stations.

Regarding the scenarios in which a station must transmit all its messages simultaneously during
a time slot, transmission collisions can be prevented if C.1-C.3 are satisfied with the following
constraint: A station must send all its messages simultaneously.

C.6 for all (a,b) € T, if (a,b) is assigned a time slot ¢, then for all (a,c) € 7, (a,c) should be
assigned z.

A link schedule, A : 7 — N, of a network N is a total mapping that assigns every transmission link
in 7 a time slot i € N such that all conditions C.1-C.5 are satisfied. A station schedule, N’ : S — N,
of a network N is a total mapping that assigns every station in S a time slot i € N, such that all
conditions C.1-C.3 and C.6 are satisfied. Assigning a time slot 7 to a station x implies that all links
(x,y) are assigned to . An optimal link (station, respectively) schedule of a network N is a link (station,
respectively) schedule of N with a minimum number of time slots as to all link (station, respectively)
schedules of NV. An optimal schedule for a network means optimal throughput is guaranteed.

It is known that the problem of finding an optimal link (or station) schedule is Np-hard; see, e.g., [4,
6]. Our contribution presented in this article can be summarized in the following points:

e We formulate an algorithm for computing exact optimal link schedules of Tpma networks.

e We show that for scheduled k-time slot Tpma networks, optimal link schedules can be computed
recursively with a recursion tree of logarithmic depth O(In m) in expectation.

e We show that optimal link schedules for those Toma networks, with recursion trees of depth
meeting the expectation, can be found in time O(m*'"¥).

e We formulate an algorithm for computing exact optimal station schedules of Tpma networks and
give time complexity results.

In the remainder of this article, Section 2 overviews related work, and Section 3 describes an exact
algorithm (Algorithm 1) for computing optimal link schedules for Tpma networks. In Section 4, we
discuss the complexity of Algorithm 1. In Section 5, we emphasize the correctness of Algorithm 1 in
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several lemmas. In Section 6, we discuss analogous results for computing optimal station schedules of
TpMA networks, and we conclude the paper in Section 7.

2. Related work

We overview recent Toma protocol related work where the interested reader will find further
references to earlier work. In [19], the authors discussed using TpmMA protocol for secure mobile ad
hoc networks. The article of [38] exploited Tpma protocol in opportunistic social networks. The
work of [16] built an ultraviolet random access collaborative networking protocol based on Tpma
protocol. In [39], the authors formulated an online distributed evolutionary optimization of Tpma
protocols. The article of [32] studied a cooperative Tpma protocol with reconfigurable intelligent
surfaces technology. The work of [31] proposed an opportunistic cooperative TpMA scheme where
a source user transmits its data, and the cooperative users opportunistically transmit low-data-rate
users’ data. The article of [33] discussed an extensible frame structure for Tpma protocol in vehicular
ad hoc networks. The work of [33] presented a design and implementation of a Tpma based protocol
for sporting applications. In [5], the authors discussed a direct-sequence spread spectrum TpmMa with
direct detection for a latency-optimized passive optical network. The work of [27] assessed the
stability of Tpma mesh networks through flooding route selection. In [37], a discriminative model
is discussed for TpmA time slot prediction. The article of [40] studied a link distance division-
based Toma protocol for directional aeronautical relay networks. The work of [13] analyzed Tpma
protocols for global mobile satellite communications. In [11], the authors discussed a priority-based
toMA algorithm for medium-range data communication in high-frequency radios. The article of [2]
researched TpmaA implementation on wireless sensor networks. The research of [22] examined a
self-synchronizing tpmA network protocol. The article of [25] studied the backbone packet radio
network coloring for time division multiple access link scheduling in wireless multi-hop networks.
The work of [14] analyzed a design and performance of the asymmetric ToMma method for improving
response time and throughput in tactical radio communication. The chapter of [3] discussed adaptive
antennas for tpma. The article of [15] examined a multichannel Toma time slot scheduling with link
recovery for multi-hop wireless sensor networks. The paper of [1] studied spatial TomA for visible
light communication networks. The work of [17] presented an improved Tpma protocol in underwater
wireless sensor networks. The research of [7] investigated a human body communication-based
biosensor transmitter for Toma networks. Lastly, we note that exact and approximate algorithms solving
different computational problems of communication networks are widely studied in the literature; see,
for example, [8, 10,12, 18,20,21,24,26,28, 30, 35, 36].

3. Algorithm 1

We first give an informal overview of our algorithm for computing an optimal link schedule of
a given ToMA network. Afterward, in this section, we will rigorously describe the processes of our
algorithm. Thus, our algorithm is a backtracking, recursive procedure that searches for an optimal link
schedule for a given Tpma network. For each link in the network, the algorithm assigns a time slot
adhering to the collision avoidance conditions C.1 to C.5. A key feature of the algorithm is that once
a link is assigned a time slot, the algorithm propagates any effects of this assignment to the concerned
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links due to any implications of the constraints C.1 to C.5. This propagation process entails further
links to be assigned to specific time slots which in turn minimizes the number of links that are waiting
to be assigned to a time slot avoiding any transmission collisions. Furthermore, at each link-time
slot assignment, the algorithm analyzes the assignment deeply to foresee whether the assignment will
eventually lead to a dead-end of the underlying search path; if a dead-end is detected, the algorithm
backtracks and saves considerable time. To ensure we find an optimal link schedule (i.e., with a
minimal number of time slots) for the given network, our algorithm will not increase the number of time
slots unless increasing the number of time slots is the only way to prevent transmission collisions in the
under-construction link schedule, provided that no link schedule is found thus far with a less number
of time slots than the current number of time slots used in the under-construction link schedule.

Now, we describe our algorithm rigorously. We define the data structures we use in computing
optimal link schedules. For a given network N' = (S,7), let 4 : 7 — N; be a total mapping to
represent an under-construction link schedule. For any transmission link x, A(x) = 0 indicates that x is

with a set of feasible time slots: those that do not violate the conditions C.1-C.5 concerning the under-
construction schedule A. During the scheduling process, we use C to be the set of newly scheduled
links whose effects on the unscheduled links are not checked yet, as we will elaborate in what follows.
For a mapping I' : 7~ — Ny, we define

0 = [maxtt 13 € T with =T, ifT 0:
T = \m+ 1, T =0

to be the maximum time slot assigned to some transmission link under I in case I' is not empty; if
I' = 0, then, n(I') denotes m + 1.

Our exact procedure for finding an optimal link schedule for a given network N = (S8,7) is
formalized in Algorithm 1. Next, we describe in detail the mechanism of the algorithm. To run
Algorithm 1, invoke Ink_sch(7,C, A, ) with C = 0, and for all ¢ € T, u(e) = {1,...,m}, A(p) = 0.
Thus, an optimal link schedule A # 0 will be found at the end of the algorithm’s execution. Observe
that A is implicitly inputted as an empty set to the algorithm since it is not included in the procedure’s
input list (see the caption of Algorithm 1). This is intentionally the case because the algorithm
maintains only one copy of A, which will contain an optimal link schedule at the end of the algorithm’s
execution. One may implement A as a global variable in computer programming.

Now, we elaborate on the actions of Algorithm 1. As mentioned above, we initially invoke the
algorithm with C = 0. So, let us skip, for now, the while loop at line 1 of Algorithm 1 and move to line
16 in the algorithm, where the algorithm checks if 7~ is empty. The set 7~ being empty indicates that all
transmission links have been scheduled. Hence, the algorithm concludes that the under-construction
schedule A is now completed and that it is the best link schedule so far constructed, and, subsequently,
the algorithm saves 4 in A and immediately returns to the caller of the procedure Ink_sch; see line
16. In line 17, the algorithm selects an unscheduled link ¢ € 7 to assign it a time slot. Referring
to lines 1819, the algorithm tries every feasible time slot 7 € u(yp) satisfying that (i) 7 < n(A), and
(i) T < (1) + 1. The case of (i) is obvious because we search for an optimal schedule with the least
number of time slots. Hence, there is no need to look for schedules with several time slots equal to or
greater than the number of time slots of the so-far-best (nonempty) schedule A. Recall, if A = 0, then
n(A) = m+ 1. We turn now to the second condition (ii). According to (ii), in a first call to the procedure

AIMS Mathematics Volume 9, Issue 5, 13522—-13536.



13526

Ink_sch, referring to lines 17—-19, we might try one time slot for a first extracted transmission link. For
a second extracted transmission link (in a second call to [nk_sch), we might try up to two time slots.
We might try up to three time slots for a third extracted transmission link, and so forth. To see the
objective from the second condition (i1), take, for instance, a network of three links x, y, z. Referring
to line 17, suppose that x is first extracted, then y, and finally z. In this sequence, assign these links to
the time slots (1, 1, 2), respectively, then, all assignments in the form (1, 1,¢), with ¢ > 2, are similar to
(1, 1,2), so there is no need to explore such assignments (i.e., (1, 1,7) with ¢ > 2) at all. This is because
an assignment in the form (1, 1,¢) (with # > 2) implies that x and y are assigned the time slot 1, while
z is assigned a different time slot (i.e., other than 1). In other words, we cannot let the network be idle
in the second time slot if we assign x, y, and z (respectively), the time slots (1, 1, 3), for instance.

Being recursive, the algorithm calls itself in line 19 with four parameters: the current unscheduled
transmission links 7-, the newly-scheduled link {¢}, the current under-construction link schedule A, and
the set, u, that includes the feasible time slots for every link in 7°. By invoking the procedure Ink_sch in
line 19, we apply the algorithm again starting from the while loop. The set C contains newly-scheduled
links. So, the job of the while loop is to update the feasible time slots for those unscheduled links in 7~
that might be affected by the newly assigned time slots for the links in C. In line 3 (within the while
loop), the algorithm checks those (unscheduled yet) links « that have their sender or receiver station
being the same as the sender or receiver of a link 8 € C. This is to enforce the conditions C.1-C.5.
Starting with constraint C.5, the algorithm (lines 4-5) scans those links y with a sender station s(y)
being the same as the sender station of @, whose receiver station is the same as the receiver of the link
B. Each of such links, vy, is forbidden to be assigned the time slot assigned to §; thus, in line 6, the
algorithm updates the set of feasible time slots for y accordingly by removing the time slot assigned to
B. In line 7, the algorithm examines if the set of feasible time slots of y is empty. If so, the algorithm
returns to the caller of the /nk_sch procedure (i.e., the previous instance of the procedure itself). It is
pointless to proceed with the search process whenever a link cannot be scheduled without violating
condition C.5.

In line 8, the algorithm checks if the set of feasible time slots of y contains one time slot only. If so,
we must assign y the only possible time slot (see line 9). Now, as noted earlier, the strategy taken by
the algorithm is that every time a link (in this case ) is assigned a time slot, the algorithm adds y to C
(line 10) to impose subsequently any arising implications of this new assignment on the feasible time
slots of the unscheduled links in 7. This is because we have to maintain the conditions C.1-C.5 being
satisfied; note that we already explained how the algorithm maintains C.5. Shortly, we illustrate how
the algorithm keeps the conditions C.1-C.4. Referring to line 9, once the algorithm assigned a time
slot to 7y, the algorithm (line 11) removes y from the set 7 to indicate that v has been scheduled, and
so to let the algorithm look for scheduling the remaining links in 7 in the following search stages.

To enforce the conditions C.1-C.4, the algorithm applies lines 12—15. Recall, for a link « that has
its sender or receiver station being the sender or receiver of a recently-scheduled link S (see lines 2-3),
the algorithm (line 12) removes the time slot A(8) from u(a), which is the set of feasible time slots of
a. In line 13, the algorithm confirms if the link @ has no feasible time slots left, and if so, the algorithm
returns to the caller of the procedure Ink_sch, which is the previous instance of the procedure itself. In
line 14, the algorithm examines if |u()|, the size of the set of feasible time slots of @, equals 1. If so,
the algorithm concludes that there are no choices other than assigning to « the only feasible time slot
possible for @. In line 15, after assigning a time slot to @, « is included in the set of newly-scheduled
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links C and then is removed from 7 . Afterward, the while loop continues until the algorithm finishes
verifying the impact of the recently-scheduled links of C on the remaining unscheduled links of 7.
Therefore, the while loop stops when C is empty. After the while loop, the search process continues if
7 1is not empty (line 16) in the same manner we described above.

Algorithm 1: Ink_sch(7,C, A, 1)
1 while C # 0 do

2 extract a link 8 from C;

3 foreach « € 7 with {s(@), r(@)} N {s(B), r(B)} # 0 do
4 if r(8) = r(a) then

5 foreach y € 7 with s(y) = s(a) do

6 u(y) < py) \ {AB)};

7 if u(y) = 0 then return;

8 if |u(y)| = 1 then

9 A(y) « 7 where 7 € u(y);

10 C < CuUlyh

1 T < T \{yh

12 p@) « pla) \ {AB)}

13 if u(a) = 0 then return;

14 if |u(a)| = 1 then

15 Aa) «— twhere T € u(a); C «— CU{a}; T « T \{a};

16 if 7 = () then A < A; return;

17 extract a randomly selected link ¢ from 77

18 foreacht=1..m: 7€ u(p)and t < n(A) and v < n(1) + 1 do
19 Ap) «— 15 Ink_sch(T, {¢}, 4, w);

4. Complexity of Algorithm 1

The space requirement of Algorithm 1 is restricted by the structures employed by the procedure
Ink_sch. These structures are 7, C, i, and A. Note the size of y is in O(m?), while the size of 7, C, or A
is in O(m). It is now obvious that the algorithm runs in O(m?®) space since, in the worst-case scenario,
m instances of the recursive procedure Ink_sch might be active simultaneously where every instance
holds its version of the set y that includes the feasible time slots for all links in the inputted network.

Now, we discuss the computer representation of the set 7. Observe that we can implement 7~ as a
boolean array ¥ such that W[x] = true if, and only if, x € 7. Thus, extracting a link x from 7 requires
updating W[x] < false. Nonetheless, before applying line 17 in Algorithm 1 (i.e., after the while loop),
we need to resize 'Y by removing all entries with false to reflect the remaining unscheduled links. To
this end, for every link in 77, we must keep track of its position in the array ¥. Thereby, for every
link x in the initially inputted network, we need to have another array J to hold the position of x in
Y. Thus, updating ¥ (by removing all entries with false) requires updating the corresponding entries
of 7. To see these arrays in action, take 7 = {a, b, ¢, d}, then, the corresponding implementation of
7 is an array ¥ = ((a, true), (b, true), (c, true), (d, true)) along with another array 7 = (0, 1, 2, 3), such
that the entries of 7 represent the position of a, b, ¢, and d, respectively, in the array W. Assume we
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remove b from 7. This is performed by W[ [b]] « (b, false) where I[b] = 1. Likewise, removing d
from 7 means setting Y[ Z[d]] < (d, false). Now, after we finish executing the while loop and before
extracting a link at line 17 in Algorithm 1, we need to shrink ¥ such that it contains only the entries with
true, which requires updating 7 as well. Thus, the new structures become ¥ = ((a, true), (c, true)) and
I = (0,undefined, 1,undefined), which correspond to 7~ = {a, c}. Therefore, in summary, whenever
we extract a link x from 7 (see lines 11 & 15 & 17), we update WY[Z[x]] « false in constant time.
Hence, we differentiate between the cost of extracting a link from 7, which can be done in constant
time, and the cost of shrinking 7, which can be done in linear time O(m). Again, observe that we do
not shrink 7~ every time a link is removed from 7. We delay shrinking 7~ until just before applying
line 17 in Algorithm 1, where we extract an unscheduled link from 7 to assign it a time slot.
The following two propositions discuss the running time of Algorithm 1.

Proposition 1. Let N = (S,7) be a scheduled k-time slot network with n stations and m links. The
recursion tree of Algorithm 1 (running on N') has depth O(In m) in expectation.

Proof: We note that the expected depth of the recursion tree of Algorithm 1 corresponds to the expected
size of the call stack of Ink_sch, which is equal to m multiplied by the expected running time of line
17. Observe that line 17 is executed at most m times starting from an initial call to [nk_sch until we hit
the recursion stop condition (i.e., 7 = 0; see line 16 in Algorithm 1.) Recall that by the effect of the
while loop of Algorithm 1, the size of 7 may shrink considerably each time /nk_sch is invoked until 7
is empty; see line 16 in Algorithm 1.

To calculate the expected running time of line 17, we define

Xi:{((1,.,i) )| 1<i<mand 1< j<i}—{0,1}

to be a random variable for the cost of one run of line 17 (in Algorithm 1), where we extract a randomly
selected transmission link j from unscheduled transmission links (1, ..., i) such that 1 < i < m. Thus, for
a given i < m, for every jin (1,...,1), X1(((1, ...,7), j)) = 1 if and only if for all  # j, X;(((1, ...,0),])) =
0. This is consistent with line 17 in Algorithm 1, where we select and extract one link. The time
for extracting one link is constant, whereas no time is spent on the unselected links. Let s denote a
randomly selected link to be extracted from (1, ..., ). For a given i < m, we note that the probability is

i 1\[1
P, i), s7) = 1) = (_)(_)

i/\m

Observe that 1 is the probability of selecting a link s from i links, while i is the probability of

having a sequence of unscheduled links with size i. Therefore, the expectation, &(X), of X is

EX1) = XL X, D), sSONPXI(, s D), D)) = 1)

- sEm(E) () <o(2).
Thus, the expected depth of the recursion tree of Algorithm 1 is equal to m multiplied by the

expected running time of line 17:
Inm
(0] (m (—)) = O(Inm).
m
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Proposition 2. Let N = (S,7) be a scheduled k-time slot network with n stations and m links and
let the depth of the recursion tree of Algorithm 1 (running on N) match the expectation, i.e., O(In m).
Thus, Algorithm I runs in time O(m**"%),

Proof: Assuming at most k time slots are tried for each randomly selected link (see lines 17-19), the
size of the recursion tree with a constant branching factor k and depth O(Inm) is in O(kK'"™™) = O(m'"%).
As to the running time of the while loop of Algorithm 1, focus on the execution of 7 recursive calls for
the procedure Ink_sch starting from the initial call (where 7~ has all the links of the originally-inputted
network), and ending with a call (for Ink_sch) where 7 = ( (see line 16). In every call of these calls,
in the while loop, we process (m,),<, < m links, those links that are in C (see lines 1 and 2 in Algorithm
1). In every call (for Ink_sch), the number of iterations of the while loop equals m,. Moreover, in the
while loop, the inner for loop (line 3) runs in O(m?*) = O(m) time. This is because, for the first for
(line 3), we only check those links @ that have the sender (or receiver) being the sender or receiver of
B. We do the same with the second for (line 5), where we only check those links y with the sender
being the sender of @. So, the overall running time of the while loop in execution ¢ recursive calls is
O(m(m, + my + ...m;)). Since m; + my + ... + m, = m, the while requires O(m?) time for executing the ¢
recursive calls.

Therefore, the running time of Algorithm 1 is bounded by the size of its recursion tree, Q(m'"*),
multiplied by the running time of the while loop O(m?). Thus, Algorithm 1 runs in time O(m**"¥).

5. Correctness proof of Algorithm 1

Algorithm 1 is a search algorithm that exactly computes link schedules for Toma networks. We
emphasize the correctness of Algorithm 1 in the following technical lemmas.

Lemma 1. Throughout Algorithm 1’s execution, for each link, x, in the input network, every time slot
in u(x) complies with constraints C.1 to C.5.

Proof: The initial state of u is consistent with the constraints C.1-C.5 because u(x) initially has m time
slots for each link in the input network. Certainly, transmission conflicts are avoided if one transmission
link is exclusively permitted in a given time slot; recall there are m links in the input network. Now, we
need to show that whenever we update u, ¢ remains to adhere to C.1-C.5. Observe that u is updated in
two places in the algorithm: line 6 and line 12. Regarding line 6, whenever a time slot is assigned to
a link B, for each unscheduled link y such that there is a link @ with r(a) = r(8) and s(a@) = s(y), we
remove from pu(y) the time slot of S. This is consistent with the constraints C.1-C.5. Regarding line
12, whenever a time slot is assigned to a link g, for each unscheduled link @, we remove from u(a@)
the time slot of S if s(a@) = s(B), s(@) = r(B), r(a) = s(B), or r(a) = r(B); this is satisfying constraints
C.1-C5.

Corollary 1. Referring to lines 7 and 13, Algorithm 1 backtracks whenever it sees an unscheduled link
x with u(x) = 0, i.e., x has no feasible time slots lefft.

Lemma 2. Throughout Algorithm 1’s execution, A does not violate constraints C.1 to C.5.

Proof: The initial state of A, where each link is not assigned a time slot yet, does not violate the
conditions C.1 to C.5. Now, we need to show that whenever A is updated, A remains to adhere to C.1—
C.5. We note that A is updated in three places: lines 9, 15, and 19. In these places, we apply A(x) « T,
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(where x is a link and 7 is a time slot) if, and only if, 7 € u(x), where u is x’s eligible time slots that
satisfy C1.—C.5 as illustrated in a previous lemma.

Lemma 3. At the end of Algorithm 1’s execution, A (see line 16) is an optimal link schedule of the
input network.

Proof: Note that A is indeed a legal link schedule (i.e., adhering to constraints C.1-C.5). This is
because according to line 16 in the algorithm, A is equal to 4, which is a legal schedule, as argued in a
previous lemma. Still, we need to prove that A is optimal. With the intent to establish a contradiction,
suppose A is not optimal. This means that there is A’ with n(A”) < n(A); recall that (A) is defined as
follows:

() o [male 1 3e €T with = A, A #0:
T = 1, ifA = 0.

The existence of another link schedule A” with n(A”) < n(A) is impossible because it contradicts the
actions of the algorithm, where we go further in the search for an optimal link schedule by trying one
more time slot only if we failed in finding a schedule with fewer time slots (this is the part “r =1 .. m”
of line 18). Additionally, the condition 7 < 7(A) (in line 18) ensures not constructing a schedule with
a number of time slots being equal to or greater than the number of time slots of the so-far-found
schedule A.

6. Analogous results for computing optimal station schedule

Now, we compute optimal station schedules of Tpma networks. In Algorithm 2, we present the
process of finding an optimal station schedule for a given network. Algorithm 2 employs data structures
analogous to the data structures of Algorithm 1. Given a network N = (S,7),let ' : S — Ny be a
total mapping representing an under-construction station schedule. During the algorithm’s execution,
a station x with 2’(x) = 0 indicates that x is not assigned a time slot yet. Let i’ : S — 2=+ be
a total mapping to associate a station with a set of feasible time slots: those that do not violate the
conditions C.1-C.3 & C.6 consistently with the under-construction station schedule A’. Algorithm 2
uses a set C’ € S to hold those stations that are newly assigned a time slot. Algorithm 2 will apply
the consequences of the newly-scheduled stations held in C as we elaborate shortly. Another construct
used in Algorithm 2 is the maximum time slot, '(I""), assigned to a station under some nonempty
mapping [ : § — Ny. More precisely, we define

L max{t | dx with t = I""(x)}, ifI” # 0;
nd)= .
n+1, if I7 = 0.

Referring to Algorithm 2, invoke st_sch(S,C’, A’,u’) such that A = @, C’ = @, and for all x,
W(x) ={1,...,n} with 2(x) = O; then an optimal station schedule A’ # @ will be found at the end of the
algorithm’s execution. Observe that A’ is implicitly inputted to the procedure since it is not included
in the input list (see the caption of Algorithm 2). This is intentionally the case because the algorithm
maintains only one copy of A’, which will contain, at the end of the execution of the algorithm, an
optimal station schedule. One may implement A’ as a global variable in computer programming.
Likewise, 7 is supposed to be a global variable rather than a parameter to be passed on every call to
the procedure st_sch.
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Algorithm 2: st_sch(S,C’, A, 1)

1 while C" # 0 do

2 extract a station x from C’;

3 foreachy e S: (x,y) €T V(,x) €T VIAz(x,2) €T AN(y,2) € T)do
4 H Q) < M\ {0}
5
6

if 1/(y) = 0 then return;
if |u'(y)| = 1 then
7 A(y) < vwheret € @' (y); C' < C'U{y}L; S « S\ {yh
8 if S = 0 then A’ «— A’; return;
9 extract a randomly selected station x from S;
10 foreacht=1..n:7epyx):7<yAN)andt <)+ 1do
11 A'(x) « 7; st_sch(S, {x}, ', 1');

Let us navigate into the actions of Algorithm 2. As we initially invoke the algorithm with C" = 0
and § # 0, move to line 9 where the algorithm selects an unscheduled station x € S to assign for it a
time slot. Referring to lines 10-11, the algorithm tries every feasible time slot 7 € y’(x) satisfying that
()1 < n’'(A”) and (i) T < n’'(A") + 1. The conditions of (i) & (ii) are analogous to the earlier conditions
(1) & (i1) used in Algorithm 1; to avoid redundant discussions, we refer to the treatment given earlier
for (i) & (ii).

Once the algorithm assigns a time slot to a station x, Algorithm 2 calls itself recursively (line 11)
passing on the parameters: S, A, ¢/, and {x} such that {x} is to be copied to C’ in the new instance
of st_sch. Note after every invocation to st_sch, we have a new instance of the procedure st_sch.
Referring to the while loop in line 1, whenever C’ is nonempty, the algorithm (lines 3—7) will impose
the consequences of the newly-assigned time slot A’(x) of a station x (extracted from C’ in line 2) on
the set of feasible time slots y’(y) for every station y, such that (x) (x,y) € T, (xx) (y,x) € T, Or (%)
dz with (x,z) € 7 and (y,2) € T .

In line 4, the algorithm removes A’(x) from the set of feasible time slots, u'(y), of a station y
satisfying (*), (¥%), or (#*x). This is to maintain the conditions C.1-C.3 and C.6. Recall that we
build station schedules in the scenarios where a station must transmit all its messages in one time slot.
So, to keep condition C.6 satisfied, by assigning a time slot 7 to a station x, we let x be able to transmit
a message to every station w with (x, w) € 7 during the time slot . Therefore, it is not hard to see that
the conditions (*), (xx), and (x*x), along with the performed action (line 4), maintain the conditions
C.1, C.3 and C.2 satisfied.

After removing A’(x) from p'(y) (line 4), Algorithm 2 (line 5) checks if the set of feasible time slots,
(), of y is empty, and if so, the algorithm returns to the caller of st_sch. In line 6, the algorithm
verifies if 1'(y), the set of feasible time slots of y has one time slot only, and if so, the algorithm assigns
the only possible time slot to y; subsequently, the algorithm (line 7) adds y to C’ and then removes y
from 8. The while loop continues until C’ is empty, which means there are no more newly scheduled
stations. In line 8, the algorithm checks if § is empty. The set S being empty indicates that all stations
have been scheduled, and, hence, the under-construction station schedule 1’ (being completed) is the
best station schedule so far constructed. So, the algorithm saves a copy of A’ in A’ and immediately
returns to the caller of the procedure st_sch. If S is not empty, the algorithm continues as described
above.
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Given the similarity between Algorithms 1 and 2, the space and time analyses of Algorithm 2 are
analogous to those discussed for Algorithm 1. Thus, if the input is a scheduled k-time slot network,
Algorithm 2’s recursion tree has depth O(Inn) in expectation. Moreover, Algorithm 2 runs in time
O(n**!"%) if the input is a scheduled k-time slot network and the recursion tree has depth matching the
expectation. This is because the while loop of Algorithm 2 runs in O(n?) time, whereas the size of
Algorithm 2’s recursion tree is in O(n'"¥). Regarding space complexity, Algorithm 2 requires O(n*)
space for holding at maximum 7 instances of a two-dimensional array representing u’.

7. Conclusions

We demonstrated that an optimal link schedule for a Tpma network with n stations and m links can
be computed recursively with a recursion tree of logarithmic depth O(Inm) in expectation. Thereby,
we illustrated that optimal link schedules for those Tpma networks, with recursion trees of depth
matching the expectation, can be found in time O(m**'"¥). Moreover, we discussed similar results
for computing optimal station schedules of Tpma networks. As we discussed throughout the article,
the main advantage of the algorithm is that the expected depth of its recursion tree is logarithmic.
However, although the time complexity of our algorithm (running with a logarithmic-depth recursion
tree) is O(m>*'"%), its running time in the general case remains exponential as the problem of finding an
optimal link schedule of a TpomMaA network is Np-hard.

Future work may investigate if the running time at each node of the recursion tree can be improved,
significantly impacting the overall performance of computing optimal link or station schedules of Tpma
networks. Likewise, the space complexity of computing TpmA optimal transmission schedules can be
examined further for better bounds, especially to make it more practical for real applications. Our
research results can also be pursued in other directions that are aligned with the literature. One may
consider the impact of different traffic patterns or data rates on the performance of Tpam networks and
develop adaptive scheduling algorithms to optimize throughput under varying conditions. Additionally,
it would be valuable to build on existing literature and investigate further the trade-off between
achieving optimal throughput and minimizing energy consumption in Tpma networks, considering the
increasing importance of energy-efficient communication protocols. Likewise, further research may
examine the implementation of the proposed algorithm in hardware or real-time systems.
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