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Abstract: In this work, we focus our attention on the existence of nontrivial solutions to the following
supercritical Schrödinger-Poisson type system with (p, q)-Laplacian:

−∆pu − ∆qu + ϕ|u|q−2u = f (x, u) + µ|u|s−2u in Ω,
−∆ϕ = |u|q in Ω,
u = ϕ = 0 on ∂Ω,

where Ω ⊂ RN is a bounded smooth domain, µ > 0,N > 1, and −∆℘φ = div(|∇φ|℘−2∇φ), with
℘ ∈ {p, q}, is the homogeneous ℘-Laplacian. 1 < p < q < q∗

2 , q∗ := Nq
N−q < s, and q∗ is the

critical exponent to q. The proof is accomplished by the Moser iterative method, the mountain pass
theorem, and the truncation technique. Furthermore, the (p, q)-Laplacian and the supercritical term
appear simultaneously, which is the main innovation and difficulty of this paper.

Keywords: Schrödinger-Poisson type system; truncation technique; mountain pass theorem; variation
methods; Moser iterative method
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1. Introduction

This paper deals with the following Schrödinger-Poisson type system with supercritical growth:
−∆pu − ∆qu + ϕ|u|q−2u = f (x, u) + µ|u|s−2u in Ω,
−∆ϕ = |u|q in Ω,
u = ϕ = 0 on ∂Ω,

(P)

where Ω ⊂ RN is a bounded smooth domain, 1 < p < q < q∗

2 , q∗ := Nq
N−q < s, q∗ is the critical exponent,

µ > 0, and N > 1. In addition, the nonlinearity f ∈ C(Ω̄ × R+,R) meets the following assumptions:
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( f1) There exist k ∈ (p, q∗) and C > 0 such that

| f (x, ξ)| ≤ C|ξ|k−1, ∀ ξ ∈ R+.

( f2) There exists ι ∈ (2q, q∗) such that

0 < ιF(x, ξ) ≤ ξ f (x, ξ), ∀ (x, ξ) ∈ Ω̄ × R+,

where F(x, ξ) =
∫ ξ

0
f (x, t)dt.

The Schrödinger-Poisson system has a strong physical background; for instance, it has been
widely applied in fields like semiconductor theory [16, 20] and quantum mechanics models [8, 17].
An increasing number of scholars developed an interest in the system after Benci and Fortunato’s
groundbreaking work [9]. To be more precise, Du et al. [12] investigated the following quasilinear
Schrödinger-Poisson system with p-Laplacian operator:−∆pu + |u|p−2u + λϕ|u|p−2u = |u|q−2u in R3

−∆ϕ = |u|p in R3,

where λ > 0,∆pu = div
(
|∇u|p−2∇u

)
, 1 < p < 3, p < q < p∗ := 3p

3−p . Combining the mountain pass
theorem together with some scaling transformation and ingenious methods, they demonstrated the
system has nontrivial solutions. In [10], Cassani et al. made use of the variational approximation
method to obtain the existence of the solution of the auxiliary Choquard equation for a class of
uniformly approximated variational logarithm kernels in fractional Sobolev space. For additional
information on this system, readers who are interested might consult [1, 5, 21] and their references.

Recently, the subcritical, critical, and supercritical studies of Schrödinger-Poisson systems have
attracted much attention in the field of mathematics. More precisely, Li et al. [18] illustrated that in
subcritical and critical circumstances, the existence of infinitely many solutions to fractional Kirchhoff-
Schrödinger-Poisson systems is obtained by using the variational method. Liu et al. [19] took into
account a critical nonlocal Schrödinger-Poisson system on the Heisenberg group. They utilized the
Clark critical point theorem, the mountain pass theorem, the Krasnoselskii genus theorem, and the
Ekeland variational principle to give the existence and multiplicity of solutions to this problem. Gu et
al. discussed fractional-order Schrödinger-Poisson systems with critical or supercritical nonlinearities
in [15]. The existence results of ground state solutions and variable-sign solutions were proved by
employing Moser iterative techniques and truncation methods. Readers can also refer to [4, 11, 24, 25]
for more relevant content. On the other hand, we discover that investigations of Schrödinger-Poisson
systems with (p, q)-Laplacian are scarce. Indeed, Song et al. [22] dealt with the Schrödinger-Poisson
system as follows:−∆pu − ∆qu +

(
|u|p−2 + |u|q−2

)
u − ϕ|u|q−2u = h(x, u) + λg(x) in R3,

−∆ϕ = |u|q in R3,

where λ > 0, h is a Carathéodory function, 3
4 < p < q < 3, and ∆ς = div

(
|∇u|p−2∇u

)
, ς = {p, q},

is the ς-Laplacian. The authors admitted nontrivial solutions by applying fixed point theory. For the
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subcritical case, Du et al. [13] obtained the existence of solutions for the (p, q)-Schrödinger-Poisson
system. Arora et al. [6] obtained the multiplicity results for double phase problems of Kirchhoff type
with right-hand sides that include a parametric singular term and a nonlinear term of subcritical growth.
However, as far as we know, there are no works in the literature that study the supercritical Schrödinger
Poisson type system with (p, q) Laplacian. Hence, inspired by the studies mentioned above and Gao
and Tan [14], in the present paper, we consider the existence of nontrivial solutions to problem (P).

Next, we state our main results.

Theorem 1.1. Assume that hypotheses ( f1) and ( f2) are satisfied. Then, there exists µ∗ > 0 such that
problem (P) has a nontrivial solution u for µ ∈ (0, µ∗).

Remark 1.1. Here we need to point out that problem (P) is driven by several nonstandard differential
operators with unbalanced growth, whose associated energy is a double-phase variational functional,
which generates an interesting double-phase associated energy. Furthermore, the interaction between
the two operators needs to be analyzed in detail. From a mathematical point of view, this problem
has great appeal because two features are present in it: the critical nonlinearity and (p, q)-Laplacian.
Moreover, our results are new, even in the p = q case.

The paper is organized as follows. In Section 2, we review some significant properties about D(Ω),
and a truncation argument is introduced. In Section 3, we present that the truncated problem has a
nontrivial solution. Finally, we give our main result.

2. Preliminaries

In this section, we will work on some crucial embedding results and properties of D(Ω), which will
be used in the rest of the paper.

To this end, we first show the functional spaces listed as follows:

♣ D1,s (Ω) denotes the completion of C∞0 (Ω) with respect to the norm

∥u∥D1,s =

(∫
Ω

|∇u|sdx
) 1

s

.

♣ For all r ∈ (p, q∗), Lr (Ω) denotes the Lebesgue space with the norm

∥u∥r =
(∫
Ω

|u|rdx
) 1

r

.

♣ D(Ω) = D1,p(Ω)∩D1,q(Ω), for all u ∈ D(Ω), is the natural space for the solutions of problem (P),
endowed with the natural norm

∥u∥ = ∥u∥D1,p + ∥u∥D1,q .

It is known that the space D(Ω), D1,℘(Ω), and Lr(Ω) are reflexive and uniformly convex Banach spaces.

Lemma 2.1. D(Ω) is the reflexive Banach space.

Proof. Our proof consists of two steps.
Claim 1. D(Ω) is complete with respect to the norm

∥u∥ = ∥u∥D1,p + ∥u∥D1,q .
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In fact, let {un}n be a Cauchy sequence in D(Ω). Therefore, for any ε > 0, there exists µε > 0 such that
if n,m ≥ µε, we have

∥un − um∥ = ∥un − um∥D1,p + ∥un − um∥D1,q < ε. (2.1)

Applying the completeness of Lp(Ω), then there exists u ∈ Lp(Ω) such that un → u as n → ∞.

Consequently, there exists a subsequence {unk} in D(Ω) such that un → u a.e. in Ω as k → ∞ (please
see Brézis [7], Theorem 4.9). Therefore, with the aid of Fatou’s lemma in (2.1), with ε = 1, we obtain

∥u∥ = ∥u∥D1,p + ∥u∥D1,q

≤ lim inf
k→∞

[
∥unk∥D1,p + ∥unk∥D1,q

]
= lim inf

k→∞

[
∥unk − uµ1∥D1,p + ∥uµ1∥D1,p + ∥unk − uµ1∥D1,q + ∥uµ1∥D1,q

]
= lim inf

k→∞

[
∥unk − uµ1∥D1,p + ∥unk − uµ1∥D1,q + ∥uµ1∥D1,p + ∥uµ1∥D1,q

]
≤ 1 + ∥uµ1∥ < ∞.

Hence, u ∈ D(Ω). Let n ≥ µε. Using (2.1) and Fatou’s lemma, we have

∥un − u∥ ≤ lim inf
k→∞

∥un − unk∥ < ε,

i.e., un → u in D(Ω) as n→ ∞.

Claim 2. We prove that (D, ∥ · ∥) is uniformly convex. To this end, we fix ε ∈ (0, 2) and u, ν ∈ D(Ω),
with

∥u∥D1,p = ∥ν∥D1,p = 2−
1
p , ∥u∥D1,q = ∥ν∥D1,q = 2−

1
q

and ∥u − ν∥D1,p ≥ ε, ∥u − ν∥D1,q ≥ ε.
Case q > p ≥ 2. We have the following inequality (see Adams and Fournier [2]):∣∣∣∣a + b

2

∣∣∣∣q + ∣∣∣∣a − b
2

∣∣∣∣q ≤ 1
2

(|a|q + |b|q) ∀a, b ∈ R.

Now, we prove that

∥
u + ν

2
∥

q
D1,q + ∥

u − ν
2
∥

q
D1,q =

∫
Ω

∣∣∣∣∇u + ∇ν
2

∣∣∣∣qdx +
∫
Ω

∣∣∣∣∇u − ∇ν
2

∣∣∣∣qdx

=

∫
Ω

(∣∣∣∣∇u + ∇ν
2

∣∣∣∣q + ∫
Ω

∣∣∣∣∇u − ∇ν
2

∣∣∣∣q)dx

≤
1
2

∫
Ω

(|∇u|p + ∇ν|q)dx

=
1
2

(∫
Ω

|∇u|qdx +
∫
Ω

|∇ν|qdx
)

=
1
2

(∥u∥q
D1,q + ∥ν∥

q
D1,q) =

1
2

(
1
2
+

1
2

) =
1
2
< 1.

(2.2)

By (2.2), we get
∥
u + ν

2
∥

q
D1,q < 1 − ∥

u − ν
2
∥

q
D1,q = 1 − (

ε

2
)q.
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We take δ = δ(ε) such that

1 − (
ε

2
)q = (

1 − δ
2

)q.

So, we have

∥
u + ν

2
∥

q
D1,q < (

1 − δ
2

)q.

Consequently,

∥
u + ν

2
∥D1,q <

1 − δ
2
< 1 − δ.

Therefore, we get that D1,q(Ω) is uniformly convex. Similarly, we also obtain that D1,p(Ω) is uniformly
convex. Moreover, we get that

∥
u + ν

2
∥ = ∥

u + ν
2
∥D1,p + ∥

u + ν
2
∥D1,q <

1 − δ
2
+

1 − δ
2
= 1 − δ.

Thus, D(Ω) is uniformly convex.
Case 1 < p < q < 2. Obviously, the following formula holds:

∥u∥q
′

D1,q =

(∫
Ω

|∇u|qdx
) q′

q

=

(∫
Ω

|∇u|qdx
) q

q−1 ·
1
q

=

(∫
Ω

(
|∇u|q

′
)q−1

dx
) 1

q−1

,

where q′ = q
q−1 . Following from the reverse Minkowski inequality (see [2], Theorem 2.13), we have∥∥∥∥∥u + v

2

∥∥∥∥∥q′

D1,q
+

∥∥∥∥∥u − v
2

∥∥∥∥∥q′

D1,q

=

∫
Ω

(∣∣∣∣∣∇u + ∇v
2

∣∣∣∣∣q′)q−1

dx


1

q−1

+

∫
Ω

(∣∣∣∣∣∇u − ∇v
2

∣∣∣∣∣q′)q−1

dx


1

q−1 (2.3)

=

∥∥∥∥∥∥
∣∣∣∣∣∇u + ∇v

2

∣∣∣∣∣q′
∥∥∥∥∥∥

q−1

+

∥∥∥∥∥∥
∣∣∣∣∣∇u − ∇v

2

∣∣∣∣∣q′
∥∥∥∥∥∥

q−1

≤

∥∥∥∥∥∥
∣∣∣∣∣∇u + ∇v

2

∣∣∣∣∣q′ + ∣∣∣∣∣∇u − ∇v
2

∣∣∣∣∣q′
∥∥∥∥∥∥

q−1

=

∫
Ω

(∣∣∣∣∣∇u + ∇v
2

∣∣∣∣∣q′ + ∣∣∣∣∣∇u − ∇v
2

∣∣∣∣∣q′)q−1

dx


1

q−1

.

By the inequality (see [2])∣∣∣∣∣a + b
2

∣∣∣∣∣q′ + ∣∣∣∣∣a − b
2

∣∣∣∣∣q′ ≤ (
1
2

(|a|q + |b|q)
) 1

q−1

∀a, b ∈ R,
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we infer in addition to (2.3) that

∥∥∥∥∥u + v
2

∥∥∥∥∥q′

D1,q
+

∥∥∥∥∥u − v
2

∥∥∥∥∥q′

D1,q
≤

∫
Ω

(
1
2

(|∇u|q + |∇v|q)
) 1

q−1 ·(q−1)

dx


1

q−1

=

(
1
2

) 1
q−1

∫
Ω

(|∇u|q + |∇v|q) dx

=

(
1
2

) 1
q−1 (
∥∇u∥q

D1,q + ∥∇v∥q
D1,q

)
=

(
1
2

) 1
q−1

< 1.

(2.4)

From (2.4), we have ∥∥∥∥∥u + v
2

∥∥∥∥∥q′

D1,q
< 1 −

∥∥∥∥∥u − v
2

∥∥∥∥∥q′

D1,q
= 1 −

(
ε

2

)q′

.

We take δ = δ(ε) such that 1 −
(
ε
2

)q′
= ( 1−δ

2 )q′ . So, we have

∥
u + ν

2
∥D1,q <

1 − δ
2
< 1 − δ.

Therefore, we get that D1,q(Ω) is uniformly convex. Similarly, we also obtain that D1,p(Ω) is uniformly
convex. Moreover, we get that

∥
u + ν

2
∥ = ∥

u + ν
2
∥D1,p + ∥

u + ν
2
∥D1,q <

1 − δ
2
+

1 − δ
2
= 1 − δ.

Thus, D(Ω) is uniformly convex. By Theorem 1.21 in Adams and Fournier [2], we obtain that D(Ω) is
a reflexive Banach space. Hence, the proof of Lemma 2.1 is finished. □

Proposition 2.1. Let 1 < p < q < q∗

2 and q∗ = Nq
N−q hold. Then,

♦ for all r ∈
[
p, q∗

]
, the embedding D(Ω) ↪→ Lr(Ω) is continuous;

♦ for all r ∈
[
p, q∗), the embedding D(Ω) ↪→ Lr(Ω) is compact.

When we study problem (P) by variational methods, the main difficulty lies in the fact that the
presence of a supercritical term makes Jµ,H unable to satisfy the PS condition. To solve such a
difficulty, we introduce a truncation function. Let H > 0, and define the following continuous function
mµ,H : Ω̄ × R→ R:

mµ,H(x, ξ) =


0 if ξ ≤ 0,
f (x, ξ) + µξs−1 if 0 < ξ ≤ H,

f (x, ξ) + µH s−kξk−1 if ξ > H,

where p < k < q∗, p ≥ 1, and s > q∗. We can easily check that the following properties are satisfied
by employing ( f1) and ( f2):

(m1)
∣∣∣mµ,H(x, ξ)

∣∣∣ ≤ (
C + µH s−k

)
|ξ|k−1, where C > 0 and ∀ξ ∈ R, x ∈ Ω̄.
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(m2) 0 < ιMµ,H(x, ξ) ≤ ξmµ,H(x, ξ), ∀ξ > 0, x ∈ Ω̄, where ι ∈ (2q, q∗) and

Mµ,H(x, ξ) =
∫ ξ

0
mµ,H(x, t)dt.

In the next moment, we are committed to a truncation problem as follows:
−∆pu − ∆qu + ϕ|u|q−2u = mµ,H(x, ξ) in Ω,
−∆ϕ = |u|q in Ω,
u = ϕ = 0 on ∂Ω.

(Q)

Problem (Q) is variational, and the associated energy functional Iµ,H : D(Ω) → R is given by for any
u ∈ D(Ω):

Iµ,H(u, ϕ) =
1
p
∥u∥D1,p +

1
q
∥u∥D1,q +

1
2q

∫
Ω

|∇ϕ|2dx −
∫
Ω

Mµ,H(x, u)dx.

For any u ∈ D(Ω), by the Lax-Milgram Theorem, we can find a unique ϕu ∈ D1,2(Ω) satisfying

−∆ϕu = |u|q,

which yields that

0 ≤
∫
Ω

|∇ϕ|2dx =
∫
Ω

ϕu|u|q.

Hence, we are able to define the one-variable functional Jµ,H : D(Ω)→ R by

Jµ,H(u) = Iµ,H(u, ϕ) =
1
p
∥u∥p

D1,p +
1
q
∥u∥q

D1,q +
1

2q

∫
Ω

ϕu|u|qdx −
∫
Ω

Mµ,H(x, u)dx.

The derivative of this can be represented as

〈
J′µ,H(u), v

〉
=

∫
Ω

|∇u|p−2∇u∇v +
∫
Ω

|∇u|q−2∇u∇v +
∫
Ω

ϕu|u|q−2uvdx −
∫
Ω

mµ,H(x, u)vdx. (2.5)

Thanks to Du et al. [12], we have the following vital proposition.

Proposition 2.2. For any u ∈ D(Ω), the following results hold:

(i) ϕu ≥ 0 and ϕtu = tqϕu for any t > 0.
(ii) There exists C > 0 such that ∥ϕu∥D1,2 ≤ C∥u∥q and

∫
Ω
|∇ϕu|

2dx =
∫
Ω
ϕu|u|q ≤ C∥u∥2q.

(iii) If un ⇀ u in D(Ω), then ϕun ⇀ ϕu in D1,2(Ω), and∫
Ω

ϕun |un|
q−2unφdx→

∫
Ω

ϕu|u|q−2uφdx, ∀φ ∈ D(Ω).

Remark 2.1. Note that if u is a nontrivial solution of problem (Q) with ∥u∥∞ ≤ H, then u is also a
nontrivial solution of problem (P).
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3. Proving the main result

To prove our desired conclusion, let us start with some information on the geometry of functional
Jµ,H.

Lemma 3.1. The functional Jµ,H satisfies the following conditions:

(i) There exist ϑ, ρ > 0 such that

Jµ,H(u) ≥ ϑ, i f ∥u∥ = ρ.

(ii) Let ω ∈ D(Ω) with ω , 0, and we have

lim sup
t→∞

Jµ,H(tω) = −∞.

Proof. Notice that, as a consequence of p < q < q∗

2 , Sobolev embeddings, (m1) − (m2), and taking
∥u∥ < 1, we have

Jµ,H(u) =
1
p
∥u∥p

D1,p +
1
q
∥u∥q

D1,q +
1

2q

∫
Ω

ϕu|u|qdx −
∫
Ω

Mµ,H(x, u)dx

≥
1
q

21−p∥u∥p −
C + µH s−k

ι
∥u∥kk

≥
1
q

21−p∥u∥p −Cµ,H∥u∥k,

where Cµ,H > 0. It follows from p < k < q∗ that item (i) follows. Now, let us prove the second term.
It can be deduced from ( f2) that there exist positive constants C1 and C2 such that for all ξ > 0

F(x, ξ) > C1ξ
ι −C2. (3.1)

Let ω ∈ D(Ω) with ω , 0 and t > 0, and by means of p < q < q∗ and (3.1), we have

Jµ,H(tω) =
tp

p
∥ω∥

p
D1,p +

tq

q
∥ω∥

q
D1,q +

t2q

2q

∫
Ω

ϕω|ω|
qdx −

∫
Ω

Mµ,H(x, tω)dx

≤
1
p
∥ω∥q(tp + tq) +

t2q

2q

∫
Ω

ϕω|ω|
qdx −

∫
Ω

F(x, tω)dx

≤
1
p
∥ω∥q(tp + tq) +

t2q

2q

∫
Ω

ϕω|ω|
qdx −C1tι

∫
Ω

|ω|ιdx +C2|Ω|.

In light of ι ∈ (2q, q∗), one has that there exists ν̄ = tω ∈ D(Ω) (with t sufficiently large) such that

lim sup
t→∞

Jµ,H(ν̄) = −∞.

This finishes the proof of Lemma 3.1. □
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By Lemma 3.1, according to Willem [23], we know that there is a PS sequence {un} ⊂ D(Ω) at level
cµ,H, where

cµ,H = inf
η∈Γµ

max
t∈[0,1]

Jµ(η(t))

and
Γµ := {η ∈ C([0, 1],D(Ω)) : η(0) = 0, η(1) = ν̄}.

In the following, we show that {un} is bounded in D(Ω).

Lemma 3.2. Assume ( f1)− ( f2) hold. If {un} ⊂ D(Ω) is a (PS )c sequence, then {un} is bounded in D(Ω).

Proof. Combining p < q < q∗

2 and (m2), it is easy to see that

c + on(1) + on(1)∥un∥ =Jµ,H(un) −
1
ι

〈
J′µ,H(un), un

〉
≥(

1
p
−

1
ι
)∥un∥

p
D1,p + (

1
q
−

1
ι
)∥un∥

q
D1,q + (

1
2q
−

1
ι
)
∫
Ω

ϕun |un|
qdx

+

∫
Ω

[1
ι
mµ,H(x, un)un − Mµ,H(x, un)

]
dx

≥(
1
p
−

1
ι
)∥un∥

p
D1,p + (

1
q
−

1
ι
)∥un∥

q
D1,q + (

1
2q
−

1
ι
)
∫
Ω

ϕun |un|
qdx

≥(
1
q
−

1
ι
)21−p∥un∥

p.

From ι ∈ (2q, q∗), one has that {un} is bounded in D(Ω). □

In what follows, we are going to verify that the functional Jµ,H satisfies the PS condition.

Lemma 3.3. The functional Jµ,H satisfies the (PS )c condition.

Proof. Let {un} be a PS sequence for Jµ,H at level c. Note that Lemma 3.2 shows that the sequence
{un} is bounded in D(Ω). Thus, utilizing the reflexivity of D(Ω) and Proposition 2.1, we can get a
subsequence still denoted by {un} and u ∈ D(Ω) such that

un ⇀ u in D(Ω),
un → u in Lr(Ω) f or any r ∈ [ p, q∗),
un → u a.e. in Ω.

(3.2)

Making use of the same ideas as those found in Alves and Figueiredo [3], it is easy to see that u is a
critical point of Jµ,H. Thus, owing to (m1), one can easily show that∣∣∣∣ ∫

Ω

mµ,H(x, un)(un − u)dx
∣∣∣∣ ≤∫

Ω

|mµ,H(x, un)||un − u|dx

≤

∫
Ω

(C + µH s−k)|u|k−1|un − u|dx

≤(C + µH s−k)∥u∥k−1k ∥un − u∥k.
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We can use the Brezis-Lieb lemma and (3.2) to obtain that

lim
n→∞

∫
Ω

|un − u|k dx = lim
n→∞

∫
Ω

(
|un|

k
− |u|k

)
dx = 0.

Then, this implies immediately that

lim
n→∞

∫
Ω

mµ,H(x, un)(un − u)dx = 0. (3.3)

Furthermore, in view of Proposition 2.2, one has

lim
n→∞

∫
Ω

ϕun |un|
q−2un(un − u)dx = 0. (3.4)

Next, we will present that, up to a subsequence, un → u in D(Ω).
In fact, with the help of the Brezis-Lieb lemma, J′µ,H(u) = 0, J′µ,H(un)(un − u) = on(1), (3.3), and

(3.4), we admit

0 = lim
n→∞

∫
Ω

mµ,H(x, un)(un − u)dx ≥ lim
n→∞

[ ∫
Ω

(
|∇un|

p − |∇u|p
)
dx +

∫
Ω

(
|∇un|

q − |∇u|q
)
dx

]
= lim

n→∞

[(
∥un∥

p
D1,p − ∥u∥

p
D1,p

)
+

(
∥un∥

q
D1,q − ∥un∥

q
D1,q

)]
=∥un − u∥p

D1,p + ∥un − u∥q
D1,q + on(1)

≥21−p∥un − u∥p + on(1) ≥ 0.

This completes the proof of Lemma 3.3. □

In the following, the Moser iteration approach will be employed to demonstrate the following
lemma, which displays an estimate of the problem (Q) in L∞. For simplicity, we denote uµ,H by u,
where uµ,H is a nontrivial solution of problem (Q).

Lemma 3.4. There exist two constants E1, E2 > 0 independent of µ and H such that

∥u∥∞ ≤ E1(1 + µH s−k)E2 .

Proof. For any A > 0, γ > 1, let

uA(x) :=

u(x), u(x) ≤ A,

A, u(x) > A.

Moreover, take the following function:

Z (u) = ZA,γ (u) = uuq(γ−1)
A .

It is easy to see that Z is an increasing function, so we derive for each a, b ∈ R

(a − b) (Z (a) − Z (b)) ≥ 0.

We define functions as follows:

ϖ(ξ) =
∫ ξ

0

(
Z′(τ)

) 1
q dτ and η(ξ) =

|ξ|q

q
.
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From Jensen’s inequality, we admit that for any a > b,

η′ (a − b) (Z (a) − Z (b)) = (a − b)q−1 (Z (a) − Z (b))

= (a − b)q−1
∫ a

b
Z′(ξ)dξ

= (a − b)q−1
∫ a

b

(
ϖ′(ξ)

)q dξ

≥

(∫ a

b

(
ϖ′(ξ)

)
dξ

)q

.

Analogously, for each a ≤ b, the above inequality also holds. This implies that for each a, b ∈ R,

η′ (a − b) (Z (a) − Z (b)) ≥ |ϖ (a) −ϖ (b)|q . (3.5)

It can be acquired from (3.5) that

|ϖ (u) (x) −ϖ (u) (y)|q

≤ |u(x) − u(y)|q−2 (u(x) − u(y))
(
(uuq(γ−1)

A )(x) − (uuq(γ−1)
A )(y)

)
.

(3.6)

Consider Z (u) = uuq(γ−1)
A to be the test function, and then one has ⟨I′(u),Z(u)⟩ = 0. In addition, putting

together (3.6), ϖ(u) ≥ 1
γ
uu(γ−1)

A , and the Sobolev embedding D1,q ↪→ Lq∗ , we infer that∫
Ω

mµ,H(x, u)
(
uuq(γ−1)

A

)
(x)dx ≥ ∥ϖ(|u(x)|)∥q

D1,q

≥ C3∥ϖ(|u(x)|)∥qq∗

≥ C3
1
γq ∥|u|u

γ−1
A ∥

q
q∗ .

The fact (m1) gives that

C3
1
γq ∥|u|u

γ−1
A ∥

q
q∗ ≤

∫
Ω

mµ,H(x, u)
(
uuq(γ−1)

L

)
(x)dx

≤
(
C + µH s−k

) ∫
Ω

|u|kuq(γ−1)
A dx

≤
(
C + µH s−k

) ∫
Ω

|u|k−q
(
|u|u(γ−1)

A

)q
dx.

Consider wA = |u|u
γ−1
A . Utilizing the Hölder inequality, we conclude

∥wA∥
q
q∗ ≤ C

(
1 + µH s−k

)
γq

(∫
Ω

|u(x)|q
∗

dx
)k−q

q∗
(∫
Ω

|wA(x)|β
∗

dx
) q
β∗

,

where
β∗ :=

qq∗

q∗ − k + q
.
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Consequently, using Lemma 3.2 together with Proposition 2.1, one can easily know that

∥wA∥
q
q∗ ≤ C

(
1 + µH s−k

)
γq ∥wA∥

q
β∗ . (3.7)

Take A→ +∞ in (3.7). Combining Fatou’s lemma and 0 ≤ uA ≤ |u|, one gets

∥u∥γq∗ ≤ C(1 + µH s−k)
1

qγγ
1
γ ∥u∥γβ∗ . (3.8)

Therefore,
|u|γβ

∗

∈ L1(Ω)⇒ |u|γq
∗

∈ L1(Ω).

Set γ0 := γ = q∗

β∗
> 1. We can employ γ2β∗ = γq∗ and (3.8) to acquire that

∥u∥γ2q∗ ≤ C(1 + µH s−k)
1

qγ2 γ
2
γ2 ∥u∥γ2β∗ ,

which shows that
∥u∥γ2q∗ ≤ C(1 + µH s−k)

∑2
i=1

1
qγi γ

∑2
i=1

i
γi ∥u∥γβ∗ .

Since q∗ = γβ∗, repeating the arguments above for γ3, γ4, · · · , we can know for any d ∈ N

∥u∥γdq∗ ≤ C(1 + µH s−k)
∑d

i=1
1

qγi γ
∑d

i=1
i
γi ∥u∥q∗ . (3.9)

Notice that
∑d

i=1
1

qγi and
∑d

i=1
i
γi are convergent series. Hence, by means of Lemma 3.2 and

Proposition 2.1, taking d → +∞ in (3.9), one has that there are two constants E1, E2 > 0 independent
of µ and H such that

∥u∥∞ ≤ E1(1 + µH s−k)E2 .

This completes the proof. □

Proof of Theorem 1.1. Due to Lemma 3.1, we infer that functional Jµ,H admits mountain path
structure. Therefore, putting Lemma 3.2 together with Lemma 3.3, one can get that problem (Q)
has a nontrivial solution. Lemmas 3.1-3.4 mean that, for any µ ∈ (0, µ∗), there exists µ∗ > 0 such that
∥u∥∞ ≤ H. Last but not least, according to Remark 2.1, we know that u is a nontrivial solution of
problem (P).

4. Conclusions

This paper studies a supercritical Schrödinger-Poisson type system with (p, q)-Laplacian in RN , and
the existence of nontrivial solutions is discussed. First, we introduced a working space and a truncation
argument and obtained the existence of solutions for the truncated problem. Then, by Moser iterative
method, the solution of the problem is proved to be the solution of the original system. Finally, we
obtain the existence of nontrivial solutions.
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molecules, Commun. Math. Phys., 79 (1981), 167–180. https://doi.org/10.1007/BF01942059

9. V. Benci, D. Fortunato, An eigenvalue problem for the Schrödinger-Maxwell equations, Topol.
Methods Nonlinear Anal., 11 (1998), 283–293. https://doi.org/10.12775/TMNA.1998.019

10. D. Cassani, Z. S. Liu, G. Romani, Nonlocal Planar Schrödinger-Poisson Systems
in the Fractional Sobolev Limiting Case, J. Differ. Equations, 383 (2024), 214–269.
https://doi.org/10.1016/j.jde.2023.11.018

11. S. T. Chen, M. H. Shu, X. H. Tang, L. X. Wen, Planar Schrödinger-Poisson system with
critical exponential growth in the zero mass case, J. Differ. Equations, 327 (2022), 448–480.
https://doi.org/10.1016/j.jde.2022.04.022

12. Y. Du, J. B. Su, C. Wang, On a quasilinear Schrödinger-Poisson system, J. Math. Anal. Appl., 505
(2022), 125446. https://doi.org/10.1016/j.jmaa.2021.125446

AIMS Mathematics Volume 9, Issue 5, 13508–13521.

http://dx.doi.org/https://doi.org/10.1007/s00032-008-0094-z
http://dx.doi.org/https://doi.org/10.1515/ans-2011-0203
http://dx.doi.org/https://doi.org/10.1515/ans-2011-0203
http://dx.doi.org/https://doi.org/10.1515/ans-2011-0203
http://dx.doi.org/https://doi.org/10.1142/S021919970800282X
http://dx.doi.org/https://doi.org/10.1515/anona-2022-0312
http://dx.doi.org/https://doi.org/10.1515/anona-2022-0312
http://dx.doi.org/https://doi.org/10.1007/BF01942059
http://dx.doi.org/ https://doi.org/10.12775/TMNA.1998.019
http://dx.doi.org/https://doi.org/10.1016/j.jde.2023.11.018
http://dx.doi.org/https://doi.org/10.1016/j.jde.2022.04.022
http://dx.doi.org/https://doi.org/10.1016/j.jmaa.2021.125446


13521

13. Y. Du, J. B. Su, C. Wang, The quasilinear Schrödinger-Poisson system, J. Math. Phys., 64 (2023),
071502.

14. L. Gao, Z. Tan, Existence results for fractional Kirchhoff problems with magnetic field and
supercritical growth, J. Math. Phys., 64 (2023), 031503. https://doi.org/10.1063/5.0127185

15. G. Z. Gu, X. H. Tang, J. X. Shen, Multiple solutions for fractional Schrödinger-Poisson
system with critical or supercritical nonlinearity, Appl. Math. Lett., 111 (2021), 106605.
https://doi.org/10.1016/j.aml.2020.106605

16. P. L. Lions, Solutions of Hartree-Fock equations for Coulomb systems, Commun. Math. Phys.,
109 (1987), 33–97. https://doi.org/10.1007/BF01205672

17. E. H. Lieb, Thomas-Fermi and related theories and molecules, Rev. Mod. Phys., 53 (1981), 603–
641. https://doi.org/10.1103/RevModPhys.53.603
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