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Abstract: The main objective of our research was to explore and develop a fractional-order
derivative within the predator-prey framework. The framework includes prey refuge and selective
nonlinear harvesting, where the harvesting progressively approaches a threshold value as the density
of the harvested population advances. For memory effect, a non-integer order derivative is better
than an integer-order derivative. The solutions to the fractional framework were shown to be
existence, uniqueness, non-negativity, and boundedness. Matignon's condition was used for
analysing local stability, and a suitable Lyapunov function provided global stability. While
discussing the Hopf bifurcation's existence condition, we explored derivative order and refuge as
bifurcation parameters. We aimed at redefining the predator-prey framework to incorporate
fractional order, refuge, and harvesting. This kind of nonlinear harvesting is more realistic and
reasonable than the model with constant yield harvesting and constant effort harvesting. The Adams-
Bashforth-Moulton PECE algorithm in MATLAB software was used to simulate the proposed
outcomes, investigate the impact on various factors, and analyse harvesting’s effect on non-integer
order predator-prey interactions.
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1. Introduction

The use of mathematics to model and comprehend biological processes has grown significantly
in recent years. The prey-predator framework is an essential tool in mathematical biology that aids in
interpreting the dynamics of population interactions in natural environments. In order to provide
predictions, these mathematical models are built using data gathered from experiments and
observations. The specific dynamics are crucial for comprehending the effects on the environment
throughout the modelling phase. Mathematical systems, mostly representing biological events using
differential equations, encapsulate their dynamics. Not only do they have extensive uses in
mathematics but also fields as diverse as engineering, biology, physics, and meteorology. All of
ecology's activities are essentially the scientific investigation and creative analysis of the complex
interactions that exist between living things and their surroundings. It includes not only living things
but also the communities they build and the inanimate objects in their surroundings, all of which are
constantly interacting with one another. The relationship between predators and their prey has always
had significance in both the disciplines of ecology and mathematical ecology due to its global
relevance [1-3]. A key component of population dynamics is the relationship between these two
entities. Numerous investigators have worked to enhance the fundamental predator-prey system by
including various biological factors, such as the prey's fear effect [4], prey refuge [5], selective and
mixed-form harvesting [6-8], and many more.

There has been a lot of mathematical model building around the effects of prey refuge in recent
years [9-12]. Wang et al. [13] used both analytical and numerical technigues to investigate an impact
on prey refuge as well as predator fear on anti-predator activity. Prey refuges generally manifest in
one of two ways: either the number of refuges is directly related to the density of prey population, or
a fixed maximal capacity is in place [14-19]. In our model, we focus on the first kind, where &
(0<e<1) is the fixed maximum availability of refuge for prey. Another important aspect of
predator-prey dynamics is the harvesting of either group. Fisheries, forests, and wildlife management
are common places to find biological resources being harvested. In order to ensure that renewable
resources are preserved for future generations, bio-economic models have been created to aid in the
scientific management of these assets. The concept of predator-prey interactions is discussed in [20],
where the predator incorporates a prey refuge and the prey engages in harvesting. In addition to
discussing the impact of harvesting, Mukhopadhyay and Bhattacharyya [21] examined a scenario in
which two predators were vying for only one prey. The predator-prey model with various harvesting
scenarios is examined from an economic perspective in [22]. Nonlinear harvesting allows our predator-
prey system to choose to harvest a single species while protecting the other one. In reality, we limit
population growth by harvesting prey or predators. This formulates a predator-prey framework based
on the Holling type Il dynamics, including the effects of nonlinear harvesting.

d_xlzrxi(l_ﬁj_M_ﬂ,
dt

96 _bxx
dt  a+x

1)

The above model is predicated on the following assumptions:
(i) Prey and predator population densities at a given instance of time tare denoted by the variables
X, and X, , respectively.

(if) The inherent growth rate and environmental carrying capacity of prey are randk , respectively.
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(iii) The term mdenotes Holling type Il functional response that supports predator species
a+x
progress, a is the half-saturation constant, b(> O) is the predator's maximal consumption rate,

b (>0)is the biomass transformation amount (0<b <b), and c(>0) represents the predator's
inherent level of mortality. Here, we can see that if b, < c, the right portion of the second equation of
(1) never becomes positive. Therefore, we assume that b, —c > 0 for model (1).

(iv) The maximum prey harvesting rate is represented by the parameter h. With an increase in the
hx
X
From a biological point of view, we think this harvesting role makes more sense.

The suggested model (1) was built using a couple of first-order derivative nonlinear differential
equations, in which the instantaneous population density determines how the population density
changes over time. However, in actuality, a phenomenon known as the memory effect occurs,
wherein the history of all past situations also influences the present state [23]. A fractional
differential system may depict phenomena or systems with memory and genetic properties [24].
Drawing on the work of L'H&ital and Leibniz, who provided a rigorous evaluation of derivatives of
order 1/2, Liouville [25] developed the notion of fractional-order derivative. Riemann reinterpreted
Liouville’'s formulation as the Riemann-Liouville fractional derivative operator [26], which he
achieved by directly generalising the Cauchy formula. Euler's investigation of non-integer integration
particularly inspired him to develop the Gamma function to be a generalisation of the factorial notion
for non-integer numbers, which is used to explain the non-integer order derivative idea proposed by
Liouville and Riemann [27]. When solving differential equations, Michele Caputo changed the
Riemann-Liouville operator in 1967 to eliminate the need for beginning conditions. The modified
operator's definition has become known as the Caputo fractional-order derivative operator. This
derivative takes into account the memory effects and long-range dependencies present in many real-
world systems, allowing for a more accurate representation of their behaviour. The Caputo fractional
derivative can handle both smooth and non-smooth functions, making it applicable to a wide range of
systems and phenomena. In addition, it possesses desirable mathematical properties, including
linearity, compatibility with initial conditions, and the ability to preserve the order of differentiability.
Many studies have been conducted on predator-prey frameworks involving non-integer derivatives of
the Caputo type [28-35]. So, using the Caputo non-integer order derivative operator, we apply
several modifications and analyses within the predator-prey framework (1) that include selective
nonlinear harvesting and refuge for prey.

The following is the outline of the article. Section 2 outlines the process of developing the
model and its fundamental attributes. One of the fundamental characteristics is the ability to confirm
that the model's solutions are non-negative, exist, unique, and bounded. Section 3 presents the
outcomes of the dynamical analysis. The findings include the presence and consistency of equilibrium
points. The Hopf bifurcation is the one that is studied, and both local and global stability are examined.
Verification of analytical findings is accomplished in Section 4 using numerical simulations and
interpretations. In Section 5, we summarise our findings.

harvesting population, the harvesting function reaches gradually the saturation limit value h.
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2. Formulation and fundamental characteristics of the model

The model is created using the Caputo non-integer order derivative operator to the left side of
the framework (1), which incorporates selective nonlinear harvesting and refuge for the prey.

b(1-¢)x X, hx
°DEX, (1) = 1—%— 2 14
% (1) rxi( k) a+(l-&)x h+x

bl(l—g)xlx2 .
a+(l-s)x

2
“Dsx, (t)=

21

with £eR, 0<&£<1, and © D; indicates the & order of Caputo non-integer derivative operator
t <
given by D¢ f (t)= F(ll g I(t—{) f(£)d<. All of system (2)'s parameters are defined in terms
~5)o
of system (1)'s assumptions.

3
Theorem 1. [36] Let C(;ng Au; u(0)=u, be the linear and non-integer order differential equation,

where 0< £ <1, xeR" and Ais any arbitrary matrix of size n. In addition, there are:

(i) For u=0 to be asymptotically resilient, it is necessary and sufficient that every latent value A of

A fulfil [arg (4| >‘=%”,

(if) for u=0 to be a stable solution, each latent value 4 of A must satisfy \arg(ﬂ,,)\z%z, and all

g

latent values that fulfil ‘arg(ﬂ,, )‘ = 7” must have the equal geometric and algebraic multiplicity.

£
Theorem 2. [37] Let ing f(u); u(0)=u,, be the fractional order differential equation with
0<£<1 xeR". The aforementioned system's equilibrium points may be found by solving

r

f(u):O. If the equilibrium points meets the criteria \arg(ﬂ,,)\>7, then the system is locally

. . . of
asymptotically stable for each latent value A, of the community matrix J = Y
u

Lemma 1. [38] Assume that & is a member of (0, 1]. Let us take a function f (t) that is a member
of C[0, a] such that D/ f(t)eC[0,a]. If D7 f(t)>0, for every te(0,a), then it is non-
decreasing function for all te[O, a]. If fo(t)SO, then it is non-increasing function for all
te[O, a].

2.1. Existence, uniqueness, non-negativity, and boundedness
Theorem 3. The framework (2) has a unique solution to every non-negative starting condition.
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Proof. Establishing this theorem requires finding a unique solution to the dynamical framework
within the domain [0,00)x y, where ;(z{(xl, xz)eRz:max{|x1|,|x2|}£T}.

Let us take V =(X;, X, ),V =(X,, X,) and now consider a mapping H (V)=(H,(V),H,(V)), where

Hl(V)=rx1[1_ﬁ] b(1-£)xx, hx

k) a+(l-£)x, h+x’
3)
b (1-g)xx,
HZ(V)_m—ch

Then, forany V,V € y we have

[H(V)=H (V)| =[H, (V)= H, (V) +[H, (V)-H, (V).

<lre 2Ty h” + al-2)T + —‘+c+—(1_8)T +b) {|x, - X

_{ k (h+T) (a+(1—g)T)2(b bl)]m A [ a+(1—g)T(b bl)}“ ol

<LV -V 4)

where Lmax{[r+2r-r+ il + a(l_g)T2(b+bl)J1(C+M(b+bl)J}.

k  (h+TY’ (a+(1-£)T) a+(l-¢)T

Consequently, the Lipschitz criteria is satisfied by the mapping H(V). Therefore, it may be

concluded that, given the starting condition V, :(xio, XZO), where x>0 and x, >0, the existence

and uniqueness theorem of [39] states that there is a single solution to the system of differential
equations (2).

Theorem 4. There exist non-negative and uniformly bounded solutions to a pair of differential
equations (2) that begin in the area R’.

Proof. We begin by determining if the solution, which originates in the domain R? , is non-negativity.
Hence, it is necessary to establish that, for any t >0, x,(t)>0, and X, (t)>0. Assume that not each
t>0 achieve the criteria of X (t)>0 . Then, there exist t, >0 such that X (t)>0 for
te[0,t), % (t)=0 and x,(t*,) <0. Subsequently, we may deduce from the initial equation in (2)
that Dfxi(t)|t=t1=0. We find that xi(t)ZO for every t>0 because Lemma 1 suggests that
% (t",)=0, which goes against the assumption x,(t",)<0. It is simple to establish that the
remaining equation of (2) has a non-negative solution that begins within the domain of R? using a
similar procedure. Thus, for any t >0, it provides X, (t) >0 in the same approach. Following that, we
have to establish the uniform boundedness of the (2) solutions, which begin in the domain R .

Considering S (t) = xi(t)+gx2 (t), we can use Eq (2) to get
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Dfs<t>+cs<t>=Dfx1<t>+§Dfx2<t>+c[x1<t>+§xz<t>],

<_L[x1_k(r+c)j+k(r+c)z

2r 4r

k(r+c)2.

DS (t)+cS(t)<
Fs(t)+es ()<=

()

It is deduced from Lemma 3 of [40] that

k(r+c)2 k(r+c)2

£
S(t)é[S(O)—T} E§ (—(r+C)t )+T,
where E, represents the Mittag-Leffler function. By applying Lemma 5 and Corollary 6 from [41],

k(r+<:)2

we obtain S(t) <
4r

, t >0, Consequently, any solution to (2) that begins in R? is confined

2
to the region Q:{(xi,xz)eRi:S Sw+5, 5>O}

3. Dynamical analysis
3.1. Existence of equilibrium points

The steady state condition is solved at the equilibrium points of the framework (2), which are found
by making D;x, (t) =0 and D5X, (t)=0. We can obtain the following equilibrium points:

(i) The extinction equilibrium E; =(0,0),
(ii) the auxiliary equilibrium point E =(x,0), where X +r(h—k)x +kh(1-r)=0,

r(k—h)+r? (h+k)’ —4rkh N r(h+k)
= d t f k hl - . 1’
X, o and X, is positive for k > 2K >
L —_ . - . ac L -
the interior equilibrium point E, =(X,, X, ), where X, = —————— which ositive for
(iii) interior equilibrium poi » (x1 xz) w X, (b,—c)(1=2) which is positiv

abl[kh(r ~1)(b,—c)’ (1-¢)" +rac(k —h)(b,—c)(1-¢)- razcﬂ
kb(b,—c)"(1-¢) [ h(b —c)(1-&)+ac]
(-h)b-c)-e)

ac

e<1l and X, = which is positive

for r >1 and

3.2. Local stability

The local stability of the equilibrium points of the framework (2) is shown by the findings of the
community matrix's latent values and the application of the stability criteria theorem in Petras [37].
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Assuming that E” is an equilibrium point of the framework (2). According to the Matignon stability
criteria theorem, E” is local asymptotically stable provided each of the latent values A of a

community matrix,

L2k b-g)arx)x, o b(l-g)x
. k (a+(1—g)x1)2 (h+x1)2 a+(l-¢)x
'(E)- b, (1-¢)(a+x)%, b(l-e)x, | ©)
(a+(1—8)X1)2 a+(l-£)x

that satisfies [arg (4 )| > 5775

Theorem 5. The origin point E,(0,0) is locally asymptotically stable if r <1 and saddle point if
r>1.
Proof. The Jacobian matrix for E, =(0,0) is

J(Eg=(r;1 0]. ™

—C

The latent values of J(E;) are obtained as 4 =r-1 and 4, =—c<0. When r<1, then the
eigenvalue 4 is not positive. Consequently, we get [arg(4 )| =|arg(4,)|=7 . indicating that the
r

criterion ‘arg(ﬂ,,)‘ >7, i =1, 2 has been achieved. Thus, E, is asymptotically stable. If r >1, then

one latent value is positive and another is negative, with |arg(4,)|=0 and |arg(4,)|=7. Thus, we

¢

have the situation where one latent value meets the requirement \arg(ﬂ,,)\ >7, another meets the

&

requirement [arg (4 )| < 77[ E, is the saddle point as a result.

Remark 1. According to the aforementioned study, the extinction equilibrium E; remains unstable
h=0 (the system has no harvesting).
Theorem 6. The equilibrium point E =(xf,0) is locally asymptotically stable if
. ac
w/hk/r—h<x1 <—.
(1-¢)(b-c)

Proof. The community matrix for E, is

P2 h? _ b(I-&)x
)(E) = kK (h+x) a+(l-¢)x | @
1 . b, (1-2),
a+(l-¢)x
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The latent values of J(E,) are 4 = {rxi h 2] which is negative if X >(ﬂ/hk/r—h) and

K (h+x)

b (1-£)x L L ac
A, =———>———Cc , which is negative if x <————— . Consequently, we get

a+(l-g)x, (1-¢)(—c)
larg(4,)|=|arg(4,)| = , indicating that the criterion ‘arg(&)b%r, i=1 2 has been achieved.

. . : . ac
Thus, E, is asymptotically stable if \/hk/r —h<x < —>F——.
1 (1-¢)(b-c)

Theorem 7. The positive equilibrium point E” = (X1 Xz) is locally asymptotically stable if any of the
conditions listed below are fulfilled:
i) trace(J (E*))SO,

i) trace(J(E*))>O, traceZ(J(E*))—4det(J(E*))<O and
sqrt(‘tracez(\] (E*))—4det(J (E*))‘)>trace(J (E" ))tan(fﬁ]

Proof. The community matrix for E” = (xl xz) is given by

o, bO-e)xx bk b(l-e)x,
N k (a+(1—g)x1)2 (h+x1)2 a+(1-¢)x
J(E )_ ab, (1-£)x, . ' ©)
(a+(1-&)x)’
en, trace —2) %%, ™ and de - :abbl(l—g)2x1x2
rhen teee(3(E))=- a+(l g)%)  (h+x) a cet(2 (=) (a+(1-2)x)

Q) If trace( ) 0, then we have to consider three cases:

Case i) For trace(J (E ))=O, we will get [arg(4, )\=% i=12 and E" is locally asymptotically

stable.
Case ii) For trace(J(E*))<0 and tracez(J(E*))—4det(J(E*))ZO, then both latent roots are

negative and ‘arg (/1, )‘ =m,i=12.Thus, E" is locally asymptotically stable.

Case iii) For trace(J(E*))<O and tracez(J(E*))—4det(J(E*))<0, then both latent roots are

complex conjugates with non-positive real part and [arg () >%ﬂ,i =1,2. Therefore, E” is locally

asymptotically stable for any &.
) If trace(J (E)) >0 , trace (J (E*))—4det(J (E)) <0 and

sqrt(‘trace2 (J (E*))—4det(J (E))‘) > trace(J (E*))tan (g—zﬂ] , then we obtain

AIMS Mathematics Volume 9, Issue 5, 13492-13507.
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Img(4)=-Img(4)= 4det(J (E*))—trace2 (J (E)) and Re( )= trace(J (E)) >0,i=12. From

these we can conclude that ‘Img(ﬂ,l)‘>tan(%[ (Re(4)),i=12. Consequently, E" is locally

asymptotically stable if [arg (4 )| > %T i=12.

3.3. Global stability

We next proceed to examine E''s global stability. To achieve this objective, Lemma 3.1 of [42]
and the generalised LaSalle’s invariance principle by Huo et al. [43] are employed.

Now, consider a function V (X, X,) =(x1 —-x - X log %J+a1[x2 - X, — X, log %j , Where a, >0 is a
2
constant. Lemma 3.1 of above reference and the & -order non-integer derivative of V(xi,xz) along

the solution of (2) give us

d<v S(&—){Jd%Jral[xz—x;dexz

dte x, ) dt® X, )dt®’

I e e
a(xz—x;)+(1—8)(XIX2—X1X;)J+
(a+(1-2)x)(a+(1-2)x)

—&)(%,— X%, a(X1_XI)
ab; (1-2)(x, 2)[(a+(1—5)xf)(a+(1_5)xl)}’
_|r_ b(1-2)"x )+

| =n] o

(15){( aap —(ab+b(1-£)x)

a+(l-£)x )(a+(1-2)x,

R |

(6 =x)(x =),
)
the following can be derived by assumingaab, =(ab+b(1-£)x;),

&
*)2 d—Vso.
dt¢

ﬂzli bll-2) % }(Xlxi
dt¢ k (a+(1-2)x)(a+(1-£)x)

Therefore, the positive equilibrium point E s globally asymptotically stable.
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3.4. Existence of Hopf bifurcation

The transition from stable spiral to unstable behaviour at the equilibrium point causes Hopf
bifurcation to occur when the bifurcation parameter reaches the critical value. It is obvious from
Lemma 1 that the order of the derivative & determines the stability of a dynamical system. Therefore,

& may be considered a bifurcation parameter, even if the non-integer order system does not possess

the identical Hopf bifurcation condition as the integer-order framework.
Let us examine a system with fractional order

Dix(t) = f(m,x), (10)

where 56[0,1),X6€R2 and let E” is an equilibrium point. Based on the analysis of a non-integer

order Hopf bifurcation in [44,45], it can be concluded that, under certain circumstances, system (10)
experiences a Hopf bifurcation given that the value m passes the thresholdm” around the equilibria

*

E.
i) The characteristic equation has two complex conjugate eigenvalues

A, (m)=v(m)£iz(m),

ii) v,,(&m")=0,where v, , =‘%Z—‘arg(/l, (m))‘ ,

0
Y12 #0.
om

*
m=m

i)

4. Numerical simulations

Theoretical results have been validated through numerical simulations employing the predictor-
corrector technique on non-integer differential equations. In order to resolve fractional order
nonlinear differential equations, numerical methods are employed. This research explores the impact
of altering several factors on the non-integer order predator-prey dynamical framework (2).

Figure 1 illustrates the phase portraits of the framework (2) about E, for parameter values as
r=2.5k=0.899, 5=0.945,¢=0.058, & =0.559,h =0.291, d=0.059, 5, =0.895 and three
different values of £=0.98,0.92,and0.85 in order to study the influence of the derivative order (&)

on the predator-prey dynamics. Based on these numbers, we know that system (2) goes from unstable
to stable and that at £=0.92, it shows evidence of Hopf bifurcation. Hence, we deduce that the

dynamics of the system under consideration are significantly affected by the non-integer order
derivative.
The influence of prey refuge rate ¢ has been visually explored for &£=1,0.92, with the values

of £=0.08,0.6 , and 0.8, as well as the set of parameter values r=2.5k=0.899,
£ =0.945£=0.058h=0.291,d =0.059, S, =0.895 shown in Figures 2 and 3. The equilibrium point
E,, as seen in Figure 2, is not stable at £=1 and ¢=0.08 but, it should be emphasised, becomes
stable at £=0.92 and £=0.08. This leads us to the conclusion that the existence of prey refuge
affects the prey-predator system, and fractional order & contributes to species persistence by
stabilising the system.

AIMS Mathematics Volume 9, Issue 5, 13492-13507.
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Figure 1. Time series diagram using various fractional order derivative (&) values.

08 T T T T T T T T T 45
=008 — =06 — =08

07 ar —— =008 —— =06 —— =038

06

05

0.4

Prey
Predator

03

02

01

0 ! 0 | . | . | 1 | 1 .
1] a0 100 150 200 250 300 350 400 450 500 1] a0 100 150 200 250 300 350 400 450 500
time time

Figure 2. Time series diagram for various prey refuge values for &£=1.
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Figure 3. Time series plot for different values of prey refuge for £ =0.92.

Considering the identical selection of parameter values as illustrated in Figure 1, the influence
of prey harvesting rate h has been visually explored for £=0.98 and 1. Figures 4 and 5 illustrate

that, when £=0.98, the system (2) is stable at h=0.5 then not stable for h=0.1. In connection with
the parameter h, bifurcation diagrams are provided in Figure 6.

AIMS Mathematics Volume 9, Issue 5, 13492-13507.
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3 T T T T 3 T T
251 4
i 25F /
2 [
- 2rl
2
X s ]
o 2
& 15}
1 L
1 .
05
0 NI e N m 05 . . . . . .
1] 50 100 150 200 250 300 350 400 450 500 1] 0.1 0.2 0.3 0.4 05 06 07
Time(days) Prey
Figure 5. Time series and phase portrait plot for £=0.98,h=0.5.
5 07
45k, a6l
ar ;
o5k .
35+
3k 0.4F
o *a
25+ ;. L
-'!."."“ 03
Al lll::::::::::!“lﬂttl"nn‘-uﬁ
nnl"”" 02r
sE e : i
.......... ol “u,
L - """mu....,
.............. poeetit tHHTTEETITIIEITIONTN
05 1 L 1 1 1 1 L 1 0 L L n Lossseret? i | L 1
0.1 02 03 0.4 05 06 07 0.8 09 1 0.1 02 03 0.4 05 06 07 0.8 09 1
h h

Figure 6. Bifurcation depictions for the system (2) with £=1 and h being the
bifurcation parameter.
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5. Conclusions

In the present study, we explored a fractional-order Holling type Il predator-prey framework
that includes selective nonlinear harvesting and refuge in prey. As soon as the density of the
harvested population reaches a certain limit, the harvesting grows smoothly to that value. The basic
objective of this research is to understand how fractional order, refuge, and nonlinear harvesting
affect the model's dynamic behaviour. The existence, uniqueness, non-negativity, and boundedness
of the system's solution were defined first (2). Next, the local resilience of each feasible equilibrium
point in the predator-prey framework was investigated using Matignon's criterion. Through the
subsequent development of a suitable Lyapunov function, a global stability analysis of system (2) has
been explored. Next, using & and h as parameters, the presence of Hopf bifurcation was
investigated. Furthermore, the theoretical conclusions were numerically confirmed by employing the
Adams-Bashforth PECE method (time-domain).

The system is stabilised by the prey refuge rate, according to numerical simulations. The
framework exhibits stability in both integer-order as well as fractional orders when the refuge rates
of prey populations are reduced. When the rate of prey refuge increases at a certain level of predation
and harvesting, the system becomes unstable. Furthermore, it has been shown that nonlinear
harvesting plays a vital part in maintaining system stability. The system shows stable behaviour at
larger values of prey harvesting, whereas fractional order &=0.98 shows stability at lower prey
population harvesting. Therefore, given a constant value of the prey refuge amount, the system
shows stable behaviour when there is a significant quantity of prey harvesting. Analysing the
influence of spatial organisation on the overall behaviour of the system in the presence of a nonlinear
harvesting term might provide valuable insights. Although this model can include spatial structure
inpattern-forming Turing dynamics, it may be challenging to conduct comparable analyses and
simulations for nonlinear harvesting techniques in this particular scenario. Therefore, more
investigation into this matter is necessary. Also, the incorporation of prey-refuging strategy
switching based on the prey-to-predator density ratio in the proposed model offers a more realistic
ecological representation. These results underscore the importance of threshold-based refuge seeking
for preserving species and maintaining ecosystem stability.
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