
http://www.aimspress.com/journal/Math

AIMS Mathematics, 9(5): 13385–13409.
DOI: 10.3934/math.2024653
Received: 05 February 2024
Revised: 22 March 2024
Accepted: 01 April 2024
Published: 11 April 2024

Research article

Clar covering polynomials of polycyclic aromatic hydrocarbons

Peirong Li1, Hong Bian1,*, Haizheng Yu2 and Yan Dou3

1 School of Mathematical Sciences, Xinjiang Normal University, No. 102, Xinyi Rd. Urumuqi
830054, China

2 College of Mathematics and System Sciences, Xinjiang University, No. 666, Shengli Rd. Urumuqi
830046, China

3 College of Education Science, Xinjiang Normal University, No. 102, Xinyi Rd. Urumuqi 830054,
China

* Correspondence: Email: bh1218@163.com; Tel: +86 15199090612.

Abstract: Polycyclic aromatic hydrocarbon (PAH) is a compound composed of carbon and hydrogen
atoms. Chemically, large PAHs contain at least two benzene rings and exist in a linear, cluster,
or angular arrangement. Hexagonal systems are a typical class of PAHs. The Clar covering
polynomial of hexagonal systems contains many important topological properties of condensed
aromatic hydrocarbons, such as Kekulé number, Clar number, first Herndon number, which is an
important theoretical quantity for predicting the aromatic stability of PAH conjugation systems, and so
on. In this paper, we first obtained some recursive formulae for the Clar covering polynomials of double
hexagonal chains and proposed a Matlab algorithm to compute the Clar covering polynomial of any
double hexagonal chain. Moreover, we presented the characterization of extremal double hexagonal
chains with maximum and minimum Clar covering polynomials in all double hexagonal chains with
fixed s naphthalenes.
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1. Introduction

Polycyclic aromatic hydrocarbons (PAHs) are hydrocarbons with two or more benzene cycle
structures in their molecules, such as our common naphthalene, anthracene, phenanthrene, etc. They
are the most abundant group of carcinogens and are widely distributed in air, soil, water, and plants, in
addition to being an important raw material for the chemical industry. At the same time, the chemical
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and biological activities of thickened aromatic hydrocarbons make them extremely versatile for
applications in the petroleum industry, chemical manufacturing, and pharmaceutical industry, and
these activities are dependent on their topology, while topological indicators are numerical descriptors
of the topology of a molecule, which can be used as direct numerical descriptors to check the
physical, chemical or biological activity of a molecule.

Hexagonal systems are a typical class of PAHs. In graph theory terminology, a hexagonal
system (benzene-type hydrocarbons) is a 2-connected planar graph, each of whose internal faces is
bounded by a unit regular hexagon with side length 1. The subgraph of a hexagonal system is called a
generalized hexagonal system. A hexagonal system H is called a double hexagonal chain if it can be
seen as a hexagonal system of naphthalene and naphthalene adhered in a certain way, which is formed
by the adhesion of naphthalenes (see Figure 1(a)) in the α-formations, where two naphthalenes are
adhered in a downward dislocation, i.e., the vertices b and e, c and f , and d and g are made to
coincide, respectively (see Figure 1(b)), or in the β-formations, where two naphthalenes are adhered
in an upward dislocation, i.e., the vertices a and f , b and g, and c and h are made to coincide,
respectively (see Figure 1(c)).

(a) two naphthalenes (b) α -formations (c) β -formations

Figure 1. Basic unit structure and two types of fusion in double hexagonal chain.

In 1996 [1], F. Zhang and H. Zhang first introduced the concept of Clar covering polynomials for the
hexagonal system diagram H and denoted it. The Clar covering polynomial for the hexagonal system
contains many important topological indicators, such as the Kekulé number, the Clar number, and
the first Herndon number. It has been shown that the Clar covering polynomials allow more accurate
calculation of the chemical activity of PAHs in terms of resonance energy, which is an important
theoretical quantity for predicting the aromatic stability of PAH conjugation systems. Therefore, the
study of the Clar covering polynomials for PAHs will help to reduce laboratory work on the topological
parameters of PAHs and to maintain the ecological natural balance in terms of pollution control and air
pollution reduction. The study of the Clar covering polynomials of PAHs will also provide an effective
theoretical basis for the generation of unsynthesized PAHs.

Let H be a generalized hexagonal system. A Kekulé structure in H corresponds to a perfect
matching of H, that is, the set of mutually disjoint edges in H that cover all the vertices of H. Denote
by K(H) the number of Kekulé structures of H, i.e., the number of perfect matchings of H [2]. A
hexagonal system is called Kekuléan if and only if it has Kekulé structures. In recent decades, the
Kekulé structure has been widely used to describe the local aromaticity of molecules [3–5] and
predict carbon-carbon bond lengths and the stability of molecules [6]. If no three hexagons share a
common vertex in a hexagonal system, then the hexagonal system is called cata-condensed (see
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Figure 2(a)), otherwise, it is peri-condensed (see Figure 2(c)). If each hexagon is adjacent to at most
two hexagons, the cata-condensed hexagonal system is said to be an unbranched cata-condensed
hexagonal system (see Figure 2(b)) [6], namely, a hexagonal chain.

(a) (b) (c)

Figure 2. (a) Cata-condensed hexagonal system; (b) Hexagonal chain; (c) Peri-condensed
hexagonal system.

Let Q be a set of mutually disjoint hexagons of a generalized hexagonal system H, then H-Q is
denoted by a subgraph of H, obtained by deleting all vertices of Q together with their incident edges.
Q is said to be a cover of H if H-Q has at least one perfect matching or if H-Q is empty, following
Gutman [2]. We add a Kekulé structure of H-Q to the cover Q to get a vertex-cover of H, which is
called a Clar cover of a (generalized) hexagonal system H. In other words, a spanning subgraph C of
H is said to be a Clar cover of H if each of its components is either a hexagon or an edge.

Let C be the set of all Clar covers of H. For a Clar cover C ∈ C, we denote by h(C) the number of
hexagons of C. Define the Clar covering polynomial of H as follows [1]:

P(H,w) =
∑
C∈C

wh(C).

In particular, the Clar covering polynomial of a graph H without any Kekulé structure is satisfied with
P(H,w) = 0; and the Clar covering polynomial of a null graph H is P(H,w) = 1 [1].

In the papers [1, 7, 8], F. Zhang and H. Zhang gave a series of recursive formulas for Clar covering
polynomials and specific expressions for Clar covering polynomials for some special hexagonal
chains. Early research on Clar covering polynomials mainly focused on the calculation of several
related topological indices associated with them [9–11]. Gutman and colleagues [12–18]
demonstrated the relevance between Clar covering polynomials of benzene hydrocarbons and their
resonance energy. In 2005 [14], it was proven that when w ≈ 1, ln P(H,w) shows the best correlation
with resonance energy, suggesting that P(H, 1) can be considered a new structural descriptor, similar
to the role of Kekulé structure numbers based on Kekulé structure theory. In the same year [15],
Gutman showed that in the case of benzene molecules, the Dewar resonance energy (DRE) and
topological resonance energy (TRE) are linearly related to ln P(H, 0) and ln P(H, 1), respectively.
Subsequently, Clar covering polynomials were further investigated and many results were
obtained [19–30]. For example, in 2006 [20], Gutman and Borovicanin obtained explicit combined
expressions for Clar covering polynomials of multiple linear hexagonal chains Mn,m. In 2009 [21], Q.
Guo provided explicit recursive formulas for Clar covering polynomials of cyclo-polyphenacenes and
determined their Clar numbers, Kekulé structure numbers, and first Herndon numbers. Chien-Pin
Chou and others [23–26] developed an automatic computer program for calculating Clar covering
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polynomials of small to medium-sized benzene systems and determined specific expressions for Clar
covering polynomials of a series of benzene compounds using a self-developed calculation program.

In conjugate circuits, resonance energies are determined using conjugate rings of different
lengths [31], not just hexagonal cycles. However, only hexagonal and decagon rings have uniquely
determined structures. Therefore, in 2016 [32], Zigert Pleteršek introduced the concept of generalized
Clar covering polynomials containing both six- and ten-membered cycles in the literature.
In 2022 [33], Boris Furtula and his team, based on the definition of generalized Clar covering
polynomials, researched a series of recursive formulas of generalized Clar covering polynomials and
provided an algorithm to compute the generalized Clar covering polynomials of any hexagonal chain.
They demonstrated that generalized Clar covering polynomials can more accurately estimate and
compute the resonance energy of PAHs and other chemical activities, thus being used to predict the
aromatic stability of PAH conjugated systems. In the same year [34], Radenković demonstrated that
the vibrational energy of a molecule is related to parameters based on the Clair structure by using the
generalized Clar covering polynomial.

In addition, the Clar covering polynomials are also associated with various mathematical and
chemical concepts. This includes the connection between the Clar covering polynomial and the sextet
polynomial [8], the chromatic polynomial [35], as well as the relationship between the Clar covering
polynomial and the cube polynomial of their resonance graph [36], and the relationship between the
generalized Clar covering polynomial and the generalized cube polynomial of its resonance
graph [32]. However, there is not much research on the double hexagonal chain, mainly because the
double hexagonal chain belongs to the peri-condensed hexagonal system, and its structure is complex
and difficult. Gutman [37] studied the partition of the π-electrons in the rings of linear double
hexagonal chains. In 2020, M. Alishahi and S.H. Shalmaee [38] gave the exact formulae for the edge
eccentric connectivity index and modified edge eccentric connectivity index of linear double
hexagonal chains. In Ref [39–42], H. Ren and F. Zhang characterized a series of extreme double
hexagonal chains, such as the double hexagonal chains with maximal Hosoya index and minimal
Merrifield-Simmons index.

In this paper, we first obtained some recursive formulae for the Clar covering polynomials of double
hexagonal chains and proposed a Matlab algorithm to compute the Clar covering polynomial of any
double hexagonal chain. Moreover, we presented the characterization of extremal double hexagonal
chains with maximum and minimum Clar covering polynomials in all double hexagonal chains. For
other concepts not described in the text, one can refer to the book [43].

2. Preliminaries

In this section, we will introduce some relevant conclusions for the Clar covering polynomial of the
hexagonal system. F. Zhang and H. Zhang have obtained some properties and recurrence relations for
the Clar covering polynomial of a hexagonal system and have derived some formulae for calculating
the Clar covering polynomials of some special classes of hexagonal systems.
Theorem 2.1. [1] Let H be a generalized hexagonal system, the components of which are H1, H2, H3,
· · · , Hs, then

P(H,w) =
s∏

i=1

P(Hi,w).
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Theorem 2.2. [1] Let H be a generalized hexagonal system. Assuming that e = xy is an edge of a
hexagon S of H, which lies on the periphery of H (see Figure 3), then

P(H,w) = wP(H − S ,w) + P(H − xy,w) + P(H − x − y,w).

Figure 3. A generalized hexagonal system H in Theorem 2.2.

Theorem 2.3. [20] Let H be a generalized hexagonal system. Assuming xy is an edge not belonging
to any hexagons of H and the vertex x is of degree 1 (see Figure 4), then

P(H,w) = P(H − x − y,w).

Figure 4. A generalized hexagonal system H in Theorem 2.3.

Let H be an any generalized hexagonal system containing the vertex x is degree 1. According to the
result of the Theorem 2.3, the Clar covering polynomial of H can be calculated in the following simple
way:

P( ,w) = P( ,w) = P( ,w)

= P( ,w)

Let X1, and X2 be two Kekuléan hexagonal systems. We get a hexagonal system, which identifies
an edge on the periphery of X1 with an edge on the periphery of X2, denoted by X1 · X2 (see Figure 5).

AIMS Mathematics Volume 9, Issue 5, 13385–13409.



13390

Figure 5. Hexagonal system X1 · X2 in Theorem 2.4.

Theorem 2.4. [1] Let X1 and X2 be two Kekuléan hexagonal systems, which contain hexagons S 1 and
S 2, respectively, as indicated in Figure 5 (or let one of them be K2). The Clar covering polynomial of
hexagonal system X1 · X2 is

P(X1 · X2,w) = P(X1,w)P(X
′

2,w) + P(X
′

1,w)P(X2,w) − P(X
′

1,w)P(X
′

2,w),

where X
′

i = Xi − x − y for i = 1 or 2.
Without danger of confusion, we use Lm to denote a linear hexagon chain, and denote lm by the Clar

covering polynomial of a linear hexagonal chain with m hexagons.
Corollary 2.1. [1] Let Lm · X1 be a hexagonal system (see Figure 6), then P(Lm · X1,w) = m(w +
1)P(X

′

1,w) + P(X1,w).

Figure 6. Hexagonal system Lm · X1 in Corollary 2.1.

Theorem 2.5. [1] Let X1 and X2 be two Kekuléan hexagonal systems or K2, and G = (X1 · Lm) · X2 (see
Figure 7), then

P(G,w) = P(X1,w)P(X
′

2,w) + P(X
′

1,w)P(X2,w) + (mw + m − 1)P(X
′

1,w)P(X
′

2,w),

where X
′

1 = X1 − x − y, and X
′

2 = X2 − x
′

− y
′

.

Figure 7. Graph G in Theorem 2.5.

Let X1, X2, and X3 be three Kekuléan hexagonal systems. Identifying each of a triple of pairwise
disjoint edges of an additional hexagon with a peripheral edge of X1, X2, X3, denote by X1 · X2 · X3 (see
Figure 8).
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Theorem 2.6. [1] Let X1, X2, and X3 be three Kekuléan hexagonal systems or K2, and let G = X1 ·X2 ·X3

(see Figure 8), then

P(G,w) =
3∏

i=1

P(Xi,w) + (w + 1)
3∏

i=1

P(X
′

i ,w),

where X
′

i = Xi − xi − x
′

i, for i = 1, 2, 3.

Figure 8. Graph G in Theorem 2.6.

3. Main results

In the above, some properties and recurrence relations for the Clar covering polynomial of a
hexagonal chain have been obtained. In this section, we will deduce the relevant conclusions for the
Clar covering polynomial of a double hexagonal chain, and we will consider the sequence relation of
the polynomial in the hexagonal chains by quasi-order, which denote ⪯ and ≺. Let f (x) =

∑n
k=0 akxk

and g(x) =
∑n

k=0 bkxk be polynomials in x. We write f (x) ⪯ g(x) if ak ≤ bk for all integers k, and
f (x) ≺ g(x) if the polynomials are not equal. In the following, we denote by Lαn and Lβn the linear
double hexagonal chains containing n naphthalene in the α-formations and β-formations, and lαn and lβn
by their corresponding Clar covering polynomials, respectively. Moreover, in this section we will use
square brackets [a, b] to denote all real numbers in the closed interval a to b.
Theorem 3.1. Let Lαn be a linear double hexagonal chain containing n naphthalenes (see Figure 9), in
which the adhesion of naphthalenes are the α-formations, then

lαn = (w + 1)l n(n−1)
2
+ l2n−1.

Figure 9. Linear double hexagonal chain containing n naphthalenes Lαn in Theorem 3.1.
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Proof. Obviously, the Clar covering polynomial of naphthalene is lα1 = l2 = 2w + 3. Applying
Theorem 2.4 to the edge xy, we have

lαn = wP(Lαn − S ,w) + P(Lαn − x − y,w) + P(Lαn − xy,w).

According Theorem 2.3, we have P(Lαn − S ,w) = ln−1, P(Lαn − x − y,w) = P(Lαn−1,w) = lαn−1, P(Lαn −
xy,w) = ln, and ln = ln−1 + w + 1.

Therefore,

lαn = (w + 1)ln−1 + (w + 1) + lαn−1

= (w + 1)
n−1∑
i=1

li + (n − 1)(w + 1) + lα1

= (w + 1) [(w + 2) + (2w + 3) + · · · + (n − 1)w + n] + (n − 1)(w + 1) + (2w + 3)

=

[
n(n − 1)

2
w +

n(n − 1)
2

+ 1
]

(w + 1) + (n − 2)(w + 1) + (n + 1)(w + 1) + 1

= (w + 1)l n(n−1)
2
+ l2n−1.

Similar to the proof of Theorem 3.1, or simply following by symmetry, we have
Corollary 3.1. Let Lβn be a linear double hexagonal chain containing n naphthalenes, in which the
adhesion of naphthalenes are the β-formations, then lβn = (w + 1)l n(n−1)

2
+ l2n−1.

According to Theorems 2.1 and 2.6, we have the following result:
Theorem 3.2. Let X1 and X2 be two double hexagonal chains or linear hexagonal chains, and G be a
hexagonal system as shown in Figure 10, then

P(G,w) = P(X1,w)P(X2,w) + (w + 1)P(X
′

1,w)P(X
′

2,w),

where X
′

1 = X1 − x1 − y1, and X
′

2 = X2 − x2 − y2.

Figure 10. Hexagonal system G in Theorem 3.2.

Let H be a double hexagonal chain, in which has n maximal linear double hexagonal chains with
more than two naphthalenes. We in turn denote the number of naphthalenes in these maximal linear
double hexagonal chains by r1, r2, · · · , rn (ri ≥ 2, i = 1, 2, · · · , n), respectively, which is also said to be
a related sequence of H. Thus, we can use HD(r1, r2, · · · , rn) (without danger of confusion,
abbreviated as HD(rn), see Figure 11(a)) to denote by a double hexagonal chain H with related
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sequence r1, r2, · · · , rn. We also denote by HD(rn − 1) an auxiliary double hexagonal chain from
HD(rn) by removing the terminal naphthalene of the last maximal linear double hexagonal chain (see
Figure 11(b)), and denote by Hd(rn) and Hd(rn − 1) the Clar covering polynomials of HD(rn) and
HD(rn − 1), respectively. Furthermore, we use Cg(rn − k) to denote the Clar covering polynomial of
the following combination graph CG(rn − k) (see Figure 12), where CG(rn − k) = HD(rn−1 − 1) · Lrn−k,
k = 0, 1, · · · , rn − 1.

(a) HD(rn) (b) HD(rn − 1)

Figure 11. Double hexagonal chain HD(rn) and its auxiliary graph HD(rn − 1).

Figure 12. CG(rn − k) = HD(rn−1 − 1) · Lrn−k, k = 0, 1, 2, · · · , rn − 1.

Apply Theorem 3.2 to graph CG(rn − k) and we can obtain the following result:
Proposition 3.1. Let n(≥ 2) be a positive integer, then the Clar covering polynomial of CG(rn − k) is

Cg(rn − k) = lrn−1−kHd(rn−1 − 1) + (w + 1)Cg(rn−1 − 1), k = 0, 1, · · · , rn − 1.

Obviously, we have Cg(r1−1) = lr1−1 = r1(w+1)+1, and HD(r1) is exactly the linear double hexagonal
chain Lαr1

. By Theorem 3.1, the Clar covering polynomial of HD(r1) equals to

Hd(r1) = (w + 1)l r1(r1−1)
2
+ l2r1−1 =

r1(r1 − 1)
2

(w + 1)2 + 2r1(w + 1) + 1. (3.1)

Therefore, we know that the coefficient of each term in the Clar covering polynomial of Cg(rn − k)
is a nonnegative integer.

In the next proposition, we will calculate the Clar covering polynomial of HD(r1, r2) (see Figure 13),
and also denote by Hd(r1, r2) the Clar covering polynomial of HD(r1, r2).
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Figure 13. HD(r1, r2) in Proposition 3.2.

Proposition 3.2. The Clar covering polynomial of HD(r1, r2) can be computed as

Hd(r1, r2) =
1
4

(r1 − 1)(r2 − 1)(r1 − 2)(r2 − 2)(w + 1)4 + (r1 − 1)(r2 − 1)

· (r1 + r2 − 3)(w + 1)3 +
1
2

[(r1 + r2 − 2)(r1 + r2 − 1) + 2(r1 − 1)

·(r2 − 1)] (w + 1)2 + 2(r1 + r2 − 1)(w + 1) + 1.

Proof. To begin, we can apply Theorem 2.2 to the graph HD(r1, r2), then the Clar covering polynomial
of HD(r1, r2) can be computed as the following:

Hd(r1, r2) = w + 1 + P( ,w);

and then we apply Theorem 3.2 to Lαr1−1 and Lβr2−1, which are joined by the hexagon S 2. We can obtain

Hd(r1, r2) = (w + 1)(lr1−1lr2−1 + 1) + lαr1−1lαr2−1.

Finally, based on Eq (3.1) and some of the elementary calculations, we can obtain the result.
Proposition 3.3. Let n(≥ 3) be a positive integer, then the Clar covering polynomial of HD(rn) can be
computed as

Hd(rn) = (w + 1)Hd(rn−2 − 1) + Hd(rn−1 − 1)lαrn−1 + (w + 1)lrn−1Cg(rn−1 − 1).

Proof. According to the Theorems 2.2 and 2.6, suppose that S is a hexagon and xy is an edge of HD(rn)
as shown in Figure 14, and we have

Hd(rn) = (w + 1)Hd(rn−2 − 1) + P(HD(rn) − xy,w).

Thus, Theorems 3.2 and 2.6 enable us to calculate P(HD(rn) − xy,w), and the result is obtained.
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Figure 14. HD(rn) in Proposition 3.3

Corollary 3.2. Let n(≥ 3) be a positive integer, then the Clar covering polynomial of HD(rn − 1) can
be computed as

Hd(rn − 1) = (w + 1)Hd(rn−2 − 1) + Hd(rn−1 − 1)lαrn−2 + (w + 1)lrn−2Cg(rn−1 − 1).

Proof. According to Proposition 3.3, where lαrn−1 and lrn−1 are replaced by lαrn−2 and lrn−2, respectively.
By Propositions 3.1 and 3.2, we know that each coefficient of each term in Hd(r1 − 1), Hd(r2 − 1),

and Cg(rn − k) is a nonnegative integer, where r1 and r2 are all larger than 2. Hence, we can obtain
that the coefficient of each term in Clar covering polynomials Hd(rn) and Hd(rn − 1) are nonnegative
integers by Proposition 3.3 and Corollary 3.2.

Due to Propositions 3.1 and 3.3, and Corollary 3.2, we can recursively calculate the Clar covering
polynomial of an arbitrary double hexagonal chain. Now we will present a Matlab algorithm (see
Table 1) to compute the Clar covering polynomial of an arbitrary double hexagonal chain in the
following. In the algorithm, we denote by hi, di and pi by Hd(ri), Hd(ri − 1) and Cg(ri − 1),
respectively. First, in lines 1–3 of the Matlab algorithm, we define the independent variable w, the
number of related sequences of HD(rn), and the value of each relevant sequence, respectively.
Second, in lines 6–8 of the algorithm, we compute Hd(r1), Hd(r1 − 1), and Cg(r1 − 1), respectively,
according to Eq (3.1) and Proposition 3.1. Note that when using this algorithm to compute the Clar
covering polynomial of an arbitrary linear double hexagonal chain, we need replace line 2 with n = 1
and delete line 5. Of course, if we use the algorithm to compute the Clar covering polynomial of an
arbitrary double hexagonal chain, we only need to replace lines 2 and 3.
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Table 1. Algorithm: The Clar covering polynomial of an arbitrary double hexagonal chain.

Input: The vector (r1, r2, · · · , rn) related to a double hexagonal chain HD(r1, r2, · · · , rn);
Output: The Clar covering polynomial of a double hexagonal chain HD(r1, r2, · · · , rn).
1. syms w
2. n = k;
3. r = [r1, r2, · · · , rk];
4. r1 = r(1);
5. r2 = r(2);
6. h0 = (r1 ∗ (r1 − 1))/2 ∗ (w + 1)2 + 2 ∗ r1 ∗ (w + 1) + 1;
7. d0 = ((r1 − 1) ∗ (r1 − 2))/2 ∗ (w + 1)2 + 2 ∗ (r1 − 1) ∗ (w + 1) + 1;
8. p0 = (r1 − 1) ∗ w + (r1 − 1) + 1;
9. Hd = h0;
10. if n == 1 then
11. Hd = h0;
12. end
13. if n > 1
14. if r2 == 2;
15. d1 = h0;
16. p1 = d0 + (w + 1) ∗ p0;
17. h1 = 2 ∗ (w + 1) + (2 ∗ w + 3) ∗ d0 + (r1 − 1) ∗ (w + 1)3 + r1 ∗ (w + 1)2;
18. else
19. d1 = (r1 − 1) ∗ (r2 − 2) ∗ (w + 1)3 + (r1 + r2 − 3) ∗ (w + 1)2 + 2 ∗ (w + 1)

+d0 ∗ (((r2 − 2) ∗ (r2 − 3))/2 ∗ (w + 1)2 + 2 ∗ (r2 − 2) ∗ (w + 1) + 1);
20. p1 = ((r2 − 2) ∗ (w + 1) + 1) ∗ d0 + (w + 1) ∗ ((r1 − 1) ∗ (w + 1) + 1);
21. h1 = (r1 − 1) ∗ (r2 − 1) ∗ (w + 1)3 + (r1 + r2 − 2) ∗ (w + 1)2 + 2 ∗ (w + 1)

+d0 ∗ (((r2 − 1) ∗ (r2 − 2))/2 ∗ (w + 1)2 + 2 ∗ (r2 − 1) ∗ (w + 1) + 1);
22. end
23. Hd = h1
24. end
25. for i = 3 : n
26. Hd = d1 ∗ (((r(i) − 1) ∗ (r(i) − 2))/2 ∗ (w + 1)2 + 2 ∗ (r(i) − 1) ∗ (w

+1) + 1) + (w + 1) ∗ ((r(i) − 1) ∗ (w + 1) + 1) ∗ p1 + (w + 1) ∗ d0;
27. if r(i) == 2;
28. d2 = h1;
29. p2 = 1 ∗ d1 + (w + 1) ∗ p1;
30. h2 = (w + 1) ∗ d0 + (w + 1) ∗ d1 + (w + 2) ∗ p2;
31. else
32. d2 = (w + 1) ∗ d0 + d1 ∗ (((r(i) − 2) ∗ (r(i) − 3))/2 ∗ (w + 1)2

+2 ∗ (r(i) − 2) ∗ (w + 1) + 1) + (w + 1) ∗ ((r(i) − 2) ∗ (w + 1) + 1) ∗ p1;
33. p2 = ((r(i) − 2) ∗ (w + 1) + 1) ∗ d1 + (w + 1) ∗ p1;
34. h2 = (w + 1) ∗ d0 + d1 ∗ (((r(i) − 1) ∗ (r(i) − 2))/2 ∗ (w + 1)2

+2 ∗ (r(i) − 1) ∗ (w + 1) + 1) + (w + 1) ∗ ((r(i) − 1) ∗ (w + 1) + 1) ∗ p1;
35. end
36. Hd = h2;
37. d0 = d1; p0 = p1; h0 = h1; d1 = d2; p1 = p2; h1 = h2;
38. end
39. Hd
40. expand(Hd)
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According to the above Matlab algorithm, we can easily compute the Clar covering polynomial of
a double hexagonal chain HD(3, 2, 4, 3), as shown in Figure 15, and obtain the following result:

Hd(3, 2, 4, 3) = 9w6 + 140w5 + 790w4 + 2181w3 + 3173w2 + 2335w + 685.

Figure 15. A double hexagonal chain HD(3, 2, 4, 3).

Meanwhile, by the Matlab algorithm, we know that if any two double hexagonal chains have the
same related sequence, then their Clar covering polynomials are also the same. We present the exact
formulae of the Clar covering polynomials of some double hexagonal chains in the Appendix (see
Table 2).

Table 2. The Clar covering polynomials of double hexagonal chains containing s
naphthalenes.

s graph Clar covering polynomial
s = 3 HD(3) Hd(3) = 3w2 + 12w + 10
s = 3 HD(2, 2) Hd(2, 2) = w3 + 9w2 + 21w + 14
s = 4 HD(4) Hd(4) = 6w2 + 20w + 15
s = 4 HD(3, 2) Hd(3, 2) = 4w3 + 24w2 + 44w + 25
s = 4 HD(2, 3) Hd(3, 2) = 4w3 + 24w2 + 44w + 25
s = 4 HD(2, 2, 2) Hd(3, 2) = w4 + 10w3 + 39w2 + 60w + 31
s = 5 HD(5) Hd(5) = 10w2 + 30w + 21
s = 5 HD(4, 2) Hd(4, 2) = 9w3 + 46w2 + 75w + 39
s = 5 HD(2, 4) Hd(2, 4) = 9w3 + 46w2 + 75w + 39
s = 5 HD(3, 3) Hd(3, 3) = w4 + 16w3 + 64w2 + 94w + 46
s = 5 HD(3, 2, 2) Hd(3, 2, 2) = 3w4 + 27w3 + 88w2 + 117w + 54
s = 5 HD(2, 2, 3) Hd(2, 2, 3) = 3w4 + 27w3 + 88w2 + 117w + 54
s = 5 HD(2, 3, 2) Hd(2, 3, 2) = 5w4 + 40w3 + 115w2 + 140w + 61
s = 5 HD(2, 2, 2, 2) Hd(5) = w5 + 12w4 + 61w3 + 149w2 + 168w + 70

Next, we will calculate the Clar covering polynomial of any arbitrary double hexagonal chain
HD(rn) with related sequences r1 = r2 = · · · = rn = p, and its Kekulé number and the first Herndon
number. For simplicity, we denoted by Dp

n an arbitrary double hexagonal chain with related sequences
r1 = r2 = · · · = rn = p, its Clar covering polynomial by dp

n , and denoted the Clar covering polynomial
of Dp′

n (which is obtained by removing the terminal naphthalene of the last maximal linear double
hexagonal chain from Dp

n) by dp′
n . In particular, if r1 = r2 = · · · = rn = 2, we also denoted it and its
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Clar covering polynomial by D2
n, d2

n, respectively. Meanwhile, denoted by CGp
n an auxiliary graph

CG(rn − 1) = Dp′

n−1 · Lp−1, and its Clar covering polynomial by Cgp
n . In particular, when

r1 = r2 = · · · = rn = 2, we use Cg2
n to denote the Clar covering polynomial of graph CG2

n with related
sequences r1 = r2 = · · · = rn−1 = rn = 2 (see Figure 16(b)), where Cg2

n = D2
n−1 · L1.

(a) D2
n

r1 r2 rn

…… 'S 'x

'y

(b) CG2
n

Figure 16. Double hexagonal chain D2
n and its auxiliary graph CG2

n.

Proposition 3.4. Let D2
n (n ≥ 4) be a double hexagonal chain with related sequences r1 = r2 = · · · =

rn = 2 (see Figure 16(a)), then

d2
n = (w + 2)d2

n−1 + (w + 1)d2
n−2 − (w + 1)2d2

n−3,

where d2
1 = w2 + 6w + 6, d2

2 = w3 + 9w2 + 21w + 14, and d2
3 = w4 + 10w3 + 39w2 + 60w + 31.

Proof. Applying Theorem 2.4 to the edge xy and x
′

y
′

, respectively, we have that

d2
n = (w + 1)d2

n−2 +Cg2
n, (3.2)

Cg2
n = (w + 1)Cg2

n−1 + d2
n−1. (3.3)

According to Eqs (3.2) and (3.3), we have that Cg2
n = d2

n − (w+ 1)d2
n−2, Cg2

n−1 = d2
n−1 − (w+ 1)d2

n−3, and

d2
n = (w + 2)d2

n−1 + (w + 1)d2
n−2 − (w + 1)2d2

n−3, f or n ≥ 4,

where d2
1 = w2 + 6w + 6, d2

2 = w3 + 9w2 + 21w + 14 and d2
3 = w4 + 10w3 + 39w2 + 60w + 31.

Due to the coefficients of the lowest degree term and the primary term of the Clar covering
polynomial equal to the Kelulé number and the first Herndon number, respectively, we can obtain the
recurrence relations for the number of perfect matchings and the first Herndon number of D2

n by
taking w = 0 in the Clar covering polynomial and taking w = 0 in the first derivative of the Clar
covering polynomial in Proposition 3.4, respectively.

The recurrence relations for the number of perfect matchings of D2
n (n ≥ 4) are as following:

K(D2
n) = 2K(D2

n−1) + K(D2
n−2) − K(D2

n−3), (3.4)

where K(D2
1) = 6, K(D2

2) = 14 and K(D2
3) = 31.

The recurrence relations for the first Herndon number of D2
n (n ≥ 4) are as following:

h1(D2
n) = 2h1(D2

n−1) + h1(D2
n−2) − h1(D2

n−3) + K(D2
n−1) + K(D2

n−2) − 2K(D2
n−3), (3.5)

where h1(D2
1) = 6, h1(D2

2) = 21 and h1(D2
3) = 60.
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According to Eqs (3.4) and (3.5) and relevant properties, we give two Matlab algorithms to compute
the Kekulé number (or the number of perfect matchings) and the first Herndon number of D2

n (see
Tables 3 and 4, respectively). Meanwhile, according to the two Matlab algorithms, we can compute
the number of perfect matchings and the first Herndon number of some double hexagonal chains (see
Table 5).

Table 3. Algorithm for the number of perfect matchings for D2
n.

1. n = p
2. k = zeros(1, n);
3. k(1) = 6;
4. k(2) = 14;
5. k(3) = 31;
6. for i = 4 : n;
7. k(i) = 2k(i − 1) + k(i − 2) − k(i − 3);
8. end
9. k(p)

Table 4. Algorithm for the first Herndon number of D2
n.

1. n = p
2. k = zeros(1, n);h = zeros(1, n);
4. k(1) = 6;h(1) = 6;
5. k(2) = 14;h(2) = 21;
6. k(3) = 31;h(3) = 60;
7. for i = 4 : n;
8. k(i) = 2k(i − 1) + k(i − 2) − k(i − 3);
9. h(i) = 2h(i − 1) + h(i − 2) − h(i − 3) + k(i − 1) + k(i − 2) − 2k(i − 3);
10. end
11. h(p)

Table 5. The number of perfect matchings and the first Herndon numbers of D2
n.

n graph K(D2
n) h1(D2

n)
n = 1 D2

1 6 6
n = 2 D2

2 14 21
n = 3 D2

3 31 60
n = 4 D2

4 70 168
n = 5 D2

5 157 448
n = 6 D2

6 353 1169
n = 7 D2

7 793 2988
n = 8 D2

8 1782 7529
n = 9 D2

9 4004 18746
n = 10 D2

10 8997 46233
n = 11 D2

11 20216 113120
n = 12 D2

12 45425 274932
n = 13 D2

13 102069 664398
n = 14 D2

14 229347 1597670
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Now, we will give a more general result for the Clar covering polynomial of a double hexagonal
chain with r1 = r2 = · · · = rn = p.
Proposition 3.5. Let Dp

n be a double hexagonal chain with related sequences r1 = r2 = · · · = rn = p
(see Figure 17), then

dp
n = (w + 1)dp′

n−2 + dp′

n−1lαrn−1 + (w + 1)Cgp
n−1lrn−1;

dp′
n = (w + 1 + lαp−2)dp′

n−1 + (w + 1)(l2
p−2 + 1 − lαp−2)dp′

n−2 − (w + 1)2dp′

n−3;

Cgp
n = (w + 1 + lαp−2)Cgp

n−1 + (w + 1)(l2
p−2 + 1 − lαp−2)Cgp

n−2 − (w + 1)2Cgp
n−3.

Figure 17. Double hexagonal chain Dp
n with related sequences r1 = r2 = · · · = rn = p.

Proof. Apply Theorems 2.2 and 3.2 to the hexagon S and edge xy in Dp
n , we have

dp
n = (w + 1)dp′

n−2 + dp′

n−1lαrn−1 + (w + 1)Cgp
n−1lrn−1, (3.6)

then from Proposition 3.1, we have that

Cgp
n = dp′

n−1lrn−2 + (w + 1)Cgp
n−1. (3.7)

According to Eq (3.6), we have that

dp′
n = (w + 1)dp′

n−2 + dp′

n−1lαrn−2 + (w + 1)Cgp
n−1lrn−2. (3.8)

According to Eqs (3.7) and (3.8) and r1 = r2 = · · · = rn = p , we can obtain the following recurrence
relations for the Clar covering polynomials of dp′

n and Cgp
n :

dp′
n = (w + 1 + lαp−2)dp′

n−1 + (w + 1)(l2
p−2 + 1 − lαp−2)dp′

n−2 − (w + 1)2dp′

n−3,

for n ≥ 4, where dp′

1 = lαp−1, dp′

2 = Hd(m,m − 1), dp′

3 = Hd(m,m,m − 1);

Cgp
n = (w + 1 + lαp−2))Cgp

n−1 + (w + 1)(l2
p−2 + 1 − lαp−2)Cgp

n−2 − (w + 1)2Cgp
n−3,

for n ≥ 4, where Cgp
1 = lp−1, Cgp

2 = dp′

1 lp−2 + (w + 1)lp−1, Cgp
3 = dp′

2 lp−2 + (w + 1)Cgp
2 .

By dealing with dp′
n and Cgp

n in the same way as Proposition 3.4, we can directly obtain recurrence
relations for the Clar covering polynomial of dp′

n and Cgp
n , and the recurrence relations for the Kekulé

numbers and the first Herndon number for Dp′
n and CGp

n will be obtained. The recurrence relations for
the Kekulé numbers and the first Herndon number for Dp

n are also obtained.
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Next, we will consider the extreme of Clar covering polynomials of double hexagonal chains with
the fixed number of naphthalenes. Without loss of generality, we only consider double hexagonal
chains represented in Figure 11, being of the reason that any two double hexagonal chains have the
same Clar covering polynomials if they have the same related sequence r1, r2, · · · , rn. Let
HD(r1, r2, · · · , rn) be the set of double hexagonal chains with a fixed number of naphthalenes, and its
related sequences are r1, r2, · · · , rn, then we have the following result.
Theorem 3.3. Let HD(r1, r2, · · · , rn) (abbreviated by HD(rn)) be a double hexagonal chain in
HD(r1, r2, · · · , rn), then P(HD(rn),w) ⪯ dp

n , for any fixed positive integer n.
Proof. We prove it by induction on n. It is clearly true that for n = 1. For n = 2, the result is true
for r1 = r2 = p. In fact, we can obtain the Clar covering polynomial of HD(r1, r2) by Proposition 3.2.
Therefore, dp

2 is the largest Clar covering polynomial of HD(r1, r2).
Next, assuming that it is true for r1 = r2 = · · · = rk−1, namely, the Clar covering polynomial of

HD(r1, r2, · · · , rk−1), for r1 = r2 = · · · = rk−1 = p, is the largest one. Now, we will prove that the
theorem is true for HD(r1, r2, · · · , rk), r1 = r2 = · · · = rk.

Suppose that r1 = r2 = · · · = rk−2 = p, rk−1 = t1, rk = t2, and t1 + t2 = 2p (see Figure 18).
According to the induction hypothesis, dp

k−2 is the largest Clar covering polynomial of HD(rk−2), for
r1 = r2 = · · · = rk−2 = p.

Figure 18. HD(r1, r2, · · · , rk) with related sequence r1 = r2 = · · · = rk−2 = p, rk−1 = t1,
rk = t2, and t1 + t2 = 2p.

By Theorem 2.4, we have

Hd(rk) = wP(HD(rk) − S 1,w) + P(HD(rk) − x − y,w) + P(HD(rk) − xy,w).

First, for P(HD(rk)− S 1,w), due to the lack of kekulé structure in graphs with odd vertices, then ab
does not belong to any kekulé structure of HD(rk) − S 1. Hence, according to Theorem 2.1, we have
P(HD(rk) − S 1,w) = Cg(rk−2 − 2) · Hd(rk−1 − 1, rk).

Second, for P(HD(rk)−x−y,w) (see Figure 19), applying Theorem 2.2 to the edge x1y1 and hexagon
S 2, we can obtain P(HD(rk)− x− y,w) = wP(HD(rk)− x− y− S 2,w)+P(HD(rk)− x− y− x1 − y1,w)+
P(HD(rk) − x − y − x1y1,w). Since the Clar covering polynomial of a graph with odd vertices is equal
to 0, and we know that the edge cd does not belong to any kekulé structure of HD(rk) − x − y − x1y1,
we have P(HD(rk) − x − y,w) = w · 0 + 0 + Hd(rk−2 − 2) · Hd(rk−1 − 1, rk).
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Figure 19. Graph HD(rk) − x − y with related sequence r1 = r2 = · · · = rk−2 = p, rk−1 = t1,
rk = t2, and t1 + t2 = 2p.

Finally, for P(HD(rk) − xy,w) (see Figure 20), applying Theorem 2.4 to the edge hg, we can obtain
P(HD(rk) − xy,w) = dp′

k−3 · Hd(rk−1, rk) + (w + 1) · (p − 2) · dp′

k−3 · P(X1,w) + (w + 1) ·Ggp
k−2 · P(X1,w).

(a) HD(rk) − xy (b) X1

Figure 20. Graph HD(rk) − xy and its auxiliary graph X1.

Hence,

Hd(rk) = w ·Cg(rk−2 − 2) · Hd(t1 − 1, t2) + Hd(rk−2 − 2) · Hd(t1 − 1, t2) + dp′

k−3 · Hd(rk−1, rk)

+ (w + 1) · (p − 2) · dp′

k−3 · P(X1,w) + (w + 1) ·Ggp
k−2 · P(X1,w).

Similarly, applying Theorem 2.2 to the edge x3y3, and by Theorem 3.2 and Eq (3.1), we have

P(X1,w) = w + 1 + {lαt2−1

[
(w + 1)lt1−2 + lαt1−2

]
} + (w + 1)lt1−1lt2−1

= (w + 1)(lt1−1lt2−1 + 1) + {
(t2 − 1)(t2 − 2)

2
(w + 1)2 + (2t2 − 2)(w + 1) + 1}

· {
(t1 − 2)(t1 − 1)

2
(w + 1)2 + (2t1 − 3)(w + 1) + 1},

obviously, P(X1,w) is maximum when t1 = t2.
Meanwhile, according to the induction hypothesis, Cgp

k−2, Cg(rk−2 − 2), dp′

k−2, and dp′

k−3 are fixed,
respectively. By Proposition 3.2, we know that Hd(t1 − 1, t2) is a maximum when t1 = t2, so we can
immediately obtain that dp

n is the maximum Clar covering polynomial ranging over all Clar covering
polynomials of double hexagonal chains inHD(r1, r2, · · · , rn).
Theorem 3.4. Let HD(rn+k) be a double hexagonal chain containing s naphthalenes, with related
sequence r1, r2, · · · , ri−1, ri, ri+1, · · · , rn, rn+1, · · · , rn+k, therein ri = p, and p, r1, · · · , rn+k are nonnegative
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integers. Thus,
Hd(r1, · · · , ri−1, ri1 , ri2 , ri+1, · · · , rn+k) ⪰ Hd(rn+k),

where ri = p, ri1 + ri2 = p + 1.
Proof. Apply Theorems 2.2 and 3.2 to the x1y1 (see Figure 21(a)) and x2y2 (see Figure 21(b)),
respectively. We can immediately obtain

Hd(rn+k) =(w + 1)Hd
′

(ri−1)Hd
′

(rn+k, rn+k−1, · · · , ri+2) + Hd
′

(ri)Hd
′

(rn+k, rn+k−1, · · · , ri+1)
+ (w + 1)Cg(ri − 1)P∆,

(3.9)

where P∆ = lri+1−2Hd
′

(rn+k, rn+k−1, · · · , ri+2) + (w + 1)Cg(rn+k, rn+k−1, · · · , ri+2 − 1). Obviously, the
coefficient of each term in P∆ is a nonnegative integer.

Hd(r1, · · · , ri−1, ri1, ri2, ri+1, · · · , rn+k) =(w + 1)Hd
′

(ri1)Hd
′

(rn+k, rn+k−1, · · · , ri+2) + (w + 1)Cg(ri2 − 1)

· P∆ + Hd
′

(ri2)Hd
′

(rn+k, rn+k−1, · · · , ri+1).
(3.10)

Hence,

(3.10) − (3.9) =(w + 1)Hd
′

(rn+k, rn+k−1, · · · , ri+2)
[
Hd

′

(ri1) − Hd
′

(ri−1)
]
+ Hd

′

(rn+k, rn+k−1, · · · , ri+1)

·
[
Hd

′

(ri2) − Hd
′

(ri)
]
+ (w + 1)P∆

[
Cg(ri2 − 1) −Cg(ri − 1)

]
.

(a) HD(rn+k)

(b) HD(r1, · · · , ri−1, ri1 , ri2 , ri+1, · · · , rn+k)

Figure 21. Two double hexagonal chains in Theorem 3.4.

Due to the coefficients of each term in Hd(rn), Hd
′

(rn) and P∆ are nonnegative integers. We will only
consider the coefficients of each term in Hd

′

(ri1)−Hd
′

(ri−1), Hd
′

(ri2)−Hd
′

(ri), Cg(ri2−1)−Cg(ri−1).
For the convenience of calculation, set w + 1 = x in the following, then

(i) First, consider Hd
′

(ri1) − Hd
′

(ri−1). According to Corollary 3.2, we have

Hd
′

(ri1) − Hd
′

(ri−1) = xHd
′

(ri−2) + (lαri1−2
− 1)Hd

′

(ri−1) + xlri1−2Cg(ri−1 − 1).
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(ii) Next, consider Hd
′

(ri2) − Hd
′

(ri). According to Theorems 2.4 and 3.2, Proposition 3.2 and
Corollary 3.2, we have

Hd
′

(ri2) = xHd
′

(ri−2)lαri2−2 + Hd
′

(ri−1)A + xCg(ri−1 − 1)
[
lri1−2lαri2−2 + xlri2−2

]
, (3.11)

Hd
′

(ri) = xHd
′

(ri−2) + Hd
′

(ri−1)lαp−2 + xCg(ri−1 − 1)lp−2, (3.12)

where A = x + lαri1−2
lαri2−2
+ xlri1−2lri2−2.

Hence,

(3.11) − (3.12) =Cg(ri−1 − 1)lri2−2x2 +
[
Hd

′

(ri−2)(lαri2−2 − 1) + Hd
′

(ri−1)(lri1−2lri2−2 + 1) +Cg(ri−1 − 1)

·(lri1−2lαri2−2 − lp−2)
]

x + Hd
′

(ri−1)
[
lαri1−2

lαri2−2
− lαp−2

]
.

Obviously, through simple calculations, we know that the coefficients of each term in lri1−2lαri2−2−lp−2

and lαri1−2
lαri2−2
− lαp−2 are nonnegative integers, so we have that the coefficient of each term in Hd

′

(ri2) −
Hd

′

(ri) is a nonnegative integer.
(iii) Eventually, consider Cg(ri2−1)−Cg(ri−1). By Proposition 3.1, Corollary 3.2 and ri1+ri2 = p+1,

we can obtain

Cg(ri2 − 1) −Cg(ri − 1)

= lri2−2Hd
′

(ri1) + x
[
lri1−2 Hd

′

(ri−1) + xCg(ri−1 − 1)
]
−
[
lp−2Hd

′

(ri−1) + xCg(ri−1 − 1)
]

= lri2−2

[
xHd

′

(ri−2) + lαri1−2
Hd

′

(ri−1) + xlri1−2Cg(ri−1 − 1)
]
+ xlri1−2 Hd

′

(ri−1) + x2Cg(ri−1 − 1) − lp−2Hd
′

· (ri−1) − xCg(ri−1 − 1)

= lri2−2Hd
′

(ri−2)x +
[
lri2−2lαri1−2

+ xlri1−2 − lp−2

]
Hd

′

(ri−1) +
[
x2 + x(lri1−2lri2−2 − 1)

]
Cg(ri−1 − 1),

when r1 = 2 or r1 = r2 = 2, lri2−2lαri1−2
+ xlri1−2 − lp−2 = 0. If r2 = 2 and r1 , 2, we have lri2−2lαri1−2

+

xlri1−2 − lp−2 =
(ri1−2)(ri1−1)

2 x2 + (ri1 − 2)x. Hence, we also know that the coefficient of each term in
Cg(ri2 − 1) −Cg(ri − 1) is a nonnegative integer.

To sum up, the proof is completed.
Corollary 3.3. Let HD(rn+k) be a double hexagonal chain containing s naphthalenes, with related
sequence r1, r2, · · · , rn, rn+1, · · · , rn+k, therein r1 = r2 = · · · = ri = p, ri+1 = ri+2 = · · · = rn = t,
rn+1 = rn+2 = · · · = rn+k = r, i ∈ [1, n], and p, t, r, i are nonnegative integers. Thus,

Hd(r1, · · · , ri−1, ri1 , ri2 , ri+1, · · · , rn+k) ⪰ Hd(rn+k),

where r1 = r2 = · · · = ri−1 = p, ri1+ri2 = p+1 and ri+1 = ri+2 = · · · = rn = t, rn+1 = rn+2 = · · · = rn+k = r.
Corollary 3.4. Let HD(rn) be a double hexagonal chain containing s naphthalenes, with related
sequence r1, r2, · · · , rn, therein r1 = r2 = · · · = ri = p, ri+1 = ri+2 = · · · = rn = t, i ∈ [1, n], and p, t, i
are nonnegative integers. Thus,

Hd(r1, · · · , ri−1, ri1 , ri2 , ri+1, · · · , rn) ⪰ Hd(rn),

where r1 = r2 = · · · = ri−1 = p, ri1 + ri2 = p + 1, and ri+1 = ri+2 = · · · = rn = t.
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Corollary 3.5. Let HD(rn) be a double hexagonal chain containing s naphthalenes, with related
sequence r1, r2, · · · , rn, therein r1 = r2 = · · · = rn = p, p ≥ 3, and p is a nonnegative integer, then

Hd(r1, · · · , rn−1, rn1, rn2) ⪰ dp
n ,

where r1 = r2 = · · · = rn−1 = p, rn1 + rn2 = p + 1.
Theorem 3.5. Let HD(rn) be a double hexagonal chain containing s naphthalenes, then d2

s−1 is the
maximum Clar covering polynomial of HD(rn).
Proof. For any double hexagonal chain containing s naphthalenes, according to Theorem 3.4, we can
split it into

s = 3u + 2v − (u + v − 1) = 2u + v + 1,

where u, v are nonnegative integers, and u, v represent the number of maximal linear double hexagonal
chains containing exactly 3 naphthalenes and the number of maximal linear double hexagonal chains
containing exactly 2 naphthalenes, respectively.

Hence, we know that u, v must exist and v = 0, 2, 4, · · · , s − 1 (if 2 ∤ s) or v = 1, 3, 5, · · · , s − 1
(if 2|s). Obviously, we only need to consider the case of v = 0 or 1, since the case of v > 1 can be
obtained simply by splitting some maximal linear double hexagonal chains of v = 0 or 1 according
to Theorem 3.4, i.e., the case v > 1 is covered in the process of splitting v = 0 or 1. The following
discussion of v = 0 or 1: When v = 0 or 1, we know that any related sequence of a double hexagonal
chain containing s naphthalenes can be written as either r1 = r2 = · · · = ru = 3 or r1 = · · · = ri−1 =

ri+1 = · · · = ru+1 = 3, ri = 2, i ∈ [1, u + 1], then
(i) For r1 = r2 = · · · = ru = 3, according to Corollaries 3.4 and 3.5, we split ru, ru−1, · · · r1 one by

one into ru1 = ru2 = 2, r(u−1)1 = r(u−1)2 = 2, · · · . Obviously, the Clar covering polynomials get bigger
and bigger as we keep splitting them;

(ii) For r1 = r2 = · · · = ru = 3, ru+1 = 2, it is similar to (i);
(iii) For ri = 2, r1 = · · · = ri−1 = ri+1 = · · · = ru+1(i ∈ [2, u]), according to Corollary 3.3, we

split ri−1, ri−2, · · · r1 one by one into r(i−1)1 = r(i−1)2 = 2, r(i−2)1 = r(i−2)2 = 2, · · · , then according to
Corollary 3.4, we split ri+1, ri+2, · · · ru+1 one by one into r(i+1)1 = r(i+1)2 = 2, r(i+2)1 = r(i+2)2 = 2, · · · .
Obviously, the Clar covering polynomials get bigger and bigger as we keep splitting them.

To sum up, we can obtain the fact that if the number of naphthalenes in any double hexagonal chain
is fixed as s, the Clar covering polynomial of the double hexagonal chain D2

s−1 is maximum.
According to the analysis as described above, for any double hexagonal chain HD(rn) containing

s naphthalenes, with related sequences r1, r2, ..., rn, splitting any one of the maximal linear chains in
HD(rn), which makes the Clar covering polynomial of HD(rn) larger, the Clar covering polynomial of
a double hexagonal chain containing only one maximal linear chain is minimum. Thus, we have the
following result:
Theorem 3.6. Let HD(rn) be a double hexagonal chain containing s naphthalenes, then lαs is the
minimum Clar covering polynomial in HD(rn).

4. Conclusions

Hexagonal systems are a typical class of PAHs. The Clar covering polynomial of a hexagonal
system, which is also called a Zhang-Zhang polynomial, unifies several important topological indices

AIMS Mathematics Volume 9, Issue 5, 13385–13409.
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used in chemistry. Furthermore, the Clar covering polynomial of a hexagonal system can be used to
produce a good approximation to the resonance energy of a hexagonal system. In previous research
work, we present extreme hexagonal chains with the maximum and minimum values of the Clar
covering polynomials. The double hexagonal chain is a special kind of substructure of the
peri-condensed hexagonal system. In this paper, we first obtained some recursive formulae for the
Clar covering polynomials of double hexagonal chains and proposed a Matlab algorithm to compute
the Clar covering polynomial of any double hexagonal chain. Moreover, we presented the
characterization of extremal double hexagonal chains with maximum and minimum Clar covering
polynomials in all double hexagonal chains with fixed s naphthalenes.
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10. S. Gojak, S. Stanković, I. Gutman, B. Furtula, Zhang-Zhang polynomial and some of its
applications, Math. Method. Chem., 2006, 141–158.

11. S. Zhou, H. Zhang, I. Gutman, Relations between Clar structures, Clar covers, and the
sextet-rotation tree of a hexagonal system, Discrete. Appl. Math., 156 (2008), 1809–1821.
https://doi.org/10.1016/j.dam.2007.08.047

12. W. C. Herndon, Resonance energies of aromatic hydrocarbons. Quantitative test of resonance
theory, J. Am. Chem. Soc., 95 (1973), 2404–2406. https://doi.org/10.1021/ja00788a073

13. R. Swinborne-Sheldrake, W. C. Herndon, I. Gutman, Kekulé structures and resonance energies of
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