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transmission of the Marburg infection. The proposed mathematical model includes fractional-order
derivatives in the Caputo sense. Initially, we analyzed the model without control measures, examining
its key characteristics regarding local and global stabilities. Subsequently, we extended the model by
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1. Introduction

Marburg virus disease (MVD) is a viral infection caused by a member of the Filoviridae family [1].
It is extremely fatal, with a mortality rate of 90% among those affected. The virus’s incubation period
spans 3 to 9 days, with symptoms usually manifesting between 5 and 10 days post-infection. Initial
symptoms include fever, joint and muscle pain and headache. As the illness progresses, symptoms
can worsen and may include nausea, vomiting, bloody diarrhea, eye redness, chest pain, skin rash,
sore throat, cough, stomach pain, and significant weight loss. The transmission of the virus may
occurs through bodily fluids such as sweat, saliva, and blood. Although the virus originated in African
bats, its first outbreak occurred in the German cities of Marburg and Frankfurt. It was linked to the
exposure of German workers to monkey tissues within industrial settings. In these outbreaks, a total
of 31 people became infected, and seven of them died. Subsequently, the disease emerged in several
African countries at different times, including Uganda, Angola, the Congo, and Tanzania. Recently, in
March 2023, officials from the Ministry of Health in Equatorial Guinea announced that 13 people had
contracted MVD, resulting in nine deaths since its emergence in the country. Consequently, the early
control of the spread of MVD before it escalates into an epidemic has become a critical issue. In the
absence of effective treatment or a vaccine for MVD [1], developing optimal quarantine strategies in
the affected countries that may help to limit its new outbreaks and further incidence.

The application of mathematical models is extremely useful in the exploration of various dynamical
aspects of a disease outbreak. These models have proven to be valuable tools in the study of
various dynamical aspects and control of different diseases. The primary reason for the efficacy of
models based on fractional derivatives lies in the non-locality property that is inherent in fractional
operators, also known as the memory effect. This feature is particularly important in exploration of
biological systems where the state at a given moment is influenced by its configuration at preceding
times. Moreover, differential operators with non-integer order plays a key role in the minimization of
errors that arise from neglected parameters. Consequently, the application of fractional calculus-based
models can be found in various fields of science, including biology [2—7], medicine [8], physics [9],
chemistry [10, 11], engineering [12, 13], and psychological research [14].

Optimized control theory is a significant and successful mathematical approach that can be
employed to make decisions regarding the development of optimal intervention strategies for infectious
diseases [15]. Various mathematical models have been developed to present an optimal control system
for the eradication of a disease outbreak. The well-established Pontryagin’s maximum principle is
employable in the context of both ordinary and fractional differential equations [16]. Ayele et al.
conducted an optimal control study in Ethiopia, examining a mathematical model of HIV/AIDS [17].
Alrabaiah et al. analyzed an optimal control model of the hepatitis B virus [18]. In [19], the authors
applied an optimal control theory to a fractional model of coronavirus transmission in Algeria.

To investigate the dynamics of MVD transmission, various studies have been presented in [20,
21]. In [20], the authors applied four preventive controls related to prevention, screening, continuous
vaccination, and treatment to a SIERDVT model of MVD. They found that implementing the four
controls simultaneously resulted in greater effectiveness in mitigating the spread of MVD. However,
due to a lack of real data and the utilization of classical derivatives in formulation of the mathematical
model in this research, the results may be less accurate than those obtained by using of fractional
operators as demonstrated in [21]. However, it is worth noting that in [21], there is no preventive
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control for MVD, which makes this study less effective in terms of preventive measures.

Based on the discussion presented above, we designed this study to explore the dynamics of MVD
transmission in both humans and animals. Subsequently, we will delve into the application of fractional
optimal control strategies to mitigate its spread. In this study, we will introduce a novel fractional model
of MDV transmission, employing the Caputo derivative. We divided both the human population and the
animal population into five and three groups respectively named as the susceptible class S (¢), exposed
class E(f), quarantine class Q(t), infectious individuals /(¢), recovered individuals R(#), susceptible
animals S,(7), the exposed animal host E,(¢), and /,(f). To establish effective control strategies, we
will first discuss the sensitivity of the reproduction number for MDV disease transmission in order
to determine the most critical parameters that have the greatest impact on disease dynamics. Based
on this analysis, we will then determine the appropriate controls to reduce the spread of MVD in the
community.

The rest of this paper is arranged as follows. In Section 2, we will review the fundamental definitions
of fractional calculus. Section 3 introduces the mathematical model for MVD. In Section 4, we will
present a theoretical analysis of the fractional MVD model, including a discussion on the existence,
positivity, and uniqueness of the fractional model’s solution, as well as the local and global stability of
the equilibria. Next, we will present numerical simulations to approximate solutions to our fractional
system in Section 5. Following this, in Section 6, we formulate an optimal control problem that is
subject to our fractional model characterize the optimal controls and derive the necessary optimal
system employing Pontryagin’s maximum principle. Concluding remarks are summarized in Section 7.

2. Basics on fractional calculus

Some fundamental definitions and necessary results of fractional calculus are provided in this
section.

Definition 2.1. [22] Riemann-Liouville fractional integration of the function F : R* — R with order
v is defined as follows

I; F(x) = %7) fo x(x —0""'F(dt, y > 0. 2.1)

Definition 2.2. [22] The non-integer case Caputo type operator of a function F : R* — R with y as
the order is given by

1 X
‘DY F(x) = —f — )" IEm 2.2
0 (x) Tm=7) Jo (x—1 (ndt, y >0, (2.2)

where, m = [y] + 1, m € N, with [y] as the integer part of .

Let F,G : R* — R be such that D F(x) and “Dj ,G(x), exist and g1, g2, g3 be three real
constants; then, the following properties hold:

I (D} F(x)) = F(x) -

e If yissuchthat0 <y < 1, then:
Ig,x(cDgJF(x)) = F(x) — G(0).
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“Dj (0:F(x) + ¢:G(x)) = ¢5 D F(x) + g5 Dy F ().
® CDgﬂl = 0.

Theorem 2.1. [22] The Caputo fractional differential operator’s Laplace transform y (y > 0), is
presented as follows

m—1

LED; F)(s) = 87 LF)(s) = D 7 FH0). (2.3)

k=0
3. Formulation of the fractional MVD model

In this section we introduce a fractional model that describes the transmission of MVD among
humans and Egyptian fruit bats (the animal host), employing a Caputo fractional derivative. The model
is formulated by following the study outlined in [23], where the human population and the animal
population are divided into five and three compartments, respectively. These compartments include
the following: S (¢), denoting the total susceptible class among humans; E(?), representing the exposed
class among humans; Q(#), the quarantine compartment among humans; /(¢), representing the density
of the infectious class; and R(¢) indicating the number of recovered individuals among humans. For
the animal population, we have the following: susceptible animals represented by S ,(¢), the exposed
animal host represented by E,(¢), and I,(¢), which is the infectious animal host compartment. As
illustrated in Figure 1, A represents the recruitment rate for the human population. The probabilities of
MVD transmission by humans and bats are denoted by S and 8, respectively. Exposed humans become
infected at a rate of w and are quarantined at a rate of 7. At a rate of ¢ exposed individuals return to the
susceptible compartment. Conversely, quarantined humans become infected at a rate of p. The disease
induced death rates in humans and bats are represented by ¢ and ¢, respectively. Finally, we indicate
the rate of recovery from MVD by ¢ and the natural death rate by y in all classes. To construct the
fractional model of MVD, we use the Caputo fractional operator ©D?, where y represents the order.
We introduce an auxiliary parameter o in the model. This procedure allows us to ensure that both sides
of the resulting equation have the same dimension [24]. The MVD fractional model is then defined as
follows:

1 I,
a7 VDS () = A+ Q0 — (u+ o + @)S’
N N,
1 I
o'(y_l)CDyE(t) — (ﬁ_ + @)S —(u+w+17)E,
N N,
" VEDYO(t) = TE — (u + p + )0,
a " VEDYI(t) = WE + pQ — (u + 6 + ),
a V" VEDYR(¢) = 91 — uR,

I
VDS 1) = Ay~ e+ P,

Ny
I
I IDE D) = LS, (4 + B,
b

3.1

" VDY (1) = kE, — (u + 6p)],.
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The initial conditions are listed below:

S0=80)>0, Eg=E0)>0, Qy=0(0) >0, I,=10) >0, (3.2)

Ry=R(0)>0, Sy, =S5,(00>0, Ey, =E,0)>0, I, =1,(0) > 0.

I m 6+ m
[ A | | |

I I N N, w ]

—  E = ] 2
\ |
Q -.
\\ i‘n C
b },__ Eb.}‘i‘h—= Sb—
Wb

(Bb+4)

Figure 1. Flowchart diagram of MVD transmission between humans and animals.

4. Theoretical analysis of the fractional MVD model

Let C([0,T],R®) represent a Banach space consisting of continuous functions with the
corresponding norm denoted by |[|.||.

4.1. Existence and uniqueness of solution

Using fixed point theory, along with the Picard-Lindelof method, the existence and uniqueness of
the aforementioned fractional model’s solution will be discussed in this section. First, we can write the
system (3.1)—(3.2) as the following initial value problem (IVP):

(y-1D¢ _
{ "V DYX(1) = F(t, X(1)), t>0, @
X(0) > 0,
and
X(@t) = (S@), E(t), Q(0), [(1), R(t), S (1), Ep(1), I,(D))", 4.2)
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defines a vector of state variables. Moreover,

[, S (1) A+9Q— (u+g+ 508
St E(®) & +20)S —(u+w+1)E
ENO) TE-(u+p+9)0
Jo(t, S (1) Ay - (u + 805,

fa(t, Eb(1)) RS, — (u+ k)Eb
Js(t, 1y(1)) kEb — (U + ),

Further, express IVP (4.1) as an integral equation by applying the non-integer integral defined in (2.1)
on both sides of (4.1).

Bl By

SO -So=c"7"L (A+¢ (;1+N+Tb)S)
E() - Eg= "1 ([jv ﬁ]’(,—:)s (1 +w+T)E,

Q) — Qo = "I TE — (u+ p + ¢)Q,
IH)-1)= J“‘”I&le +p0 - (u+6+W),

R(1) - Ry = o' I3 91 — iR, @4
Sp(t) = Spo = 0'(1_7)17 Ay — (u+ 'Bblb )Sb,
Ey(t) — Eyo = o1 ﬁ]’; LS, (u+ WE,,
L(1) = Iyg = "L KEy — (1 + )1,
Using the definition of Ig ,» and (4.3) we obtain:
(1 -y) (1 -y)
50 = S0+ T [ =0 505000 = B+ T [[a-2 50 B,
(1 -y) (1 Y)
0() = 0 + f (0= 7 f3(0 OOy 1(1) = Iy + f (= fi D)y,
[(y) I'(y)
(1 -y) (1 -y) (4'5)
RO = Ro+ T f (1= F. RO (0 = S10 + T f (1= 7 fa0. S o)y,
0-(1 -y) 0-(1 -y)
Ey(t) = Epg + (r =V G, Ex0))dy, In() = Ipg + (t - s, L, (y)dy.
I'(y) Jo I'(y) Jo
Alternatively,
og-7
X = X0+ T f (1 =y F (. X()dy, (4.6)

where X(¢) and F(y, X(y)) have been defined in (4.2) and (4.3), respectively. Next, we state the operator
as follows:
G : C([0,T],R®) - C([0,T],R®), X - G(X) =X, 4.7)

AIMS Mathematics Volume 9, Issue 5, 13159-13194.



13165

such that
(1 -y)

I'(y)

Therefore, the integral equation (4.6) is equivalent to X = G(X) and fixed points of G, are the

solutions of IVP (4.1). To get a fixed point of G by using Picard iteration, we construct the following
equations, which represent the Picard iterations according to (4.5) such that

G(X) = X(0) +

‘fu—yvlﬂyX@»@

o=

") = S(0) + fkr-vlﬁ@S"%wwy

o)
(1 Y)

F®=H®+H)J%F)“ﬁwﬂkm®,
(1 Y)

Qm:gm+n)f<wv%m@%m@

o=

I'(y)
o1-»

1 n—1
H)fowyﬁmR(m@
(1 -Y)

I'(y)

(1-y)

I'(y)

(1-y)
I'(y)

To ensure the unique solution existence of IVP (4.1), we must prove that G is a contraction operator.
First, we need to establish the following lemma:

I'"(r) = 1(0) +

‘fmwymmﬂwm@
4.8)

R'(t) = R(0) +

S2(0) = 5,(0) + tf«wv%uwww@,

E!) = Ey(0) + - WAL EY 0))dy,
0

I}(t) = I,(0) + Oa—wwﬁmm”wwy

Lemma 4.1. F(t, X(1)), as presented in (4.3) fulfill the Lipschitz criteria that is,
IF (7, X1()) — F(1, X2 (D))l < DX — Xoll, (4.9)
such that
® = max(c" ' w+B+By), TV +w+ 1), 0w+ p+ @), (w5 +y), 0y,
o+ By, 7 (e + K.
Proof. For fi(t,S (t)) we have

[, 1)) = fit, S2() = " (u + ﬁ ‘@lmsw)sxm

such that
I1A(5S 1) = filt, S2(0)I = o7 (u +'8 @))(Sl(t) So))l
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<o+ B+ BHIIIS 1 () = S
< T+ B+ BIIS 1 (1) = S2))I.

Using the same procedure, we derive the subsequent results for the remaining equations:

12t Ex(0) = falt, Ex()I| < " + w + DI|E) — Exl,
1/, 01(0) = f5(t, Qo) < e + p + 9N Q1 — Ol
Ifa(t, 1) = falt, L) < 77+ 6 + DI - L,
I1f5(t, Ri(0) = f5(t, ROl < " ullR, = Ry,
1f6(t, S 5,(0) = fo(t, S b, < 7 + BIIS 6, = Sl
2(t, Ep, (1)) = fo(t, Epy )| < "7 (u + K|y, — Ep|l,
st I, (1) = fa(t Iyl < 7 (u + 8,)I1Ly, — I, |-

Let

® = max(c" P w+B+B,), VUt w+ 1), +p+ ), T (u+ 6+ 9), T,

"+ By), o' + k).

Therefore, we get:
IF (2, X1(2)) — F (2, X2(0)]| < D[|X; — Xa|.

O
Theorem 4.1. Suppose that (4.9) holds; then, the system given by (3.1)—(3.2) has a unique solution if

Poame2s ()24
—0 <1
I'ty+1)

Proof. We know that the solution of the system given by (3.1)—(3.2) is X(¥) = G(X(t)), where G denotes
the corresponding Picard operator defined in (4.7). Moreover, we have:

(1-y) 4
IG(X1(1)) — G(Xa(D))I| = II?(y) f(t =) F(y, X1(0) — F(y, X2(y)dyll
0
0-(1—7) 4 :
< =y NFQ, Xi(0) = F(y, Xo(»)lldy
I'ty) Jo
0-(1—7)q) 4 "
T 11X —lelfo(t—y)y dy
g Iy
= mllxl _X2||~

If rf’;ﬁf]) < 1, then G is a contraction mapping; thus, the system given by (3.1)—(3.2) possesses a unique

solution. O
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4.2. Nonnegative solution

We define the next two sets:
H ={(S,E,Q.I,R) e R’;(S(1), E(t), (1), 1(t), R(1))" > 0},

R = {(Sp, Ep, Ip) € R (S (1), Ep(D), In(1))" > 0},
Lemma 4.2. The solutions of the system given by (3.1)—(3.2) are all positive for t > 0 and belongs to
HUR.
Proof. We proceed with the system’s first equation given in (3.1)—(3.2) as follows:

Bl Buly

c — g0 _ Pr Prlb
D’S(t) = " V(A + ¢Q(1) (,u+N+ N, )S (1)),

>~ + B+ B,)S (D).
Solving the above inequality, we get
S(t) 2 SoE, (=" (u + B + Bp)f?). (4.10)

Since S¢ > 0and 0 < E, (- (u+B+Bp)1") < 1,then S(t) > 0, Vr > 0. Itis the same for the other
equations this, we have

E(t) > EE, (" (u + w + 1)),
O(t) = QuE, (=" (u + p + @),
1(t) > LE, (=" (u+ 6 + 9)),
R() 2 RE, (-0 V),
Sp(®) = S Ey (=" (1 + By)),
Ep(t) > EpE,(~o" 7 (u + k),
I,(t) > I, E, (=" (u + 63)).
By following the same arguments as above, we obtain that E(¢) > 0, Q(¢) > 0,1(#) > 0, R(t) > 0, S ,(¢) >
0, E,(t) and > 0, 1,(t) > 0. O

4.3. Biologically feasible region of the solution

Lemma 4.3. The feasible domain for solutions of the fractional problem given by (3.1)—(3.2) is K =
K, | K, and it exists such that

>

K, ={(S,E,Q,I,R) € R};N, < —},

=

A
Ky ={(S},Ep1,) € R:N, < 7”}.

It is bounded, invariant set, where Ny, is the humans population (N,(t) = S(t)+ E(t)+ Q(t) + I(t) + R(1)),
and Ny, is the Egyptian fruit bats population (N,(t) = S,(t) + I,(t) + Ey(1)).
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Proof. By adding the first five equations of the system given by (3.1)—(3.2), we get

Ny=A-ulS +E+Q+I1+R)-6I,
Ny — (A — uN,) = =41,
Nh—(A—,uNh)Sdl.

In the absence of MVD in a population (/ = 0), we have

N, — (A= puNy) <0,
Nh <A —,LlNh.

Solving the above inequality we obtain
Ni(t) < APTE, o (—put") + E, (=1 )N, (0),

such that £, E, , are the Mittag-Leffler functions, respectively defined as follows:

[Se] o n

g g
E = E —— F = E _— 0.
y(g) Z F(l n Fl)’) y,y(g) Z F(’)/ n ny) Y >

We get that lim,_,o, N,(f) < L—‘ In the same way we get
Ny(t) < Npt"'E, (—put") + E, (—ut”)N,(0).
Thus, lim, e, (1) < 2. O
4.4. Stability results of the MVD fractional model
First, we determine the system’s equilibrium points by setting
o DS (1) = "V DYE@(t) = 0DV Q(r) = 0 DY I(r)

="V DR(t) = VDS (1) = YV DVEL (1) = YV DI (1) = 0.

4.4.1. Disease-free equilibrium

The MVD model has two equilibrium points. The disease-free equilibrium (DFE) point can be
obtained as follows:

A A
80 = (_a 09 09 05 09 _ha 09 0)'
7 [

4.4.2. Endemic equilibrium

The endemic equilibrium (EE) expresses the situation in which the disease is prevalent among the
members of the community in the MVD model, and it is given by [23]:

83 = (S*’E*’ I*’ Q*9R*’S;;7 EZ’ IZ)’
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such that
An3n4 An2n4
* *
S *=rn—— =
nin3ng — NPT nin3ng — NPT
. Atn, I Any(wnyg + p1)
mnsng — Nyt MN3N4Ns — NoNsQT
§* = A}, B = Abn7 I = Abn7k
) b= > Ay = >
ne nehg ngngne
where,

Bl Bl Bl Bl

SUt =t M=t — M=t W+ T, =4+ P+,
nlﬂNNbﬂzNan3ﬂan4MP€0
I I
n5:,u+6+19,n6:,u+@,n7:ﬁb—b,ng:,u+k,n9:,u+6b.
Ny Ny

4.4.3. The basic reproduction number
In view of [25], the basic reproduction number of the model of MVD i.e., Ry = p(FV~!) such that

B
Ap

0
01, 4.11)

By
0

S O O o O

B
0
0
0
0

S o o O O

and
ns 0 0 O

0
-t ng 0 0 O
V=c7-w —p ns 0 0
0 0 0 ng O
0 0 0 -k ng

(4.12)

After calculation, we obtain

= BT+ ot p+p)
T Utw+nDutp+euto+9)

4.5. Local and global stability of DFE and EE

Conditions of the local and global stability of DFE and EEs can be proven by using monotone
matrices and dynamical systems theories (see [26]). From [23], we recall the following stability results
of the proposed model:

Theorem 4.2. The DFE &, is asymptotically stable in the local case whenever Ry < 1. Global
asymptotic stability when, Ry < 1.

Lemma 4.4. [27] If the real function K(t) is continuous as well as derivable, then for every t > ty, we
have

¢« DY(K*(1) < X ¢ DIK, V0 <y < L.

| =
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Lemma 4.5. [27] If the real positive function K(t) is continuous and derivable then for every t > t,
we have
K@) K"

c Y _qeE N -
DK = FC =K In o) < (= s

) i D]K(), K" eR* VO <y < 1.

Proof. We use the following function to evaluate the Lyapunov stability of the MVD model in
fractional case

V() = Ez(t)+ Q(t)+ Iz(t)+ Ez(t)+ Iz(t)

This function exists such that

1 Bp 3 B

D " Diur6+Nutpre) > Diu+s+0)
y4:(ﬂ+5b)(/~l+k)+k,8b’y5: Br ,
Do(p + k)(p + 6) M+ Op
where
AT A
T T T u Ty

In view of Lemma 4.4,

" D"V(t) <y Ec? " DYE + y,Q07 DY Q + y;107 D1
+ y4EbO'7_chyEb + y5IbO'y_chbe.

Since E, Q,1,E,, I, € K, then
A1
E+QO+I<N,<—— =Dy,
uI(y)

and
b+ 1y <Np < ,ul"()_

Further, we get

" EDV(@) <D (3107 DVE + y,07 7D Q + y30? DV I) + Dy(y40? 'S DYE, + ysa? I D)

Bl /3bb Bp
S(Gvis )S (/1+w+T)E)+(ﬂ+5+ﬁ)(ﬂ+p+‘p)(TE—(ﬂ+P+90)Q)
ﬁ

—(wE - NI
+,u+5+19(w +pQ —(u+5+)

+(H+5b)(/1+k)+kﬁb(,3b1bs e+ REy) + B
M+ Op

(1 + 6p)(u + k) Np

(kEp — (u + 0p)1p)

S S
<5 - 1) +ﬁbl,,(—b “ 1)+ (Duyat + Dlﬁ —(u+w+D)E
BS kB

+ (D1y3p = Diyr:(u+p+¢)0 + _Ib + ( — Dyys(u + k) Ey.

+ 0p
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At the equilibrium, we obtain

E +p+¢)+ S
o= . WH+p+@) +pT JE.E, b
HEtp+e H+6+Nu+p+e)

= mﬁblb. (413)

Moreover, we know that § < Dy; it follows that g—b < %. Then using the above expressions we get
D" V(1) S,BI(N -1 +,8blb(ﬁ -D+@u+w+1)(Ry— 1E.
b

Because % <1and JS\/_,b, < 1; it follows thatﬂ](% -1)<0 andﬁblb(]svz -1)<0.
Then if Ry < 1, we get that o’ 1CDYV(t) < 0. Thus, using Theorem 1 in [28], it is proven that the
DFE of (3.1) is asymptotically globally stable if Ry < 1. O

Theorem 4.3. The EE &, is asymptotically globally stable in K if Ry > 1.

Proof. Initially, we normalize the total number of humans and animals to be equal to 1 (i.e., N, = N, =
1).

A Lyapunov function is considered as follows to prove the desired result

0

S . E 1
LO)=S-S"-S'h—)+(E-E" -E'In—)+—-(Q-0" - 0Q'In—)
S* E* T Q*
1 — o e Sb o ey Eb R
+ 5(1 -I'-1 lnF) +(Sp—=5, - SblnS_;j) +(E, - E, — EblnE_,’;) +Up -1, - Iblnl—g).
Using the result in Lemma 4.5, we obtain
A\ E* 1 o

oD L) <(1 = ) D"S + (1 - =)o’ DVE + =(1 - =)0 D7 Q
S E T (0]
1, r S; E;

—(1 = =)D+ (1 = 22y DS, + (1 - )" € DVE,
w I Sy E,

+(1 - ;—Z)O'Y_ICDVI;,
b
S*
<(1- ?)(A +¢Q — (u+ Bl + Bp1})S)
E*
+(1 - F)((ﬁl +Bply)S — (u+ w + 7)E)

QQ>(TE—(u+p+¢>Q>+ (1= TYWE +pQ = (a4 6 + D))

+ l(1 -
T
S* *
+(1 - S—b)(Ab — (U +Bplp)Sy) + (1 — E—b)(ﬂblbsb —(u+kEp)
b b

*

I
+ (1= 2YKEy = (u + 8,)1).
b
At the EE, we can get
AN=—-00+ u+pI"+pBI)S", (4.14)
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BI* + BoI})S*

(ll+(,L)+T):T, (415)

(+p+g)= o (4.16)

(U+6+0) = w 4.17)

Ap =+ BI)S), @.18)

(u+ k) = M (4.19)
Eb

(U+6p) = kﬁb. (4.20)

Introducing (4.14)—(4.20) into above, with some calculation we get
S *

IDY L) SUSS iy + 9@ = QN1 = )+ S 2= =)
+ﬂSZ(2—§—E——) I*Sﬁ(Z—?*—E)
IS - i—i——) E(4—§—%—I—’*—ZEJ
pQ Q= T +kE Q- = 5D

IL,E*S I E*IS I,SvE,

+ IS ( -—- L.
LIFES* I'I;  EIFS*l, [S;E,I"

Since the arithmetic mean exceeds the geometric mean [27], then

s S S,
02————_
( S ( S, )

S* E S;; e
-2 Ly coe-2-ty - LoLE) .
Cog g =005, Ty =0C ) =0

'E I IE I, LE
-2 CE L TR gp-b_ 22 g
o 0E T IE I " LE

o .o LE'S )i E*IS 1hSHE 1c
In addition if (5= — = — =2 — : is negative, then o' “ DY L(¢) < 0. Furthermore, we have
(1,,1155 I'I; ~ EI'S*T, ISEI) g )

that 0?07 1CDY L(E,) = 0 & (S(2), E(t) 00, I(t), R(t), S (1), E;(1), I(1)) = &,. Thus, the maximum
invariant set for

(S @), E@®), Q(0), 1(1), R(®), S o(1), Ep(1), 1,(1)) € R®,C D] (L(1)(E.)) = O},
is &,. It follows that the EE &, is asymptotically globally stable if Ry > 1. O

5. Simulation of the MVD Caputo case model

The dynamics of the individuals in the susceptible, exposed, infected, recovered and quarantined
groups over time are illustrated in Figure 2. Meanwhile, the dynamics of the bat population are
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illustrated in Figure 3. The numerical scheme presented in Appendix A has been employed to compute
approximate solutions for the model (3.1). Parameter values and initial conditions estimated from
literature has been adopted as provided in Table 1. The auxiliary parameter o was assumed to be
o =0.99.

Table 1. Parameter descriptions with numerical values used in simulation.

Parameter Description Value in days Reference
A the human’s recruitment rate 04 [29]

Ap the bat’s recruitment rate 0.55 [23]

u natural mortality rate 0.20 [23]

o) disease-related death rate in humans 26.5-80% [30,31]
Op disease-related death rate in bats 0.05 [23,32]
B MVD transmission rate for infectious humans 0.28 [23]

B MYVD transmission rate for infectious bats 0.90 [23]

w rate of exposed humans becoming infected 0.15 [23]

T quarantine rate 0.85 [23]

@ susceptibility rate of quarantined class 0.10 [23]

Jol flow from quarantined to infectious class 0.90 [23]

) the rate of recovery from MVD 0.30 [30]

k flow from exposed to infected bats 0.19 [23]

Figure 2 demonstrates the behavior of the susceptible, exposed, infected, quarantined, and recovered
subclasses showing that they converge to the steady state for y = 1, 0.95, 0.90, 0.85. Figure 3
depicts the stability of the bat population classes for four values of y. When varying the values of the
fractional order 7, it was observed that the rates of decay and growth in the solution curves are slower
for smaller values compared to larger values. This observation highlights the significant influence of
the memory index in fractional epidemiological models. Furthermore, upon comparing the behaviors
of the curves between the classical case (y = 1) and fractional case, it becomes evident that in the
fractional case, the model’s solution exhibits stability over a shorter time period. This consistency with
the theoretical findings discussed in the stability section underscores the accuracy and realism of the
fractional operators.
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Figure 2. Dynamics of the human population in the non integer model for various values of
fractional order 7.
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Figure 3. Dynamics of the bats population in the non integer model for various values of
fractional order 7.

6. Fractional optimization of MVD model

The objective of this section is to identify effective control strategies for the MDV disease and it
is aimed at minimizing the class of susceptible, exposed, and infected human individuals. The most
critical parameters that have a significant influence on disease dynamics, particularly those affecting
Ry values need to be determined. To achieve this, we need to evaluate the sensitivity indices for R, of
disease transmission.

6.1. Sensitivity analysis of Ry

The sensitivity analysis can be utilized to calculate the respective shift in the model’s variables, as
caused by a specific parameter. Sensitivity analysis is used to measure how much R, changes relative
to changes in the model’s embedded parameters. It is defined by the following formula [18]:

OR
P, = —x i.
Gz R()
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The expressions of normalized sensitivity indices are as follows:

Pl P = PB(T + w) p
B — 1 p — - )
Bt +wu+p+¢) pu+tp+e
3 T0 B T 3 w B w
Tt tp+e) putw+t Y prrotp+e) ut+w+t
9 0
Pﬂ:_—, P(p: (pa) - ‘p b P :_—,
u+o+1 pr+ou+p+¢) u+p+o u+o+1
P wy [(,u+5+19)+(/1+p+(,0)+(,u+6+19)+(p+w+‘r)
T pTH 0+ p+ )

w+o+NHu+p+e) U+o+DHu+w+1)
(/J+T+a))+(p+,u+<p)]
w+t+wpe+u+¢) I

Next, using the estimated parameter values presented in [23], we depict the table and the graph
of sensitivity results below, which show the values for R,’s sensitivity indices as compared to the
parameter system.

In Table 2 and Figure 4, the model’s parameters with positive indices indicate an enhancement in
the value of Ry, showing that MVD would increase in the population, while parameters with negative
indices indicate that the infection would decrease in the population. On the basis of the sensitivity
indices shown in Table 2, the most crucial parameters on the spread of MVD include the probability
of MVD transmission by humans (5), which contributes to an increase in the spread of MVD in
population. As for the parameters that participate in prevalence reduction, they are 7, 1, and w.
Moreover, it is evident that the sensitivity index of the quarantine rate (7) is greater than the indices of
¥ and w. Therefore, for more effectively eliminate the virus, we need to adopt an optimal strategy to
enhance the quarantine rate (7) and reduce the virus transmission rate (3).

Sensitivity Indices

TaE LTI O

1 2 3 4 5 6 7 8
Parameters

Figure 4. R, sensitivity index results for the system (3.1).
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Table 2. R, sensitivity index results for the system (3.1).

Parameters S Jo, T J @ w 0 u
Value 0.28 0.90 0.85 0.30 0.10 0.15 2 0.20
Sens.Index 1 0.202 -0.20 -0.214 -0.0675 0.033 -0.6429 -0.433

6.2. Formulation of fractional optimal control

In this section, we employ the aforementioned facts to establish the following two control schemes.

e ¥,: represents the control variable for prevention of MVD transmission between humans by
regularly washing hands with soap or a hand sanitizer that contains alcohol, wearing protective
clothing when coming into contact with sick people, and not touching the body of a deceased
person. Moreover, avoid locations where Egyptian fruit bats congregate.

e ¥,: represents the control variable for an increase in the rate at which exposed humans get
quarantined.

Further, to explore the impact of the above control measures we extended the MVD fractional
model (3.1) by incorporating two Lebesgue measurable functions of time # (‘¥;(#)¥.(r). The
formulation of the system given by (3.1) with control functions denoted by ¥ ;()(j = 1, 2) is as follows:

ac" VCDYS (1) = A + 00— (u+(1- ‘I’l)(g + @))S,

N N,
1 Byl

ac " VEDYE() = (1 - ‘I’l)('% + ﬁi]—b)S —(u+ (1 = ¥y)w + V,7)E,
b

VDY Q1) = YotE ~ (u +p + 9)0,
a" VDY) = (1 = V)wE +pQ — (u+ 6 + D,

6.1
" VEDYR(t) = 91 — uR, ©.h
I,
o TEDYS (1) = Ap — (u + ﬁb_h)Sb,
N,
I,
oV VEDYE(1) = [’;f,—”sb ~ (u+KEs,
b
o VD L(t) = kEp — (u + )1,
with the initial conditions as defined in (3.2). The objective functional is given by:
T ! P1 P2
JOP()) = f @S + E + 30+ qal + E‘I’f + E\I@, (6.2)
0

where ¢g;,i = 1,_3 denotes positive balancing coefficients, p;,i = ﬁ, denotes the effort used to curtail
the transmission of the MVD ¥ = (¥, ¥,), and T is the final time. The objective of the optimal control
problem under study is to minimize the objective functional by finding a control ¥. In other words, the
goal is to determine the optimal control pairs (U, ¥*) such that

J(P*) = min J(P).
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A is the set of controls, and is defined as follows:

U= {¥ € (L710,TD?*0< ¥, < 1,i=1,2).
This set is bounded closed by construction.

6.2.1. Existence and optimality criteria

The system (3.1) is written in the classical form as follows:

‘DU = K(t,u) + L(t,u)¥,0 < 1 < T, (6.3)
u(0) = uo, (6.4)

where U = (S(), E(t), Q(@), I(1),R(?), S ,(t), Ep(1), I,(f)) denotes the state variables and @(t) =
(‘P1(1), ¥, (1)) presents the control function.
Further,

A+9Q - (u+5 +50)s
(u+5+50S —(u+wE
—(u+p+¢)0
WE +pQ - (u+6+9I

O — uR ’
Ap—(u+ %)S b
ﬁ,’(,—f’S b~ (U+KE,

kEy — (1 + 6p)1p

K(t,u(?)) = (6.5)

(& +2)s 0
-G +5S (w-7)E
TE
-wE
0
0
0
0 0

L(t,u(t)) = (6.6)

S O O OO

The following conditions must be proved to guarantee the existence of the two optimal controls [19].

(1) The control problem solutions’ set is non-empty:
It is easy to see that there exists ¥; = 0 and ¥, = 1 which define the controls in %, and U =
(S,E,Q,I,R,S, Ey, I,) is a solution that aligns with controls ¥; = 0 and ¥, = 1. So, this
condition has been satisfied.

(2) The set of admissible controls is closed, bounded, and convex. This condition is guaranteed by
definition of 2.

Remark 6.1. From Theorem 4.1 and Lemma 4.3, the system (6.1) has at least one solution which
is bounded in K.
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(3) The function K(t,u(t)) + L(t, u(t))@ is bounded by a linear function in the state and control
variables. The matrix K can be written as follows:

4 —(% +u+ ﬁ]f]—[’)”) 0 1) 0 0 0 0 0
% +ﬁl[<]_[17h —(u+ w) 0 0 0 0 0 0
0 0 —(+p+0) 0 0 0 0 0
_ 0 w P —u+6+®% 0 0 0 0
K@, u() = 0 0 0 0 —u 0 0 0
0 0 0 0 0 &-(u+ ‘*;—ff) 0 0
0 0 0 0 0 B —(u+k) 0
0 0 0 0 0 0 k —(u+6p)
6.7)
Then
IKul| < |IK||l[z]] < sup || Kull.|[z]l.
We know that A < § and A, < §,; then, we get
IK(#, u()ll < max((1 +u+B+Bp+¢), B+ By +u+w),u+p+e), (6.8)
W+6+0), 0+ p, M +u+pBy), Bp+p+k),(k+p+ o)l
Similarly, we obtain
[|L(t, u(1))|| < max(B,B + 7, T, w, ||V (6.9

From (6.8) and (6.9) it is obvious that K(z, u(t)) + L(t, u(t))@ is bound by a linear function in the
state and control variables as given below

G(U,Y) = Nul] + M,

where
N=max(1+u+B+By+¢), B+ +p+w),u+p+y),
W+o+9),0+ pu, (L +pu+pBy), By +p+k),(k+p+b)),

M = max((B+ Bp), B+ Ly +w+T1),7).
(4) The convexity of Z(t, U, 'P) = ¢iS + ¢:E + q3Q + qal + 2¥3 + 292
Lemma 6.1. The functional Z(t, U, P), is convex.
Proof. Let

HZ(1.U, %) = (%1 /())z)’ (6.10)

be the Hessian matrix of the functional Z(z, U, @). Clearly, it is positive definite in 2, so Z(¢, U, @)
and also it is strictly convex in 2. m|

Consequently, from conditions (1)—(4) and Remark (6.1), there exists P = (¥}, %)) and a
corresponding solution U* = S*,E, Q. I",R", S}, E;, I}) that minimize J (@) on .
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6.2.2. Necessary condition for optimality

We rely on Pontryagin’s theorem [33] to get the desired condition for the optimal control system.
First, we transform the system (6.1) into a pointwise problem that minimizes a Hamiltonian function
H with respect to (¥, '¥,). The Hamiltonian function is as follows:

Bl Bl
P2 4+ A [A - 1 -¥)= +22)s8
5+ AN+ Q0 — (u+( 1)(N+ Nb))]

P1

H(U,¥,E) =q1S + @:E + ;0 + qul + 3‘1’? L2

2
+ Ag[(1 - ‘Pl)(% + '[%)S -(u+ (1 -Yy)w+ Y7)E]
b

+ A[Yo1E — (u +p + )01 + 4[(1 = Y)WE + pQ = (u + 6 + D]

I
+ AR[O — uR] + Ag,[ Ay — (u + ﬁ]f,—lf’mu
Bl
+ /lEb[TbSb — W+ KEL] + A [kE, — (u + 6p)1],

and it exists that & = (Ag, Ag, Ag, A1, Ag, As,, Ag,, A;,) represents the adjoint variables s they are related
to their respective state variables.

Theorem 6.1. Suppose that ¥} (i = 1,2) denotes the optimal controls and S*, E*, Q*,I",R*, S}, E}, I}
represent the solution of the state variables of the system (6.1) which minimize the objective functional
J(¥) across A; then, there exists the adjoint variables Ag, Ag, Ag, Ay, Ag, As,, Ag,, A1, satisfying

c OH
a7V DY) = —0'(7_1)%, for k=S,E,Q,LR,S,,Ep, I,

with the corresponding transversality conditions A,(T) = 0 and

(A = A5)(5 + DS
¥ = min{1, max{0, — 1},
(Ag - A )plE (A — Ap)wE (©1h
— + —
¥ = min{1, max{0, 2~ T T AEOR
P2

Proof. The pontryagin’s maximum principal gives the following results:
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First, we have

OH Bl Bl

“DIAg = —— = " (~q; + st + (A5 — Ap)[(1 = ¥))— -2
s 75 7 (=q1 + Asp + (As — Ap)|[( ) ( ) N, —1,
Cny JH (1-y) ﬂ S
Dt Ag = —ﬁ =0 (—(]2 + (/lE - /15)(1 ‘Pl)— + /lE(/J + w + \PzT) /1Q\P2T - /11(1 - lPz)(,()),
OH ) S
Dl = =55 = e = )1 )T ~ As + gl p +9) = ),
OH S I
DIy = =5 = 55 = A1 =D (14 ) = ey + Al + 6+ ),
OH ) 1S
DIy =~ = 0 (g~ )1 =S ¢ AauR),
oH
“DIg, =~ = 0 s = AP 4 s e+ ) -
b b
OH _ Bul,S Buly Sy
DA = ——— = I = 2 +(1 A ——+/II
i As, 75, oV ((As — Ap)( N2 )+ (As, — Ag,)—— N, (1 )+ A1),
OH
DAy, =~ = (s - a0 - N+ i+ 0 + @,(ﬂ Sh = )
(6.12)
Next, utilizing the condition 6‘—;,_1[—]10, ¥, 4) =0, i=1,2 we obtain
OH
I o+ (g — As) B Pliyg g,
(9‘1’1 N Nb
it (6.13)
a—\yz = pzlpz + (/lE — /lQ)TE + (/1] - /1E)(,()E =0.
Then, we get
Ar — AP 4 ,31;117 S _ _
- (g = A5)(F + ) - (Ag — AQ)TE + (A AE)wE. 6.14)
P1 P2
Finally, we can take
(Ap = As)(BE + By g — A)TE + (A) — Ap)WE
¥ = min{1, max{0, V% 0 g 2 mingl, max(o, GETAQTEF (i Z AW
P1 P2

6.3. Simulation of the optimal control problem

This section presents the numerical simulation of the MVD fractional model with and without
controls. We have used the Newton numerical scheme for (A) to perform the simulation. The values of
parameters are listed in Table 1. Moreover the weight and the balancing coefficients were considered
as follows: p; = p, = 0.00001, and ¢; = 1 i = 1,3 respectively. We executed the simulation for
two values of v i.e., the classical case y = 1.00 and the fractional case y = 0.80. Numerical results
for y = 0.80 and y = 1.00 are illustrated in Figures 5 and 6 respectively. In the presence of optimal
control, a notable and evident decrease in the number of exposed individuals is observed, resulting in
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corresponding decreases in the infected and quarantined populations. It is observed that the decay and
growth rates are faster for the classical order (y = 1.00) than the fractional order (y = 8.00). Thus, the
suggested control measures can be effectively used for the mitigation of MVD outbreaks.
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Figure 5. The effects of ¥, and ¥, controls on the dynamics of human classes, and with
v = 0.80.
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Figure 6. The effects of ¥; and ¥, controls on the dynamics of human classes, and with
v = 1.00.

7. Conclusions

We introduced a novel computational fractional modeling approach to analyze the global dynamics
and optimal control strategies for MVD infection mitigation. In this context, we developed a fractional
order model of MVD transmission by using the Caputo fractional operator and performed some
theoretical and numerical analysis. The existence, uniqueness and positivity of the solution with
a detailed discussion on the local and global stability have been provided comprehensively. The
theoretical findings revealed that the DFE is asymptotically locally stable if Ry < 1, and it is
asymptotically globally stable if Ry < 1. To examine the model numerically, we established numerical
schemes by using two-step Newton polynomial approximation. The numerical simulation of the
fractional model for MVD confirmed the impact of the fractional operator. We observed that the decay
and growth rates in the solution curves are slower for smaller values of the vy than for the larger values.
Furthermore, we observed that in the fractional case, stability is maintained in the solution curves for
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the model. In the pursuit of mitigating NVD, we initially evaluated the sensitivity indices, revealing that
certain parameters significantly influence MVD transmission, notably the effective contact rate § and
the rate at which exposed individuals are quarantined 7. Building upon these insights, we developed
a fractional optimal control model by introducing two time-dependent control measures, ¥, and ‘P>,
corresponding to prevention and quarantine respectively. Utilizing the Pontryagin maximum principle,
we derived a solution to the optimal control problem. Finally, we numerically simulated the MVD
transmission model with and without control by considering both fractional and classical orders. The
numerical findings validated the efficacy of the proposed optimal control strategies. The results of this
study will be helpful in prevention the spread of MVD.
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Appendix A Scheme for the fractional MVD model

251 (2017), 55-71.

Here, we present detail procedure of Newton polynomial two-step approach that was used to
formulate numerical schemes for the proposed fractional model that describes the dynamics of MVD.

o-<7‘1)CDt7S ® =S, E,QLR,S) Epl)) =

o VDS, = fi(t,S,E,Q, LR, S, Ep, 1) =

O.(Y—I)CDZEb(t) = f7(I, S, E, Q, I, R’ Sb’ Eb’ Ib)

We transform the above fractional problem to be as follows
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At the point ¢,,, we proceed as follows:
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This can be written in the form of the following system
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Applying of two-steps Newton polynomial approximation, we have
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After performing some manipulations, we derive the numerical scheme for the model describing the
epidemic MVD as follows:
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= fs(t—2,S -2, E2, Q2. L2, R 2, S 1, By, Ihl,z)][(n —t+ 1) (n—1+3+2y)
gy &
— — Y(n — P —
(1=t V(=143 +37)|+ 5o Z oty S 1 By Qi 1 R S Eiyo 1)
- 2f5(tt—l’ SL—la EL—19 Qt—la IL—la RL—l’ Sbl,l ) Ebl,l ) Ibl,l) + fS(tL—Z’ -2 L—2$ QL—Z’ -2
R0 Sbp Epy o) || (n = 0+ 11200 = 07 + By + 10)(n = 1) + 297 + 9y + 12]

— (=12 =1 + (5y + 10)(n — 1) + 67 + 18y + 12],

n

Z]%(h 2,802, E 2,02, 1,2, R 2,8 _,,Ep_,, Ip_,)

agI=npy

Sp(tns1) =Sp, + T+ 1)

n

[fé(h—l S B, Qo Lo, Ry, Sy L Ep o I, )
Tty +2) ;

— folti2sS 2. Evg, Qua g R, Sy Ep Ly B ) || (n = 1+ 17 (= 1+ 3+ 2y)

agl=rpy

[(n—L+1)7—(n—L)y]+

n

oatd) %4
Z fo(tsS 1 iy Qi 1 R S Enyo 1)

2I°(y + 3)
- 2f6(tL—l9 -1 L—la QL—I’ -1 L—l’ SbL,l, Ebl,l» Ibl,l) + f6(tt—2a 1—2» L—2’ QL—29 =2
R0 Sbp Epyn I || (0 = 0+ 171200 = 0 + By + 10)(n — 1) + 297 + 9y + 12]

(n—L+1)7(n—L+3+3y)]

— (=12 =1 + 5y + 10)(n - 1) + 6 + 18y + 12],
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gU=npy &
Ey(th1) =Ep, + (7 Zﬁ(h 2,802, E 2,02, 1,2,R 2,8 ,,Ep_,, Ip_,)
[(n -1+ 1) -(n-0) ] + To+2) & [f7(h—1,S[—1, E_1,0-1,1-1,R-1,Sp,_»Ep_,sIp,,)
- f7(t[—27 SL—Z’ EL—Z’ QL—29 IL—29RL—2’ Shl 29 Ebl 29 Ibl,z):“:(n -1 + l)y(n —1 + 3 + 2y)

oIy &

—(l’l—L+ l)y(n_t+3 +37):| mz f7(tL’SL’EL’ QHIL’RL’Sb’Eb’Ib)

- 2f7(tL—la =1 L—l’ QL—I’ L—l’RL—b Sbt,la Ebt,p Ibl,l) + f:/(tL—Z’ =25 L—29 Qt—Za =25
RS b0 Ep )| =0+ 1120 = 1) + By + 10)(n = 1) + 2% + 9y + 12]
— (= [2(n =1 + 5y + 10)(n — 1) + 67 + 18y + 12],

(I=-Npy

Bp(tns1) =1y, + To+1) ng(tt 282, E2,000,12,R2,84_,,Ep_,, I_,)
aI=Npy &
[+ 1Y = (=0 | + T2 | A S B, Qi diet Rt Sy B o 0 )
=2
— fs(t2 S 2. By Qi g R, Sy B I ) || (n = 0+ 17 (n = 0+ 3+ 2y)
gd=npy &

~ ek - 34 3]+ o Z Pt S 1 Eiy Qs 1 Ry S Eno 1)

= 2f3(t-1,S 1, Evm1, Q15 L1 Rty Sy By I y) + fs(ti-2,S -2, B2, Qi2, 12,
Ri2.Sb 0 By I )| (n = 0+ 171200 = )% + By + 10)(n — 1) + 2 + 9y + 12]
—(n=0"[2(n —0)* + Gy +10)(n—0) + 672 + 18y + 12]].

Appendix B The optimality system

The optimality system consists of the state system (6.1) with its initial conditions, together with the
adjoint system (6.12) with the respective transversality conditions. This can be expressed as follows:

B Bl . Bly
TDEDS(1) = A - 1 -¥)(= + =),
o (0 =A+pQ—(u+ 1 =¥+ N, )
c"ICDYE®R) = (1 - 1)(’8_ @)S (u+ (1 -¥r)w+Yr7)E,
DO = WorE — (u+p + go)Q, (B.1)

a" VD [(1) = (1 = P)wE + p0 — (u+ 6 + D,
" VEDYR(t) = 91 — uR,

a T VEDYS (1) = Ap — (u + @)Sb,
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I
VDY, (1) = ﬁ]”v—bsh ~ (u+KE,
b

a VD A = —q2 + (A — As)(1 = ¥))
- /lQ\IJZT - /1](1 — ‘Pz)w,

. IN
" VD g = —q3 + (A — As)(1 - lPl)ﬁN—2 —Asp + Ao +p+ @)= Ap,

" VDY Ap, = (Ag — A5)(1 = ¥ )(
a" VDY A5, = (Ag — A5)(1 = ¥ )(

a7 VDI, = (As — /lE)(ﬁ -
b

a VDY L,(t) = kEp — (U + Sp)1s

BL _BIS  Buly

o D] Ag = —qi + Asp + (A5 — Ap)(1 = ¥)(T = =

+—),
N  N? Nb)

’BIS + /15(].1 + (1 - \P2)(J) + leT)

N2

8 Bl (B.2)

U VEDL = —qu + (s = Ap)(1 = W) = 5508 = gy + A+ 6+ D),

N N?
BIS

d" VDY Ag = (Ap — A5)(1 — V)= + ArHR,

N

I,S
Po 2) + Agy(u + k) — Ak,
N;
BulpS Buly
N2 )+ (s, — /lEh)Tb + As, i,
Buly By Buly
F))S + A, (u + 6p) + (Ag, — /lE,,)(Fb - Tb)Sb)-

b
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