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′

(0) + η1ϕ
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1. Introduction

This paper is devoted to the following fractional differential equation (FDE):cDγϕ(ω) = Φ(ω, ϕ(ω)), ω ∈ [0, v], 1 < γ ≤ 2,
κ0ϕ(0) + η0ϕ(v) = µ0, κ1ϕ

′

(0) + η1ϕ
′

(v) = µ1, f or κi, ηi, µi ∈ R
+,

(1.1)

where, cDγ is the Caputo fractional derivative of order γ and Φ : [0, v] × R −→ R is a continuous
function.

Fractional calculus, an area of mathematical analysis dealing with derivatives and integrals of non-
integer orders, has been widely recognized in the fields of science and engineering due to its potential
in providing more precise models for complex systems that exhibit memory and hereditary properties.
In recent years, FDEs have emerged as a principal mathematical paradigm for describing a wide range
of natural phenomena encountered in physics, engineering, biology, and finance [1, 2]. The study of
FDEs is motivated by the inadequacies of classical integer-order calculus in describing systems with
fractional dynamics. The traditional derivatives based on integer-order calculus assume instantaneous
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responses, disregarding memory effects and long-range interactions that are often present in real-
world processes. By incorporating fractional-order derivatives, FDEs offer a mechanism for modeling
systems with memory, nonlocal interactions, and anomalous diffusion [3–6].

In [7], the authors studied the existence and uniqueness of a solution for FDEs with antiperiodic
boundary conditions of order 1 < γ ≤ 2 with boundary conditions ϕ(0) = −ϕ(v), ϕ

′

(0) = −ϕ
′

(v) . They
provided the importance of fractional order models in describing physical models with more accuracy
than the regular models. The existence results were presented with the aid of the Leray-Schauder
degree theory.

In [8], we discussed the existence of solutions of the following:cDγϕ(ω) = Φ(ω, ϕ(ω)), ω ∈ [0, v], 1 < γ ≤ 2, 0 < c < v,

κ0ϕ(c) = −η0ϕ(v), κ1ϕ
′

(c) = −η1ϕ
′

(v),

where Φ : [0, v] × R −→ R and κi, ηi ∈ R
+, by using the Krasnoselskii fixed-point theorem and the

contraction principle.
A. Bashir and V. Otero-Espinar in [9] proved the existence results of:cDγϕ(ω) ∈ Φ(ω, ϕ(ω)), ω ∈ [0, v], 1 < γ ≤ 2,

ϕ(0) = −ϕ(v), ϕ
′

(0) = −ϕ
′

(v),

where Φ : [0, v]×R −→ R, by applying the Bohnenblust-Karlin’s fixed point theorem. In this problem,
boundary conditions establish connections between the solution function’s values and derivatives at the
boundary points. In some applications, the conditions are nonuniform and vary along the boundaries
such as porous media varying cross-sectional areas.

Ahmad, Nieto, and Alsaedi in [10] obtained the existence results using standard fixed point
theorems with the following boundary conditions ϕ(0)− η0ϕ(v) = µ0

∫ v

0
g(α, ϕ(α))dα, ϕ

′

(0)− η1ϕ
′

(v) =
µ1

∫ v

0
h(α, ϕ(α))dα, where g, h : [0, v] × R −→ R are continuous functions and η0, η1, µ0, µ1 ∈ R with

η0 , 1 and η1 , 1. For greater accuracy, ηi − 1 , 0; otherwise, the expected outcomes will not be
attained. Despite that the problem in [10] seems more general but may fail in specific applications,
such as heat conduction on a road or fluid flow in a pipe. For instance, in physical systems such as heat
conduction, the regular boundary conditions align better than the integral boundary conditions. The
integral boundary conditions can be applied when the whole heat flows along the entire rod rather than
describing it in a specific location.

In [11], the authors extended the work of [10] and studied the following problem:cDγϕ(ω) = Φ(ω, ϕ(ω),c Dζϕ(ω)), ω ∈ [0, v], 1 < γ ≤ 2, 0 < ζ ≤ 1,
ϕ(0) − η0ϕ(v) = µ0

∫ v

0
g(α, ϕ(α))dα, ϕ

′

(0) − η1ϕ
′

(v) = µ1

∫ v

0
h(α, ϕ(α))dα,

where cDγ is the Caputo fractional derivative of order γ, Φ ∈ C([0, v]×R×R,R) g, h : [0, v]×R −→ R
are continuous functions, and η0, η1, µ0, µ1 ∈ R with η0 , 1 and η1 , 1, by using the contraction
principal, nonlinear alternative of Leray-Schauder type, and Schauder fixed point theorem. For more
interesting results, see [8, 12–14].

These cited papers have discussed a range of methods and theorems for proving the existence
of FDEs. Although these studies have offered valuable insights, there are still opportunities for
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improvement and enhancement, particularly in extending the scope of applicability and enhancing the
robustness of existence results. Our paper makes unique contributions compared to previous literature.
First, we broaden the scope of existence results for FDEs by using the Schauder fixed point theorem
and the nonlinear alternative of the Leray-Schauder type. This enables us to incorporate nonlinear and
nonlocal terms in the equations, making our modeling more realistic. Additionally, our approach yields
insights into the qualitative properties of solutions, enhancing our understanding of the dynamics of
FDEs in various contexts.

The subsequent sections of the paper are organized in the following manner: Section 2 is dedicated
to establishing fundamental theorems and basic definitions. The primary results were presented in
Section 3, based on the Schauder fixed point theorem and nonlinear alternative of the Leray-Schauder
type. Section 4 provides examples that illustrate the concepts discussed in the previous sections. The
last section concludes the paper.

2. Preliminaries

Definition 2.1. For χ(ω) ∈ Cn([0,∞],R), we define that the Caputo fractional derivative of order γ > 0,
denoted by cDγ, is defined by

cDγχ(ω) =
1

Γ(r − γ)

∫ ω

0
(ω − α)r−γ−1χ(r)(α)dα, r − 1 < γ < r, r = [γ] + 1,

where [γ] denotes the integer part of the real number γ.

Definition 2.2. For any order γ > 0, the Riemann–Liouville fractional integral of a function χ(ω),
denoted by Iγ, is defined by

Iγχ(ω) =
1
Γ(γ)

∫ ω

0
(ω − α)γ−1χ(α)dα.

Lemma 2.1. For an γ > 0, the solution for cDγϕ(ω) = 0 is given by

χ(ω) =
i=n∑
i=0

τiω
i−1, τi ∈ R. (2.1)

Lemma 2.2. For any β ∈ C[0, v] and κi, ηi > 0, µi ∈ R, f or i = 0, 1, the unique solution of the
following problem: cDγϕ(ω) = β(ω), ω ∈ [0, v], 1 < γ ≤ 2,

κ0ϕ(0) + η0ϕ(v) = µ0, κ1ϕ
′

(0) + η1ϕ
′

(v) = µ1,
(2.2)

is given by

ϕ(ω) =
∫ ω

0

(ω − α)γ−1

Γ(γ)
β(α)dα −

η0

κ0 + η0

∫ v

0

(v − α)γ−1

Γ(γ)
β(α)dα

+
η0η1v − η1(κ0 + η0)ω

(κ0 + η0)(κ1 + η1)

∫ v

0

(v − α)γ−2

Γ(γ − 1)
β(α)dα

+
µ1[(κ0 + η0)ω − η0v] + µ0(κ1 + η1)

(κ0 + η0)(κ1 + η1)
. (2.3)
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Proof. In a view of Lemma 2.1, it follows ϕ(ω) = Iγβ(ω) − τ1 − τ2ω for some τi ∈ R, i = 1, 2 that

ϕ(ω) =
∫ ω

0

(ω − α)α−1

Γ(γ)
β(α)dα − τ1 − τ2ω. (2.4)

ϕ
′

(ω) =
∫ ω

0

(ω − α)γ−2

Γ(γ − 1)
β(α)dα − τ2.

Using the conditions in (2.2), we get

τ1 =
η0

κ0 + η0

∫ v

0

(v − α)γ−1

Γ(γ)
β(α)dα −

η0η1v
(κ0 + κ0)(κ1 + η1)

∫ v

0

(v − α)γ−2

Γ(γ − 1)
β(α)dα

+
µ1η0v − µ0(κ1 + η1)
(κ0 + η0)(κ1 + η1)

.

τ2 =
η1

κ1 + η1

∫ v

0

(v − α)γ−2

Γ(γ − 1)
β(α)dα −

µ1

κ1 + η1
.

Replacing the quantities of τ1, τ2 in (2.4) completes the solution (2.3). □

Remark 2.1. The solution of (2.2) when κ0 = κ1 = η0 = η1 = 1 and µ0 = µ1 = 0 is given by

ϕ(ω) =
∫ ω

0

(ω − α)γ−1

Γ(γ)
β(α)dα −

1
2

∫ v

0

(v − α)γ−1

Γ(γ)
β(α)dα +

v − 2ω
4

∫ v

0

(v − α)γ−2

Γ(γ − 1)
β(α)dα. (2.5)

We see that, Lemma 2.2 reduces to Lemma 2.5 in [7].

Theorem 2.3. [15] Let B be a Banach space, S ⊂ B be a nonempty, closed, and convex subset, and
let V : S −→ S be a continuous mapping such that V(S) is relatively compact in B, then V has at
least one fixed point.

Theorem 2.4. [15] Let B be a Banach space, and suppose S ⊂ B is a closed and convex. Let U ⊂ S
be open with 0 ∈ U. Assume V : U −→ S is continuous and compact, then V has a fixed point in U
or ω = ρV(ω) for an ω ∈ ∂U and ρ ∈ (0, 1).

3. Main results

Let C = C([0, v],R)andV : C −→ C be the operator defined as

(Vϕ)(ω) =
∫ ω

0

(ω − α)γ−1

Γ(γ)
Φ(α, ϕ(α))dα −

η0

κ0 + η0

∫ v

0

(v − α)γ−1

Γ(γ)
Φ(α, ϕ(α))dα

+
η0η1v − η1(κ0 + η0)ω

(κ0 + η0)(κ1 + η1)

∫ v

0

(v − α)γ−2

Γ(γ − 1)
Φ(α, ϕ(α))dα

+
µ1[(κ0 + η0)ω − η0v] + µ0(κ1 + η1)

(κ0 + η0)(κ1 + η1)
. (3.1)

Notice that the fractional differential problem (1.1) has a solution iff the operatorV has a fixed point.
The following assumptions are required in the subsequent theorems:
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(h1) ∃ a σ ∈ L∞([0, v],R+) and a nondecreasing function δ, such that |Φ(ω, ϕ)| ≤ σ(ω)δ(|ϕ|) for
ω ∈ [0, v], ϕ ∈ R.

(h2) ∃A > 0, such that

A > ||σ||L∞δ(A)
vγ

(κ0 + η0)Γ(γ + 1)
[
κ0 + 2η0 +

η0η1γ

κ1 + η1

]
+
κ0µ0v + µ0(κ1 + η1)
(κ0 + η0)(κ1 + η1)

.

Theorem 3.1. Let Φ : [0, v] × R −→ R be continuous with |Φ(ω, ϕ1) − Φ(ω, ϕ2)| ≤ L|ϕ1 − ϕ2| for
ω ∈ [0, v], ϕ1, ϕ2 ∈ R, L > 0 and satisfying

Lvγ

(κ0 + η0)Γ(γ + 1)

[
κ0 + 2η0 +

η0η1α

κ1 + η1

]
< 1,

then problem (1.1) has a unique solution.

Proof. For simplicity of the calculation, we are going to introduce the following notations

ξ = L
vα

(κ0 + η0)Γ(γ + 1)

[
κ0 + 2η0 +

η0η1γ

κ1 + η1

]
< 1.

For any ϕ1, ϕ2 ∈ C and ω ∈ [0, v], we have:

||(Vϕ1)ω − (Vϕ2)ω|| ≤
∫ ω

0

(ω − α)γ−1

Γ(γ)
||Φ(α, ϕ1(α)) − Φ(α, ϕ2(α))||dα

+
η0

κ0 + η0

∫ v

0

(v − α)γ−1

Γ(γ)
||Φ(α, ϕ2(α)) − Φ(α, ϕ1(α))||dα

+
|η0η1v − η1(κ0 + η0)ω|

(κ0 + η0)(κ1 + η1)

∫ v

0

(v − ω)γ−2

Γ(γ − 1)
||Φ(α, ϕ1(α)) − Φ(α, ϕ2(α))||dα

≤L
vγ

(κ0 + η0)Γ(γ + 1)

[
κ0 + 2η0 +

κ0κ1γ

κ1 + η1

]
||ϕ1 − ϕ2||.

Therefore,

||(Vϕ1)ω − (Vϕ2)ω|| ≤ L
vγ

(κ0 + η0)Γ(γ + 1)

[
κ0 + 2η0 +

η0η1γ

κ1 + η1

]
︸                                              ︷︷                                              ︸

i

||ϕ1 − ϕ2|| = ξ||ϕ1 − ϕ2||,

together with ξ < 1 shows that V is a contraction mapping. Thus, the contraction mapping principle
implies the unique solution of (1.1) sinceV has a unique fixed point.

We have to mention that (i) depends on the parameters L, κ0, κ1, η0, η1, γ, v in the problem. □

Theorem 3.2. Let Φ : [0, v] × R −→ R be continuous with

|Φ(ω, ϕ1) − Φ(ω, ϕ2)| ≤ g(ω)|ϕ1 − ϕ2|, f or ω ∈ [0, v], ϕ1, ϕ2 ∈ R with g ∈ L∞([0, v],R+),

and satisfying

||g||L∞
vγ

(κ0 + η0)Γ(γ + 1)

[
κ0 + 2η0 +

η0η1γ

κ1 + η1

]
< 1,

then problem (1.1 ) has a unique solution.
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Proof. For ϕ1, ϕ2 ∈ C and ω ∈ [0, v], we have

||(Vϕ1)ω − (Vϕ2)ω|| ≤
∫ ω

0

(ω − α)γ−1

Γ(γ)
||Φ(α, ϕ1(α)) − Φ(α, ϕ2(α))||dα

+
η0

κ0 + η0

∫ v

0

(v − α)γ−1

Γ(γ)
||Φ(α, ϕ2(α)) − Φ(α, ϕ1(α))||dα

+
|η0η1v − η1(κ0 + η0)ω|

(κ0 + η0)(κ1 + η1)

∫ v

0

(v − α)γ−2

Γ(γ − 1)
||Φ(α, ϕ1(α)) − Φ(α, ϕ2(α))||dα

≤
||g||L∞vγ

(κ0 + η0)Γ(γ + 1)

[
κ0 + 2η0 +

η0η1γ

κ1 + η1

]
||ϕ1 − ϕ2||.

Therefore,

||(V1)ω − (Vϕ2)ω|| ≤
||g||L∞vγ

(κ0 + η0)Γ(γ + 1)

[
κ0 + 2η0 +

η0η1γ

κ1 + η1

]
||ϕ1 − ϕ2||,

together with ||g||L∞ vγ
(κ0+η0)Γ(γ+1)

[
κ0 + 2η0 +

η0η1γ

κ1+η1

]
< 1 shows thatV is a contraction mapping. Thus, the

contraction mapping principle implies the unique solution of (1.1) sinceV has a unique fixed point. □

Theorem 3.3. Let Φ : [0, v] × R −→ R be a continuous function satisfying h1 and h2, then (1.1) has at
least one solution.

Proof. LetM ⊂ S be bounded. Assume that for any ϕ ∈ M, ||ϕ|| ≤ r. Let V be the operator defined
in 3.1.∣∣∣(Vϕ)(ω)

∣∣∣ =∣∣∣ ∫ ω

0

(ω − α)γ−1

Γ(γ)
Φ(α, ϕ(α))dα −

η0

κ0 + η0

∫ v

0

(v − α)γ−1

Γ(γ)
Φ(α, ϕ(α))dα

+
η0η1v − η1(κ0 + η0)ω

(κ0 + η0)(κ1 + η1)

∫ v

0

(v − α)γ−2

Γ(γ − 1)
Φ(α, ϕ(α))dα +

µ1[(κ0 + η0)ω − η0v] + µ0(κ1 + η1)
(κ0 + η0)(κ1 + η1)

∣∣∣
≤

∫ ω

0

(ω − α)γ−1

Γ(γ)
|Φ(α, ϕ(α))|dα +

∣∣∣ η0

κ0 + η0

∣∣∣ ∫ v

0

(v − α)γ−1

Γ(γ)
|Φ(α, ϕ(α))|dα

+
∣∣∣η0η1v − η1(κ0 + η0)ω

(κ0 + η0)(κ1 + η1)

∣∣∣ ∫ v

0

(v − α)γ−2

Γ(γ − 1)
|Φ(α, ϕ(α))|dα +

κ0µ0v + µ0(κ1 + η1)
(κ0 + η0)(κ1 + η1)

≤||σ||L∞δ(r)
vγ

(κ0 + η0)Γ(γ + 1)
[
κ0 + 2η0 +

η0η1γ

κ1 + η1

]
+
κ0µ0v + µ0(κ1 + η1)
(κ0 + η0)(κ1 + η1)

< A. (3.2)

Therefore, we proved thatV(M) is bounded inM .∣∣∣(Vϕ)
′

(ω)
∣∣∣ ≤∣∣∣ ∫ ω

0

(ω − α)γ−2

Γ(γ − 1)
|Φ(α, ϕ(α))|dα + |

η0

κ0 + η0
|

∫ v

0

(v − α)γ−2

Γ(γ − 1)
|Φ(α, ϕ(α))|dα

+ |
η0η1v − η1(κ0 + η0)ω

(κ0 + η0)(κ1 + η1)
|

∫ v

0

(v − α)γ−3

Γ(γ − 2)
|Φ(α, ϕ(α))|dα

∣∣∣
≤||σ||L∞δ(r)

vγ−1

Γ(γ)(κ0 + η0)
[
κ0 + 2η0 +

η0η1(γ − 1)
κ1 + η1

]
= N.

Therefore, for any ω1 and ω2 ∈ [0, v], we have∣∣∣(Vϕ)(ω2) − (Vϕ)(ω2)
∣∣∣ ≤ ∫ ω2

ω1

∣∣∣(Vϕ)
′

(α)
∣∣∣dα ≤ N(ω2 − ω1). (3.3)
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Equations (3.2) and (3.3) imply thatV is equicontinuous on bounded subsets of S.
Now for any ρ ∈ (0, 1) and ω ∈ [0, v], let ϕ = ρVϕ. We have,

|ϕ(ω)| ≤|ρ(Vϕ)(ω)| ≤
∫ ω

0

(ω − α)γ−1

Γ(γ)
|Φ(α, ϕ(α))|dα +

∣∣∣ η0

κ0 + η0

∣∣∣ ∫ v

0

(v − α)γ−1

Γ(γ)
|Φ(α, ϕ(α))|dα

+
∣∣∣η0η1v − η1(κ0 + η0)ω

(κ0 + η0)(κ1 + η1)

∣∣∣ ∫ v

0

(v − α)γ−2

Γ(γ − 1)
|Φ(α, ϕ(α))|dα +

∣∣∣µ1[(κ0 + η0)ω − η0v] + µ0(κ1 + η1)
(κ0 + η0)(κ1 + η1)

∣∣∣
≤||σ||L∞δ(|ϕ|)

vγ

(κ0 + η0)Γ(γ + 1)
[
κ0 + 2η0 +

η0η1γ

κ1 + η1

]
+
κ0µ0v + µ0(κ1 + η1)
(κ0 + η0)(κ1 + η1)

.

Thus,

||ϕ|| ≤ ||σ||L∞δ(||ϕ||)
vγ

(κ0 + η0)Γ(γ + 1)
[
κ0 + 2η0 +

η0η1γ

κ1 + η1

]
+
κ0µ0v + µ0(κ1 + η1)
(κ0 + η0)(κ1 + η1)

,

by h2, ∃A > 0 such that |ϕ| , A.
We see that, V : U −→ S is completely continuous, where U = {ϕ ∈ S : ||ϕ|| < A}. By the choice

of U and Theorem 2.4, any ϕ ∈ ∂U, ϕ , ρVϕ, for ρ ∈ (0, 1). Therefore, Vϕ = ϕ for some ϕ ∈ U,
completing the proof. □

Theorem 3.4. Let Φ : [0, v] ×R −→ R. Suppose that |Φ(ω, ϕ)| ≤ λ + ϵ |ϕ|, where 0 ≤ ϵ < 1
ρ
, λ > 0, and

ρ = vγ
(κ0+η0)Γ(γ+1)

[
κ0 + 2η0 +

η0η1γ

κ1+η1

]
, then problem (1.1) has at least a solution in [0, v].

Proof. Let V be the operator in (3.1) and define a fixed point problem ϕ = Vϕ. Define a ball Br in
C([0, v]) with a radius r > 0, which will be fixed later, as Br = {ϕ ∈ C([0, v]) : ||ϕ|| < r} for all
ω ∈ [0, v].

Set Ψ(σ, ϕ) = σVϕ, for σ ∈ [0.1] and ϕ ∈ C(R).
Thus, ψσ = ϕ − σVϕ is completely continuous by the Arzela–Ascoli theorem. We want to show

that for the operatorV : B −→ C([0, v]) we have

ϕ , σVϕ, ∀ϕ ∈ ∂Br and ∀σ ∈ [0.1]. (3.4)

If (3.4) is true, then deg(ψσ, Br, 0) = deg(ψ1, Br, 0) = deg(ψ0, Br, 0) = 1 , 0 and 0 ∈ Br.
Now, at least one ϕ ∈ Br satisfies ψ1 = ϕ−σVϕ. To prove (3.4) we assume that for some σ ∈ [0, 1]

and all ω ∈ [0, v], ϕ = σVϕ such that

|ϕ| =
∣∣∣σVϕ(ω)

∣∣∣ ≤ ∣∣∣ ∫ ω

0

(ω − α)γ−1

Γ(γ)
Φ(α, ϕ(α))dα −

η0

κ0 + η0

∫ v

0

(v − α)γ−1

Γ(γ)
Φ(α, ϕ(α))dα

+
η0η1v − η1(κ0 + η0)ω

(κ0 + η0)(κ1 + η1)

∫ v

0

(v − α)γ−2

Γ(γ − 1)
Φ(α, ϕ(α))dα

∣∣∣ + |µ1[(κ0 + η0)ω − η0v] + µ0(κ1 + η1)
(κ0 + η0)(κ1 + η1)

|

≤

∫ ω

0

(ω − α)γ−1

Γ(γ)
|Φ(α, ϕ(α))|dα +

∣∣∣ η0

κ0 + η0

∣∣∣ ∫ v

0

(v − α)γ−1

Γ(γ)
|Φ(α, ϕ(α))|dα

+
∣∣∣η0η1v − η1(κ0 + η0)ω

(κ0 + η0)(κ1 + η1)

∣∣∣ ∫ v

0

(v − α)γ−2

Γ(γ − 1)
|Φ(α, ϕ(α))|dα +

κ0µ0v + µ0(κ1 + η1)
(κ0 + η0)(κ1 + η1)

≤(λ + ϵ |ϕ|)
[∫ ω

0

(ω − α)γ−1

Γ(γ)
dα + |

η0

κ0 + η0
|

∫ v

0

(v − α)γ−1

Γ(γ)
dα
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+
∣∣∣η0η1v − η1(κ0 + η0)ω

(κ0 + η0)(κ1 + η1)

∣∣∣ ∫ v

0

(v − α)γ−2

Γ(γ − 1)
dα
]
+
κ0µ0v + µ0(κ1 + η1)
(κ0 + η0)(κ1 + η1)

≤(λ + ϵ |ϕ|)
vγ

(κ0 + η0)Γ(γ + 1)

[
κ0 + 2η0 +

η0η1γ

κ1 + η1

]
+
κ0µ0v + µ0(κ1 + η1)
(κ0 + η0)(κ1 + η1)

=(λ + ϵ |ϕ|)ρ +
κ0µ0v + µ0(κ1 + η1)
(κ0 + η0)(κ1 + η1)

. (3.5)

For simplicity of the calculation, let

c =
κ0µ0v + µ0(κ1 + η1)
(κ0 + η0)(κ1 + η1)

.

Therefore,

||ϕ|| ≤
λρ + c
1 − ϵρ

.

Choosing r > λρ+c
1−ϵρ proves (3.4), which completes this proof. □

Remark 3.1. Theorem 3.4 can be reduced to Theorem 3.1 in [7].

4. Examples

Example 4.1. Consider the following FDE:cD
3
2ϕ(ω) = 1

(ω+3)3 tan−1(ϕ) + ln(ω + 1), ω ∈ [0, 1],

ϕ(0) = −1
2ϕ(1), ϕ

′

(0) = −1
2ϕ
′

(1).
(4.1)

Clearly, |Φ(ω, ϕ2) − Φ(ω, ϕ1)| ≤ 1
27 |ϕ2 − ϕ1|, with L = 1

27 .
Here, Φ(ω, ϕ) = 1

(ω+3)3 tan−1(ϕ) + ln(ω + 1).
Also, since

1
27

(1 + 1
27 )Γ(3

2 + 1)

1 + 2
1
2
+

1
2

1
2

3
2

1 + 1
2

 ≈ 0.0418 < 1,

then, Theorem 3.1 implies that problem (4.1) has at least one solution on [0,1].

Example 4.2. Consider the following classical FDE:cD
3
2ϕ(ω) = 1

2π sin(4πϕ) + |ϕ|

1+|ϕ| , ω ∈ [0, 1],

ϕ(0) + ϕ(1) = 0, ϕ
′

(0) + ϕ
′

(1) = 0.
(4.2)

Clearly, |Φ(ω, ϕ)| ≤ 1
2 |ϕ| + 1, where Φ(ω, ϕ) = 1

4π sin(2πϕ) + |ϕ|

1+|ϕ| , with 0 < ϵ = 1
2 <

2
√
π

5 , and ρ = 1.
Thus, Theorem 3.4 implies that problem (4.2) has at least one solution on [0,1].
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5. Conclusions

In this paper, we examine the solution existence for problem (1.1) under the boundary conditions
κ0ϕ(0) + η0ϕ(v) = µ0, κ1ϕ

′

(0) + η1ϕ
′

(v) = µ1 for κi, ηi, µi ∈ R
+. Extra components are incorporated

into the solution of (1.1). The results in this paper are obtained by using the Schauder fixed point
theorem, nonlinear alternative of the Leray-Schauder type, and the contraction mapping principle,
which can be reduced to the existence results of [7]. In fact, the existence results in this study can
extend and generalize the results in FDE problems of order γ ∈ (1, 2] under the boundary conditions
ϕ(0) + ϕ(v) = 0 and ϕ

′

(0) + ϕ
′

(v) = 0.
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