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Abstract: The focus of our investigation was on determining the existence of solutions for fractional
differential equations (FDEs) of order 1 < v < 2 involving the boundary conditions ky¢(0) + nop(v) =
o, and k10 (0) + m@' (v) = p, for k;,m;, 1; € R*. The existence results were based on the Schauder
fixed point theorem and the nonlinear alternative of the Leray-Schauder type. Examples were provided
to illustrate the results.
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1. Introduction

This paper is devoted to the following fractional differential equation (FDE):

(1.1)

‘D'd(w) = D(w, p(w)), we[0,v], 1<y<2,
ko$(0) + nod(v) = pto, k19 (0) + Mm@ (v) = w1, for ki, mipi € R,

where, “D” is the Caputo fractional derivative of order y and ® : [0,v] Xx R — R is a continuous
function.

Fractional calculus, an area of mathematical analysis dealing with derivatives and integrals of non-
integer orders, has been widely recognized in the fields of science and engineering due to its potential
in providing more precise models for complex systems that exhibit memory and hereditary properties.
In recent years, FDEs have emerged as a principal mathematical paradigm for describing a wide range
of natural phenomena encountered in physics, engineering, biology, and finance [1, 2]. The study of
FDE:s is motivated by the inadequacies of classical integer-order calculus in describing systems with
fractional dynamics. The traditional derivatives based on integer-order calculus assume instantaneous
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responses, disregarding memory effects and long-range interactions that are often present in real-
world processes. By incorporating fractional-order derivatives, FDEs offer a mechanism for modeling
systems with memory, nonlocal interactions, and anomalous diffusion [3-6].

In [7], the authors studied the existence and uniqueness of a solution for FDEs with antiperiodic
boundary conditions of order 1 < y < 2 with boundary conditions ¢(0) = —¢(v), ¢ (0) = —¢ (v) . They
provided the importance of fractional order models in describing physical models with more accuracy
than the regular models. The existence results were presented with the aid of the Leray-Schauder
degree theory.

In [8], we discussed the existence of solutions of the following:

‘DYP(w) = D(w, p(w), we[0,v], 1<y<2,0<c<v,
Kop(c) = —mop(v), K1 (c) = —mp (v),

where ® : [0,v] X R — R and «;, ; € R*, by using the Krasnoselskii fixed-point theorem and the
contraction principle.
A. Bashir and V. Otero-Espinar in [9] proved the existence results of:

‘D'p(w) € D(w, p(w)), we[0,v], 1 <y<2,
$(0) = —p(v), ¢ (0) = —¢'(v),

where @ : [0,v]XR — R, by applying the Bohnenblust-Karlin’s fixed point theorem. In this problem,
boundary conditions establish connections between the solution function’s values and derivatives at the
boundary points. In some applications, the conditions are nonuniform and vary along the boundaries
such as porous media varying cross-sectional areas.

Ahmad, Nieto, and Alsaedi in [10] obtained the existence results using standard fixed point
theorems with the following boundary conditions ¢(0) — 7o¢(v) = o [ 8(er, (@))da, ¢ (0) — ' (v) =
y fov h(a, ¢(a))da, where g, h : [0,v] X R — R are continuous functions and ng, 11, (o, 41 € R with
no # 1 and n; # 1. For greater accuracy, n; — 1 # 0; otherwise, the expected outcomes will not be
attained. Despite that the problem in [10] seems more general but may fail in specific applications,
such as heat conduction on a road or fluid flow in a pipe. For instance, in physical systems such as heat
conduction, the regular boundary conditions align better than the integral boundary conditions. The
integral boundary conditions can be applied when the whole heat flows along the entire rod rather than
describing it in a specific location.

In [11], the authors extended the work of [10] and studied the following problem:

‘D'p(w) = D(w, p(w),c D°Pp(w)), we[0,v], 1<y<2,0<<1,
$(0) — od(v) = o [ glev. p@)de, ¢'(0) —md V) = puy [ hler, pl@))der,

where “D? is the Caputo fractional derivative of order y, ® € C([0,vV] XxRXR,R) g, 4 : [0,v]XR — R
are continuous functions, and 79, 171, (o, 41 € R with 59 # 1 and n; # 1, by using the contraction
principal, nonlinear alternative of Leray-Schauder type, and Schauder fixed point theorem. For more
interesting results, see [8, 12—14].

These cited papers have discussed a range of methods and theorems for proving the existence
of FDEs. Although these studies have offered valuable insights, there are still opportunities for

AIMS Mathematics Volume 9, Issue 5, 13077-13086.



13079

improvement and enhancement, particularly in extending the scope of applicability and enhancing the
robustness of existence results. Our paper makes unique contributions compared to previous literature.
First, we broaden the scope of existence results for FDEs by using the Schauder fixed point theorem
and the nonlinear alternative of the Leray-Schauder type. This enables us to incorporate nonlinear and
nonlocal terms in the equations, making our modeling more realistic. Additionally, our approach yields
insights into the qualitative properties of solutions, enhancing our understanding of the dynamics of
FDEs in various contexts.

The subsequent sections of the paper are organized in the following manner: Section 2 is dedicated
to establishing fundamental theorems and basic definitions. The primary results were presented in
Section 3, based on the Schauder fixed point theorem and nonlinear alternative of the Leray-Schauder
type. Section 4 provides examples that illustrate the concepts discussed in the previous sections. The
last section concludes the paper.

2. Preliminaries
Definition 2.1. For y(w) € C"([0, o], R), we define that the Caputo fractional derivative of ordery > 0,

denoted by D7, is defined by

1

‘D'x(w) = 3 f (w-) 7" YW Nda, r-1<y<rr=[yl+1,
- 0

I'(r
where [y] denotes the integer part of the real number y.

Definition 2.2. For any order y > 0, the Riemann-Liouville fractional integral of a function y(w),
denoted by 17, is defined by

R
['(y)

Lemma 2.1. For any > 0, the solution for D”¢(w) = 0 is given by

Py(w) = f w(w - o) y(a)da.
0

i=n

Xw)= Y 1w, T eR. 2.1)

i=0

Lemma 2.2. For any B € C[0,v] and «;,n; > 0, u; € R, for i = 0,1, the unique solution of the
following problem:

‘D'p(w) = p(w), wel0,v], 1<y<2, 2.2)
ko®(0) + m0d(V) = o, K198 (0) + M (v) = i, '
is given by
(w—a)! 1o fv (v—ay!
= - da — d
PO= ) T PN ey T Ty PO
nomv — (ko + Mo)w fv (v—a)y? J
(ot )1 + 1) Jo T =) P
LM [(ko + m0)w — Mov] + po(ky + 771). 2.3)

(ko + 10)(k1 +11)
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Proof. In a view of Lemma 2.1, it follows ¢(w) = I"B(w) — 71 — 1w for some 7; € R, i = 1,2 that

a—1
d(w) = f @ e ; Bl)da — 11 — TLw. 2.4)

o (Y w—a)?
¢ (w) = f(; Wﬁ(a)da -T2

Using the conditions in (2.2), we get

v-ay” no v "y -ay”
da — d
K0+770f TG P o wm+ Jy Ty =1 P

Himov — po(ki +11)
(ko + 1m0) (k1 +11)

v _ y—2
L (v—a) Bla)da — m
ki+mJo T'ly—1) K1 +m
Replacing the quantities of 71, 7, in (2.4) completes the solution (2.3). O

Remark 2.1. The solution of (2.2) when kg = k; =19 =1, = 1 and o = u; = 0 is given by

_ (Y w—a)! v-ay”! v=2w (" (v-a)y?
H(w) = ; () ———B@)da ——f () ———PB(w)da + 1 C To-1D) Bla)da.  (2.5)

We see that, Lemma 2.2 reduces to Lemma 2.5 in [7].

Theorem 2.3. [15] Let B be a Banach space, S C B be a nonempty, closed, and convex subset, and
let 'V : S — 8 be a continuous mapping such that V(S) is relatively compact in B, then V has at
least one fixed point.

Theorem 2.4. [15] Let B be a Banach space, and suppose S C Bis a closed and convex. Let U C §
be open with 0 € U. Assume V : U — S is continuous and compact, then V has a fixed point in U
or w = pV(w) foran w € oU and p € (0, 1).

3. Main results

Let C = C([0,v],R)and V : C — C be the operator defined as

“(w—ay! Mo "(v-a)!
(Vo)) = L T)’)(D(a’ Heda - ko+tnoJo T
1oV — N1(Ko + 10)w f (v—a)?
(ko +mo)kr +m1) Jo T'(y—1)
N H1l(ko + no)w — nov] + po(ky + 771)-
(ko + no)(k1 +11)

D(a, p(a))da

O(a, p(a))da

3.1

Notice that the fractional differential problem (1.1) has a solution iff the operator V has a fixed point.
The following assumptions are required in the subsequent theorems:
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(hy) da o € L*(0,v],R") and a nondecreasing function ¢, such that |®(w, )| < o(w)ié(|p|) for
wel0,v],p eR.
(hy) A > 0, such that
v oMY 1, Kopov + po(ki +11)
A > ||o]|=6(A) Ko + 219 + + .
£ (ko + no)'(y + 1)[ 0T K1+ M (ko + mo)(k1 +11)
Theorem 3.1. Let ® : [0,v] X R — R be continuous with |®(w, ¢1) — O(w, ¢,)| < Llp, — ¢,| for
w e [0,v], ¢1,¢, € R, L > 0 and satisfying

LvY
(ko +mo)L'(y + 1)

noma
K1 +m

Ko + 219 + <1,

then problem (1.1) has a unique solution.

Proof. For simplicity of the calculation, we are going to introduce the following notations

va/

=L
= e T+ D

Ko + 27]0 + oy ] <1.

K1 +m

For any ¢, ¢, € C and w € [0, v], we have:

— a)y_l

w (w
I(Vénw = (Vér)wl| Sfo o)
1

1o Y(v—a)”
+ Ko + UOL () ID(a, ¢2(@)) — D(a, ¢1(@))l|lda

[momv — miko + no)wl (v —w)”
(ko + o)k +m1)  Jo I'(y—=1)

|D(a, §1(@)) — D(a, r())llda

2
(e, p1(@)) — Dla, $2(@))lldar

v KoK1'Y
sL + 210 + — bl
T (ko + o))y +1) Ko + 2o P 771] llpr — sl
Therefore,
v oY
- (V <L + o+ ~ ) ot
”((V(PI)U) ( ¢2)w” = (Ko + Uo)r()f n 1) Ko o . ] ||¢1 ¢2” §||¢1 ¢2”

i
together with & < 1 shows that V is a contraction mapping. Thus, the contraction mapping principle

implies the unique solution of (1.1) since V has a unique fixed point.
We have to mention that (i) depends on the parameters L, ko, k1, 10, 171, Y, v in the problem. m|

Theorem 3.2. Let @ : [0,v] X R — R be continuous with
|(D((,(), ¢1) - (D((,l), ¢2)| < g(w)|¢l - ¢2|, for w e [O? V]7 ¢1,¢2 € R Wlth 8 € LOO([O, V]7R+)a

and satisfying

Y
v +2mp + nomy

K
(Ko + o)y + 1) | K+ 11

then problem (1.1 ) has a unique solution.

llgll= <1,
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Proof. For ¢,¢, € C and w € [0, v], we have

1

I(Vé1)w = (V)| < f (CUTH@(@,%(@))—(D(a,¢>z(a))llda

Mo " (v —a)y!
ot Jo o) 1@ (a) - P gi(@lida
oy = mko + no)wl 7 (v =)'

(Ko +mo)ki+m)  Jo I'(y—=1

[D(a, §1(@)) — D(a, $2(a))llder

lglo=v oy
+ 210 + )
Shorm D | E T (= 2
Therefore,
lgllo-v” Moy
B = +2
I(VDw = (Vé)wll < kot ol + D | Mo + o ||¢1 é2ll,

together with ||g||, m [Ko + 210 + ZOZ;}Y] < 1 shows that V is a contraction mapping. Thus, the

contraction mapping principle implies the unique solution of (1.1) since ‘V has a unique fixed point. O

Theorem 3.3. Let @ : [0,v] X R — R be a continuous function satisfying h, and h,, then (1.1) has at
least one solution.

Proof. Let M c S be bounded. Assume that for any ¢ € M, l|[¢ll < r. Let V be the operator defined
in 3.1.

“(w—a)y! 1o o-a!
Vo)) =| | 0, p(a)da -
|( ¢)(w)| |£ I'(y) (@, $le)de ko+1m Jo Ty

L Moy = mko +no)w 7 (v—a)? O, dla))der + M1 [(ko + mo)w — nov] + po(ky + 771)|

(ko +mo)ki +11) Jo T(y—=1) (ko + no)(k1 +11)

(w—a)y! (v —a)y!
f o) |D(a, ¢<a>)|da+| +nol f o) |O(a, p(@))lda

L |Momy = ni(ko + 770)0)| Yv—-a)” 2|(D(a )l + KoMoV + Ho(ky + 11)
(ko +no)(ky +11) ' Jo T(y—1) ’ (ko + 10)(K1 +11)
v [ MMy § . KoHov + Ho(k1 +11)

Ko + 219 +
(ko +no)I'(y + 1) K1+ (ko + mo)(k1 +171)

Therefore, we proved that (V(M) is bounded in M .

O(a, p(a))da

<llollz=6(r) <A. (3.2)

_ 2
(Vo) ()| _| w |<1><a Hdar + |- ’70 -~ (V )y A
r(

Noniv — 771(K0 +nw, (T (V- )y 3
(ko + 1m0)(k1 +11) o T'ty=2)

|(a, ¢<a>)|da|

v nom(y — 1)
<ol (r) —————| kg + 2ng + ————| = N.
o0 e T 0 + 20+ =
Therefore, for any w; and w, € [0, v], we have
(V) (w,) — (V) (w))| < f |(V¢) (@)|de < N(w, — w)). (3.3)
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Equations (3.2) and (3.3) imply that V is equicontinuous on bounded subsets of S.
Now forany p € (0,1) and w € [0, V], let ¢ = pV¢. We have,

1Mo v—ay!
TICD(& ¢(a))|da+| - f F( ) |D(a, p(a))lda

- + -2 + — + +
non1v — (ko 770)(U| v -a) D, p(a))lda + |,U1[(Ko no)w — Nov] + po(k 771)|
(ko +no)ki +m1) ' Jo T(y—1) (ko + 10)(k1 +11)
v’ Moy , , KoHoV + Mo(Ki +171)

<Jlollz-6( ) Ko + 210 + .
1000 TG+ D 2+ e e ot T

()] <p(Vo) W) < f w

Thus,

v Mony KoMoV + to(ky +11)
1611 < llorll=6(81) Ko + 210 + + :
g R0 T T+ D T 2 e e ot 7 )

by h,, JA > 0 such that |¢| # A.

We see that, V : U — S is completely continuous, where U = {¢ € S : ||¢|| < A}. By the choice
of U and Theorem 2.4, any ¢ € AU, ¢ # pV, for p € (0,1). Therefore, V¢ = ¢ for some ¢ € U,
completing the proof. O

Theorem 3.4. Let @ : [0,v] X R — R. Suppose that |®(w, ¢)| < A + €|p|, where 0 < € < ;]7 A>0, and

+ 7]07117’

Ko + 219 , then problem (1.1) has at least a solution in [0, v].

_ vy
P = Gormora+n

Proof. Let V be the operator in (3.1) and define a fixed point problem ¢ = V¢. Define a ball B, in
C([0,v]) with a radius r > 0, which will be fixed later, as B, = {¢ € C([0,v]) : ||¢|l < r} for all
w € [0,v].

Set Y(o, ¢) = V¢, for o € [0.1] and ¢ € C(R).

Thus, ¥, = ¢ — cV¢ is completely continuous by the Arzela—Ascoli theorem. We want to show
that for the operator V : B — C([0, v]) we have

¢ #+o0Vep, VpedB, and Yo € [0.1]. 3.4)

If (3.4) is true, then deg(¥, B,,0) = deg(¥1, B,,0) = deg(y, B,,0) =1 #0and 0 € B,.
Now, at least one ¢ € B, satisfies 1 = ¢ — cV¢. To prove (3.4) we assume that for some o € [0, 1]
and all w € [0, V], ¢ = V¢ such that

1 Vv _ -1
6] =l Vo) <| f @O 4, panda - —— [ YD 40, g(a))da

I'(y) Ko + 1o I'(y)
nomv —mko + no)w [ (v—a)’? Mi[(ko + no)w — nov] + po(ky +11)

()] d
(ko + no)(lq ) Jy To—1 e d@) “' * (ko + 70) (k1 + 1) |

_1 _
f w F() —————|®(a, ¢())lda +]| 0+n0| v r()) |D(, p(@))lda
nomv — ni(ko + no)w, (v —a)? KooV + to(k1 +11)
D(a, d
oo ) |y oy = 1y e e+
“(w=-ay! 0/)7l f (v - a)71
A
<(+ o] o Ty Ko+770 )
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|770771V —ni(ko + 770)0)| Y (v —a)? da] . Kotov + to(ky +11)
(Ko + o) (k1 +11) o T'ty=1) (Ko + 10)(k1 +11)
Y + +
v [KO 20 + Ny ] . Kotov Ho(ky + 1)
(ko + mo)I'(y + 1) Ki + 1 (ko + 10)(k1 +11)
KoMoV + to(ky + 11)

=(A . 35
At D+ e+ o) +711) (5-)

<(1+ €lgl)

For simplicity of the calculation, let

_ Kopov + to(ky +11)
(ko + 10)(K1 +11)

Therefore,
Ap+c
gl < 5
—€p
Choosing r > fﬁ—:; proves (3.4), which completes this proof. O

Remark 3.1. Theorem 3.4 can be reduced to Theorem 3.1 in [7].

4. Examples

Example 4.1. Consider the following FDE:

D3 (w) = Tplan™(9) + In(w + 1), w €0, 1], @1
$(0) = —3¢(1), ¢'(0) = —5¢'(1). '
ClearlY7 |(D((L), ¢2) (D((L) ¢1)| = 27|¢2 ¢1| Wlth L = %
Here, ®(w, ¢) = (w+3)g tan™ (@) + In(w + 1).
Also, since
1 113
7 2+ 2221200418 < 1,
(1+ 3G + 1) 2 :
then, Theorem 3.1 implies that problem (4.1) has at least one solution on [0,1].
Example 4.2. Consider the following classical FDE:
gl
D3 2p(w) = sm(4ﬂ¢) + g w € [0,1], 42)
$0)+¢(1) =0, ' (0)+¢'(1)=0

Clearly, [®(w, ¢)| < 1[g] + 1, where ®(w, ) = Lsin(2ng) + 1'+¢|' Lwith0 < e =1 < 25 and p = 1.

Thus, Theorem 3.4 1mphes that problem (4.2) has at least one solution on [0,1].
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5. Conclusions

In this paper, we examine the solution existence for problem (1.1) under the boundary conditions

ko#(0) + nop(v) = po, k1 (0) + 1116’ (v) = u; for ki, m;, u; € R, Extra components are incorporated
into the solution of (1.1). The results in this paper are obtained by using the Schauder fixed point
theorem, nonlinear alternative of the Leray-Schauder type, and the contraction mapping principle,
which can be reduced to the existence results of [7]. In fact, the existence results in this study can
extend and generalize the results in FDE problems of order y € (1,2] under the boundary conditions

$(0) + ¢(v) = 0 and ¢ (0) + ¢'(v) = 0.
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