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1. Introduction

Humans have suffered from a number of contagious diseases over the ages, including cholera,
influenza, and plague [1-3]. Contagious diseases have long been ranked alongside conflicts and a
food shortage as key threats to human advancement and existence. The transmission of contagious
diseases in populations, as well as how to prevent and eradicate them, are crucial and essential topics.
Mathematical analysis and modelling is an important part of infectious diseases epidemiology.
Applications of mathematical models to disease surveillance data can be used to address both
scientific hypotheses and disease control policy questions. The mathematical description of disease
epidemics immediately leads to several useful results, including the expected size of an epidemic and
the critical level that is needed for an interaction to achieve effective disease control. There are several
mathematical models proposed by eminent mathematicians to investigate what transpires when a
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population becomes infected, and under what conditions depending on the circumstances, the disease
will be eradicated. Medical professionals have created vaccinations against a variety of viruses and
suggested numerous epidemic preventive strategies as part of humanity’s fight against contagious
diseases. Furthermore, mathematicians have significantly aided in the effort to stop the spread of
disease. From the standpoint of mathematical models, it is possible to roughly determine the duration
between the contagious disease’s outbreak and containment, the number of individuals infected at a
given point in the disease’s development who require quarantine, and the number of individuals in
contact with the disease at any given time. After examining the number of plague cases and patient
survival days, Kermack and Mckendrick [4] developed the SIR model, a ground-breaking
mathematical epidemiology model. The great majority of research that have examined contagious
diseases mathematically up to this point have operated under the shadow of this model. Many
academics used the contagious disease dynamics model as a foundational research tool in the study
and forecasting of the COVID-19 epidemic. They also suggested a number of enhancement
techniques to enhance the classical contagious disease dynamics model, allowing it to more accurately
describe the real context of the epidemic’s transmission and produce more plausible forecasts
regarding the epidemic’s development trend. Numerous practical recommendations for governance,
control, and prevention have been made [5—7]. Dynamical system’s research has gained significant
interest in the last several years. Dynamical systems is an interdisciplinary area that has several
applications, including predator-prey models and tumor models, in addition to the study of epidemic
diseases [8,9]. We typically use mathematical models to characterize the rich dynamic behavior of
epidemic diseases while some mathematical models are tailored to specific diseases, where the
majority are appropriate for broad investigations into the principles underlying different epidemic
diseases [10, 11]. Standard differential equations are used in the majority of epidemic disease models.
Nonetheless, discrete-time dynamic models are far simpler, and more computationally efficient than
continuous models. In addition to being straightforward analogs of continuous epidemic models, the
majority of discrete-time epidemic models also exhibit intricate dynamic characteristics that the
corresponding continuous models are unable to display. Even in a one-dimensional instance, the
discrete-time model can produce incredibly complex dynamics [12], and for dynamical properties of
higher-dimensional epidemic models we refer the reader to work of eminent researchers [13-17].
Therefore, from many years, mathematical infectious models have been a popular and interesting
topic [18-22]. From an epidemiological point of view, epidemic dynamics are a extremely transited
topic of investigation. The majority of researchers investigated bifurcation phenomena when a single
systemic parameter changes. Indeed, many practical models include a number of systemic parameters
when more than single systemic parameter is altered simultaneously, and so it is probable that
complicated bifurcation such as codimension-two bifurcations are likely to occur. Nevertheless,
because of the impact of higher-order nonlinear components, codimension-two bifurcations remain
extremely difficult to understand. Even elementary dynamical systems have complex dynamics that
cannot be satisfactorily illustrated by theoretical analysis. A few scholars have investigated simulating
the dynamics within the local parameter fluctuation using computers. As a result, the numerical
techniques allow to better illustrate and comprehend the dynamics of the model in addition to
validating our analytical results [23-26]. On the other hand, in recent years, many researchers have
investigated the codimension-one and codimension-two bifurcations of discrete model by bifurcation
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theory. For instance, Ruan and Wang [27] have studied Bogdanov-Takens bifurcation for the model:

1+vI?

=2 (Ng-I1-8)-d+Y1, (L1)
S=yI-(d+V)S, '
where d,y and v, respectively denote death rate, recovery rate and removed individuals rate whereas v
is a nonnegative constant. Eskandari and Alidousti [28] have examined codimension-two bifurcations

of the following discrete model:

{IHI =1+ h (A - dlz - /U,S,) s (1 2)

S =S +hALS,—d+1r)S)),

where d, A, A and r denote the natural death rate, the bilinear incidence rate, the recruitment rate of
the population, and the recovery rate of the infective individuals, respectively. Ruan et al. [29] have
examined codimension-two bifurcations of the following discrete model:

_ St
a+1t2
o, (1.3)

+-2h
S =8«

I

Iy = le )

where I, and S, denote infected and susceptible individuals, respectively. Abdelaziz et al. [30] have
examined codimension-two bifurcations of the following discrete model:
Ly =1 + % (rl; (1 =1) = 1,V, = ul,),

St+1 :St+%(ltvt_5lst), (1-4)

Vi =V, + % (¥S: =6V,

where the parameter 4 > 0 is the time step size. Chen et al. [31] have examined codimension-two
bifurcations of the following discrete model:

Ii41 =It+5(/\—%—ﬂb+¢5,),
S =8, +0(E3 —(y+pu+9)S,).

I+S,

(1.5)

where y, A\, u, B and ¢, respectively denote disease related death rate, recruitment rate, natural death
rate, disease transmission coefficient, and rate at with individuals 7 return to class S, and § > O is a
integral step size. Liu et al. [32] have examined codimension-two bifurcations of following
discrete model:

{h4=b+hm—db—ﬂﬁd, 06

S =Si+hQLS, —(d+nrS,),
where A, d, r, respectively denote recruitment rate, natural death rate, recovery rate, and finally, A4

denotes bilinear incidence rate. Yi et al. [33] have examined codimension-two bifurcations of
the model:

1.7)

Lio=1+6(No—dIl,—BSJ,(1+vS,)),
Si1=8:+6BS L (1+vS)—(d+n)S,),
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where 1, d, Ny, f > 0 denote effective contact rate, death rate, rate of recruitment and recovery rate,
respectively. Ma and Duan [34] have explored codimension-two bifurcations of a two-dimensional
discrete time Lotka-Volterra predator-prey model. Yousef et al. [35] have explored codimension-one
and codimension-two bifurcations in a discrete Kolmogorov type predator-prey model. Eskandari
et al. [36] have explored codimension-two bifurcations of a discrete game model. Guo et al. [37] have
examined hopf bifurcations of a bioeconomic model. Inspired by the aforementioned research, in this
paper, we aim to examine codimension-two bifurcations of the following discrete epidemic model with
vital dynamics and vaccination [38]:

{IM = 43+ (1= (s + ),

(1.8)
St = (1= ps)us + pe)tts = 52 4+ (1 = (s + 7 + p6))S 1 + (s = o)1,

where w3, uy, py and pg, respectively denote natural death rate, contact rate, cure rate, and rate of
immunity loss while u; and us are rates of vaccination in individuals S, and newcomers. More
precisely, our goal of this paper is to examine the existence of codimension-two bifurcation sets, and
codimension-two bifurcation at endemic equilibrium state (EES) associated with 1 : 2, 1: 3 and 1 : 4
strong resonances of a discrete epidemic model (1.8). Furthermore, our theoretical results are
confirmed by numerical simulation.

The organization of the paper is as follows: The existence of codimension-two bifurcation sets at
EES of a discrete epidemic model (1.8) are identified in Section 2 whereas Section 3 is about the
study of codimension-two bifurcation at EES. In order to confirm theoretical results, simulations are
presented in Section 4 whereas conclusion is given in Section 5.

2. Codimension-two bifurcation sets at endemic equilibrium state

In this section, we examine codimension-two bifurcation sets at EES for the discrete epidemic

model (1.8). For this, the simple calculation shows that if g > % 7)%3%“3);;;” 5 then model (1.8)

) with  basic reproduction number is

has EES ( ((—ps)pz +e ) po — (U3 +7 e ) (W3 +ua)pn  (U3+Ha)po

M1 (3 +e) 1
Ro = % > 1. Now variation matrix V|ggs of the linearized system of model (1.8) at
EES is
(1 —pts )3 16 )y — (3 +17 +Hpte ) (3 +104)
Viess =1 _ e 1+ (/13+,u7+#6)(#3+‘i4_:;§(1—1;135;5364'/16)#1 e | 2.1
with characteristic equation is
A=A+ A, =0, (2.2)
where
+ 7 + + ) — (1 = +
A =2+ (3 + 17 + pe) (uz + pa) — (1 — ps) w3 + o) fh s g+ )
M3 + U
+ u7 + +pug) = ((1 = +
A =1+ (3 + 17 + pe) (us + pa) = (1 —ps) s + o) (s + 1 + p15) — (2.3)
M3+ Ue
(U3 + p7 + pe) (3 + pa) + (1 — ps) pus + pe) py.
Setting
AM=2+G, \y=1+G+H, 2.4)
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where
_ (s + 7 + p6) (3 + pa) = (1= ps) s + o) 1 (Uts + 107 + 11g)
M3 + U (2.5
H =((1 = us) p3 + o) py — (U3 + pg + pe) (U3 + ta) .

Finally, the roots of (2.2) are

s = 2+G;\/K’ (2.6)
where
A=Q+G*-4(1+G+H),
—((1 - 2
_(r+ (U3 + p7 + pe) (U3 + pa) — (1 = ps) u3 + pe) gy st e —401
M3+ He 2.7)
+ u7 + + pug) — ((1 = +
L st ) s+ pa) = (L= ps) 3 + o) (s + 1 + 1)t

M3 + e
(1 = ps) ps + pe) 1) — (U3 + p7 + po) (U3 + fa) -
Hereafter, following three cases are to considered in order to get codimension-two bifurcations sets:

2

Case 1. If H = 4 = —G, then from (2.6) one gets A;, = —1 with y; = % 3+”E’:;(+‘:136J;”") ~ and
2 _ . .

ps = Lultie) 45;:6‘2%5"4”4(’“ #6) - Therefore, at EES, model (1.8) may undergoes codimension-two

bifurcation with 1 : 2 strong resonance where

4 (3 + pte) — (3 + p1)” — 4
M3 + He ’

(s + 16)” — 4 (uz + o) (113 +,U4)+4(ll4—/16)}

- M1k (3 + o) '

Case 2. If H = 3 = —G then from (2.6) one gets A,, = —le V3 with W = 3t~ (stie)*=3 o g

2 H3+H6
2_ _ } .
Us = H1(H3+H6) 3/(1/3:53)(:1:;“4”3(“4 te) Therefore, at EES, model (1.8) may undergoes codimension-two

bifurcation with 1 : 3 strong resonance where

Fialees = {(/ll,,llz,,u3,ﬂ4,ﬂ5,,u6,,u7) DMy =
(2.8)

Hs

3(us + i) — (3 + ig)* — 3
F13lees = {(ul,uz,m,m,ﬂs,ue,uv) D7 = ,

M3 + Ue 2.9)
o (s 1)t = 3 (s + ) (s + pa) + 3 (s —,Uﬁ)}
Hs = .
pipz (3 + pe)
Case 3. If H = 2 = —G then from (2.6) one gets A1, = =t with yu; = Qs tie)-(rtite)* =2 g

H3+He6
2_ -_— . .
s = H1(s+t6) 2&;?(263)3/235“4”2(“4 o) Therefore, at EES, model (1.8) may undergoes codimension-two

bifurcation with 1 : 4 strong resonance where

2 (3 + ps) — (U3 + p6)” — 2
M3 + He ,

o (s )t = 2 (s + ) (s + pa) + 2 (s —,Uﬁ)}

- M3 (3 + o) '

Remark 1. If H = 0 = G then 4,, = 1. However, from (2.5), it is noted that G and H are never zero

and so, at EES, model (1.8) does not undergo codimension-two bifurcation with 1 : 1 resonance.

Fralges = {(#1,,“2,113,#4,#5,#6,/17) CM7 =
(2.10)

Hs
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3. Codimension-two bifurcation at EES

The codimension-two bifurcations at EES of model (1.8) will be examined in this section by
bifurcation theory [39-43].

3.1. 1: 2 strong resonance at EES: 1, = —1

: _ duztpe)—(uz+ite) 4 _ (3 H6) =43 +1t6) (3 +14) +4(a—16) :
From (2.8), if 7 = e and us = T then calculation shows
that /11’2| =
H7

= -1 which implies that if

2 2
_ HMuztig)—(u3+ug) 4 ﬂszm(uwls) —Hu3+6) (13 +114) +4(1a—H6)
(u3+16) ’ A3 (H3+6)

(W1, Moy U3, May s, Mes 7)€ Fr2lees then at EES model (1.8) may undergoes codimension-two
bifurcation with 1 : 2 strong resonance, by choosing us and p; as bifurcation parameters. Now using
following transformation, EES of model (1.8) transform to (0, 0):

— -,
{W ’ 3.1

vi=5,-5"

where I* = ((1_“5)”3+“6)“‘IZZQZS(’:L:‘)'7+“G)(“3+"4)“2 and S$* = (”3;#14)"2 In view of (3.1), one write the model (1.8)
as follows:

U = HOEEEED 4 (1 (s + ) (g + 1) = 1,
(1 = ps) 3 + ) o = B2 o (1 = (s + a7 + 1)) (v + 87 = S (32)
+ (g — o) (uy + I7) .

Vitl

Now on expanding (3.2) at (0, 0) up to order-2", one gets:
( Upi ) _ Z—;S* + 1 = (uz + pg) | Z—;I* ( u, )+ Z_;utvt _ (33)
Virl _%S* + (s —pe) 11— %I* — (U3 + p7 + pe) Vi —Euyy,

M2
Now at EES, (3.3) becomes

1 ((1—ps )z +pae ) — (3 +pa7 +pe ) (3 +ptg)

( s ) = 1+ (/-l3+/~17+ﬂ6)(#3l:’?uzl)lﬁ((1_HS)#3+M6)M1 ( U ).,.( S vo) ), (3.4)
Virl -3 — U H3+H6 Vi folug, vy)
— (3 + p7 + pe)
where
Silu,vy) = Z_;utvta
. (3.5)
o(ug,ve) = _,u_zu’v"
From (3.4), if one denotes
(L —pes )p3 a6 )1 —(pe3 +17 6 ) (U3 +114)
A — L Hate 3.6
©) ( s — g 1+ (ﬂ3+/~l7+l~46)(ﬂ3+//;43—#2(1 USH3HIHT (U3 + 7 + o) ] (3.6)
then
1 4
Ao = A(00) loy=(uspr) = ( Haths ) (3.7)
00=(us:17) —p3 —pg -3
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where o0 = (us, u7) with characteristic roots are 4;, = —1. Furthermore, eigenvector and generalized

. . . . 1
eigenvector of Ay corresponding to characteristic roots —1, respectively are gy = we | and g =
— Lt

_Hathe

( ) Additionally, eigenvector and generalized eigenvector of A] corresponding to characteristic
4

2 -

roots —1, respectively are p; = ( 4 ) and py = ( 4 ), where p;, g; (i = 0,1) satisfying the
M3+l M3tUe

following relations:

Aogo = — 9o,
Aoq1 == q1 + qo,
Agpl =—Di 38)
Al po=—po+ pi, :
(qo» Po) ={q1,p1) =1,
(q1,Po ) =(qo0, 1) = 0.
Now if
( N )1: nqo + mq, =( /131+u6 /131+u6 )( " ), (3.9)
Vi 2 T4 my
with x = ( z’ ) then straightforward calculation yields
t
n =X, po) = Uy = ==V,
£%:@J022m+gﬁyp (3.10)

Now in coordinates (n,, m,), the model general representation of (3.4) is

(rml):(—1+mm 1+b@))(m)+(ﬁm~%>y (3.11)

My c(o) -1 +d(o) my Sa(n,, my)
where
f(ny,my, 0) = (F (m,q0 + mq1,0) , po) = azontz +aynam; + Clozm,z, (3.12)
fa (ny,my, 0) = (F (n,q0 + mq1,0) , p1) = baon? + byingmy + by,
and
Fum—(%w“) (3.13)
’ —bu, ) '
From (3.9), (3.12) and (3.13), the calculation yields
o = Z_; (urzrue _ 2) ’
ap = 3;_21 (/% - 1) ’
— M1 (H3tHe
an= 5 (3 -1). (3.14)

by = (2= (us+ ),
by = %(1_#3;#6)’

- M _ H3tle
bor = H2 (1 2 )’
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and

a (o) =((A(0) — Ao) 90, Po)»
_ (A= ps) ps + po) i = (3 + pg + ) (U3 + pa)

> + 6+
2((.“3 + p7 + pe) (3 + pg) — (1 — ps) p3 +ﬂ6)/11)
M3 + He

=2 (u3 + p7 + pe)
b (0) =((A(o) — Ao) q1, po)>

:((1 — Ms) 13 + pe) py — (U3 + p7 + pe) (U3 + Hs) 3

+
4
(U3 + p7 + pe) (U3 + pg) — (1 = ps) sz + pe) py

M3t Ue
— (U3 + p7 + )

¢ (0) =((A(o) — Ao) 90, P1)>

=(uz + p7 + pg) (3 + pg) — (1 — ps) uz + pe) iy — 4 + 2 (U3 + p7 + )
L9 ((1 = ps) s + pe) iy — (usz + p7 + pe) (U3 + pg)
M3t Ue ’

d (o) =((A(0) — Ao) q1, P1)>

_s i+ pe) s+ pe) = (A —ps)ps + o)
2
(1 = ps) ps + ps) 1 — (3 + p7 + o) (3 + pa)
M3 + He

+ (U3 + 7 + fe) .

Moreover, the calculation shows that a (0g) = b (0o) = ¢ (09) = d (09) = 0. Now denote

[ 1+b( O
B(Q)—( —a(o) 1),

with the following non-singular coordinate transformation:

ng \ . D:
(2)-el)

model (3.17) can be writen as

()= lew 2 U ) 5)
g1 ) \ €@ -1+0() |\ g H )

where

€ =c()+b(o)c(o)—a(o)d(o),
o) =alo)+d(o),

AIMS Mathematics

(3.15)

(3.16)

(3.17)

(3.18)

(3.19)
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and

( G ): B )( S (A +b©@)pis=a () pi + 41-0) )
H O\ H@+b@Ipn-a@p+a.0) )

Now if

(B _ [ €
ﬁ_(ﬁz)_(a(g))’

then B4 (09) = B2 (00) = 0, So, (3.18) along with (3.19)—(3.21) becomes

(pm):(—l 1 )(pz)Jr(G(pt,qt,Q))
Gr+1 B —1+B )\ g H(p.,q1,0) |’

where
G (P1»G10) =820P; + 8117141 + 8024, »
H (p1,q1,0) =haop; + hi1piq: + hoad;
and
a2 0 )a,
820 = ax(l+b(0) —ana(o)+ 1(#)(90)2,
2a(o)a
g1 = dan— lii)(g(;z,
802 = Tige

3 [
hao (1 + b (0))*by + (azo — bi))(1 + b (0)a(0) + (b, — ar)a® (0) + 5 J(i)(;; ,
az a
hi = ana(e) — %95 = 2a(0) bey + bi(1+ b (0)),

— a(@)apy
hOZ - b02 + 1+b(,g) ’

gk =hjx =0V j,k>0and j+k = 3. Furthermore, by employing the transformation:

pi=n+ Y. @p@)nl,

2<j+k<3
_ J. k
q: =m; + Z ¥ (B) nym;,
2<j+k<3
with
Dp3 = Y3 =0,

Dy = 3820 + 3hao,

D = %gzo + %811 + %h2o + ihn,

Dy = 5811 + 580 + ghao + 1h11 + jhoo,
Yoo = 3ha0,

Y11 = 3hyo + 2hiy,

Yoo = 3hi1 + 3hoa,

D3 =Dy =P, =¥3 =¥ =¥, =0,

(3.20)

(3.21)

(3.22)

(3.23)

(3.24)

(3.25)

(3.26)
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one gets the following 1 : 2 resonance normal form:

na | -1 1 n, 0
(I’I’lt+1 )'_(ﬂl —1+ﬁ2 )(mz)+(C(ﬂ)nf+D(ﬁ)ntzm,)’ (327)

where

{c B 00). B (@) = () (3 (s +po) = 2413 + o) + 1), (3.28)

DB (o). Br0o) = (L) (2% (s +16)* = 3 iz + i) +2).

2

Based on above analysis, one has the following result:

Theorem 3.1. If (uy, u, ps, g, us, e, 47) € Fr2lges and the discriminatory quantities, which are

depicted in (3.28), that is, C # 0, D + 3C = (Z—z)2 (4% (us + p6)* = 9 (u3 + 1) + 5) # 0, then at EES,
model (1.8) undergoes 1 : 2 strong resonance. Additionally, EES is elliptic (respectively, saddle) if
C > 0 (respectively, C < 0), and near 1 : 2 point D + 3C # 0 defines the following bifurcation curves:

(1) Pitchfork bifurcation curve

Fislees :={(B1,52) : p1 = 0}, (3.29)

and furthermore, nontrivial equilibrium state exists for 8; < 0;
(i1) Heteroclinic bifurcation curve:

5
Fiolees = {(,31,,32) B = =382+ O(UB1] + 1BaD)?). . o < 0} ; (3.30)
(i1i1)) Non-degenerate N-S bifurcation curve:

Fiolees :={(B1.82) : B1 = =B + O ((B1l + Ba)?) . B1 < O} (3.31)

(iv) Homologous bifurcation curve:

4
Frslees 1= {(ﬁl,/sa) Br= =3P+ O((Bil + B2I)?).. i < 0}. (3.32)

Remark 1. The occurrence of codimension-two bifurcation associated with 1 : 2 strong resonance at
EES of model (1.8) indicates the complex dynamical behavior if (uy, uy, s, ua, s, ts, 47) € F12|gEs.
An important biological consequence of the non-degenerate N-S bifurcation is the existence of
periodic or  quasiperiodic oscillations ~ between  individuals I and S if
(W1, 1oy 13, Mas s, Moy 7) € Fr12lges. Furthermore, periodic oscillations or the homoclinic structure may
cause long-period oscillations or even chaos in the 7 and S individuals.

3.2. 1: 3 strong resonance at EES: 113 = —14;7@

_ 2 2_ —
From (2.9), if g = 2t 3 ypg o = st i) 364 ) e from (2.1) one gets:

1 3
Viees = Ao = A (00) loyeius. :( s ) (3.33
es = Ao = A @0 v =| _ TS )

AIMS Mathematics Volume 9, Issue 5, 13006-13027.
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with A;, = ‘liT‘B‘ which implies that if (u;, uo, p3, a, s, e, 147) € F13lees then at EES, model (1.8)
may undergoes codimension-two bifurcation with 1 : 3 strong resonance. Furthermore, eigenvector

l+\/>L

3
and adjoint eigenvector of A, corresponding to eigenvalues , respectively are g = [ Hatile ) and

3—V3
2
(3+pe)(1+ ‘Bt))
p=

& ] satisfying
3

Aog = _“(‘q,

Aog = =5 (LC_I,

Alp =23, (3.34)
Aop _ -+ \f‘q,

(p.q)=1

Now if Z = ( ‘bjt ) € R? where it can be represented by Z, = z,q + z,g then (3.4) becomes
t

-1+ V3

2+l = 5 2 + 8(24, 21, 00)s (3.35)
where
_ _ 8jk j_
8(z1, 21, 00) = {p(@), F (21 + Z:q)) = Z %k,ZiZf, (3.36)
2<j+k<3
with
M
_utvt
F(zq+7%4,0) = [ ) (3.37)
_utvt
)
and
_ M 3 + V3Q2(u3+46)+3)
820 =y \ T 2Gme) 2ite) L)
33 -2
o= (3 D), (3.38)
_ [ 3tpetl) | VB(us+pst3)
g2 = ( Wastue) T 2pirepe) ‘)
Now following transformation
1 2 — 1 -2
Zr = wy+ Ehzowt + h“W,W[ + Ehzowt , (339)

along with its inverse transformation is utilized in order to eliminate quadratic terms from (3.35), where
it becomes

Ojk  j_
Wi = Liw, + Z 'ljc'WJWk (3.40)
2<j+k<3
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with
020 = Aihoo + g20 — Atha,
on = Ahy+gn —4Ph,
030 = 3(1 = A)ga0hao + 3811k + 3(A3 — ADh3y + (A — [41)hi1hgy — 341802011,
<2
o= Adihop + 80 — A1 hp,
28111111 + gi1hyo + 2820011 + goohoo + 2/1%(/11 — Dhyohiy — 24181100
o2 = — Aigaohiy + 214, A4 —_1)|h]1|2 - 2_/l]hllgll ,
+ A - 1_)h11h20 —_/llgozhoz + (A7 = Wlhgol (3.41)
2g11hi + giihao + 280h11 + g20ho
-2 _
+ 41" = ADhaohor — 41820011

o= { =24ignhwo — 2igihi + 2I4F (4 = DA, ¢,
— - - 2 —_
+ |/11_|2(/11 = Dhyihy + 24,7 (4 = Dhohyy
=20:811ho2

Tos = 3g11hoa + 3g02hao + 3(/1_13 — |11 Ao
- i T ek U
= 3A1802h11 — 341820h02 + 341 (A1 — Dhoohag

Now, it should be noted that quadratic terms of (3.40) should be vanished if

hy = g,
hy = g (3.42)
hop = 0.

Furthermore, the following transformation yields to annihilate cubic terms:

1 1 _ 1 _ 1 _
Wi = & + ghaoff + ihnftf? + 5@@3& + ghogff’. (3.43)

Using (3.43) along with inverse transformation, from (3.40), one gets:

V3i-1 1 - Pk e
b= b+ agnfl + ) —EE (3.44)
2<j+k<3 JoK:
where
r3o = %hm + 0730,
= 031,
3.45
ria = V3thp + 0, ( .
ro3 = %hm + 003
On setting
hyo = 3+6\/§L0'30,
hiy = %0'12,
’ (3.46)
hos = 3+6‘B 003,
hyy = 0,
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the ingredients from (3.45) should be zero except r,;. Therefore, the desired normal form of 1 : 3
resonance is

\/_L—l

1 = & + Cus, )& + D(us, un)& &N, (3.47)
where
3 V3 33
Clus, u7) = (2 22(5 2(m+u6> (T + 2(m+u6>)‘)’ (3.48)
27 3 943 33 :
D(,Ll5,/,l7) (Z_) (/13+,u6)2 2(u3+p6) + 2 + (2(#3+/16) N T) L) '

Finally, let

Ci(us, u7) =34, C(us, p7),
:§><—’u1 (3+(—2\/§(,U3+/J6)_3\/§)L)’

4 o (us + He)
Di(us, p7) = = 31C(us, u7)I* + 347 D(us, p17),
1o ()1 (3.49)
4 (/12) ((113 +/16)2)

(=45 (us + p6) + 135 (3 + 1) — 135) +
(54 V3 (us + p6) — 108 V3)1),

then one has the following theorem for the codimension-two bifurcation with 1 : 3 strong resonance:

Theorem 3.2. If the discriminatory quantities, which are depicted in (3.49), that is, C; # 0 and
R (D;) # 0 then at EES, model (1.8) undergoes codimension-two bifurcation with 1 : 3 strong
resonance as the parameters (i, (o, U3, s, M5, s, 17) € Fr3lges. Additionally, if R (D) # 0 examine
the bifurcation behavior then at EES, model (1.8) has the following dynamical characteristics:

(1) If R (D;) > 0 then invariant closed curve occurs at 1 : 3 resonance point is unstable;
(ii) If R (D;) < 0 then invariant closed curve occurs at 1 : 3 resonance point is stable;
(iii) At trivial equilibrium state of (3.35) one has the non-degenerate N-S bifurcation.

Remark 2. If (uy,uo, us, pa, s, e, 47) € Fi3lees then there exists codimension-two bifurcation
associated with 1 : 3 strong resonance. From a biological perspective, periodic or quasi-periodic
oscillation may occur in individuals 7 and S as a result of non-degenerate N-S bifurcation.

3.3. 1: 4 strong resonance : 113 = *t

_ 2_ 2_ —
From (2.10), if p7 = 23 +pe)=Ws+ie) =2 o0 q us = Ha (s tpte)” =23 +1t6) s +ta)+2a—H6)  than from 2.1)

(u3+ue) kst )
one gets:
1 2
A :A - = K3t ’ 350
0 (©0) log=(uus ) ( -y —1 ) ( )

with A;, = +¢ which implies that if (u;, (o, 13, pa, s, e, 47) € Fralees then at EES, model (1.8) may
undergoes codimension-two bifurcation with 1 : 4 strong resonance. Furthermore, eigenvector and
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__2
adjoint eigenvector of Ay corresponding to eigenvalues +¢, respectively are g = ( 1”3+“6 ) and p =
—1

L

(3 +pe)(=1-0)
( 4 ) satisfying
2

Aq =q,

Ag = —1q,

Alp = —up, (3.51)
ATp =g,

(pq)=1.

Now if Z = ( Zt ) € R? where it can be represented by Z, = z,q + Z,g then (3.4) becomes
t

21 = 12 + 8(24, %, 00), (3.52)
where
_ _ 8jk i_
8(z1:2100) = {p(0), F (2:q + %q)) = Z %k,Zfo’ (3.53)
2<j+k<3 T
with
ﬂu,v,
F(zq +74,0) = , (3.54)
ﬂzu’v’
and
— (1 (atpemlD
820 = H2 (H3+/46(#+ #%;rﬂe L)’
— M1 3t+He—
gn= “(1+ Wt), (3.55)
— M1 (p3tpet 1
g2 = H2 ( M3+ + M3+/16L)'

Now the transformation, which is depicted in (3.39) along its inverse transformation, is utilized to
eliminate quadratic terms from (3.52), where it becomes

O jk _
Wi = W, + Z ! w{wtk, (3.56)

2<]+k<3

with same o’s as in (3.41). Now, it should be noted that quadratic terms of (3.56) should be vanished if

t—1

hyo = 580
t+1

hy = 581 (3.57)
t+1

ho» —Tgoz
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Using (3.43) along with inverse transformation, from (3.56), one gets:

b =&+ y. el (3.58)
2<j+k<3 7T
where
r3o = 2ths + 0730,
= o (3.59)
ri2 = 2thyp + o,
Toz = 003.
On setting
h3o = 50730,
hiy = 5012, (3.60)
hos = hy =0,

the ingredients from (3.59) should be zero except r,; and ry;. Therefore, the desired normal form of
1 : 4 resonance is

&t = &+ Clus, un)éNEL + D(us, )&, (3.61)
where
Cluspn) = (2 (52 - st = d 4 (-2 + 52— 1)
5:H7) = H2 2uztpe)*  2uztpe) 4 2uztpe)* | 2uztpe) 4 ’
2
D(us, p7) = (Z—;) 2(#3}%)2 (1 — (U3 + p6) — 3 (u3 + 1) + (3.62)
( — (U3 + H6) + 5 (113 +/16)2)L)-
Let

Cl(/"l5a/“l7) == 4LC(#5’/-17)5

2
H 1 2
(B (<18 + 18 (us + ) — T (s + p16)” +
(,Uz) (/l3+,u6)2( (u3 + pe) — 7 (U3 + )

(=104 6 (a3 + o) + (s + 1)) )

(3.63)
Dy (us, u7) = — 4D(us, p17),
2
Hi 1 2
(&) ——(2-2
(,Ltz) YRS ( (13 + pe) + (U3 + pe)™ +
(=2 +2 (s + 1) + 3 (s + 16)*) 1)..
Now if D;(us, u7) # 0 and
C](:u5’1u7)
Blus, pt7) =—t2E7
U 17 =D s i)
1
(—18 + 18 (uz + ) (3.64)

VIO s +p10)* + 8 (s + i) = 16 (15 + ) + 8
=7 (s + ) + (=10 + 6 (us + 1) + (3 + 1)) ),

then one has the following theorem for the codimension-two bifurcation with 1 : 4 strong resonance:
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Theorem 3.3. If the discriminatory quantity, which is depicted in (3.64), such that, R (B(us, 7)) # 0
and J (B(us,u7)) # 0 then at EES, model (1.8) undergoes codimension-two bifurcation with 1 : 4
strong resonance as (Ui, Uy, Uz, Ua, Us, Ue, 7)€  Fralges.  Additionally, B(us,u;) determine the
bifurcation behavior near EES of model (1.8) and so, there are two-parameter families of equilibrium
state of order four bifurcation from EES near it. Depending on the choices made for us and p7, one of
these families contains unstable, attracting, or repelling invariant circles. Furthermore, in a
sufficiently small neighborhood of (us,u7), there exist numerous complex codimension-one
bifurcation curves of (3.61).

(1) At trivial equilibrium state of (3.61) there is a N-S bifurcation. Moreover, there is an invariant
circle if A = —¢ and invariant circle will disappear if A = ¢;
(i1) If |B(us, u7)| > 1 then there exists eight equilibrium states that disappear or appear in pairs via
fold bifurcation at us and u7;
(111) Ateight equilibrium states, there exists N-S bifurcations. Furthermore, four small invariant circles
bifurcate from equilibrium states, and vanish near the homoclinic loop bifurcation curve.

Remark 3. The presence of a non-degenerate N-S bifurcation is indicated by the occurrence of
codeminsion-two bifurcation associated with 1 : 4 strong resonance. In a specific parametric region, it
is also feasible to generate an invariant cycle of period-4 orbit. In biology, the non-degenerate N-S
bifurcation may give rise to periodic or quasi-periodic oscillations in individuals / and S .

4. Numerical simulations

Example 1. In this Example, it is proved numerically that if gy = 3.9, up, = 0.5, 3 = 0.28, yy = 0.22,
e = 0.9 and varying us € [0.2,2.9], u; € [-0.6,1.9] with (fy,So) = (0.03,0.6) then at EES,
model (1.8) undergoes codimension-two bifurcation with 1 : 2 strong resonance. For this, in the
following, first one need to prove the eigenvalues criterion for the existence of 1 : 2 strong resonance
holds. For this, if gy = 3.9, u, = 0.5, u3s = 0.28, uy = 0.22, yg = 0.9 then from (2.8) one gets:
Us = 0.271900415968213, 117 = —0.5698305084745758. Therefore,  if
(w1, fo, 13, ey fs, Ue, 17) = (3.9,0.5,0.28,0.22,0.271900415968213, 0.9, —0.5698305084745758) then
model (1.8) has EES = (0.43459365493263796,0.06410256410256411) and moreover, from (2.1)
one gets:

4.1

1 3.389830508474576
Vlggs = ,

—1.1800000000000002 -3

with 4, = —1 and so (1, 2, U3, ta, Us, e, 147) = (3.9,0.5,0.28,0.22,0.271900415968213, 0.9, 0.5
698305084745758) € FialeEs=(0.43459365493263796,0.06410256410256411)>» and finally, from (3.28) one gets
C = —19.207188000000006 # 0 and D = 54.555228 # 0, D + 3C = —3.0663359999999864 # 0
which imply that model (1.8) undergoes a codimension-two bifurcation with 1:2 strong resonance.
Therefore, the simulation agree with the conclusion of Theorem 3.1. Hence, codimension-two
bifurcation diagrams with 1 : 2 strong resonance are drawn in Figure 1.

Example 2. In this Example, it is proved numerically that if y; = 3.9, u, = 0.2, u3 = 0.3985,
uy = 075, pue = 095 and varying us € [0.612332,29], u; € [-0.6,0.855] with
(1p, So) = (0.0669333,0.0794103) then at EES, model (1.8) undergoes codimension-two bifurcation
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with 1 : 3 strong resonance. For this, first one need to prove the eigenvalues criterion for the existence
of 1 : 3 strong resonance holds. So, if yu; = 3.9, up = 0.2, uz = 0.3985, py = 0.75, pg = 0.95 then
from (2.9) one gets: us = 0.8806815166411702, u; = -0.5731941045606225. Therefore, if
(U1, tos 3, tas Ms, Moy 17) = (3.9,0.2,0.3985, 0.75,0.8806815166411702,0.95, —0.5731941045606225)
then model (1.8) has EES = (0.11408687715695504,0.05889743589743591) and moreover,
from (2.1) one gets:

Vigss = ( 1 2.224694104560623 ) 4.2)
—1.3485000000000003 -2 ’

with A1 = ‘”(‘ and S0 (115 2, 135 Has s, M6y [7) =
(3.9,0.2,0.3985,0.75, 0. 880681516641 1702,0.95, -0.5731941045606225) €
F 13| EES =(0.11408687715695504,0.05889743589743591) and finally, from (3.43) one gets
C = 25.470383759733036 + 27.228503386338268: and
D = 527 560465001899 + 1209.8979374673806¢. From (3.49), one gets
C, = 32.53615127919911 - 107.01675321970966¢ * 0 and
D, = —1818.3291845871258 — 3185.4892003729983:¢ which shows that

R(D;) = —1818.3291845871258 < 0 which imply that model (1.8) undergoes a codimension-two
bifurcation with 1:3 strong resonance. Therefore, the simulation agree with the conclusion of
Theorem 3.2. Hence, codimension-two bifurcation diagrams with 1 : 3 strong resonance are drawn
in Figure 2.

Example 3. Finally, it is proved numerically that if gy = 3.9, u, = 0.5, uz = 0.3985, yuy = 045,
Ue = 0.95 and varying us € [0.95607,2.9], u; € [-0.9,0.855] with (1y, So) = (0.0446222,0.0794103)
then at EES, model (1.8) undergoes codimension-two bifurcation with 1 : 4 strong resonance. For
this, in the following, first one need to prove the eigenvalues criterion for the existence of 1 : 4 strong
resonance holds. So, if u; = 3.9, u, = 0.5, u3 = 0.3985, uy = 0.45, g = 0.95 then from (2.10) one
gets: Us = 1.8148732738022662, 17 = —0.8316294030404152. Therefore, if
(W1, oy 13, May s, Moy 17) = (3.9,0.5,0.3985,0.45, 1.8148732738022662,0.95, —0.8316294030404152)
then model (1.8) has EES = (0.1901447952615917,0.1087820512820513) and moreover, from (2.1)
one gets:

Vigss = ( _1;485 1.483129{0130404152 ), 4.3)
with Ao = + and SO
(U1, oy 13, gy s, ey 17) = (3.9,0.5,0.3985, 0 45,1.8148732738022662,0.95, —0.83162940304041) €
F 14|EES=(0.1901447952615917,0.1087820512820513)- On the other hand, if
(U1, Moy 135 Has s, Moy (7)€ FralEES =(0.1901447952615917,0.1087820512820513) then from (3.62) and (3.63), one
gets C = 0.7573645541146341 - 54.00102260452535¢,
D = —51.459886377274955 + 9.38011362272504,
C, = —216 00409041810144 —  3.0294582164584933: # 0 and
D, = 37.52045449090016 + 205.8395455090998: +# O. Finally, from (3.64), one gets

B = —1.032370271795126 — 0.014478997116506187: as *R(B) = —1.032370271795126 # 0 and
J(B) = —0.014478997116506187 # 0 which imply that model (1.8) undergoes a codimension-two
bifurcation with 1:4 strong resonance. Therefore, the simulation agree with the conclusion of

AIMS Mathematics Volume 9, Issue 5, 13006-13027.



13023

Theorem 3.3. Hence, codimension-two bifurcation diagrams with 1 : 4 strong resonance are drawn
in Figure 3.

(a) (b)

(a) (b)

(a) (b)

Figure 3. Codimension-two diagrams with 1 : 4 resonance of model (1.8) at EES.
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5. Conclusions

The work is about the codimension-two bifurcation analysis of a discrete epidemic model (1.8) in

the region R2 = {(1,S) : I, S > 0}. Itis proved that if ug > ("”“7)(:[’13:““(#43);(;;”5)"3“‘ then model (1.8) has

EES (((1_/-lS)IJS+,U6)/~‘1/~‘2_(HS+/J7+,U6)(/~‘3+ﬂ4)ﬂ2 (/.13+y4),u2) At EES of model (1.8), we first identified the
M1 (u3+He) > om ) e

codimension-two  bifurcations sets associated with (1) 1 : 2 strong resonance

. . A3 +e)— (3 +ite) > —4 +116) >~ 413 +1e ) (3 +1a) 4 (s —1t6) .
Fiolees = {(/ll,/lz,/lz,ﬂ4,/l5,/l6,/l7) M7= (s )i it s M5 = Halps i uﬁ;&ﬁfﬁ)m (s }, (i1)

H3tHe
1 : 3 strong resonance

3 (s + p6) — (U3 + p6)” — 3
M3 + U '

o (s + pe)” = 3 (us + pe) (3 +,u4)+3(ﬂ4—ﬂ6)}

- Hips (ps + He) '

Fi3lees := {011,#2,#3,/14,/15,%,/17) M7=

M5

(ii1) 1 : 4 strong resonance

2 (us + o) — (3 + tg)* — 2
M3+ U6 ’
_ i (s + pt6)” — 2 (s + pe) (U +,U4)+2(/l4—,u6)}

Fralges = {(#1,112,,‘13,#4,#5,#6,/17) CM7 =

M5
Hipz (U3 + o)

and then we have studied detailed codimension-two bifurcations with 1 : 2, 1 : 3, and 1 : 4 by
bifurcation theory and series of affine transformations. Furthermore, we have also given biological
interpretations of theoretical results. Finally, theoretical results are carried out numerically.
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