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Abstract: We have combined cooperative hunting, inspired by recent experimental studies on birds
and vertebrates, to develop a predator-prey model in which the fear effect simultaneously influences
the birth and mortality rates of the prey. This differs significantly from the fear effect described by most
scholars. We have made a comprehensive analysis of the dynamics of the model and obtained some
new conclusions. The results indicate that both fear and cooperative hunting can be a stable or unstable
force in the system. The fear can increase the density of the prey, which is different from the results of
all previous scholars, and is a new discovery in our study of the fear effect. Another new finding is that
fear has an opposite effect on the densities of two species, which is different from the results of most
other scholars in that fear synchronously reduces the densities of both species. Numerical simulations
have also revealed that the fear effect extends the time required for the population to reach its survival
state and accelerates the process of population extinction.
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1. Introduction

Population dynamics is one of the subjects that scholars discuss the most. Based on the Lotka-
Volterra system, numerous theoretical studies have been developed and applied in various fields [1–6].
The behavior of both predators and prey significantly impacts the dynamics of their populations in a
predator-prey system. The use of mathematical models to predict the behavior of predators and prey
is of great significance, and scientists can use this as a basis to adopt new strategies to protect species.
The predator-prey model is crucial for characterizing the long term evolution of both populations
with certain behavior, and its importance can be seen through a large number of models. There
are models established based on different theories such as ordinary differential equation [7], delay
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differential equation [8], partial differential equation [9], stochastic [10], cross-diffusion [11], reaction-
diffusion [12], and difference equation, as well as models describing different functional responses
such as Holling type [10], Holling-Tanner [12], ratio-dependence [13], Beddington-DeAngelis [7],
Leslie-Gower [14], and Crowley-Martin. There are also models that depict certain behavior such as
fear, cooperation, refuge [15], herd [8], solitary, and social [9, 16].

All animals in nature need to pay attention to predators even those at the top of the food chain are
no exception. Even plants can evade predation through direct or indirect reactions. Fear is a very
powerful evolutionary force. Research in [17] has shown that using an electrical fence to prevent direct
predation of prey can reduce their breeding rates by over 40% throughout an entire breeding season.
Similar studies on other species of birds and vertebrates produced consistent results [18–20]. All of
these real experiments indicate that the appearance of predators can lead to a decrease in the number
of prey. Scholars have analyzed various models with the fear effect.

The authors in [21] proposed a model that modifies the Lotka-Vloterra predator-prey model by
incorporating a factor related to fear into the birth rate of the prey:{

ẋ = rx f (s, y) − dx − ax2 − g(x)y,
ẏ = y(−n + cg(x)).

They showed that the fear effect did not impact system dynamics when predators exhibited a linear
response. However, they demonstrated that considering predators with the Holling-II response and the
fear factor f (s, y) = 1

1+sy under certain conditions can stabilize the entire system. The authors also
performed numerical simulations on different forms of expression of fear factors and obtained similar
results.

Afterward, scholars primarily utilized the first fear factor mentioned above to study various
predator-prey models. Recently, Zhu et al. proposed a model [22] where the predator is omnivorous
and exhibits a linear response: {

ẋ = rx
1+sy − dx − ax2 − pxy,

ẏ = cpxy + ny − d1y2.

The dynamics of this system are significantly different from the situation without omnivorous
predators. One notable development is the emergence of a new boundary equilibrium point, which
is globally asymptotically stable under certain conditions (allowing predators to survive without prey).
The second point is that when a positive equilibrium point exists, it is globally asymptotically stable.
The third point is that the fear effect can lead to species extinction. Finally, the authors also noted that
as the level of fear increases, the population density of predators and prey decreases.

Scholars have studied predator-prey models with fear effects by incorporating other species’
behaviors. The authors in [23] examined a modified Leslie-Gower predator-prey model in which
predators present cooperative hunting behavior. They concluded that the inclusion of a fear factor
makes the model more robust than cooperative hunting alone. Sasmal in [24] introduced a strong Allee
effect in the predator-prey model by incorporating a fear factor. They believed that fear does not have
an impact on the dynamics of the positive equilibrium point. They also pointed out that the density of
predators decreases as the strength of fear increases. Using the idea presented in [25], Lai et al. [26]
studied the additive Allee effect rather than the multiplicative Allee effect. According to their findings,
the multiplicative Allee effect results in less complex dynamics than the additive Allee effect. In [27],
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the authors also researched a model that combines the fear effect and prey refuge. More relevant work
can be found in [28–30].

The fundamental idea of all the studies on predator-prey models relevant to the fear effect discussed
above is that the perceived danger of predators by the prey only lowers the birth and survival rate of their
offspring, while ignoring the influence on the mature prey’s mortality rate. Nevertheless, researchers
in [17, 31, 32] believe that the diversity of the food web or long-term physiological consequences may
cause the fear effect to raise the death rate of mature prey. In the dangerous natural world, animals that
are not at the top of the food chain must remain constantly vigilant against the threat of being preyed
upon by native predators; even the smallest mistake could cost them their lives. These bottom-of-the-
food-chain species have developed various anti-predator strategies to increase their chances of survival
due to their historical fear of predators. However, this anti-predatory behavior can often be detrimental
to specialized predators. Predators typically cooperate in the process of predation to facilitate their
development.

Experiments have confirmed that fear can reduce the birth and death rates of the prey. Current
studies of predator-prey models of the fear effect have been conducted under the assumption that fear
reduces the intrinsic growth rate of the prey. We believe that if fear simultaneously reduces the birth
and death rates of the prey, the intrinsic growth rate of the prey may be a more complex function of the
fear factor, or even a positive function of the fear factor. It is therefore reasonable to consider the effects
of fear on the birth and death rates of the prey separately, something that no academic has yet done.
In this article, we aim to discuss the dynamics of the model we have proposed. The model combines
fear factor and cooperative hunting, particularly emphasizing the fear factor, which not only reduces
the birth rate of the prey but also increases their mortality rate. As this is our first attempt at this work,
the first issue we need to address is how to construct realistic functions to describe the impact of fear
on birth and mortality rates. The solution to this problem is to use the commonly used fear factor by
scholars to describe the impact of fear on mortality rate, and to add an additional term with saturation
effect to describe the additional mortality caused by fear. Our model is expressed as dx

dt =
rx

1+s1y − a(1 + s2
s1y

1+s1y )x − bx2 − (c + ey)xy � F1(x, y),
dy
dt = y(−n + ε(c + ey)x) � F2(x, y),

(1.1)

where x(t) and y(t) represent the densities of the prey and predators, respectively. Furthermore, r, a, and
b represent the birth rate, death rate, and density constraint coefficient of the prey, respectively, while c
and e indicate per capita searching efficiency and degree of cooperation among predators. Additionally,
n and ε represent the death rate and conversion rate of predators. Like other researchers, we use the
term 1

1+s1y as a measure of fear to describe its impact on the birth rate, where s1 represents the level
of fear of the prey towards predators. To illustrate the impact of the fear effect on mortality rate, an
additional Holling-II type functional response s2 s1y

1+s1y has been incorporated to account for the saturation
effect, where s2 represents the maximum level of impact of fear on mortality rate. The reason for using
the Holling-II type function to describe the effect of predators on the prey mortality is that we believe
that the fear function should be an increasing function of predator density with an upper bound.

Our model is more general. It can include no fear effect (s1 = 0), fear affecting only the birth
rate (s1 , 0, s2 = 0), and fear affecting both birth and death rates (s1 , 0, s2 , 0). The first two
cases can be regarded as special cases of the third case, so we will mainly consider the third case here.
From uniqueness, it follows that the trajectories in the first quadrant cannot cross into other quadrants.
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Therefore, it is sufficient to discuss only the trajectories in the first quadrant. We focus on the existence
and stability of equilibrium points, as well as the impact of the fear effect and cooperative hunting on
the system in Section 2. In Section 3, we discuss the different types of bifurcations in the system. In
Section 4, we combine an example to illustrate the possibility of bistability in the system. In Section 5,
a brief discussion is provided. The final conclusion section elucidates the impact of our findings on
ecology or biology.

2. Stability analysis

We mainly investigated the impact of the fear on the dynamics of the system when there is no
cooperative hunting between predators and when there is cooperative hunting.

2.1. In the absence of cooperative hunting in the system

It is clear that the system (1.1) allows a equilibrium E0(0, 0). In this situation, the existence of
the remaining equilibrium points depends on the intrinsic growth rate (r − a) of the prey. There is a
boundary equilibrium point E1( r−a

b , 0) if r − a > 0, and a unique positive equilibrium point E∗(x∗, y∗) if
r − a > bn

εc , where

x∗ = n
εc , y∗ =

−k2+
√

k2
2−4k1k3

2k1
,

k1 = εc2s1, k2 = εc(as1s2 + as1 + c) + bns1, k3 = bn − εc(r − a).

2.1.1. Stability of all equilibrium points

Proposition 2.1. The following statements are true.
(i) E0(0, 0) is a globally asymptotically stable node if r − a < 0 holds, a saddle if r − a > 0 holds, and
a saddle-node point if r = a holds;
(ii) E1(x1, 0) is a globally asymptotically stable node if 0 < r − a < nb

εc holds, a saddle if r − a > nb
εc

holds, and a saddle-node point if r − a = nb
εc holds;

(iii) E∗(x∗, y∗) is a globally asymptotically stable node as long as it exists.

Proof. The Jacobian matrix of the system is given as

J =
(

J11 J12

J21 J22

)
, (2.1)

where
J11 =

r
1+s1y − a(1 + s1 s2y

1+s1y ) − 2bx − cy, J12 = −
s1(r+as2)x
(1+s1y)2 − cx,

J21 = εcy, J22 = −n + εcx.

(i) The two eigenvalues of J(E0) are r − a and −n. Clearly, E0 is a saddle if r − a > 0 holds, and it is a
stable node if r − a < 0 holds. If r = a, by applying the time transformation dτ = −ndx and expanding
the system into a power series around E0, we have

dx
dτ =

b
n x2 +

(c+rs1+rs1 s2)
n xy + r(1+s2)

n

∞∑
i=1

(−s1y)i+1x,

dy
dτ = y − εcn xy.

(2.2)
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Based on the implicit function theorem, we can conclude from the equation y − εcn xy = 0 that there
exists only one function y = φ(x) satisfying the conditions φ(0) = φ′(0) = 0. By simple calculation,
we have y = φ(x) ≡ 0. Substituting this into the first equation of the system (2.2), we get dx

dτ =
b
n x2. As

a result, according to Theorem 7.1 in [33], E0(0, 0) is identified as a saddle-node point.
Because we assume that predators are specialists, it is believed that there cannot be predators if

there is no prey. This indicates that the equilibrium point cannot occur on the vertical axis. One can
easily demonstrate that as t approaches infinity, x(t) and y(t) converge to zero by applying relevant
theories from [34]. Therefore, E0 is a globally asymptotically stable node, leading to the extinction of
both species.

(ii) Through an analysis similar to E0, we can easily determine that E1 is a saddle if r−a > nb
εc holds,

and a stable node if r − a < nb
εc holds. When r − a = nb

εc , we can transform E1 to the origin by setting
(z, y) = (x − x1, y), and expanding the system into a power series as follows: dz

dt = −m1z − m1m2
b y − bz2 +

m1 s2
1(as2+r)

b y2 − m2yz + P(|y, z|3),
dy
dt = εcyz,

where m1 = r − a and m2 = as1s2 + rs1 + c. After a non-degenerate linear transformation(
z
y

)
=

(
1 m1m2

b
0 −m1

) (
u
v

)
and a time transformation τ = −m1t, the system is reduced to du

dτ = u + b
m1

u2 −
bm2

1 s2
1(as2+r)−m1m2

2εc
b2 v2 +

m2(b+εc)
b uv − Q(|u,v|3)

m1
� u + R(u, v),

dv
dτ = −

εc
m1

vu − εcm2
b v2.

Based on the implicit function theorem, we know from the equation u + R(u, v) = 0 that there exists
only one function u = φ(v) such that φ(0) = φ′(0) = 0. Suppose the lowest power of the variable v
is m, and its coefficient is lm, then u = φ(v) = lmvm + lm+1vm+1 + · · ·, m ≥ 2. Therefore,

dv
dτ
= −
εcm2

b
v2 −
εclm

m1
vm+1 + · · ·, m ≥ 2.

As a result, according to Theorem 7.1 in [33], E1(x1, 0) is a saddle-node point.
If r − a < bn

εc , the system will not have a positive equilibrium point. At this point, the system
degenerates to dx

dt = x(r − a − bx), and its positive equilibrium point is globally asymptotically stable.
So, the boundary equilibrium point E1 of the system is a globally asymptotically stable node, indicating
the survival of the prey and the extinction of predators.

(iii) It is not difficult to confirm that the two eigenvalues λ1 and λ2 of J(E∗) satisfy

λ1 + λ2 = tr(J(E∗)) = −bx∗ < 0,

λ1λ2 = det(J(E∗)) = cεx∗y∗(c + s1(r+as1)
(1+s1y∗)2 ) > 0.

This indicates that both eigenvalues have negative real parts, so E∗ is a locally stable node. Now let’s
consider the Dulac function B(x, y) = 1

xy . By simple calculation, we have

∂[B(x, y) · F1(x, y)]
∂x

+
∂[B(x, y) · F2(x, y)]

∂y
= −

b
y
< 0, (x, y) ∈ (0,+∞) × (0,+∞).
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The Dulac-Bendixson theorem states that the system does not have a closed orbit, and since E∗ is the
unique internal equilibrium point, every positive solution will tend toward E∗. This, along with the
local stability state mentioned above, implies that it is a globally asymptotically stable node, ensuring
the survival of both species. □

The proposition shows that as the parameter r increases, the system’s equilibria follow two paths.
When r ∈ (0, a), E0 is the unique equilibrium point, which is a globally asymptotically stable node.
When r passes through a to enter (a, a + bn

εc ), E0 loses its stability to a globally asymptotically
stable E1; and when r further passes through a + bn

εc , E1 loses its stability to a globally asymptotically
stable E∗. When a new equilibrium point emerges, it will inevitably lead to the loss of stability of the
previous equilibrium point, and the new equilibrium point will be globally asymptotically stable. The
proposition also demonstrates that the fear effect has no impact on the stability of the system.

Theorem 2.1. The dynamics of the system depend on the intrinsic growth rate of the prey. There are
two critical values of 0 and nb

εc . When it is less than the first critical value, both species will become
extinct. When it is between the two critical values, the prey survives while the predator becomes extinct.
When it is greater than the second critical value, both species survive.

2.1.2. The impact of the fear effect on the system

Furthermore, we note that the expression x∗ = n
εc is independent of the fear factor, indicating that

the fear effect does not change the density of the prey. We will now focus on the effect of the fear effect
on predators. First, we will examine the effect of s1 on y∗. Let

p = aεcs2 + aεc + bn, q = 2εc2(p − 2k3),

then,

y∗(s1) =
−(ps1 + εc2) +

√
p2s2

1 + qs1 + ε2c4

2εc2s1
.

Because q − εc2 p = εc2(p − 2k3) > 0, we have

(qs1 + 2ε2c4)2 − (εc2
√

p2s2
1 + qs1 + ε2c4)2 = (q + εc2 p)(q − εc2 p)s2

1 + 3ε2c4qs1 + 3ε4c8 > 0.

Therefore,

dy∗(s1)
ds1

=
−qs1 − 2ε2c4 + εc2

√
p2s2

1 + qs1 + ε2c4

4εc2s1

√
p2s2

1 + qs1 + ε2c4
< 0, lim

s1→+∞
y∗(s1) = 0.

We also investigated the impact of s2 on y∗ and obtained similar results. For this reason, let

p1 = aεcs1, p2 = aεcs1 + εc2 + bns1,

then,

y∗(s2) =
1

2k1
[−(p1s2 + p2) +

√
p2

1s2
2 + 2p1 p2s2 + p2

2 − 4k1k3].
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Therefore,

dy∗(s2)
ds2

=
p1[−

√
(p1s2 + p2)2 − 4k1k3 + (p1s2 + p2)]

2k1

√
p2

1s2
2 + 2p1 p2s2 + p2

2 − 4k1k3

< 0, lim
s2→+∞

y∗(s2) = 0.

The above discussion indicates that the density of predators will monotonically decrease as
parameters continue to increase, eventually leading to extinction. We can observe that the presence
of the fear effect only results in a shift in the location of the positive equilibrium point.

Example 2.1. Letting r = 3, b = 1, n = 1, c = 2, ε = 0.5, s1 = 1, s2 = 1. Fix the parameter r, and
then let a take different values so that they fall into the interval (0, 2), (2, 3), and (3,+∞), separately.
Figure 1 shows that as a decreases, the predator and prey populations go from initial total extinction
to predator-only extinction, and then to coexistence. When the birth rate of the prey is lower than
the mortality rate, it will inevitably lead to its ultimate extinction. At this point, specialist predators
will inevitably become extinct due to a lack of food (Figure 1(a)). When the birth rate of the prey
is greater than the mortality rate, the prey will continue to survive (Figure 1(b) and 1(c)). At this
point, predators may exhibit two different states. If the energy gain obtained by predators from the
prey cannot offset its natural death due to the low density of the prey, the predator will still eventually
become extinct (Figure 1(b)). Otherwise, predators will continue to survive (Figure 1(c)). In each case,
the newly emerging equilibrium point is always globally asymptotically stable.
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Figure 1. Dynamics of the system when e = 0.
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Letting r = 3, a = 1, b = 1, n = 1, c = 2, ε = 0.5. Figure 2 illustrates the influence of parameters s1

and s2 on the system. It can be seen from the figure that as the corresponding parameters increase, the
density of predators will decreases, while there is no effect on the density of the prey. Figure 2(a) shows
the dynamics of the system when s2 = 1 is fixed. This indicates that different levels of fear effects will
not alter the fact that two populations coexist, nor will they alter the density of the prey. When the level
of fear is fixed (s1 = 1), the different levels of impact of fear on prey mortality also exhibit similar
results (Figure 2(b)). Furthermore, we note that when one of these two parameters is fixed, the density
of predators decreases to different levels as the other parameter increases. This indicates that fear can
lead to an increase in the evasion behavior of the prey, thereby reducing its probability of being preyed
upon, lowering the success rate of predators, and ultimately leading to a decrease in predator density.
Also, both populations take longer time to reach the final states.
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(a) s1 = 1 and s1 = 20 correspond to the blue and black curves, respectively.
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(b) s2 = 0.1 and s2 = 8 correspond to the blue and black curves,
respectively.

Figure 2. Effects of fear factors when e = 0.

We summarize the theoretical analysis above into the following Theorem 2.2.
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Theorem 2.2. (i) Fear factors do not change the dynamics of the system and the density of the prey;
(ii) Fear factors can lower the density of predators.

The author in [31] believed that the outcome of fear will increase the density of the prey over a long
period of time. However, our research results are very different: fear does not affect the density of the
prey. This may be because, although the prey avoids predation by predators, due to other factors such
as environmental or resource limitations, it does not change its environmental capacity. In addition, this
study has shown that fear reduces the density of predators, which can be explained by the fact that when
the prey perceives fear, they choose to stay away from the predator, making the predatory process more
difficult, thereby achieving the effect of reducing predator density. The partial results of Theorem 2.2
are similar to those of [21,24,26,27]. From the perspective of biological conservation, there are certain
situations in which such actions should be permitted. For instance, if predators consists of an invasive
species, we can manipulate specific parameters to ultimately eradicate it. However, most of the time,
we want two populations to coexist to maintain the diversity of the ecosystem. We are examining the
net growth rate of predator populations by increasing their cooperative hunting efforts in the hope of
controlling predator numbers to some extent.

2.2. In the case of cooperative hunting in the system

In this case, the system always has two equilibrium points E0 and E1, which are identical to those
in the system without cooperative hunting. By analyzing the equilibrium points E0 and E1 in the same
manner, we can establish the stability of both equilibrium points.

2.2.1. The existence and stability of positive equilibrium points

Next, we consider the existence of positive equilibrium points. The positive equilibrium points
Ē(x̄, ȳ) are the solutions of the following system of equations: r

1+s1y − a(1 + s1 s2y
1+s1y ) − bx − (c + ey)y = 0,

−n + ε(c + ey)x = 0.
(2.3)

From the second equation of (2.3), we know that x = n
ε(c+ey) . By substituting it into the first equation,

we know that ȳ are the positive roots of the equation

σ0y4 + σ1y3 + σ2y2 + σ3y + σ4 = 0, (2.4)

where

σ0 = εe2s1 > 0, σ1 = εe(2cs1 + e) > 0, σ2 = ε(c2s1 + e(as1 + as1s2 + 2c)) > 0,
σ3 = εc(as1 + as1s2 + c) + bns1 − εe(r − a), σ4 = bn − εc(r − a).

The equation can have at most two positive roots, depending on the signs of σ3 and σ4. For this, we
define the function

h(y) = σ0y4 + σ1y3 + σ2y2 + σ3y + σ4.

Now, we will find the positive roots of Eq (2.4) by examining the positive zero points of the function
h(y). The derivative of h(y) is

h′(y) = 4σ0y3 + 3σ1y2 + 2σ2y + σ3.
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If σ3 ≥ 0, then for any y > 0, there is h′(y) > 0. The function h(y) is monotonically increasing
on the interval (0,+∞), and h(y) > h(0) = σ4. Note that as lim

y→+∞
h(y) = +∞, the function h(y) has no

positive zero root if σ4 ≥ 0, and has a single positive zero root if σ4 < 0.
The subsequent analysis indicates that the function h′(y) must be monotonically increasing on the

interval (0,+∞). The discriminant for the quadratic equation h′′(y) = 12σ0y2 + 6σ1y + 2σ2 = 0 is
∆ = 12(3σ2

1 − 8σ0σ2). If ∆ > 0, then the equation h′′(y) = 0 has two distinct real roots, denoted as y1

and y2. Both of these real roots are negative. Without loss of generality, we assume that y1 < y2 < 0.
Thus, the function h′(y) monotonically increases in the interval (y2,+∞). If ∆ ≤ 0, for any y ∈ R, there
is h′′(y) ≥ 0. The function h′(y) monotonically increases over the interval (−∞,+∞).

If σ3 < 0, it is obvious that h′(0) = σ3 < 0. Note that as lim
y→+∞

h′(y) = +∞, the equation h′(y) = 0

always has a unique positive root, denoted as y3. In fact, y3 is the real root that always exists in the
cubic equation h′(y) = 0, and it has the following expression:

y3 = −
σ1
4σ0
+

3

√
−

8σ2
0σ3−4σ0σ1σ2+σ

3
1

64σ3
0

+

√
( 8σ2

0σ3−4σ0σ1σ2+σ
3
1

64σ3
0

)2 + ( 8σ0σ2−3σ2
1

48σ2
0

)3

+
3

√
−

8σ2
0σ3−4σ0σ1σ2+σ

3
1

64σ3
0

−

√
(8σ2

0σ3−4σ0σ1σ2+σ
3
1

64σ3
0

)2 + (8σ0σ2−3σ2
1

48σ2
0

)3.

So, the function h(y) monotonically decreases in the interval (0, y3) and monotonically increases
in the interval (y3,+∞). If h(0) = σ4 ≤ 0, then the function h(y) has a single positive zero root. If
h(0) > 0, then the function h(y) has no positive zero root if h(y3) > 0, a single positive zero root if
h(y3) = 0, and two distinct positive zero roots if h(y3) < 0.

Proposition 2.2. We have the following statement regarding the existence of positive equilibrium
points:
(i) The system does not have a positive equilibrium point if σ3 ≥ 0, σ4 ≥ 0 or if σ3 < 0, σ4 > 0, and
h(y3) > 0 holds.
(ii) The system has a unique positive equilibrium point if σ3 ≥ 0, σ4 < 0 or if σ3 < 0, σ4 ≤ 0, or if
σ3 < 0, σ4 > 0 and h(y3) = 0 holds.
(iii) The system will have two positive equilibrium points if σ3 < 0, σ4 > 0, and h(y3) < 0 holds.

The E∗ must be globally asymptotically stable as long as it exists. However, the stability of the Ē
will become more complex. The Jacobian matrix of the system at Ē is given by

J(Ē) =
(
−bx̄ −( s1(r+as2)

(1+s1ȳ)2 + c + 2eȳ)x̄
nȳ
x̄ eεx̄ȳ

)
.

The local stability of Ē depends on the trace and determinant values of matrix J(Ē), where

Tr(J(Ē)) = (−b + eεȳ)x̄, Det(J(Ē)) = [−beεx̄2 + n(
s1(r + as2)
(1 + s1ȳ)2 + c + 2eȳ)]ȳ.

We substitute x̄ = n
ε(c+eȳ) into Det(J(Ē)) for convenience and use functions f (y) and g(y) to determine

the signs of the trace and determinant. The expressions for f (y) and g(y) are determined by

f (y) = ε[(2ey + c)(c + ey)2(1 + s1y)2 + s1(r + as2)(c + ey)2] − ben(1 + s1y)2,

g(y) = eεy − b.
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Proposition 2.3. Suppose ȳ is the solution of Eq (2.4). Then Ē(x̄, ȳ) is a saddle point if f (ȳ) < 0 holds,
a stable node if f (ȳ) > 0 and g(ȳ) < 0 hold, and an unstable node if f (ȳ) > 0 and g(ȳ) > 0 hold.

2.2.2. The impacts of the fear effect and cooperative hunting on the system

The expression x̄ = n
ε(c+eȳ) gives the relationship between x̄ and ȳ. A decrease in one population’s

position must be accompanied by an increase in the other’s position. This is not what happens when
predators fail to cooperate.

To investigate the impact of parameters on the equilibrium position, we analyze ȳ = ȳ(s1, s2, e) and
derive the following equation:

σ0(s1, e)ȳ4 + σ1(s1, e)ȳ3 + σ2(s1, s2, e)ȳ2 + σ3(s1, s2, e)ȳ + σ4(e) = 0.

Taking the partial derivatives of s1 on both sides, we get

∂ȳ
∂s1
= −
εe2ȳ4 + 2εceȳ3 + ε(aes2 + ae + c)ȳ2 + (εacs2 + εac + bn)ȳ

4σ0ȳ3 + 3σ1ȳ2 + 2σ2ȳ + σ3
� −

G1(s1)
G2(s1)

.

Notice that σ3 can be positive or negative. Therefore, the density of predators decreases while the
density of the prey increases if G2(s1) > 0. The conclusion is reversed if G2(s1) < 0. Specifically, fear
does not alter the density of two species if G2(s1) = 0. This indicates that fear may have no effect on
population density, or have a positive or negative impact.

If we consider s2 as an argument, we have

∂ȳ
∂s2
= −

εas1(eȳ(s2 + c))
4σ0ȳ3 + 3σ1ȳ2 + 2σ2ȳ

< 0.

As a result, the density of predators will continue to decline. Combined with the previous discussion,
we know that even though an increase in the parameter s2 leads to a continuous increase in the density
of predators, it will never exceed r−a

b .
To look at the impact of cooperative hunting on the system, we can take partial derivatives of e on

both sides,
∂ȳ
∂e −

2εes1ȳ4+2ε(cs1+e)ȳ3+ε(as1 s2+as1+4e)ȳ2+ε(as1 s2+as1−(r−a))ȳ−ε(r−a)
4σ0ȳ3+3σ1ȳ2+2σ2ȳ+σ3

� −H1(e)
H2(e) .

The influence of cooperative hunting on the system depends on the sign of H1(e) and H2(e). The density
of predators decreases as the density of the prey increases when H1(e)H2(e) > 0. The conclusion is
reversed if H1(e)H2(e) < 0. Specifically, if H1(e) = 0, then the cooperative hunting does not affect the
density of the two populations. This demonstrates that when the strength of cooperative hunting falls
within a certain range, increasing the density of predators will be advantageous.

Example 2.2. Let r = 3, a = 1, b = 1, n = 1, c = 2, ε = 0.5, s1 = 1, s2 = 1. When the strength
of hunting cooperation is small (e = 2), the unique internal equilibrium point Ē(0.8304, 0.2042) is
stable (Figure 3). As the strength of cooperative hunting increases, it makes the internal equilibrium
point unstable and the periodic oscillation of different amplitudes appears (Figure 4(a)). When the
strength of cooperative hunting is further strengthened, the periodic oscillation of the system shows a
steady state, and a stable limit cycle appears (Figure 4(b)). This example indicates that cooperative
hunting may be an unstable force (the internal equilibrium point unstable) or a stable force (a stable
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limit cycle) in the system. In addition, Figure 4(b) also shows that with the increase of parameter e,
the density of predators no longer presents monotonicity, but increases first and then decreases. At this
point, the blue curve in Figure 4(a) will change from right to left, indicating that the density of the prey
is monotonically decreasing.
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Figure 3. Coexistence of both populations.

(a) The blue curve shows the variation of the internal
equilibrium point with parameter e, and a Hopf bifurcation
occurs when e = 9.7596. The internal equilibrium point on
left side is unstable.

(b) The blue curve indicates that the density of predators no
longer shows monotonicity with the increase of e. When e >
9.7596, limit cycles appear. Red indicates unstable limit cycles,
and green indicates a stable limit cycle.

Figure 4. Periodic oscillation and limit cycles.

Example 2.3. Let r = 3, a = 1, b = 1, n = 1, c = 2, ε = 0.5, s2 = 1. We mainly investigate the
effects of fear effects and cooperative hunting on the system when the internal equilibrium point is
globally asymptotically stable. In Figure 5(a), e = 0 and e = 2 correspond to the red and black
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solution curves, and in Figure 5(b), s1 = 0 and s1 = 2 correspond to the red and black solution curves,
respectively. From Figure 5(a), it can be seen that the number of prey decreases while the number
of the predator slightly increases. This indicates that cooperative hunting, as a widely existing form
of hunting among individuals within a species, has an extremely important significance in protecting
rare or even endangered predators. As in [22], the authors obtained the result that the fear effect
would simultaneously reduce the population density of both predator and prey. However, we draw an
interesting and different conclusion based on the following analysis: the fear effect makes the system
more stable. Figure 5(b) shows that the presence of the fear effect increases the final density of the
prey and reduces the final density of predators, which makes it less likely to become extinct due to
the increase in available resources possessed by each predator, despite a decrease in their final density.
In addition, we believe that the increase in prey density is attributed to the fact that, although the fear
effect can reduce the birth rate and increase the mortality rate of the prey, the amount of decrease in
birth rate is smaller than the amount of increase in mortality rate, resulting in a higher net growth rate
than the system without the fear effect. Overall, increase of fear effect and cooperative hunting makes
the density of two species show the opposite trend.
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(a) When s1 = 1, take the trajectories map of the system for
e = 0 and e = 2.
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(b) When e = 2, take the trajectories map of the system for
s1 = 0 and s1 = 2.

Figure 5. The effect of the fear effect and cooperative hunting on predator and prey densities.

Theorem 2.3. (i) Cooperative hunting can be a stable or unstable force in the system.
(ii) Both the fear and cooperative hunting may have no effect on population density, or have a positive
or negative impact.

The authors of [19, 23], as well as most other scholars, believe that fear reduces the densities of
two species, which is significantly different from our result in Theorem 2.3. First, fear increases or
decreases the density of the prey, depending on the value of its parameters, which contradicts the
majority of research and common sense on fear. The reason is that, although fear simultaneously
reduces the birth rate and mortality rate of the prey population, the degree of reduction varies, which
leads to an increase in the net growth rate of the prey and an increase in its density. Second, the impact
of fear on the density of predators and the prey will not be synchronous.
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3. Bifurcation analysis

Theorem 3.1. Regardless of whether there is cooperative hunting among predators, the system
experiences a transcritical bifurcation at the trivial equilibrium E0 as the parameter r passes through
the bifurcation value r = rS N = a.

Proof. The proof that there is no cooperative hunting among predators is similar to having cooperative
hunting. The Jacobian matrix with r = rS N at E0 is

A = DF(E0, rS N) =
(
0 0
0 −n

)
.

Obviously, the matrix A has a single eigenvalue λ = 0 with eigenvector V , and AT has an eigenvector W
corresponding to the eigenvalue λ. After a simple calculation, we get V = W = (1, 0)T , and

Fr(E0, rS N) = (0, 0)T ,

DFr(E0, rS N)V = (1, 0)T ,

D2F(E0, rS N)(V,V) = (−2b, 0)T .

Therefore,
WT Fr(E0, rS N) = 0,

WT [DFr(E0, rS N)V] = 1 , 0,

WT [D2F(E0, rS N)(V,V)] = −2b , 0.

According to Sotomayor’s theorem in [35], the system experiences a transcritical bifurcation at E0 as
the parameter r crosses the bifurcation value rS N . □

Theorem 3.2. Let eS N be the solution of the equation g(ȳ(e)) = 0. The system experiences a Hopf
bifurcation around Ē at e = eS N if Det(x̄(e), ȳ(e)) > 0 and d

de (Tr(x̄(e), ȳ(e))) , 0 at e = eS N .

Proof. The secular equation of the Jacobian matrix about the equilibrium Ē is λ2 − Tr(J(Ē))λ +
Det(J(Ē)) = 0. For Hopf bifurcation, the matrix J(Ē) must have a pair of purely imaginary eigenvalues.
So, the characteristic equation becomes λ2 + Det(x̄(e), ȳ(e)) |e=eS N= 0. If Det(x̄(e), ȳ(e)) |e=eS N> 0,
the above characteristic equation has a pair of purely imaginary eigenvalues λ1,2 = ±iθ0, where
θ0 =

√
Det(x̄(e), ȳ(e)) |e=eS N . To verify the transversality condition, we consider the any neighbouring

point e of eS N , the eigenvalues are λ1,2 = ρ(e) ± iθ(e), where

ρ(e) =
Tr(x̄(e), ȳ(e))

2
, θ(e) =

√
Det(x̄(e), ȳ(e)) −

Tr2(x̄(e), ȳ(e))
4

.

Now, η = d
de (ρ(e)) |e=eS N=

1
2 ·

d
de (Tr(x̄(e), ȳ(e))) |e=eS N . Hence, the system experiences a Hopf bifurcation

around Ē at e = eS N if d
de (Tr(x̄(e), ȳ(e))) |e=eS N, 0. □
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The 1st Lyapunov coefficient needs to be calculated to determine the direction of Hopf bifurcation.
First, we transform Ē into the original by letting w1 = x − x̄ and w2 = y − ȳ.

dw1
dt =

r(w1+x̄)
1+s1(w2+ȳ) − a(1 + s1 s2(w2+ȳ)

1+s1(w2+ȳ) )(w1 + x̄) − b(w1 + x̄)2 − (c + e(w2 + ȳ))(w1 + x̄)(w2 + ȳ),

dw2
dt = (w2 + ȳ)(−n + ε(c + e(w2 + ȳ))(w1 + x̄)).

Expanding Taylor’s series of the above system at (w1,w2) = (0, 0) up to terms of order 3 produces the
following system:

dw1
dt = p10w1 + p01w2 + p20w2

1 + p11w1w2 + p02w2
2 + p30w3

1 + p21w2
1w2 + p12w1w2

2 + p03w3
2 + O(|w|4),

dw2
dt = q10w1 + q01w2 + q20w2

1 + q11w1w2 + q02w2
2 + q30w3

1 + q21w2
1w2 + q12w1w2

2 + q03w3
2 + O(|w|4),

(3.1)
where

p10 = J11(Ē), p01 = J12(Ē), q10 = J21(Ē),

q01 = J22(Ē), p20 = −b, p11 = −
s1(r+as2)
(1+s1ȳ)2 − (c + 2eȳ),

p02 =
s2

1(r+as2)x̄
(1+s1ȳ)3 − ex̄, p30 = 0, p21 = 0,

p12 =
s2

1(r+as2)
(1+s1ȳ)3 − e, p03 = −

s3
1(r+as2)x̄
(1+s1ȳ)4 , q20 = 0,

q11 = ε(c + 2eȳ), q02 = eεx̄, q30 = 0,

q21 = 0, q12 = eε, q03 = 0.

If 4th order and above terms are omitted, the system (3.1) can be rewritten as

dU
dt
= J(Ē)U + F(U), (3.2)

where

U =
(

u1

u2

)
,

F =
(

F1

F2

)
=

(
p20w2

1 + p11w1w2 + p02w2
2 + p30w3

1 + p21w2
1w2 + p12w1w2

2 + p03w3
2

q20w2
1 + q11w1w2 + q02w2

2 + q30w3
1 + q21w2

1w2 + q12w1w2
2 + q03w3

2

)
.

For Hopf bifurcation, the characteristic equation becomes

λ2 + Det(J(Ē))|e=eS N = 0.

λ1,2 = ±iθ0 are the two roots of the equation, where θ0 =
√

Det(J(Ē))|e=eS N if Det(J(Ē)) > 0 at e = eS N .
The eigenvector of matrix J(Ē) belonging to eigenvalue iθ0 at e = eS N is v̄ = (p01, iθ0 − p10). Define

A =
(

(Re(v̄),−Im(v̄))
)
=

(
p01 0
−p10 −θ0

)
.

Let Z = A−1U, where Z = (z1, z2)T . Then, the system (3.2) becomes

dZ
dt
= (A−1J(Ē)A)Z + A−1F(AZ).
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This can be written as

d
dt

(
z1

z2

)
=

(
0 −θ0
θ0 0

) (
z1

z2

)
+

(
P1(z1, z2; e = eS N)
P2(z1, z2; e = eS N)

)
. (3.3)

The remaining parts of P1 and P2, apart from the linear parts of z1 and z2, are given by the following
expression:

P1(z1, z2; e = eS N) =
1

p01
F1, S 2(z1, z2; e = eS N) = −

1
θ0 p01

(p10F1 + p01F2),

with

F1 = (p20 p2
01 − p11 p01 p10)z2

1 + θ0(2p02 p10 − p11 p01)z1z2 + θ
2
0 p02z2

2

+(p12 p01 p2
10 − p03 p3

10 + p30 p3
01 − p21 p2

01 p10)z3
1

+θ0(2p12 p10 p01 − p21 p2
01 − 3p03 p2

10)z2
1z2 + θ

2
0(p12 p01 − 3p03 p10)z1z2

2 − θ
3
0 p03z3

2,

F2 = (q20 p2
01 − q11 p01 p10 + q02 p2

10)z2
1 + θ0(2q02 p10 − q11 p01)z1z2 + θ

2
0q02z2

2

+(q30 p3
01 + q12 p01 p2

10 − q21 p2
01 p10 − q03 p3

10)z3
1

+θ0(2q12 p01 p10 − q21 p2
01 − 3q03 p2

10)z2
1z2 + θ

2
0(q12 p01 − 3q03 p10)z1z2

2 − θ
3
0q03z3

2.

Substituting p30 = p21 = q20 = q21 = q30 = q03 = 0 into F1 and F2, we get

F1 = (p20 p2
01 − p11 p01 p10)z2

1 + θ0(2p02 p10 − p11 p01)z1z2 + θ
2
0 p02z2

2 + (p12 p01 p2
10 − p03 p3

10)z3
1

+θ0(2p12 p10 p01 − 3p03 p2
10)z2

1z2 + θ
2
0(p12 p01 − 3p03 p10)z1z2

2 − θ
3
0 p03z3

2,

F2 = (−q11 p01 p10 + q02 p2
10)z2

1 + θ0(2q02 p10 − q11 p01)z1z2 + θ
2
0q02z2

2

+q12 p01 p2
10z3

1 + 2θ0q12 p01 p10z2
1z2 + θ

2
0q12 p01z1z2

2.

The 1st Lyapunov coefficient based on the normal form (3.3) is

R = 1
16 (P1

z1z1z1
+ P1

z1z2z2
+ P2

z1z1z2
+ P2

z2z2z2
)

+ 1
16θ0

[P1
z1z2

(P1
z1z1
+ P1

z2z2
) − P2

z1z2
(P2

z1z1
+ P2

z2z2
) − P1

z1z1
P2

z1z1
+ P1

z2z2
P2

z2z2
].

By applying the result given in [36], Hopf bifurcation is supercritical if R < 0 and it is subcritical if
R > 0.

4. The existence of bistability

Cooperative hunting may increase the number of equilibrium points in the system. Just as the
Proposition 2.2 indicates, system (1.1) can have at most two positive equilibrium points. When there
are two distinct positive equilibrium points, the system may exhibit bistability. The bistable state here
refers to a stable limit cycle and a stable node. We found through numerical simulation that one of the
positive equilibrium points is an unstable node, and there is a stable limit cycle around it. In addition,
the semi-trivial equilibrium point is a locally stable node.
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(a) The system has two equilibrium points. (b) The Phase diagram of the system corresponding to different
initial values.
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(d) Local stability of boundary equilibrium point.

Figure 6. Dynamics of the system when e = 1.

Example 4.1. If r = 10, a = 0.1, b = 0.9, n = 1, c = 0.01, ε = 0.4, s1 = 0.1, and s2 = 0.2, then
the system has four equilibrium points (intersection point of solid line and dotted line in Figure 6(a)),
one of which is the origin, one is the boundary equilibrium point, and two are positive equilibrium
points. When the initial density of the prey is fixed (x0 = 15), let the initial density of predators change
from 0.1 to 3.7 in steps of 0.05, and (x0, y0) = (1, 2.6) and (6.6, 1.6), the phase diagram of the system is
obtained (Figure 6(b)). The green trajectory gradually moves away from the positive equilibrium point,
indicating that the equilibrium point it surrounds is an unstable node. In addition, when the time is
large enough, the green, yellow, and magenta trajectories all exhibit periodic oscillations (Figure 6(c)),
indicating the existence of at least one stable limit cycle and one unstable limit cycle within the
area surrounded by the magenta trajectories. We can also know from Figure 6(b) and 6(d) that the
other positive equilibrium point is saddle point and the boundary equilibrium point is a locally stable
node point. In brief, under this set of parameter values, predators exhibit two states: extinction or
survival. The reason for the extinction of predators may be that they are unable to offset their mortality
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rate through predation (red trajectories) or, although predators can offset their mortality rate through
predation in the short term, an increase in their numbers can lead to a sharp decline in the number
of prey, making it unable to meet their own growth needs (black trajectories). In this situation, in
order for two populations to coexist, the density of the prey must exceed a certain critical value (such
as the first component of the right positive equilibrium point), and the initial density of the predator
cannot be too small or too large (between 0.25 and 2.25). In order to understand the impact of the
strength of cooperative hunting on system dynamics when there are two positive equilibrium points,
while keeping other parameters remain unchanged, the strength of cooperative hunting of 5 is taken to
obtain Figure 7. Just like when e = 1, there are also four equilibrium points. By comparing Figures 6
and 7, we found the following differences. First, both positive equilibrium points of are unstable nodes,
and the boundary equilibrium point is saddle point (Figure 7(b)). Second, all trajectories ultimately
exhibit periodic solutions with the same amplitude (Figure 7(c) and 7(d)). This indicates that only one
stable limit cycle exists.
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(d) Predators and the prey oscillations coexist.

Figure 7. Dynamics of the system when e = 5.
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As the strength of cooperative hunting increases, trajectories will shift from periodic oscillations of
different amplitudes to periodic oscillations of the same amplitude, and from the existence of stable
and unstable limit cycles to the existence of a unique stable limit cycle. In this sense, we can say that
cooperative hunting can enhance the stability of the system. Also, a higher strength of cooperative
hunting can ultimately lead to the coexistence of two species. This is because as the strength of
cooperative hunting increases, the boundary equilibrium point loses its stability (saddle point), and
stable periodic oscillations occur in the vicinity of it.

5. Discussion

The system we study in this paper proposes that the perceived risk of predation in prey populations
not only reduces their birth rate, but may also lead to an increase in mortality.

If only the fear is considered, the system has a relatively simple dynamic, that is, the newly emerged
equilibrium point must be globally asymptotically stable. The conclusion was drawn that fear only
reduces predator density, and does not affect system dynamics and prey density, which is similar to
the research results of other scholars, such as [21, 24, 27], on the fear effect models. In this case, both
species will only exist in three states, namely extinction of both, or survival of the prey and extinction
of predators, or coexistence.

When predators engage in cooperative hunting, the system exhibits completely different dynamic
behaviors. According to Proposition 2.2 and Example 4.1, the number of equilibrium points may
increase, some of which are stable and some are not. If the positive equilibrium point is unstable,
there may be a bifurcation near it, which may lead to stable or unstable limit cycles. The research
results also indicate that both the fear and cooperative hunting can be a stable or unstable force in the
system. When there is a fixed level of fear, increasing the strength of cooperative hunting will make
the system unstable around the positive equilibrium point and experience subcritical Hopf bifurcation,
resulting in limit cycles oscillations dependent on the initial values. These limit cycle oscillations are
ultimately replaced by a stable limit cycle. This indicates that cooperative hunting may be an unstable
force (disrupting the stability of the positive equilibrium point) or a stable force (from limit cycle
oscillations to a stable limit cycle). In addition, cooperative hunting has a positive impact on predators
and a negative impact on the prey, as it increases the density of predators and decreases the density
of the prey. Compared to the impact of cooperative hunting on the system, the impact of the fear on
the system may be exactly the opposite. For example, the fear of predators by the prey can increase
its density, which is different from the results of all previous scholars, and is a new discovery in our
study of the fear effect. Another new finding is that fear has an opposite effect on the densities of two
species, which is different from the result in [19] in which fear synchronously reduces the densities of
both species. We provide a biological explanation for the reason why fear leads to an increase in the
prey density in Example 2.3.

Finally, through numerical simulations, it was found that fear prolongs the time for a species to
reach a survival state and accelerates the process of extinction. Cooperative hunting can also have an
impact on the progress of species.

AIMS Mathematics Volume 9, Issue 5, 12906–12927.
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6. Conclusions

All animals, regardless of their phyla, should pay attention to predators. Even tigers have to watch
out for humans. Fear is a very powerful evolutionary force. The challenge of studying the fear effect
is that even if behaviors related to fear effects can be observed, we cannot observe how fear reduces
the birth and mortality rates of the prey. We can only infer its impact from a theoretical perspective. In
this article, we addressed a predator-prey model of cooperative hunting in which fear simultaneously
reduces the birth and mortality rates of the prey, to reveal the effects of fear and cooperative hunting on
population evolution. Through discussion and analysis of a specific model, some new conclusions have
been obtained. We can emphasize that both fear and cooperative hunting have the potential to have a
positive effect. From the ecological point of view of our study, predators can adjust the intensity of fear
through cooperative hunting or through sound, smell, etc., so as to achieve the purpose of adjusting the
prey density. This dynamic adjustment may have significant implications for regional ecosystems and
may even cause a “trophic cascade” effect. The focus of our work is to discuss theoretically how fear
works, not whether it is real or not. Such research will provide a basis for protecting population size
or reintroducing new populations.
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