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Abstract: In this paper, we constructed a new class of analytical solutions to the isentropic
compressible Navier-Stokes equations with vacuum free boundary in polar coordinates. These
rotational solutions captured the physical vacuum phenomenon that the sound speed was C1/2-Hölder
continuous across the boundary, and they provided some new information on our understanding of
ocean vortices and reference examples for simulations of computing flows. It was shown that both
radial and angular velocity components and their derivatives will tend to zero as t → +∞ and the free
boundary will grow linearly in time, which happens to be consistent with the linear growth properties
of inviscid fluids. The large time behavior of the free boundary r = a(t) was completely determined by
a second order nonlinear ordinary differential equation (ODE) with parameters of rotational strength ξ,
adiabatic exponent γ, and viscosity coefficients. We tracked the profile and large time behavior of a(t)
by exploring the intrinsic structure of the ODE and the contradiction argument, instead of introducing
some physical quantities, such as the total mass, the momentum weight and the total energy, etc.,
which are usually used in the previous literature. In particular, these results can be applied to the 2D
Navier-Stokes equations with constant viscosity and the Euler equations.
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1. Introduction

The evolving boundary of a viscous fluid can be modeled by the following compressible Navier-
Stokes free boundary problem:
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ρt + div(ρu) = 0, in Ω̃(t),
(ρu)t + div(ρu ⊗ u) + ∇ (p(ρ)) − divΨ = 0, in Ω̃(t),
ρ > 0, in Ω̃(t),
(ρ,u) = (ρ0,u0), on Ω̃ := Ω(0).

(1.1)

Here, ρ, u = (u1, u2) ∈ R2 and p = p(ρ) denote, respectively, the density, the velocity field, and
pressure of the fluid, which are functions of the space and time variable (x, t) ∈ R2 × [0,∞); Ω̃(t) ⊂ R2

represents the changing volume occupied by a fluid at time t. The model described in Eq (1.1) can
be used to describe the boundary expansion of gaseous stars, liquid flow in pipes, atmospheric flow,
ocean currents, air currents around aircraft, and so on. For the polytropic gases, the pressure satisfies
the common γ-law hypothesis

p(ρ) = Kργ, γ > 1, (1.2)

where K > 0 is a fixed constant and γ is the adiabatic exponent. The constant γ = cp/cv is the ratio of
the specific heats, where cp, cp are the specific heats per unit mass under constant pressure and constant
volume, respectively. The different values of γ imply different physical significance [2], for example,
γ = 5/3, γ = 7/5, and γ → 1+ correspond to a monatomic gas, a diatomic gas, and heavier molecules,
respectively. In particular, the fluid is called isothermal if γ = 1. In this paper, we assume viscosity
tensor Ψ in (1.1)2 to be of the following form:

Ψ = λ1 (ρ)∇u + λ2 (ρ)∇uT + λ3 (ρ) divu I2, (1.3)

where I2 is the 2 × 2 identity matrix, and for simplicity, we set the viscosity coefficients

λi (ρ) = kiρ
γ, i = 1, 2, 3, (1.4)

where the constants ki (i = 1, 2, 3) satisfy that

k1 + k2 > 0 and k1 + k2 + 2k3 > 0. (1.5)

Equation (1.1) is completed by the vacuum free boundary condition (or continuous density condition)

ρ (Γ (t) , t) = 0, (1.6)

where Γ(t) denotes the moving interface. In general, as in [13] by Guo and Xin, the viscosity tensor
can usually be given by the following form:

Ψ̃ = µ1 (ρ)
∇u + ∇uT

2
+ µ2 (ρ) divu I2, (1.7)

µ1 (ρ) > 0, µ1 (ρ) + 2µ2 (ρ) ≥ 0, (1.8)

where µ1 and µ2 are the Lamé viscosity coefficients, and the inequality (1.8) is derived from physical
constraints. In fact, in order to study the expansion of the vacuum boundary by using the energy method
and the Bresch-Desjardins equality

µ2(ρ) = ρµ′1(ρ) − µ1(ρ). (1.9)
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Guo and Xin [13] moreover assumed that

µ1(ρ) = ργ, µ2(ρ) = (γ − 1)ργ. (1.10)

Therefore, the range of parameters of the viscosity coefficients in our assumptions (1.3)–(1.5)
generalize the one in Eqs (1.7)–(1.10), and it is important that the Bresch-Desjardins equality
condition (1.9) is not necessarily satisfied.

Due to its physical importance and computational complexity in physics and mathematics, the
vacuum free boundary problems have been widely studied in recent years, and important progress
about the local and global well-posedness theory of weak, strong, or classical solutions has been made
for both inviscid and viscous flows; interested readers may refer to [3,12,14,25,26,41] and references
therein. Encountering the strong degeneracy on the vacuum free boundary of the density, the usual
method of hyperbolic equations cannot be applied directly. Therefore, it is still a challenging problem
to obtain the global existence of the system. The local well-posedness was only established recently
for compressible inviscid flows (cf. [4, 5, 18]) and for compressible viscous flows (cf. [6, 17]). We
mention that for the vacuum free boundary problem (1.1) in multidimensional space, most of the
global existence results are related to spherically symmetric solutions (cf. [11, 15, 16, 22, 24, 39]) or
affine ones (cf. [30, 33]).

On the other hand, as pointed out by Yuen [37], the construction of analytical or exact solutions
is important in mathematical physics and applied mathematics, due to that it can further classify their
nonlinear phenomena, and a lot of important progress has been made in recent years. To begin, for
inviscid and non-rotational flows (i.e., k1 = k2 = k3 = 0), the radially symmetric solutions and related
exact solutions for the Euler equations were established in [19,32] and references therein. For rotational
flows in 2D space, Zhang and Zheng [40] constructed analytical solutions for the Euler equations with
γ = 2, which were generalized by Yuen [37] to the case γ > 1. In 3D space, Yuen [36] also gives a
class of exact, rotational, infinite energy solutions to compressible or incompressible Euler and Navier-
Stokes equations, where the solutions are similar to the famous Arnold-Beltrami-Childress (ABC)
flow. On the other hand, the blowup phenomena of solutions have also attracted many researchers’
attention in recent years. Dong and Yuen [9] studied the blowup of radial solutions to the compressible
Euler equations (with or without damping) on some fixed bounded domains by introducing some new
averaged quantities. When considering the influence of self gravity, Makino [27] proved the blowup
(core collapsing) solutions to the 3D Euler-Poisson equations for γ = 4/3. It was extended by Deng,
Xiang, and Yang in [8] to the case N ≥ 3 and γ = (2N−2)/N, then was generalized by Yuen [35] to the
case which allows viscosity or frictional damping. For more results on the Euler equations and related
equations, one may refer to [1, 13, 21, 23, 28, 34, 38] and references therein.

For the Navier-Stokes equation (1.1) in RN (N ≥ 2) with both vacuum free boundary and stress free
conditions, Guo and Xin [13] constructed spherically symmetric analytical solutions when density-
dependent viscosity coefficients satisfy k1 = γ > 1, k2 = 0, and k3 = γ − 1 > 0; in particular, the large
time expanding behaviors at an algebraic rate of the free boundary are tracked. It is seen that the role
of rotation is unknown in [13], while the reference [37] explores the effect of rotation. Thus, in this
paper, based on the results in [13, 37], we choose r = a (t) as the free boundary and construct a class
of self-similar analytical solutions for the Navier-Stokes equation (1.1) in 2D space with more general
viscosity coefficients satisfying (1.4) and (1.5), which allows the effect of rotation. Moreover, the large
time behavior of the free boundary is shown to be linear with respect to time. These rotational solutions

AIMS Mathematics Volume 9, Issue 5, 12412–12432.



12415

will provide some new information on our understanding of ocean vortices and reference examples for
numerical methods.

2. Materials and methods

The existence of a class of self-similar analytical solutions to the isentropic compressible Navier-
Stokes equations with vacuum free boundary in polar coordinates is established. In particular,
these results can apply to the 2D Navier-Stokes equations with constant viscosity and the Euler
equations. The special exact solutions constructed in this paper could also be applied in simulations of
computing flows.

Considering that in polar coordinates, the original free boundary problem is simplified, and the
corresponding equations are spatially dependent only on the radial variable r (see (3.7)), this allows
the analytical solutions of the equations to be solved sequentially. First, a pair of solutions (ρ, ur)
of Eq (3.7)1 can be obtained by using the known conclusion of self-similar solutions. Second, the
analytical expression of uϕ can be obtained by substituting (ρ, ur) into Eq (3.7)3 of uϕ. Finally, by
subsuming (ρ, ur, uϕ) into Eq (3.7)2, we can obtain a second order nonlinear ODE (with parameters
of rotational strength ξ, adiabatic exponent γ, and viscosity coefficients; see (3.12)) that the free
boundary a(t) = r should satisfy. Next, the key is to study the existence and asymptotic behavior
of the solution of the second-order equation. The fixed point theorem and the standard continuation
argument can be used to prove the global existence of the solution, and the asymptotic behavior
depends on the intrinsic structure of the equation. Specifically, by constructing an appropriate function
h(t) (see (3.42)), the monotonically increasing property of a(t) can be obtained after a certain time
t0; the large time asymptotic behavior of a(t) and a′(t) can be proved by using contradiction and the
convexity of the function.

In the following sections, we will first give the equivalent formulation of the original free
boundary problem in polar coordinates and state the main theorems in Subsection 3.1, then prove
the Theorems 3.1 and 3.2 in Subsections 3.2 and 3.3, respectively. Finally, in supplementary, we give
an explicit expression for the viscous terms divΨ in polar coordinates.

3. Results

3.1. Formulation in polar coordinates and main results

The circular fluid region Ω (t) ∈ R2 surrounded by vacuum in polar coordinates can be described as

Ω (t) :=
{
(r, t) ∈ R+ × [0,∞)|0 ≤ r ≤ a (t) , t ≥ 0

}
, (3.1)

where r =
√

x2
1 + x2

2, the center of the region (0,0) is fixed, and the free boundary r = a(t) satisfies

d
dt

a(t)) = ur (a(t), t) with a(0) = a0 > 0, (3.2)

where the positive and bounded constant a0 represents the initial location of the free boundary a(t).
The velocity field has the form in Eulerian coordinates:

u = (u1, u2) =
(

x1ur − x2uϕ

r
,

x2ur + x1uϕ

r

)
, (3.3)

AIMS Mathematics Volume 9, Issue 5, 12412–12432.



12416

or, equivalently, in polar coordinates:

u(r, t) = ur(r, t)er + uϕ(r, t)eϕ, (3.4)

where er =
(x1,x2)

r and eϕ = (−x2,x1)
r are the two orthogonal unit vectors along the radial and the angular

directions, respectively. Hence, the dissipative term divΨ in Eq (1.1)2 in the polar coordinate system
has the following form:

divΨ = div (λ1 (ρ)∇u) + div
(
λ2 (ρ)∇uT

)
+ ∇ (λ3 (ρ) div u)

=

[
(λ1 (ρ) + λ2 (ρ) + λ3 (ρ))

(
ur

r +
ur

r

)
r
+ (λ1 (ρ) + λ2 (ρ) + λ3 (ρ))r ur

r + (λ3 (ρ))r
ur

r

]
er

+

[
λ1 (ρ)

(
uϕr +

uϕ

r

)
r
+ (λ1 (ρ) + λ2 (ρ))r uϕr

]
eϕ. (3.5)

(In fact, a detailed derivation of Eq (3.5) is shown in the supplementary.) Thus, Eqs (1.1)–(1.6) can be
rewritten in polar coordinates as follows:

rρt + (rρur)r = 0,
ρ
[
ur

t + urur
r −

|uϕ |2

r

]
+ pr −

[
(λ1 + λ2 + λ3)

(
ur

r +
ur

r

)
r
+ (λ1 + λ2 + λ3)r ur

r + (λ3)r
ur

r

]
= 0,

ρ
[
uϕt + uruϕr + uruϕ

r

]
−

[
λ1

(
uϕr + uϕ

r

)
r
+ (λ1 + λ2)r uϕr

]
= 0,

(3.6)

or equivalently as
rρt + (rρur)r = 0,
ρ
[
ur

t + urur
r −

|uϕ |2

r

]
+ Kγργ−1ρr

−
[
(k1 + k2 + k3) ργ

(
ur

r +
ur

r

)
r
+ (k1 + k2 + k3) γργ−1ρrur

r + k3γρ
γ−1ρr

ur

r

]
= 0,

ρ
[
uϕt + uruϕr + uruϕ

r

]
−

[
k1ρ
γ
(
uϕr + uϕ

r

)
r
+ (k1 + k2) γργ−1ρru

ϕ
r

]
= 0,

(3.7)

with the initial conditions(
ρ, ur, uϕ

)
(r, t)

∣∣∣
t=0
=

(
ρ0, ur

0, u
ϕ
0

)
(r), on (0, a0) , (3.8)

and the Dirichlet boundary condition on the center of the region and the vacuum boundary condition
on the free boundary: (

ur, uϕ
)

(r, t)
∣∣∣∣
r=0
= (0, 0), ρ (a(t), t) = 0. (3.9)

In the following, we will use C to denote the universal positive constants, which only depend on γ,
ki (i = 1, 2, 3), and the initial data such as a0, a1, and H0 appearing in Theorem 3.1, but are independent
of t, and they may change from one line to another. The labels “x ≲ y” and “x ∼ y” represent “x ≤ Cy”
and C1y ≤ x ≤ C2y, respectively. The main results read:

Theorem 3.1. The problem (3.7)–(3.9) has a global solution of the form

ρ (r, t) =

[
k̃(γ−1)

2

(
1 − r2

a2(t)

)] 1
γ−1

a2 (t)
, (3.10)
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ur (r, t) =
a′ (t)
a (t)

r, uϕ (r, t) = ξ
e−(k1+k2)γ̃k

∫ t
0 a−2γ(s)ds

a2 (t)
r, (3.11)

where constants γ > 1, k̃ > 0, and ξ ∈ R are two arbitrary constants, k1–k3 satisfies the condition (1.5),
and the free boundary a (t) ∈ C2([0,+∞)) satisfies the following Emden equation:

a′′ (t) − ξ2 e−2(k1+k2)γ̃k
∫ t

0 a−2γ(s)ds

a3 (t)
− Kγ̃k

1
a2γ−1 (t)

+ (k1 + k2 + 2k3) γ̃k
a′ (t)
a2γ (t)

= 0, (3.12)

with initial values
a0 = a (0) > 0, a1 = a′ (0) ∈ R. (3.13)

Remark 3.1. In Theorem 3.2 below (see (3.15)), we can see that a(t) is strictly positive, so the
expressions (3.10)–(3.12) are well-defined, although the function a(t) appears as the denominator
therein. The two constants a0 and a1 in (3.13) represent the initial location and slope of a(t). If
one sets r = 0 in (3.10) with a fixed adiabatic index γ, then k̃ can characterize the magnitude of the
fluid center density, and ξ in (3.11) can describe the magnitude of the rotation intensity.

Remark 3.2. In 3D space, Yuen [36] also gives a class of exact, rotational, infinite energy solutions to
Euler equations for γ > 1 in the following form:

ρ = max
γ−1

Kγ

 C2
[
x2

1 + x2
2 + x2

3 − (x1x2 + x2x3 + x1x3)
]

−c1 (x1 + x2 + x3) + 3c0c1t + 3
2c2

1t2 + c2

 , 0
1
γ−1

,

u1 = c0 + c1t +C (x2 − x3) ,
u2 = c0 + c1t +C (−x1 + x3) ,
u3 = c0 + c1t +C (x1 − x2) ,

(3.14)

with C, c0, c1, and c2 arbitrary constants. Comparing (3.14), (3.10), and (3.11), it is interesting to
see that the density and velocity functions in (3.14) both grow to infinity as time approaches infinity if
c1 > 0, while the ones in (3.10) and (3.11) both decay to zero. The difference may be caused by the fact
that Yuen considers the analytical solution of the whole-space problem, while we consider a bounded
region with vacuum free boundary.

Theorem 3.2. For the Emden equation (3.12) with the parameters constraint (1.5), it has a unique and
positive solution a(t) such that

0 < a ≤ a(t) ≤ C̄ (1 + t) , for t > 0, (3.15)

where

a = max


 Kγ̃k
2 (γ − 1) H0

1/[2(γ−1)]
,
|ξ|e−(k1+k2)γ̃k

∫ t
0 a−2γ(s)ds

(2H0)1/2

 ,
H0 =

1
2

(
a2

1 + ξ
2a−2

0 +
Kγ̃k
γ−1 a−2(γ−1)

0

)
, and C̄ = max

{
a0, (2H0)1/2

}
. Furthermore, the large time behaviors

of a(t) and a′ (t) can be described as follows:
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lim
t→+∞

a (t) /t = lim
t→+∞

a′ (t) = C0 > 0, (3.16)

a (t) ∼ C0t + a0 for a suitably large t > 0, (3.17)

with constant

C0 = a1 −
(k1 + k2 + 2k3) γ̃k

2γ − 1
a1−2γ

0 +

∫ +∞

0

ξ2e−2(k1+k2)γ̃k
∫ t

0 a−2γ(s)ds

a3 (t)
+

Kγ̃k
a2γ−1 (t)

 dt.

Remark 3.3. The constant C0 appears in (3.16) as well-defined by (3.56) and (3.57). Similar to the
derivation of Eq (3.12), if two or three of the three viscosity coefficients are constants, the following
two special Emden equations can be obtained:

Case (1): λ1 (ρ) = k1, λ2 (ρ) = k2, and λ3 (ρ) = k3ρ
γ, then a(t) satisfies that

a′′ (t) −
ξ2

a3 (t)
− Kγ̃k

1
a2γ−1 (t)

+ 2k3γ̃k
a′ (t)
a2γ (t)

= 0. (3.18)

Case (2): λi (ρ) = ki (i = 1, 2, 3), then a(t) satisfies that

a′′ (t) −
ξ2

a3 (t)
− Kγ̃k

1
a2γ−1 (t)

= 0. (3.19)

By comparing Eqs (3.12), (3.18), and (3.19), it can be seen that viscosity does affect the structure of
the Emden equation. Moreover, Theorems 3.1 and 3.2 also apply to Eqs (3.18) and (3.19), except that
uϕ (r, t) in Eq (3.11) will be replaced by uϕ (r, t) = ξ

a2(t)r. We also remark that the initial-value problem
of Navier-Stokes equations was studied in [10] (k1 > 0, k2 = 0, k3 > 0), where the Cartesian solutions
of the system without symmetry in RN (N ≥ 1) are given there.

Remark 3.4. If one sets k1 = γ > 1, k2 = 0, and k3 = γ − 1 > 0, then (3.12) reduces to

a′′ (t) − ξ2 e−2γ2k̃
∫ t

0 a−2γ(s)ds

a3 (t)
− Kγ̃k

1
a2γ−1 (t)

+ (3γ − 2) γ̃k
a′ (t)
a2γ (t)

= 0, (3.20)

which can be seen as a generalization of Eq (40) studied in [13] for a spherically symmetric case with
ξ = 0. Note that the Bresch-Desjardins equality (1.9) in energy estimate is important for the spherically
symmetric case. Here, the global analytical solution can still be obtained in Theorem 3.1 by directly
studying Eq (3.12) of a(t), even though the Bresch-Desjardins equality does not hold true.

Remark 3.5. Note that for the special solution in (3.10), the viscosity term (ur
r +

ur

r )r = (uϕr + uϕ
r )r = 0

(see (3.7)2,3), thus (3.10) and ur (r, t) = a′(t)
a(t) r, uϕ (r, t) = ξ

a2(t)r also gives a special solution to the Euler
equations, where a (t) satisfies (3.19). In fact, all these solutions belong to the affine solution, and the
simplest affine solution (spherically symmetric) or the general affine one for isentropic/non-isentropic
Euler equations have been established in [30, 31, 33]. The innovation here is that we obtain a class
of affine solutions for viscous fluids (Navier-Stokes equations with variable viscosity coefficients) with
the same property of linear growth of the vacuum boundary.
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Remark 3.6. We also mention that the solution constructed in (3.10) and (3.11) satisfies the physical
vacuum boundary conditions (see [20,29,38]). Indeed, it follows from (3.28), (3.29), (3.23), and (3.12)
that

Kγργ−1ρr = ∂r (p(ρ)) = −ρr
[
a′′ (t)
a (t)

− b2 (t) − (k1 + k2 + 2k3) γ
ργ−2ρr

r
a′ (t)
a (t)

]
= −

ρr
a (t)

a′′ (t) − ξ2 e−2(k1+k2)γ̃k
∫ t

0 a−2γ(s)ds

a3 (t)
− (k1 + k2 + 2k3) γ

ργ−2ρr

r
a′ (t)


= −

ρr
a (t)

Kγ̃k
1

a2γ−1 (t)
= −

Kγ̃kρ
a2γ (t)

r,

which gives that
Kγ
γ − 1

(
ργ−1

)
r
= Kγργ−2ρr = −

Kγ̃k
a2γ (t)

r.

Integrating the equation above with respect to the space variable r over (r, a(t)) (with 0 < r < a(t))
and using the vacuum boundary condition (3.9) yields that

p′ (ρ) = Kγργ−1 =
Kγ̃k (γ − 1) (a (t) + r)

2a2γ (t)
(a (t) − r) . (3.21)

This, together with (3.15), implies that the sound speed c =
√

p′ (ρ) is C1/2-Hölder continuous (with
respect to r) across the vacuum boundary, which is called the physical vacuum boundary condition.

3.2. Proof of Theorem 3.1

Now, we show the proof in polar coordinates by some direct calculations, i.e., we will show that,
Eq (3.7) has a class of solutions in the following form:

ρ (r, t) =
f (s)
a2 (t)

=

[
k̃(γ−1)

2

(
1 − r2

a2(t)

)] 1
γ−1

a2 (t)
, (3.22)

ur (r, t) =
a′ (t)
a (t)

r, uϕ (r, t) = b (t) r, b (t) = ξ
e−(k1+k2)γ̃k

∫ t
0 a−2γ(s)ds

a2 (t)
, (3.23)

with constants k̃ > 0, ξ ∈ R, the radius r ∈ [0, a (t)], f (s) is an arbitrary C1 function of self-similar
variable s = r

a(t) , and positive a(t) ∈ C2 satisfies the Emden equation (3.12).
To begin, one can substitute ρ and ur in (3.22) and (3.23) into Eq (3.7)1 to obtain

rρt + (rρur)r = r

 f
(

r
a(t)

)
a2 (t)


t

+

(
r2 f

(
r

a (t)

)
a′ (t)
a3 (t)

)
r

= r

 f ′
(

r
a(t)

)
a2 (t)

(
−r

a′ (t)
a2 (t)

)
− 2

f
(

r
a(t)

)
a3 (t)

a′ (t)

 + a′ (t)
a3 (t)

[
2r f

(
r

a (t)

)
+ r2 f ′

(
r

a (t)

)
1

a (t)

]
= 0.
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Next, inserting ρ, ur, and uϕ in (3.22) and (3.23) into the left-hand side of Eq (3.7)3, one has

ρ

[
uϕt + uruϕr +

uruϕ

r

]
−

[
k1ρ
γ

(
uϕr +

uϕ

r

)
r
+ (k1 + k2) γργ−1ρruϕr

]
=ρ

[
b′ (t) r +

a′ (t)
a (t)

rb (t) +
a′ (t)
a (t)

rb (t)
]
− (k1 + k2) γργ−1ρrb (t)

=ρrb (t)
[
b′ (t)
b (t)

+ 2
a′ (t)
a (t)

− (k1 + k2) γ
ργ−2ρr

r

]
. (3.24)

In view of (3.22), the third term on the righthand side of the equation above can be rewritten as

ργ−2ρr

r
=

1
r

(
f (s)
a2 (t)

)γ−2 f ′ (s)
a2 (t)

1
a (t)

=
1
r

f γ−2 (s) f ′ (s)
a2γ−1 (t)

. (3.25)

In order to seek a solution uϕ satisfying that (3.24) = 0, similar to that in [7, 13], we set

f γ−2 (s) f ′ (s) = −̃ks, k̃ > 0, (3.26)

integrating it over (s, 1) and using the boundary condition that f (1) = 0 (due to (3.9)) to get

f (s) =
 k̃ (γ − 1)

2

(
1 − s2

) 1
γ−1

=

 k̃ (γ − 1)
2

(
1 −

r2

a2 (t)

) 1
γ−1

.

Hence, (3.25) can be rewritten as follows:

ργ−2ρr

r
= −

k̃
a2γ (t)

. (3.27)

Thus, inserting (3.27) and b (t) in (3.23) into (3.24), one gets

b (t)
b′ (t)

b (t)
+ 2

a′ (t)
a (t)

+ (k1 + k2) γ
k̃

a2γ (t)

 = 0,

which implies that (3.7)3 holds. Finally, we substitute (3.22) and (3.23) into Eq (3.7)2 to deduce that

ρ

[(
a′ (t)
a (t)

r
)

t
+

a′ (t)
a (t)

r
a′ (t)
a (t)

− b2 (t) r
]
+ Kγργ−1ρr

−

[
(k1 + k2 + k3) γργ−1ρr

a′ (t)
a (t)

+ k3γρ
γ−1ρr

a′ (t)
a (t)

]
= 0, (3.28)

which is equivalent to the following:

a′′ (t)
a (t)

− b2 (t) + Kγ
ργ−2ρr

r
− (k1 + k2 + 2k3) γ

ργ−2ρr

r
a′ (t)
a (t)

= 0. (3.29)

Obviously, Eq (3.29) is exactly the Emden equation (3.12) by taking (3.27) into account. So, (3.22)
and (3.23) are solutions to system (3.7)–(3.9). The proof of Theorem 3.1 is complete.
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3.3. Proof of Theorem 3.2

Note that Eq (3.12) belongs to the following type of ODEs:

a′′ (t) − ξ2 g (t)
a3 (t)

−C1
1

a2γ−1 (t)
+C2

a′ (t)
a2γ (t)

= 0, (3.30)

with g (t) ∈ (0, 1], g′ (t) ≤ 0, and two constants C1 > 0, C2 > 0. Indeed, the corresponding items g (t),
C1, and C2 to Eq (3.12) are as follows:

g (t) = e−2(k1+k2)γ̃k
∫ t

0 a−2γ(s)ds ∈ (0, 1], C1 = Kγ̃k, C2 = (k1 + k2 + 2k3) γ̃k. (3.31)

3.3.1. Existence of solutions to (3.30)

In this subsection, we will prove the global existence of solutions to Eq (3.30) by establishing the
local existence and global a priori estimates using the standard continuity argument. To this end, one
can rewrite (3.30) as follows:

a′′ (t) +C2a−2γ (t) a′ (t) =
ξ2g (t)
a3 (t)

+
C1

a2γ−1 (t)
,

then (
a′ (t) −

C2

2γ − 1
a1−2γ (t)

)
t
=
ξ2g (t)
a3 (t)

+
C1

a2γ−1 (t)
, (3.32)

which gives that

a′ (t) = a1 −
C2

2γ − 1
a1−2γ

0 +
C2

2γ − 1
a1−2γ (t) +

∫ t

0

(
ξ2g (t)
a3 (t)

+
C1

a2γ−1 (t)

)
dt. (3.33)

Notice the equivalence of (3.30) and (3.33). We have the following local existence lemma by using the
contraction mapping principle as in [7, 13]; thus, we omit the details here.

Lemma 3.1. (Local existence) For Eq (3.30) with γ > 1 and k̃ > 0, there exists a small T such
that (3.30) has a positive solution a(t), which is unique in C2([0,T ]) and satisfies 0 < a0/2 ≤ a(t) ≤ 2a0.

Lemma 3.2. (Global existence) The Emden equation (3.30) has a positive solution a(t), which is unique
in C2([0,+∞)) and satisfies (3.15):

0 < a ≤ a(t) ≤ C̄ (1 + t) , for t > 0,

where C̄ = max
{
a0, (2H0)1/2

}
, a = max

{(
C1

2(γ−1)H0

)1/[2(γ−1)]
, |ξ|g

1/2(t)
(2H0)1/2

}
, C1 and g (t) are given by (3.30),

and H0 is defined by (3.37).

Proof. Assume a(t) ∈ C1([0,T ]) is a solution to (3.30). We first prove the a priori estimate

0 < a ≤ a(t) ≤ C̄ (1 + t) , for all t ∈ [0,T ]. (3.34)

Multiplying (3.30) by a′ (t) yields

a′′ (t) a′ (t) − ξ2g (t) a−3 (t) a′ (t) −C1a1−2γ (t) a′ (t) +C2
(a′ (t))2

a2γ (t)
= 0,
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then it follows that

1
2

[(
a′ (t)

)2
+ ξ2g (t) a−2 (t) +

C1

γ − 1
a2−2γ (t)

]′
+
ξ2

2
(−g′ (t))

a2 (t)
+C2

(a′ (t))2

a2γ (t)
= 0. (3.35)

Now, we define H (t) as follows:

H (t) =
1
2

((
a′ (t)

)2
+
ξ2g (t)
a2 (t)

+
C1

γ − 1
1

a2γ−2 (t)

)
, (3.36)

which, together with (3.35), for all t ∈ [0,T ], gives that

H (t) +
∫ t

0

(
ξ2

2
(−g′ (t))

a2 (t)
+C2

(a′ (t))2

a2γ (t)

)
dt = H0, (3.37)

where H0 =
1
2

[
a2

1 + ξ
2a−2

0 +
C1
γ−1a−2(γ−1)

0

]
. Obviously, (3.36) and (3.37) imply that

(
a′ (t)

)2
≤ 2H0, max


(

C1

2 (γ − 1) H0

)1/(γ−1)

,
ξ2g (t)
2H0

 ≤ a2 (t) . (3.38)

Due to a0 > 0 and the continuity property, one derives from (3.38) that

a(t) > 0, for all t ∈ [0,T ]. (3.39)

Thus, (3.38) and (3.39) yield that

−(2H0)1/2 ≤ a′ (t) ≤ (2H0)1/2, max


(

C1

2 (γ − 1) H0

)1/[2(γ−1)]
,
|ξ|g1/2 (t)
(2H0)1/2

 ≤ a (t) . (3.40)

It follows that
a (t) ≤ a0 + (2H0)1/2t ≤ C̄ (1 + t) , for all t ∈ [0,T ], (3.41)

where C̄ = max
{
a0, (2H0)1/2

}
. Thus, (3.34) follows from (3.40) and (3.41). Therefore, combining the

local existence, the a priori estimates in (3.34), and the standard continuity argument, we know that
Eq (3.30) has a globally defined positive solution a(t) satisfying (3.15). Thus, the proof of Lemma 3.2
is complete.

3.3.2. Monotonically increasing property of a(t) after time t0

Let us define
h (t) = a′ (t) −

C2

2γ − 1
a1−2γ (t) , h (0) = a1 −

C2

2γ − 1
a1−2γ

0 . (3.42)

It follows from (3.32) and (3.15) that

(h (t))t =
ξ2g (t)
a3 (t)

+
C1

a2γ−1 (t)
> 0, (3.43)

and

h (t) = h (0) +
∫ t

0

(
ξ2g (t)
a3 (t)

+
C1

a2γ−1 (t)

)
dt ≥ h (0) . (3.44)
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According to the sign of initial value h (0), there are roughly two kinds of profiles of a(t).
If h (0) < 0, due to the monotonicity and continuity property of h (t), (3.43) implies that h(t) will

increase in a time interval until some finite time t0 > 0 (If t0 = +∞, (3.42) implies that

h(t) ≤ 0 for t > 0, (3.45)

then it holds that
a′ (t) ≤

C2

2γ − 1
a1−2γ (t) ,

(
a2γ (t)

)′
≤

2γC2

2γ − 1
,

and, hence,

a (t) ≤
(

2γC2

2γ − 1
t + a2γ

0

) 1
2γ

≤

(
2γC2

2γ − 1
+ a2γ

0

) 1
2γ

(1 + t)
1

2γ for t > 0. (3.46)

Insert (3.46) into (3.44) to get, for a suitably large t∗ > 0, that

h (t) ≥ h (0) +
∫ t

0

(
ξ2g (t)
a3 (t)

+
C1

a2γ−1 (t)

)
dt

≥ h (0) +
(

2γC2

2γ − 1
+ a2γ

0

) 1−2γ
2γ

∫ t

0

C1

(1 + t)
2γ−1

2γ

dt

> 0 for t > t∗,

which contradicts with (3.45). So, t0 < +∞ holds.) such that h(t0) = 0, and t0 can be determined by

h(t0) = a′ (t0) −
C2

2γ − 1
a1−2γ (t0) = 0. (3.47)

Thus, after time t0, (3.44) implies that h(t) ≥ h(t0), namely,

a′(t) ≥
C2

2γ − 1
a1−2γ (t) > 0, for t > t0, (3.48)

where t0 is determined by (3.47).
If h (0) ≥ 0, it follows from (3.44) and (3.42) that

a′ (t) ≥
C2

2γ − 1
a1−2γ (t) > 0, for t > 0, (3.49)

so a(t) increases for all time. Thus, it follows from (3.48) and (3.49) that

a′ (t) > 0 and a(t) ≥ a is increasing in (t0,+∞). (3.50)

3.3.3. Asymptotic behaviors of a(t) and a′(t)

To begin, we derive from (3.50) and the monotone bounded principle that the limit lim
t→+∞

a (t) exists

and belongs to
[
a,+∞

]
. Moreover, we can claim that

lim
t→+∞

a (t) = +∞. (3.51)
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Otherwise, suppose that there holds

lim
t→∞

a(t) = r̄ ∈ (a,+∞) and a(t) ≤ 2r̄ for t ≥ t∗, (3.52)

for a suitably large t∗ > 0, then it follows from (3.33) and (3.52) that

a′ (t) = a1 −
C2

2γ − 1
a1−2γ

0 +
C2

2γ − 1
a1−2γ (t) +

∫ t

0

(
ξ2g (t)
a3 (t)

+
C1

a2γ−1 (t)

)
dt

≥ a1 −
C2

2γ − 1
a1−2γ

0 +
C2

2γ − 1
(2r̄)1−2γ +

C1

(2r̄)2γ−1 (t − t∗)

> (2H0)1/2 for a suitably large t > 0,

which contradicts (3.40). So, the supposition (3.52) fails, and (3.51) is true.
Due to (3.51) and (3.40), the following fact holds:

lim
t→∞

a′ (t)
a (t)

= 0,

and (3.30) gives that, for a suitably large t1 > 0,

a′′ (t) =
ξ2g (t)
a3 (t)

+
C1

a2γ−1 (t)
−C2

a′ (t)
a2γ (t)

=
ξ2g (t)
a3 (t)

+
C1

a2γ−1 (t)

(
1 −

C2

C1

a′ (t)
a (t)

)
≥
ξ2g (t)
a3 (t)

+
1
2

C1

a2γ−1 (t)
> 0, for t > t1, (3.53)

which implies that a(t) is convex in (t1,+∞). Thus, (3.40), (3.50), (3.53), and the monotone bounded
principle yield that

lim
t→+∞

a′ (t) = C0, 0 < C0 ≤ (2H0)1/2, (3.54)

and it follows that, for a suitably large t∗ > 0,

a (t) ∼ C0t + a0 for t > t∗, (3.55)

for some positive constant C0 to be determined later. By (3.55) and (3.31), we know the following
integrability: ∫ t

0

(
ξ2g (t)
a3 (t)

+
C1

a2γ−1 (t)

)
dt ≤

∫ +∞

0

(
ξ2

a3 (t)
+

C1

a2γ−1 (t)

)
dt < +∞. (3.56)

Now, letting t → +∞ in (3.33) and noting (3.56), one gets that

a′ (t) = a1 −
C2

2γ − 1
a1−2γ

0 +
C2

2γ − 1
a1−2γ (t) +

∫ t

0

(
ξ2g (t)
a3 (t)

+
C1

a2γ−1 (t)

)
dt

→ a1 −
C2

2γ − 1
a1−2γ

0 +

∫ +∞

0

(
ξ2g(t)
a3 (t)

+
C1

a2γ−1 (t)

)
dt := C0, (3.57)

as t → +∞. Thus, (3.16) and (3.17) follow from (3.55), (3.57), (3.31), and the the L’Hospital rule, and
we finish the proof of Theorem 3.2.
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4. Conclusions and discussion

In this paper, we established a class of self-similar analytical solutions to the vacuum free boundary
problem for 2D isentropic Navier-Stokes equations with degenerate viscosity and studied their linear
growth asymptotic behaviors for a large time. Here are a few ideas that we think are worth investigating.
First, the expression (3.11) in polar coordinates is equivalent to, in Eulerian coordinates,

u1 (x1, x2) =
a′ (t)
a (t)

x1 − ξ
e−(k1+k2)γ̃k

∫ t
0 a−2γ(s)ds

a2 (t)
x2, (4.1)

u2 (x1, x2) =
a′ (t)
a (t)

x2 + ξ
e−(k1+k2)γ̃k

∫ t
0 a−2γ(s)ds

a2 (t)
x1. (4.2)

Hence, (u1, u2) in Eqs (4.1) and (4.2) belongs to the class of affine solutions (or vector solutions).
Therefore, it is reasonable to guess that the results obtained in this paper can be generalized to the
case of affine solutions without symmetry, which probably requires the use of matrix theory, curve
integration, and other related theories, as has been done in [10, 33]. Second, we have selected special
viscosity coefficients that satisfy (1.4) and (1.5):

λi (ρ) = kiρ
γ, i = 1, 2, 3,

k1 + k2 > 0 and k1 + k2 + 2k3 > 0. (4.3)

Thus, the question is whether it is possible to extend the range of parameters in Eq (4.3), or to
investigate a more general form of the viscosity coefficient as follows:

λ1 (ρ) = kiρ
θi , i = 1, 2, 3, (4.4)

with some constants θi > 0 and ki (i = 1, 2, 3). Finally, we point out that the ideas and methods
used in this paper can also be used to study the analytic solution and its large time behavior of the
three-dimensional free boundary problem. In particular, it could be of great interest to consider the
three-dimensional formulation of the problem of a spherically symmetric expansion of a compressible
medium in a vacuum, and these issues will motivate our future work.
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Supplementary

Expression for the viscous terms in polar coordinates

Noting the definition of viscous stress tensor Ψ given by (1.3), its divergence can be calculated
as follows:

divΨ = div (λ1 (ρ)∇u) + div
(
λ2 (ρ)∇uT

)
+ ∇ (λ3 (ρ) div u) (1)

=
{
λ′1 (ρ) (∇ρ · ∇) u + λ1 (ρ) △ u

}
+

{
λ′2 (ρ) (∇ρ · ∇) u + λ2 (ρ) div

(
∇uT

)}
+

{
λ3 (ρ)∇ (div u) + (div u) λ′3 (ρ)∇ρ

}
. (2)

Now, we calculate the terms in Eq (2) in the following three cases in the polar coordinate system.
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(1) ∇ρ and div u
For a scalar functions f (r, t) = f (x1, x2, t) with r =

√
x2

1 + x2
2, the chain rule gives us that

∂

∂xi
f (r, t) =

∂

∂r
f (r, t) ·

∂r
∂xi
=

xi

r
fr, i = 1, 2, (3)

then
∇ f (r) =

(
fx1 , fx2

)
=

( x1

r
fr,

x2

r
fr

)
= fr

(x1, x2)
r
= frer. (4)

Let the function f in (4) be the density or pressure of the fluid. One will have

∇ρ = ρrer, ∇p = prer. (5)

For the vector function velocity field u (see (3.3)), we can deduce that

div u =
(

x1ur − x2uϕ

r

)
x1

+

(
x2ur + x1uϕ

r

)
x2

=
ur

r
+ x1

(
ur

r

)
x1

− x2

(
uϕ

r

)
x1

+
ur

r
+ x2

(
ur

r

)
x2

+ x1

(
uϕ

r

)
x2

= 2
ur

r
+ r

(
ur

r

)
r
= ur

r +
ur

r
. (6)

(2) △u = div(∇u) and div(∇uT )
If we set

∇u = ∇
(
u1, u2

)
= ∇

(
x1ur − x2uϕ

r
,

x2ur + x1uϕ

r

)
=


(

x1ur−x2uϕ

r

)
x1

(
x2ur+x1uϕ

r

)
x1(

x1ur−x2uϕ

r

)
x2

(
x2ur+x1uϕ

r

)
x2


=

 ur

r + x1

(
ur

r

)
x1
− x2

(
uϕ
r

)
x1

x2

(
ur

r

)
x1
+ uϕ

r + x1

(
uϕ
r

)
x1

x1

(
ur

r

)
x2
− uϕ

r − x2

(
uϕ
r

)
x2

ur

r + x2

(
ur

r

)
x2
+ x1

(
uϕ
r

)
x2


=

 ur

r +
x2

1
r

(
ur

r

)
r
−

x1 x2
r

(
uϕ
r

)
r

x1 x2
r

(
ur

r

)
r
+ uϕ

r +
x2

1
r

(
uϕ
r

)
r

x1 x2
r

(
ur

r

)
r
− uϕ

r −
x2

2
r

(
uϕ
r

)
r

ur

r +
x2

2
r

(
ur

r

)
r
+ x1 x2

r

(
uϕ
r

)
r

 , (7)

then it follows that

∆u1 = div∇
(
u1

)
=

(
ur

r
+

x2
1

r

(
ur

r

)
r
−

x1x2

r

(
uϕ

r

)
r

)
x1

+

(
x1x2

r

(
ur

r

)
r
−

uϕ

r
−

x2
2

r

(
uϕ

r

)
r

)
x2

=
x1

r

(
ur

r

)
r
+

2x1

r

(
ur

r

)
r
+

x3
1

r

(
1
r

(
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r

)
r

)
r

−
x2

r

(
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r
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−

x2
1x2

r
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1
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(
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+
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−
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(
uϕ
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r
−

x3
2

r

(
1
r

(
uϕ

r

)
r

)
r
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= 4
x1

r

(
ur

r

)
r
− 4

x2

r

(
uϕ

r

)
r
+ x1r

(
1
r

(
ur

r

)
r

)
r

− x2r
(
1
r

(
uϕ

r

)
r

)
r

=
x1

r

[
4
(
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r

)
r
+ r2

(
1
r

(
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r

)
r

)
r

]
−

x2

r

[
4
(
uϕ
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)
r
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(
1
r

(
uϕ

r

)
r
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r

]
=

x1

r

[(
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r +
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r

)
r

]
−

x2

r

[(
uϕr +

uϕ

r

)
r

]
,

and, similarly,

∆
(
u2

)
= div∇

(
u2

)
=

(
x1x2

r

(
ur

r

)
r
+

uϕ

r
+
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1
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(
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)
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+

(
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+
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r
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+
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+ 4
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(
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)
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+ x2r

(
1
r

(
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r

+ x1r
(
1
r

(
uϕ

r

)
r

)
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=
x2

r

[(
ur

r +
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r

)
r

]
+

x1

r

[(
uϕr +

uϕ

r

)
r

]
.

So, by noting the definitions of er and eϕ in (3.4), we have

△u =
(
∆u1,∆u2

)
=

[(
ur

r +
ur

r

)
r

]
er +

[(
uϕr +

uϕ

r

)
r

]
eϕ. (8)

Similarly, we derive from (7) that

[
div∇uT

]1
=

(
ur

r
+

x2
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)
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+

(
x1x2

r

(
ur

r

)
r
+
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+
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r

)
r
+ r2

(
1
r

(
ur

r

)
r

)
r

]
=
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r +
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,

[
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]2
=

(
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−
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+
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+
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+
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=
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ur

r +
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)
r

]
,

and, thus,

div∇uT (r, z) =
([

div∇uT
]1
,
[
div∇uT

]2
)
=

[(
ur

r +
ur

r

)
r

]
er. (9)
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(3) (∇ρ · ∇) u
By direct calculations, one has

(∇ρ · ∇) u =
(
ρx1∂x1 + ρx2∂x2

) ( x1ur − x2uϕ

r
,

x2ur + x1uϕ

r

)

=

 ρx1

(
x1ur−x2uϕ

r

)
x1
+ ρx2

(
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r

)
x2
,
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r

)
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T

=
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r
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(
ur

r
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)
r
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r

]
+ ρr
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r
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x1

(
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r

)
r
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uϕ
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(
uϕ
r

)
r

x2
r

]
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x1
r

[
x2

(
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r

)
r

x1
r +

uϕ
r + x1

(
uϕ
r

)
r
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r

]
+ ρr
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r

[
ur
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(
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r

)
r
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(
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r

)
r

x2
r

] T

=

 ρr
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r

[
ur
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(
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r

)
r

]
+ ρr

x2
r

[
−uϕ

r − r
(
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r

)
r

]
,

ρr
x1
r

[
uϕ
r + r

(
uϕ
r

)
r

]
+ ρr

x2
r

[
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r + r
(

ur

r

)
r

] T

= ρr

[
ur

r
+ r

(
ur

r

)
r

]
er + ρr

[
uϕ

r
+ r

(
uϕ

r

)
r

]
eϕ. (10)

Substituting expressions (5)–(10) into (1) and (2) produces

div (λ1 (ρ)∇u) = λ′1 (ρ) (∇ρ · ∇) u + λ1 (ρ) △ u

= λ′1 (ρ)

 ρr

[
ur

r + r
(

ur

r

)
r

]
er

+ρr

[
uϕ
r + r

(
uϕ
r

)
r

]
eϕ

 + λ1 (ρ)


[(

ur
r +

ur

r

)
r

]
er

+
[(

uϕr + uϕ
r

)
r

]
eϕ


= (λ1 (ρ))r


[

ur

r + r
(

ur

r

)
r

]
er

+
[

uϕ
r + r

(
uϕ
r

)
r

]
eϕ

 + λ1 (ρ)


[(

ur
r +

ur

r

)
r

]
er

+
[(

uϕr + uϕ
r

)
r

]
eϕ


=

[
(λ1 (ρ))r

(
ur

r
+ r

(
ur

r

)
r

)
+ λ1 (ρ)

(
ur

r +
ur

r

)
r

]
er

+

[
(λ1 (ρ))r

(
uϕ

r
+ r

(
uϕ

r

)
r

)
+ λ1 (ρ)

(
uϕr +

uϕ

r

)
r

]
eϕ

=

[
λ1 (ρ)

(
ur

r +
ur

r

)
r
+ (λ1 (ρ))r ur

r

]
er +

[
λ1 (ρ)

(
uϕr +

uϕ

r

)
r
+ (λ1 (ρ))r uϕr

]
eϕ, (11)

div
(
λ2 (ρ)∇uT

)
= λ′2 (ρ) (∇ρ · ∇) u + λ2 (ρ) div

(
∇uT

)
= λ′2 (ρ)

 ρr

[
ur

r + r
(

ur

r

)
r

]
er

+ρr

[
uϕ
r + r

(
uϕ
r

)
r

]
eϕ

 + λ2 (ρ)
(
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r +
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r

)
r
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= (λ2 (ρ))r


[

ur

r + r
(
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r

)
r

]
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+
[

uϕ
r + r

(
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r

)
r

]
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 + λ2 (ρ)
(
ur

r +
ur

r

)
r
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=

[
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(
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r
+ r

(
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r

)
r

)
+ λ2 (ρ)

(
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r +
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r

)
r

]
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(
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r
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(
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r

)
r
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=

[
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(
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)
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r

]
er +

[
(λ2 (ρ))r uϕr

]
eϕ, (12)
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and

∇ (λ3 (ρ) div u) =λ3 (ρ)∇ (div u) + (div u) λ′3 (ρ)∇ρ

=λ3 (ρ)∇
(
ur

r +
ur

r

)
+

(
ur

r +
ur

r

)
λ′3 (ρ)∇ρ

=

[
λ3 (ρ)

(
ur

r +
ur

r

)
r
+ λ′3 (ρ) ρr

(
ur

r +
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r

)]
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=

[
λ3 (ρ)

(
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r +
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r

)
r
+ (λ3 (ρ))r

(
ur

r +
ur

r

)]
er. (13)

Finally, inserting (11)–(13) into (1) gives (3.5) directly.
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