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Abstract: Forecasting solar irradiance, particularly Global Horizontal Irradiance (GHI), has drawn 

much interest recently due to the rising demand for renewable energy sources. Many works have been 

proposed in the literature to forecast GHI by incorporating weather or environmental variables. 

Nevertheless, the expensive cost of the weather station hinders obtaining meteorological data, posing 

challenges in generating accurate forecasting models. Therefore, this work addresses this issue by 

developing a framework to reliably forecast the values of GHI even if meteorological data are 

unavailable or unreliable. It achieves this by leveraging lag observations of GHI values and applying 

feature extraction capabilities of the deep learning models. An ultra-short-term GHI forecast model is 

proposed using the Convolution Neural Network (CNN) algorithm, considering optimal heuristic 

configurations. In addition, to assess the efficacy of the proposed model, sensitivity analysis of 

different input variables of historical GHI observations is examined, and its performance is compared 

with other commonly used forecasting algorithm models over different forecasting horizons of 5, 15, 

and 30 minutes. A case study is carried out, and the model is trained and tested utilizing real GHI data 

from solar data located in Riyadh, Saudi Arabia. Results reveal the importance of employing historical 

GHI data in providing precise forecasting outcomes. The developed CNN-based model outperformed 

in ultra-short-term forecasting, showcasing average root mean square error results across different 

forecasting horizons: 2.262 W/m2 (5min), 30.569 W/m2 (15min), and 54.244 W/m2 (30min) across 

varied day types. Finally, the findings of this research can permit GHI to be integrated into the power 

grid and encourage the development of sustainable energy systems. 
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1. Introduction  

The tendency toward clean power production is in an ongoing surge due to its beneficial impact 

on the environment. Thus, countries are embracing renewable energy by establishing supportive 

regulations to foster their development [1]. Solar energy is an essential renewable energy source, and 

its use has increased rapidly in recent years. However, one of the drawbacks of using solar electricity 

is its intermittent nature, which makes accurate forecasting of solar power output challenging [2–3]. 

Hence, reliable solar forecasting is essential for efficient solar energy integration into power networks. 

Solar forecasting improves power grid management, energy trading decisions, and power system 

planning and operation [4]. Accurate solar forecasting also encourages optimal solar energy 

consumption, which is critical for the global transition to a sustainable energy system. As a result, 

much research has been carried out in order to produce dependable and accurate solar forecasting 

models. Hence, this study focuses on forecasting Global Horizontal Irradiance (GHI).  

GHI values are greatly influenced by the weather parameters, such as humidity, pressure, air 

temperature, wind speed, and cloud cover. The primary determinants of these variables are the site’s 

geographic location and climate. In addition, four primary categories are taken into account while 

determining the GHI forecasting horizon [5]: Ultra-short-term forecasting (1 second to < 1 hour), short-

term forecasting (1−24 hours), medium-term forecasting (1 week−1 month), and long-term forecasting 

(1 month−1 year). The goals and applications of GHI forecasting may vary depending on the 

stakeholders involved and the time horizon of interest. The ultra-short-term prediction has gained 

constant attention in energy-based real-time applications. For instance, the goal of a 5min GHI forecast 

might be to enable real-time control of power generation and consumption in a microgrid or a building [6]. 

A 15min GHI forecast, on the other hand, might be helpful in energy trading and market participation [7]. 

Power generators and retailers could use the forecast to optimize their bidding strategies in a day-ahead 

or intraday electricity market. A 30min solar forecast could be helpful in scheduling energy resources 

and optimizing energy management in a building, a microgrid, or a community. In contrast, a 60min 

GHI forecast could be helpful for long-term energy planning and grid integration [8]. Hence, this 

research paper builds GHI models considering different forecasting horizons. 

1.1. Related work 

In addition, considering the GHI forecasting methods, statistical techniques, machine learning 

algorithms, and physical models are just a few examples of forecasting algorithms that can be utilized [8]. 

The statistical techniques are divided into (i) machine learning (ML) algorithms, such as support vector 

regression (SVR) and artificial neural networks (ANN), and (ii) time series models, such as 

autoregressive, moving average, exponential smoothing, and autoregressive moving average (ARMA), 

are frequently used in the energy sector. Physical models use mathematical equations to model the 

physical processes influencing GHI output [9]. An example of a physical model is the numerical 

weather prediction (NWP). Each of these algorithms has advantages and disadvantages, and the choice 

of method is determined by aspects such as data availability, forecasting horizon, and the desired level 

of accuracy. K. Omer [10], for instance, examines the performance of the particle swarm optimization 

(PSO) algorithm, ANNs, and bagged tree (BT) methods in forecasting seasonal solar irradiance. Data 

from 2007 to 2020, encompassing variables like air temperature, precipitation, snow mass, air density, 

and cloud cover fraction, are used to predict solar irradiance. The findings indicate that the BT method 
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exhibited the most favorable statistical accuracy. Specifically, the BT model showcased superior 

performance, revealing a coefficient of determination (R2) of 0.992, root mean square error (RMSE) 

of 0.00339, and mean absolute error (MAE) of 0.0199. Solano et al. [11] explored the use of ML 

models, namely SVR, extreme gradient boosting (XGBT), categorical boosting (CatBoost), and 

voting-average (VOA), for solar radiation forecasting in Brazil using input parameters such as dry bulb 

temperature, relative humidity, wind speed, atmospheric pressure, and time of the day. Results revealed 

that VOA outperformed other models in terms of accuracy with RMSE in the winter and summer of 

0.2417 and 0.2877, respectively. Lee et al. [12] also presented ensemble learning-based solar irradiance 

forecasting models using weather data. They used boosted trees, BT, random forest (RF), and 

generalized RF, and compared their performance in short-term prediction of solar irradiance with 

Gaussian process regression and SVR. Results indicated that ensemble approaches led to reliable 

forecasting outcomes for all the considered locations.  

The paper in [13] presents a method for predicting hourly GHI using extraterrestrial radiation 

alongside limited weather forecast data. The study compared the performance of various prediction 

models—BP network, SVM, and the light gradient boosting machine (LightGBM). The LightGBM 

model demonstrated superior performance with the lowest RMSE in the testing set of 126.1 W/m2. 

Moreover, the study explored the influence of weather types on the prediction outcomes. The analysis 

revealed that weather patterns were not the primary influencers on the LightGBM model’s prediction 

outcomes. Interestingly, the model’s accuracy remained unchanged even after excluding weather 

predictors, where the RMSE was found to be 135.2 W/m2. Furthermore, the difficulties of projecting 

the power generation of distributed, small-scale solar PV systems at various horizons and resolutions 

were examined in [14]. The authors presented and assessed many forecasting methodologies, such as 

particle swarm optimization (PSO)-based prediction combinations and base forecasters. The 

assessment procedure compared how well the forecasting techniques work when trained on varying 

data sets and tested in different environments and periods. The findings demonstrated that forecast 

combinations, especially at high resolutions and short horizons, can enhance the performance of 

forecasting models for solar PV power output. The forecasting models are assessed using the median 

absolute scaled error (MASE). The results demonstrated that the proposed PSO-based forecast 

combination approach performed better than the base forecasters and other benchmark models at all 

resolutions and horizons, with a 3.81% reduction in MASE. 

However, these meteorological variables may not be available due to the high cost of weather 

monitoring devices. This presents a significant barrier to generating an accurate forecasting model, 

particularly for regions with limited financial resources. Therefore, one of the significant research gaps 

in GHI forecasting is the possibility of relying solely on lag observations of historical GHI data without 

integrating any weather or environmental variables. This method is also known as persistent 

forecasting or naive forecasting. This approach assumes that the GHI’s future reading will be identical 

to its recent historical output without accounting for any external influences that may affect the output. 

In comparison to more complex algorithms that combine weather and environmental data, the use of 

lag observations alone for GHI forecasting has gotten very little attention in the literature despite its 

simplicity and ease of implementation. This approach, however, may offer potential advantages in 

terms of computational speed and ease of implementation, particularly for short-term solar forecasting 

applications when the influence of external factors may be negligible. As a result, this research aims 

to evaluate the possibility of forecasting GHI future observations using only lag observations.  

Furthermore, machine learning models continue to confront difficulties when processing large 
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amounts of input data, frequently facing complications such as vanishing or expanding gradients [8,15]. 

The rapid expansion of artificial intelligence approaches has resulted in a continued emphasis on deep 

learning (DL), which is known for its excellent performance in tasks such as image recognition [16,17] 

and machine translation [18,19]. To solve these inherent issues, deep learning has been implemented 

into solar prediction. Deep learning models surpass conventional machine learning models in terms of 

accuracy due to their greater feature learning capacity and ability to handle large datasets. S. Tajjour 

et al. [20] conducted a study focused on short-term solar irradiation forecasting utilizing DL models. 

Employing eleven years of NASA satellite data, they evaluated the effectiveness of three specific deep 

learning models: multilayer perceptron (MLP), LSTM, and gated recurrent unit (GRU). The results 

indicated that all three models exhibited comparable accuracy levels, with a mean square error (MSE) 

near to 0.017 kWh/m2/day. Despite containing more layers, the GRU model demonstrated higher 

training speed compared to LSTM. The MLP model emerged as the most efficient, attributed to its fewer 

parameters (49,281) when contrasted with GRU (1,025,793). In addition, M. Elizabeth et al. [21] presented 

a novel multistep CNN-stacked LSTM model designed for short-term solar irradiance prediction. 

Through comparisons with CNN and LSTM models, their proposed approach demonstratesd superior 

performance among contemporary DL models. Moreover, they benchmarked the proposed method 

against traditional ML techniques like linear regression (LR), SVR, and ANN using the same dataset. 

In forecasting solar irradiance, their framework yielded the lowest RMSE and R2 values, achieving 

0.36 and 0.98 W/m2, respectively. 

Moreover, the study in [22] presented a study on predicting solar radiation using a hybrid CNN-

categorical boosting (CNN-CatBoost) model. They used extra-atmospheric solar radiation and three 

weather variables (temperature, humidity, and total cloud volume) to predict solar radiation. The study 

compared the performance of boosting models (XGBoost and CatBoost) and recurrent neural network 

(RNN) models (LSTM and GRU). The results indicated that the hybrid CNN-CatBoost model 

provided accurate predictions of solar radiation by a reduction in MAE values from 0.1104 to 0.1027. 

V. Sansine et al. [23] utilized also a hybrid deep learning model that combined CNN and LSTM 

algorithms (CNN-LSTM) for predicting solar irradiance. Additionally, the study compared the 

performance of the hybrid model with other stand-alone models, including ANN, CNN, and LSTM. 

The results showed that the CNN-LSTM hybrid model outperformed other models, with the best 

statistical error results for probabilistic forecasting. For test data, the CNN-LSTM model achieved an 

RMSE of 91.73 W/m2 and MAE of 60.46 W/m2, with an R2 of 87. The authors in [24] also provided a 

short-term PV forecasting model using the variational autoencoder (VAE) model. They used data from 

two different locations (a parking lot in the US with a size of 243 kW and a PV system in Algeria with 

total capacity of 9 MW). For comparison purposes, they compared VAE with seven DL methods, 

namely the recurrent neural network (RNN), LSTM, bidirectional LSTM, the convolutional LSTM 

network, gated recurrent units, stacked autoencoder, and the restricted Boltzmann machine, and two 

well-known ML methods, namely LR and SVR. The findings showed that DL techniques 

outperformed other ML techniques, while VAE consistently beat the other techniques.  

For time series forecasting, particularly GHI forecasting, CNN has grown in popularity. 

Unfortunately, few research efforts have currently concentrated on the improved CNN in GHI 

forecasting. One of the primary disadvantages of using CNN is their vulnerability to certain parameters. 

The CNN architecture is made up of a set of memory cells that can learn and store information over 

long periods of time, making it ideal for capturing temporal dependencies in sequential data. The 

accuracy and dependability of GHI forecasts can be considerably impacted by the best choice of CNN 

architecture, which entails selecting the number of convolution layers, filters, and the learning rate. 
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The number of convolution layers assists the model in learning complicated connections in the data 

but also raises the possibility of overfitting [25]. Similarly, optimizing learning rates is critical for 

effective model convergence since it regulates the step size in weight updates during training [26]. The 

combination of these parameters is crucial; insufficient convolution layers or incorrectly set learning 

rates can impair the model’s capacity to comprehend the temporal complexities associated with GHI 

data, resulting in suboptimal predictions. Therefore, since finding the optimal design of CNN is 

fundamental for achieving accurate and reliable GHI forecasts and there is little attention in the 

literature on this aspect, the current research discovers the best CNN model architectures that yield the 

best forecasting results.  

1.2. Motivation and contributions of the study 

Based on the discussion above, the primary objective of this research work is to offer a CNN-

based framework aimed at estimating the GHI. The framework consisted of several steps: Data 

collection and preprocessing, data partitioning, CNN model architecture, model training, model testing, 

and model deployment. This framework creates a model that accurately and reliably predict a GHI 

output. Therefore, the following states are the main differences of this study compared to other 

published works in the literature:  

• Optimal selection of CNN architecture: This study considers the best CNN architecture for GHI 

forecasting using solely historical GHI data. This is significant because the choice of CNN’s 

architecture significantly impacts performance. To identify a suitable design, the CNN is tested 

under various combinations of layers, filters per layer, and learning rates. 

• Use of past data of GHI only: In this study, we only used past data of GHI as input to the CNN 

model for forecasting. This differs from many other works that use weather data and GHI data 

for forecasting. This approach is functional when weather data is not available or is unreliable. 

• Comparison with other forecasting algorithms: In this study, the effectiveness of the proposed 

CNN model is compared to that of several well-known forecasting methods, including the RNN, 

ANN, RF, and SVR. This comparison sheds light on how different algorithms compare in terms 

of forecasting GHI. 

• Forecasting horizon: In this study, we concentrated on forecasting GHI over various time 

horizons, including 5, 15, and 30min. This is important because the accuracy of the forecasting 

algorithms may vary depending on the forecasting horizon.  

The structure of this study is as follows: Section 2 provides a comprehensive discussion of the 

problem statement, framework, CNN algorithm, and data preparation techniques utilized. Section 3 

focuses on the sensitivity analysis employed. Sections 4 and 5 present the key findings and provide a 

thorough discussion of the study results. In Section 6, a potential real-world application of the proposed 

CNN-based forecasting model is explored, while Section 7 highlights the study’s conclusions. 

2. Materials and methods 

This section includes the problem statement, a thorough explanation of the research framework, 

and an overview of the CNN algorithm. 

2.1. Problem statement  

The growing significance of solar energy as a renewable energy source has increased, 
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necessitating accurate projections of GHI for effective energy management. Precise estimation of the 

GHI can help utilities and grid operators balance the supply and demand of energy, optimize energy 

storage, and reduce costs associated with energy imbalance. However, forecasting GHI becomes 

challenging due to the lack of meteorological data either by their unavailability or reliability. This 

leaves an open opportunity for further research into the idea of relying purely on lag observations of 

past GHI data without incorporating any weather or environmental variables. In addition, traditional 

forecasting models, such as statistical models, have limitations in capturing the non-linear relationships 

between the input variables and the GHI observation. The CNN algorithm has recently shown promise 

in forecasting GHI. However, there is still a need for research to investigate the effectiveness of CNN-

based models in GHI forecasting and to compare their performance with other forecasting models. 

Additionally, research is required to determine how various data sources, model architectures, and 

hyperparameters affect the precision and dependability of GHI forecasts. By filling in these knowledge 

gaps, forecasting of GHI may be made more accurate and reliable, and more effective energy 

management tactics can be supported. 

2.2. Study framework  

The methodology for forecasting GHI using CNN with different forecasting horizons using only 

lag observations of CNN is shown in Figure 1 and described below: 

• Step 1: Data Collection: The first step is to collect the historical data of GHI. The data should 

be collected at a high temporal resolution, such as every 5min. The data should cover a 

sufficiently long period to include seasonal patterns. 

• Step 2: Data Preprocessing: The collected data should be preprocessed before feeding it to the 

CNN and other forecasting algorithms. The preprocessing steps include data cleaning and 

normalization and splitting the data into training, validation, and testing sets. In this study, we 

only use the lag observations of GHI, meaning that the model only uses past GHI values as inputs.  

• Step 3: Forecasting Horizon Analysis: In this study, we evaluate the performance of the CNN 

model with different forecasting horizons. We generate forecasts for 5, 15, and 30min ahead. 

The performance metrics are calculated for each forecasting horizon, and the results are 

compared to identify the best forecasting horizon. 

• Step 4: CNN Model Design: The CNN model is intended to capture temporal dependencies in 

GHI data. The model is made up of numerous CNN layers that are followed by a fully 

connected layer. The number of CNN layers, neurons in each layer, and the activation functions 

are all hyperparameters that should be tuned.  

• Step 5: Model Training: The designed CNN model is trained on the training data set. During 

training, the model’s weights are modified using an optimization technique such as Adam. 

When the validation loss stops improving, the training process ends. 

• Step 6: Model Evaluation: The trained model is evaluated on the testing data set, to compare 

the CNN model’s performance with other forecasting algorithms. The evaluation metrics used 

include the coefficient of determination (R2), root mean square (RMSE), normalized root mean 

square (nRMSE), mean absolute error (MAE), normalized mean absolute error (nMAE), and 

mean absolute percentage error (MAPE).  

• Step 7: Implementation: The CNN model is implemented using a programming language. In 

this study, we used the MATLAB environment to build the CNN model. 



12329 

AIMS Mathematics  Volume 9, Issue 5, 12323–12356. 

  

Figure 1. Framework of the developed GHI forecasting models. 
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2.3. Convolution Neural Network (CNN) 

The CNN stands as a fundamental DL algorithm that has significantly advanced the field of 

computer vision and image processing [27]. CNNs are specifically designed to process and analyze 

visual data, which renders them ideal for applications such as image recognition, object detection, and 

image classification [28]. One of the advantages of CNNs lies in their capacity to automatically learn 

hierarchical representations of features from raw data [28]. This is achieved through the use of 

specialized layers, including convolutional layers, pooling layers, and fully connected layers (see 

Figure 2). The convolutional layers play a fundamental role in feature extraction by applying adaptable 

filters or kernels to the input data [29]. These filters are convolved with the input to detect patterns, 

edges, and textures, enabling the network to capture meaningful visual information. In contrast, 

pooling layers execute downsampling operations on the feature maps derived from convolutional 

layers, reducing spatial dimensions while retaining crucial features [30]. Popular pooling techniques 

like max pooling and average pooling assist in minimizing computational complexity and prevent 

overfitting. Finally, the fully connected layers process the extracted features to perform classification 

or regression tasks, allowing the network to learn complex relationships in the data [31].  

The initial step involves feeding the input data into the input layer to initiate the process of feature 

transformation. Subsequently, the convolutional and pooling layers work in extracting relevant features 

from the input data. These extracted details are then amalgamated through the fully connected layers. 

Finally, the output layer communicates the result of the feature extraction process. The goal of each 

convolutional layer is specifically geared toward extracting spatial patterns from the input variables 

correlated with the target variable, GHI. This process is illustrated as follows [22]: 

𝑦𝑖𝑘
𝑘 = 𝑓((𝑊𝑘 × ℎ)𝑖,𝑗 + 𝑏𝑘),         (1) 

where 𝑓  is the specified activation function, 𝑊𝑘  represents the kernel weight, and ×  refers to the 

convolution process operator.  

Figure 2. Architecture diagram of the CNN. 

2.4. Data cleaning and normalization 

Data cleaning is an essential step in developing a successful forecasting model. Solar datasets 

should be cleaned and filtered before being fed into the forecasting models. In GHI forecasting, the 

night hours are removed from the database, and only the ones that occur between sunrise and sunset 

are saved. A solar elevation-based pre-processing operation is carried out to accomplish this because 

data near sunset and dawn are frequently incorrect. Hence, solar radiation data is excluded for solar 

elevations less than 10 [32]. Furthermore, normalizing input data is necessary before examining 

forecasting models' performance. The objective here is to mitigate the likelihood that characteristics 
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with substantial numerical values outweigh those with comparatively lower numerical values. 

Equation (2) is used to normalize the input data between 0 and 1.  

𝑥𝑖
𝑛 =

𝑥𝑖−𝑥𝑚𝑖𝑛 

𝑥𝑚𝑎𝑥− 𝑥𝑚𝑖𝑛
,          (2) 

where 𝑥𝑖 is the measured GHI value; 𝑥𝑖
𝑛 is the normalized GHI, while 𝑥𝑚𝑎𝑥 and  𝑥𝑚𝑖𝑛 are the highest 

and lowest values corresponding to the measured GHI that exists in the input dataset, respectively. 

2.5. Model evaluation metrics 

The precision and effectiveness of the forecasting techniques are assessed using the following 

statistical indicators: R2, RMSE, nRMSE, MAE, nMAE, and MAPE. These metrics reflect the degree 

to which the measured values agree with the GHI values generated by the forecasting models. The 

formulas in Eqs (3)−(8) define these metrics [33−35]. 

R2 = 1 −
∑ (𝑦̃−𝑛

𝑖=1  𝑓𝑖)2

∑ (𝑦̃−𝑛
𝑖=1  𝑦𝑖)2

         (3) 

𝑅𝑀𝑆𝐸 = √
1

𝑛
∑ (𝑦𝑖 −𝑛

𝑖=1  𝑓𝑖)2         (4) 

𝑛𝑅𝑀𝑆𝐸 =  
√

1

𝑛
∑ (𝑦𝑖−𝑛

𝑖=1  𝑓𝑖)2

𝑦𝑖,𝑚𝑎𝑥
         (5) 

𝑀𝐴𝐸 = √
1

𝑛
∑ |𝑦𝑖 − 𝑓𝑖|𝑛

𝑖=1           (6) 

𝑀𝐴𝐸 =  
√

1

𝑛
∑ |𝑦𝑖−𝑓𝑖|𝑛

𝑖=1

𝑦𝑖,𝑚𝑎𝑥
          (7) 

𝑀𝐴𝑃𝐸 =
1

𝑛

∑ |𝑦𝑖−𝑓𝑖|𝑛
𝑖=1

𝑦𝑖
.          (8) 

In the above equations, 𝑛 represents the volume of the testing datasets; 𝑦𝑖 denotes the measured 

value of the GHI; 𝑦𝑖,𝑚𝑎𝑥 corresponds to the highest value within the testing dataset, while 𝑓𝑖  represents 

the forecasted value produced by the forecasting models. The mean of the measured GHI values of 𝑦𝑖 is 

represented by 𝑦̃. In regression problems, a model’s R2 indicates how well it fits a set of observations [36]. 

The MAE, known as the mean absolute value of the residuals (forecasting errors), measures the 

average magnitude of errors [37]. On the other hand, the RMSE quantifies the divergence between 

actual GHI readings and forecasted values by considering their squared differences, while MAPE is 

frequently used to determine the forecasting model’s performance accuracy using a percentage form [38]. 

2.6. Study site and dataset source 

Solcast is a corporation that offers solar irradiance data worldwide [39]. Researchers can obtain 

valuable data from it, and the public can freely access these data. The public can access many 

atmospheric parameters via their website (https://solcast.com/). It is possible to acquire various 

meteorological variables over a number of time intervals (5, 30, and 60 minutes), including GHI, 

diffuse horizontal irradiance (DIF), direct normal irradiance (DNI), air temperature, solar zenith angle, 

solar azimuth angle, cloud capacity (a percentage ranging from 0% to 100% completely cloudy), 
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pressure, wind speed, and wind direction. The solar data are collected at Riyadh, Saudi Arabia, with 

the location with the following coordination: latitude: 24.90689 °𝑁 and longitude: 46.39721°𝐸 (see 

Figure 3). The GHI data are gathered in 5min intervals for the period between Jan 1st, 2022, and Dec 

31st, 2022. The maximum GHI reading from the system was found to be on May 15th, 2022, at 10:45 

A.M. with a value of 1076 W/m2, while the average of the GHI readings in 2022 was found to be 

506.75 W/m2. 

 

Figure 3. Solar map of Saudi Arabia and the study site [40]. 

3. Sensitivity analysis 

In this section, a sensitivity analysis is conducted to examine the influence of the different lengths 

of the dataset, the resolution of data, and the seasonal variation of solar radiation on the future 

forecasting output of the GHI readings.  

3.1. Analysis of different lengths of datasets 

Most previous studies used at least one year of data for hour-ahead solar radiation. This amount 

of data is helpful in training the forecasting model, yet it requires a long time to generate the ultimate 

GHI forecasting model. This could hinder its applicability in real-word applications. Hence, this study 

investigates different lengths of datasets, including 1 day, 1 week, 1 month, 2 months, and 3 months, 

for the goal of generating high-accuracy models in a shorter time. A thorough grasp of the temporal 

dynamics and patterns present in solar irradiance data is made possible by investigating several 

temporal spans. For instance, shorter datasets—such as those covering one day or one week—offer 

information on short-term patterns and instantaneous fluctuations, which are essential for 

comprehending the quick changes in GHI brought on by variations in the weather. Longer datasets, on 

the other hand, covering 1, 2, or 3 months, reflect seasonal patterns, long-term climate impacts, and 

possible cyclic patterns that affect solar irradiance. Hence, more resilient and flexible forecasting 

models are made possible by the model’s ability to learn from and adapt to a variety of temporal 

variables through the analysis of these different dataset lengths. In this study, different combinations 

of historical observations of GHI were selected as the input feature, as follows:  
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- 5-min: Previous 5min of GHI readings 

- 15-min: Previous 15min of GHI readings at 5-minute intervals 

- 30-min: Previous 30min of GHI readings at 5-minute intervals 

- 45-min: Previous 45min of GHI readings at 5-minute intervals 

- 60-min: Previous 60min of GHI readings at 5-minute intervals 

In terms of training dataset volume, each of the above combinations of historical observations of 

GHI were trained using historical data of 1 day, 1 week, 1 month, 2 months, and 3 months. A 

comparison study was conducted in this research work to determine the optimum training dataset and 

feature set. 

3.2. Impact of higher-forecasting horizons 

Most of the previous studies that focus on short-term forecasts of GHI are in 1-hour intervals [41]. 

The available data from Solcast are in 5 minutes, enabling the exploration of shorter resolutions of 

data on the accuracy of predicting hour-ahead GHI forecasting. Therefore, this study investigates the 

accuracy of forecasting GHI values at the 5min, 15min, and 30min horizons. To accomplish this, the 

lag observations of GHI mentioned in Subsection 3.1 are used to create the multistep forecasting 

models. In 15min and 30min forecasting horizons, the 1, 2, and 3 months are used only as they led to 

the best forecasting models in case of 5min (see Section 4).  

With all forecasting horizons, the training and testing datasets are divided using the sliding 

window approach. In the sliding window technique, for example, the lag of 30min at 5min intervals 

(window size) are employed as an input and the future 15min at 5min intervals (forecast horizon) are 

used as an output variable (see Figure 4). Through using the sliding window technique, the CNN is 

enabled to use supervised learning. In addition, different ML algorithms are compared with CNN using 

the same set of input features (see Algorithm 1). 

Figure 4. Sliding window approach with different input features.  

Algorithm 1 - Training and Testing Phase 

 ———— Training Phase ———— 

1: Set the length of data: LD = 1 day, 1 week, 1, 2, and 3 months 

2: Set the lag observations of GHI: Lag = 5min, 15min, 30min, 45min, and 60min 
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3: Load the data: M1  

4: Load the output day: D = 288 × 1  

5: Apply Slide Window Technique to divide M1 and D using LD and Lag 

6:  Mark MR as the training dataset 

7:  Mark MS as the testing dataset 

8: Mark MV as the validation dataset 

9:  Split the target T into TR, TS, and TV for training, testing, and validation 

10: Normalize MR, MS, and MV  

11: For each algorithm R, do: 

12:       Train R using MR as input and TR as output 

13:       Validate R using MV as input and TV as output 

14:        Save the trained model TM 

15: End 

 ———— Testing Phase ———— 

16: Load R, MS, and TS 

17: For each trained model TM, do: 

18:       Test TM using MS as input 

19:       Save the estimated output PGHI 

20:       Compare PGHI and TS and save the results 

21: End 

3.3. Impact of seasonal change 

In the literature, most of the studies divide the yearly data into 80% for training and 20% for 

testing to develop the forecasting model. This testing data is unnecessary to reflect all the seasonal 

variations during the year, and the generated model could not be generalized. Hence, the impact of 

seasonal change must be investigated to examine the performance of a forecasting algorithm.  

Analyzing seasonal variations in GHI values across a range of meteorological scenarios is crucial 

for determining the reliability of a forecasting model. These various weather scenarios illustrate the 

changing pattern of solar irradiance throughout the year and depict a range of meteorological 

circumstances that are common across seasons. It is essential to comprehend how the model reacts to 

and predicts GHI in various weather conditions and seasons in order to verify the model’s 

generalizability and dependability. This study, therefore, explored the performance of the CNN 

algorithm with different seasonal changes in GHI observations across varied weather conditions, 

including rainy, cloudy, partially cloudy, partially sunny, and sunny days. In this study, therefore, a 

total of 25 independent models were generated for each type of day. Each day was examined with 5 

different volumes of dataset (1 day, 1 week, 1 month, 2 months, and 3 months) in which there were 5 

different combinations of historical observations of GHI. 

3.3.1. Classification of day type  

Many studies have used weather or day-type categorization to forecast GHI, aiming to organize 

vast datasets characterized by significant fluctuations [42,43]. Most of these studies divided the type 

of day according to the general metrological conditions. In this paper, nevertheless, the seasonal 

variation was captured by classifying days into five groups based on the incident solar radiation (W/m2). 

Equation (9) determines the type of day using the ratio (Rday) that compares the daily measured GHI 

to the daily clear sky GHI data, which are collected from CAMS [44]. After obtaining the value of Rday, 
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the type of day was classified based on the Rday range shown in Table 1 [45]. 

𝑅𝑑𝑎𝑦 =
Daily measured GHI

 Daily clear sky GHI
 × 100%.      (9) 

Table 1. Classification of day type based on measured and clear sky GHI. 

Day type Range of measured GHI to clear sky GHI 

Sunny 𝑅𝑑𝑎𝑦 > 90% 

Partially Sunny 70% < 𝑅𝑑𝑎𝑦 ≤ 90% 

Partially Cloudy 50%% < 𝑅𝑑𝑎𝑦 ≤ 70% 

Cloudy 30% < 𝑅𝑑𝑎𝑦 ≤ 50% 

Rainy 𝑅𝑑𝑎𝑦 ≤ 30% 

4. Results and discussion  

This section compares the CNN forecasting models based on a number of error metrics to assess how 

well they performed in estimating the GHI output. The results of the CNN models with different time ahead 

horizons (5min, 15min, and 30min) forecasting are listed in Tables 3 and 7, respectively. Figures 5, 11, 

and 12 display graphical representations of the five selected days, with each forecasting model based on 

5min ahead and multi-step forecasting within 15min and 30min forecasting horizons, respectively.  

4.1. Case 1: Hour-ahead forecasting based on 5min  

This section discusses the results of the hour-ahead forecasting of the GHI based on 5min. This 

section covers the following topics: Choosing the optimal feature set, optimizing hyperparameters, 

comparing the proposed CNN with other widely used forecasting algorithms, predicting outcomes, 

and examining the execution time of the proposed CNN model.  

4.1.1. Input features selection  

Variations in the number of lag observations could significantly affect the accuracy of the GHI 

forecasting in the future. Furthermore, the amount of trained data may result in accurate prediction and 

faster generation of the subsequent GHI reading, which is essential for real-time applications. Therefore, 

for every type of day, 25 independent models were created. Every day was analyzed using five distinct 

dataset volumes—1 day, 1 week, 1 month, 2 months, and 3 months—each containing five possible 

combinations of GHI’s historical observations—lag 5min, 15min, 30min, 45min, and 60min, each at 5min 

intervals. The evaluation herein is accomplished with the initial hyperparameters displayed in Table 2. 

Table 2. Initial hyperparameters used with 5, 15, and 30min.  

Name Configuration/Value 

Input Feature Training Set GHIt-1, GHIt-3, GHIt-6, GHIt-9, GHIt-12 

Volume of Dataset Previous 1 day, week, month, 2–3 months  

Number of ConvLayers 3 

Number of Filters in Each ConvLayer 100 

Learning Rate 0.001 

Epochs 100 

Optimizer Adam 
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Table 3. Statistical results of the CNN model for 5min forecast. RMSE and MAE (W/m2); nRMSE, nMAE, and MAPE (%). 

  1 Day  1 Week 
 Day Type R2 RMSE nRMSE MAE  nMAE MAPE 

  

R2 RMSE nRMSE MAE nMAE MAPE 

5 min 

Rainy 0.991 12.126 2.411 10.433 2.074 14.124 0.999 3.232 0.643 2.428 0.483 4.745 

Cloudy 0.993 27.048 2.794 18.759 1.938 36.895 1.000 3.517 0.363 2.687 0.278 3.627 

Partially Cloudy  0.997 18.216 1.971 13.533 1.465 19.835 1.000 3.786 0.410 3.510 0.380 2.152 

Partially Sunny 0.997 16.194 1.738 10.001 1.073 19.106 1.000 2.225 0.239 1.590 0.171 2.251 

Sunny 0.998 16.508 1.556 12.470 1.175 16.846 1.000 2.225 0.210 1.647 0.155 2.450 

Average  0.995 18.018 2.094 13.039 1.545 21.361 1.000 2.997 0.373 2.372 0.293 3.045 

15 min 

Rainy 0.984 16.517 3.284 12.925 2.570 14.246 0.997 7.230 1.437 5.378 1.069 5.718 

Cloudy 0.976 48.991 5.061 38.327 3.959 37.743 0.992 27.926 2.885 17.790 1.838 8.821 

Partially Cloudy  0.991 29.501 3.193 19.974 2.162 21.300 0.996 20.252 2.192 12.264 1.327 5.388 

Partially Sunny 0.996 19.324 2.073 13.896 1.491 20.092 0.999 9.618 1.032 7.624 0.818 4.068 

Sunny 0.997 18.878 1.779 13.902 1.310 17.990 1.000 7.040 0.664 6.231 0.587 3.106 

Average  0.989 26.642 3.078 19.804 2.298 22.274 0.997 14.413 1.642 9.857 1.128 5.420 

30 min 

Rainy 0.970 22.585 4.490 16.326 3.246 17.293 0.994 10.216 2.031 8.067 1.604 8.554 

Cloudy 0.934 81.516 8.421 60.322 6.232 46.864 0.991 29.764 3.075 20.495 2.117 14.148 

Partially Cloudy  0.979 45.330 4.906 30.559 3.307 23.051 0.993 26.500 2.868 17.484 1.892 7.980 

Partially Sunny 0.992 27.583 2.960 22.792 2.446 24.775 0.998 12.574 1.349 10.745 1.153 6.166 

Sunny 0.991 33.338 3.142 26.222 2.471 20.780 0.999 12.348 1.164 10.537 0.993 6.082 

Average  0.973 42.070 4.784 31.244 3.540 26.552 0.995 18.280 2.097 13.466 1.552 8.586 

45 min 

Rainy 0.935 33.144 6.589 26.322 5.233 23.155 0.994 10.311 2.050 8.415 1.673 9.419 

Cloudy 0.925 86.526 8.939 66.568 6.877 55.132 0.992 28.544 2.949 20.754 2.144 15.588 

Partially Cloudy  0.958 63.838 6.909 46.198 5.000 30.674 0.982 41.900 4.535 27.981 3.028 12.387 

Partially Sunny 0.988 33.378 3.581 27.887 2.992 25.047 0.998 14.664 1.573 12.285 1.318 6.497 

Sunny 0.990 35.204 3.318 27.967 2.636 20.827 0.999 13.378 1.261 12.089 1.139 6.028 

Average  0.959 50.418 5.867 38.988 4.548 30.967 0.993 21.759 2.474 16.305 1.861 9.984 

60 min 

Rainy 0.920 36.776 7.311 29.435 5.852 25.106 0.984 16.306 3.242 13.818 2.747 16.101 

Cloudy 0.944 74.659 7.713 53.814 5.559 33.526 0.991 30.270 3.127 23.569 2.435 19.469 

Partially Cloudy  0.958 64.056 6.932 45.788 4.955 32.365 0.975 49.311 5.337 32.434 3.510 14.275 

Partially Sunny 0.997 17.192 1.845 12.829 1.377 9.449 0.998 15.043 1.614 12.583 1.350 7.080 

Sunny 0.984 44.244 4.170 34.456 3.248 23.752 0.998 13.829 1.303 12.420 1.171 6.429 

Average  0.961 47.385 5.594 35.264 4.198 24.840 0.989 24.952 2.925 18.965 2.243 12.671 

Continued on next page 
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  1 Month  2 Months 
 Day Type R2 RMSE nRMSE MAE nMAE MAPE 

 

R2 RMSE nRMSE MAE nMAE MAPE 

5 min 

Rainy 0.996 7.739 1.539 7.175 1.427 10.222 0.999 2.959 0.588 2.794 0.555 3.651 

Cloudy 1.000 6.296 0.650 6.222 0.643 4.855 1.000 3.916 0.405 3.356 0.347 4.739 

Partially Cloudy 1.000 3.583 0.388 3.223 0.349 1.986 1.000 1.202 0.130 0.606 0.066 1.476 

Partially Sunny 1.000 2.785 0.299 2.543 0.273 2.504 1.000 2.543 0.273 1.954 0.210 2.052 

Sunny 1.000 4.114 0.388 3.923 0.370 2.468 1.000 2.953 0.278 2.534 0.239 1.674 

Average 0.999 4.903 0.653 4.617 0.612 4.407 1.000 2.714 0.335 2.249 0.283 2.718 

15 min 

Rainy 0.995 9.012 1.792 7.074 1.406 5.736 0.996 8.616 1.713 6.784 1.349 5.494 

Cloudy 0.991 30.495 3.150 19.753 2.041 9.277 0.991 30.846 3.187 19.881 2.054 9.337 

Partially Cloudy 0.993 26.827 2.903 16.250 1.759 6.769 0.994 25.199 2.727 15.552 1.683 6.134 

Partially Sunny 0.999 8.627 0.926 7.436 0.798 4.119 0.999 7.994 0.858 6.796 0.729 3.550 

Sunny 0.999 12.525 1.180 10.297 0.971 5.123 0.999 11.530 1.087 10.345 0.975 4.279 

Average 0.995 17.497 1.990 12.162 1.395 6.205 0.996 16.837 1.914 11.872 1.358 5.759 

30 min 

Rainy 0.994 10.030 1.994 7.490 1.489 6.177 0.995 9.058 1.801 6.853 1.362 5.461 

Cloudy 0.991 29.271 3.024 18.843 1.947 9.026 0.991 29.529 3.051 19.578 2.023 9.597 

Partially Cloudy 0.993 25.991 2.813 16.130 1.746 6.521 0.993 26.987 2.921 17.597 1.904 7.013 

Partially Sunny 0.999 11.418 1.225 9.955 1.068 5.538 0.999 10.728 1.151 9.521 1.022 4.855 

Sunny 0.999 12.801 1.207 10.553 0.995 5.050 0.999 12.534 1.181 11.279 1.063 4.838 

Average 0.995 17.902 2.052 12.594 1.449 6.463 0.995 17.767 2.021 12.966 1.475 6.353 

45 min 

Rainy 0.995 9.085 1.806 7.114 1.414 6.011 0.995 9.634 1.915 6.908 1.373 5.570 

Cloudy 0.991 30.055 3.105 23.661 2.444 19.040 0.995 21.638 2.235 14.369 1.484 7.504 

Partially Cloudy 0.990 30.539 3.305 19.056 2.062 6.674 0.986 36.411 3.941 23.935 2.590 9.285 

Partially Sunny 0.998 14.462 1.552 12.793 1.373 6.895 0.998 13.473 1.446 12.105 1.299 5.834 

Sunny 0.998 14.166 1.335 12.043 1.135 5.099 0.999 13.057 1.231 11.789 1.111 5.291 

Average 0.995 19.661 2.221 14.933 1.686 8.744 0.995 18.843 2.153 13.821 1.572 6.697 

60 min 

Rainy 0.995 9.499 1.889 7.469 1.485 6.289 0.995 9.472 1.883 7.743 1.539 6.547 

Cloudy 0.993 27.386 2.829 21.462 2.217 17.045 0.995 21.724 2.244 15.642 1.616 8.754 

Partially Cloudy 0.991 29.400 3.182 19.302 2.089 6.689 0.986 36.779 3.980 24.659 2.669 9.643 

Partially Sunny 0.997 15.760 1.691 14.057 1.508 7.265 0.998 13.912 1.493 12.531 1.344 5.996 

Sunny 0.998 14.958 1.410 12.453 1.174 5.304 0.999 13.196 1.244 11.898 1.121 5.123 

Average 0.995 19.401 2.200 14.949 1.695 8.519 0.995 19.017 2.169 14.495 1.658 7.213 

Continued on next page 
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3 Months 

 
Day Type R2 RMSE nRMSE MAE nMAE MAPE 

5 min 

Rainy 0.999 3.332 0.662 3.196 0.635 4.247 

Cloudy 0.999 9.834 1.016 9.384 0.969 6.022 

Partially Cloudy 1.000 3.038 0.329 2.523 0.273 1.556 

Partially Sunny 0.999 8.317 0.892 7.169 0.769 2.417 

Sunny 1.000 2.070 0.195 1.484 0.140 2.244 

Average 1.000 5.318 0.619 4.751 0.557 3.297 

15 min 

Rainy 0.994 9.715 1.931 7.185 1.428 5.563 

Cloudy 0.990 31.772 3.282 21.025 2.172 9.522 

Partially Cloudy 0.994 24.199 2.619 14.649 1.585 5.798 

Partially Sunny 0.999 8.593 0.922 7.533 0.808 3.966 

Sunny 0.999 9.670 0.911 8.890 0.838 4.296 

Average 0.995 16.790 1.933 11.856 1.366 5.829 

30 min 

Rainy 0.994 10.448 2.077 7.247 1.441 5.522 

Cloudy 0.991 30.167 3.116 20.599 2.128 9.822 

Partially Cloudy 0.994 24.899 2.695 15.730 1.702 6.377 

Partially Sunny 0.999 10.640 1.142 9.396 1.008 4.672 

Sunny 0.999 12.919 1.218 10.916 1.029 5.225 

Average 0.995 17.815 2.049 12.777 1.462 6.324 

45 min 

Rainy 0.992 11.471 2.281 8.978 1.785 7.808 

Cloudy 0.996 20.459 2.114 13.034 1.346 6.836 

Partially Cloudy 0.996 20.385 2.206 14.612 1.581 6.182 

Partially Sunny 0.998 13.562 1.455 12.012 1.289 5.635 

Sunny 0.999 13.006 1.226 11.798 1.112 4.970 

Average 0.996 15.776 1.856 12.087 1.423 6.286 

60 min 

Rainy 0.991 12.416 2.468 9.876 1.963 8.974 

Cloudy 0.996 18.737 1.936 12.189 1.259 6.280 

Partially Cloudy 0.996 19.641 2.126 14.246 1.542 6.135 

Partially Sunny 0.998 15.136 1.624 13.668 1.466 6.538 

Sunny 0.999 13.065 1.231 11.868 1.119 5.018 

Average 0.996 15.799 1.877 12.369 1.470 6.589 

Table 3 lists the statistical error results of each type of day with different combinations and 

volumes of historical datasets. It can be observed from Table 3 that 2 months of data with 5min lag 

observation has the best forecasting performance with each type of day. This indicates that seasonal 

trends and the long-term climatic effects of solar irradiance can be reflected in the 2 months of trained 

data. Furthermore, the preceding 5min data provides insights into short-term trends and immediate 

variations in sun irradiation. According to the statistical error measurement shown in Table 3, the 

average value of the R2 of all the days is 0.9999, while the RMSE and MAE are found to be 2.714 

W/m2 and 2.249 W/m2, respectively. In addition, 1 week and 1 month of data with 5min of previous 

GHI measurements could lead to satisfactory forecasting results, where R2, RMSE, and MAE are 0.999, 

2.997 W/m2, and 2.372 W/m2, respectively, for 1 week and 0.999, 4.903 W/m2, and 4.617 W/m2, 

respectively, for 1 month. On the other hand, 1 day of data performs poorly regardless of the type of 

day and the amount of trained data.  
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Comparing the lag observation of data, the previous 5min of GHI readings led to the best 

forecasting results for all days and volume of data—1 day, 1 week, 1 month, 2 months, and 3 months. 

The 15min and 30min at 5min intervals came in second and third place in generating models with 

high-accuracy outcomes, respectively. Hence, the 2 months of the trained dataset with the previous 

5min of the GHI reading (2M-5min) is selected as the best feature set to predict the future 5min output 

of the GHI.  In addition, and for further visualization, Figure 5 depicts the performance of different 

models when the measured GHI values are plotted against the predicted value of the GHI model. 

Figure 5. The performance of the CNN model with different data volume and historical 

GHI data for a 5min forecast. (1D-60min: 1 day of data with the previous 60min of GHI 

readings at a 5min interval). 

4.1.2. Hyperparameter tuning  

Hyperparameter selection is an important step when using deep learning algorithms for prediction, 

such as CNN. This stage helps to improve overall precision and shorten the algorithm’s execution time. 

A comprehensive evaluation of the previously mentioned validation criteria is combined with a 

heuristic technique to discover the optimal set of hyperparameters for the GHI forecasting using the 

CNN algorithm. The best-predicting results were obtained using the 2 months of the trained dataset 

with the previous 5min of the GHI reading, as mentioned in Subsection 4.1.1. Therefore, this set of features 

was selected to carry out the hyperparameter tuning for 5min forecasting horizon at the study site.  

There are no set techniques when it comes to hyperparameter tuning. Nonetheless, the following 

order for fine-tuning the hyperparameters was chosen for the GHI forecasting based on the literature 

analysis and best practices: Number of convolution layers (ConvLayer), number of filters at each 

ConvLayer, and learning rate. For hyperparameter tuning, the falling leaf approach was used as it offers 

a more flexible and dynamic way to explore the hyperparameter space. In this approach, for instance, 
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the process is continued with various combinations of several filters after determining the ideal number 

of ConvLayers. For example, it was found that the two ConvLayers with 32 filters at each layer 

produced the best forecasting outcomes out of the (1, 2, 3) ConvLayers. The two ConvLayers were 

fixed in the following phase, and various learning rates were examined.  

Figures 6 and 7 show the performance comparison to obtain the optimal number of ConvLayers, 

filters, and learning rates, respectively. Figure 6 depicts the statistical error results of 1, 2, and 3 

ConvLayers with the number of filters as 32, 64, 100, and 128. It can be seen that a setup with 2 

ConvLayers with 32 filters (2-ConvLayer (32)) had the best forecasting outcomes. Hence, 2 

ConvLayers with 32 filters were selected to continue in the hyperparameter tuning process.  

 

Figure 6. The performance comparison to obtain the optimal number of ConvLayers and 

filters for a 5min forecasting horizon. 

The performance comparison between two ConvLayers, each with 32 filters, is shown in Figure 7 in 

order to determine the ideal learning rate value. Compared to 0.1, 0.01, 0.001, and 0.0001, it can be 

seen that the learning rate of 0.001 produced better forecasting outcomes. As a result, Table 4 lists the 

ultimate, best CNN configurations chosen for 5min ahead of GHI forecasting of the study site.  

 

Figure 7. The performance comparison to obtain the optimal learning rate for a 5, 15, and 

30min forecasting horizon. 
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Table 4. Optimal CNN configurations chosen for 5, 15, and 30min ahead of GHI forecasting. 

 
5min Prediction 15min Prediction 30min Prediction 

Name Configuration/Value Configuration/Value Configuration/Value 

Input Feature  

Training Set 
GHIt-1 GHIt-3 GHIt-9 

Volume of Dataset 
Previous 2 Months of 

GHI Observations 

Previous 2 Months of 

GHI Observations 

Previous 3 Months of 

GHI Observations 

Number of ConvLayers 2 3 3 

Number of Filters in 

Each ConvLayer 
32 100 100 

Learning Rate 0.001 0.001 0.0001 

Epochs 100 100 100 

Optimizer Adam Adam Adam 

4.1.3. Comparing the proposed CNN with other forecasting algorithms  

The forecasting performance of the developed forecasting model was evaluated against four 

popular forecasting algorithms, namely RNN, ANN, RF, and SVR. Table 5 contains the results of 

developed CNN, RNN, ANN, RF, and SVR. To ensure a fair comparison, the best input features (2M-

5min) identified in the Subsection 4.1.1 were used as input to RNN, ANN, RF, and SVR. According to 

Table 5, the proposed forecasting models with optimal input features and configurations outperformed 

the other forecasting models in predicting the future values of GHI with low RMSE, MAE, and MAPE 

values for all the day types. Regarding models fitting accuracy with the CNN, the proposed model had 

the best prediction outcomes, where the average value RMSE for the five days was found to be 2.262 

W/m2, MAE was found to be 1.794 W/m2, and MAPE was found to be 2.17%. The RNN algorithm 

showed promising performance with an average RMSE value of 3.062 W/m2, MAE of 2.192 W/m2, 

and MAPE of 2.169%. ANN, RF, and SVR came in third, fourth, and fifth, respectively.  

Table 5. Statistical results of the CNN model with optimal configurations compared to other 

ML models for a 5min forecast. RMSE and MAE (W/m2); nRMSE, nMAE, and MAPE (%). 

CNN 

Day Type R2 RMSE nRMSE MAE nMAE MAPE 

Rainy 0.999554 2.744083 0.545543 2.511927 0.499389 3.468878 

Cloudy 0.999892 3.292661 0.340151 2.818895 0.291208 2.481333 

Partially Cloudy 0.999986 1.171729 0.126811 0.484412 0.052425 1.347758 

Partially Sunny 0.999963 1.862934 0.199886 1.29169 0.138593 2.084594 

Sunny 0.999959 2.237807 0.210915 1.864288 0.17571 1.46848 

Average 0.999871 2.261843 0.284661 1.794242 0.231465 2.170209 

RNN 

Day Type R2 RMSE nRMSE MAE nMAE MAPE 

Rainy 0.999451 3.045107 0.605389 2.320046 0.461242 2.682643 

Cloudy 0.999819 4.263271 0.440421 3.058548 0.315966 2.981755 

Partially Cloudy 0.999936 2.495266 0.27005 1.844726 0.199646 1.954493 

Partially Sunny 0.999926 2.639085 0.283164 1.804686 0.193636 1.510071 

Sunny 0.999933 2.868403 0.270349 1.933374 0.182222 1.71893 

Average 0.999813 3.062226 0.373875 2.192276 0.270542 2.169579 

Continued on next page 
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ANN 

Day Type R2 RMSE nRMSE MAE nMAE MAPE 

Rainy 0.997896 5.959759 1.184843 5.801542 1.153388 7.458361 

Cloudy 0.999648 5.938251 0.613456 5.205368 0.537745 7.427777 

Partially Cloudy 0.999934 2.535143 0.274366 2.21285 0.239486 1.144426 

Partially Sunny 0.999835 3.957284 0.424601 3.36722 0.36129 1.275724 

Sunny 0.999907 3.368667 0.317499 2.613383 0.246313 1.265069 

Average 0.999444 4.351821 0.562953 3.840073 0.507644 3.714272 

RF 

Day Type R2 RMSE nRMSE MAE nMAE MAPE 

Rainy 0.996923 7.207522 1.432907 5.298681 1.053416 5.359766 

Cloudy 0.999475 7.250545 0.749023 5.075886 0.524368 4.413965 

Partially Cloudy 0.999702 5.399749 0.584388 4.015516 0.43458 2.830605 

Partially Sunny 0.999583 6.28164 0.673996 4.359316 0.467738 2.586884 

Sunny 0.999454 8.184438 0.771389 5.160276 0.48636 2.517631 

Average 0.999028 6.864779 0.842341 4.781935 0.593292 3.54177 

SVR 

Day Type R2 RMSE nRMSE MAE nMAE MAPE 

Rainy 0.996895 7.240124 1.439388 5.658349 1.12492 10.83215 

Cloudy 0.9984 12.65985 1.307836 10.33041 1.067191 11.6109 

Partially Cloudy 0.996976 17.21449 1.86304 14.31814 1.549583 14.65393 

Partially Sunny 0.996518 18.15265 1.94771 12.95612 1.390141 6.40973 

Sunny 0.99783 16.31258 1.537472 12.63674 1.191022 10.14963 

Average 0.997324 14.31594 1.619089 11.17995 1.264571 10.73127 

In addition, Figure 8 illustrates the efficacy of the proposed CNN model in comparison to RNN, 

ANN, RF, and SVR for the five specified days. Figure 8(a) depicts that when input features and CNN 

hyperparameters were appropriately selected, the proposed CNN model exceled in accurately tracing 

the actual values of the GHI output, outperforming other models. Furthermore, the boxplots shown in 

Figure 8(b) were designed to offer a more comprehensive assessment of the forecasting models' 

predictive performance. A box and whisker plot (BWP) shows the distribution of the mean absolute 

error (MAE) when all of the predicted days are combined. While analyzing the BWP, an outlier is a 

data point that deviates quantitatively from the rest of the data (shown by the red cross). Consistent 

with earlier deductions, the proposed CNN models consistently outperformed the RNN, ANN, RF, and 

SVR. This superior performance is also highlighted in the scatter plots presented in Figure 9. This 

figure shows the measured versus predicted GHI output values acquired by the proposed CNN model 

compared to the RNN and SVR models for the five simulation days.  
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(a) 

 

(b) 

Figure 8. (a) The efficacy of the proposed CNN model in comparison to RNN, ANN, RF, 

and SVR for the five specified days. (b) Boxplot comparing the MAE error values of the 

proposed CNN and other models for all the considered days. 
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Figure 9. The measured versus predicted GHI output values of proposed CNN, RNN and 

SVR models. 

4.1.4. One week of forecasting  

To further examine the performance of the proposed forecasting model, a randomly selected week 

(December 5–11, 2022) is forecasted using the optimal set of input features and CNN configurations. 

The forecasting accuracy results are shown in Table 6 and Figure 10. According to Table 6, the 5min 

ahead forecast led to an RMSE value of 2.2785 W/m2, while the MAE and MAPE were found to be 

1.59 W/m2 and 2.913%, respectively. It can be inferred that the accuracy of forecasting models steadily 

declined, starting with its best forecasting result 5min ahead and ending at a 30min estimate. While 

the time horizon lengthens, the accuracy of various models gradually declined, and the uncertainty in 

observations of GHI forecasting grew. 

Table 6. Statistical results of the CNN model with optimal configurations for one week—

5, 15, and 30min forecast. RMSE and MAE (W/m2); nRMSE, nMAE, and MAPE (%). 
 

R2 RMSE nRMSE MAE nMAE MAPE 

5min 0.999895 2.278482 0.312121 1.509018 0.206715 2.912875 

15min 0.982755 29.24868 4.006669 15.76139 2.159094 8.80489 

30min 0.927333 60.04036 8.224707 33.48643 4.587183 19.32963 
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Figure 10. The performance of the CNN model with optimal input features and 

configurations for 5, 15, and 30min forecasting horizons. 

4.1.5. Analysis of execution time 

The system used for the simulations consists of an Intel Core i7-7700@ 4.20GHz CPU, an 

NVIDIA GeForce GTX 1080 GPU, and 16 GB of RAM. The computer simulation environment is 

MATLAB, which permits the usage of GPUs that support the CUDA Toolkit. Utilizing a GPU greatly 

accelerated computing; therefore, to generate the forecasting model in fast execution time, especially 

with a large amount of training dataset, it is recommended to use high-performance GPUs. For 5min 

ahead of forecasting the GHI, the average running time of the optima prediction model was 57 seconds 

for the five selected days. Nevertheless, the model training consumed over 95% of the entire run 

duration. In a real-time scenario, loading a model that has already been trained can reduce the 

simulation time for the purpose of a 5min GHI forecast.  

5. Cases 2 and 3: Hour-ahead forecasting based on 15min and 30min 

The outcomes of the hour-ahead GHI forecasting based on 15min and 30min horizons are covered 

in this section. The following topics are covered in this section: Selecting the best feature set, fine-

tuning hyperparameters, evaluating the proposed CNN with other popular forecasting algorithms, 

predicting results, and investigating the recommended CNN model’s execution time. 

5.1. Input features selection  

Similar to what was conducted with a 5min prediction horizon, every day was analyzed to cover 

the seasonal variations and examine the performance of the CNN algorithm. Regarding the data 

volume, however, 1 month, 2 months, and 3 months were used as input features with 15min and 30min 

multistep forecasts. Each trained data contained five possible combinations of GHI’s historical 
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observations—lag 5min, 15min, 30min, 45min, and 60min, each at 5min intervals. Hence, in this case, 

and for each specific day, a total of 15 models were created. The analysis conducted for 15min and 

30min multistep forecasts used the first set of hyperparameters shown in Table 2. 

Table 7 presents the 15min multistep statistical error results for each type of day based on different 

combinations of historical dataset quantities and the lag readings of GHI readings. In comparison to 

other developed models, the results show that 2 months of data with a 15min lag in observation (2M-

15min) performed the best for the 15min ahead forecast scenario. The average values of R2, RMSE, 

MAE, and MAPE for all days are 0.9708, 35.776 W/m2, 20.685 W/m2, and 12.437%, respectively. On 

the other hand, the 3 months of training data with the previous 45min of input GHI values (3M-45min) 

outperformed other models for the 30min multistep forecasts of GHI. The error values of R2, RMSE, 

MAE, and MAPE generated with this model were found to be 0.9276, 56.319 W/m2, 36.891 W/m2, 

and 19.711%. In addition, Table 7 indicates that regardless of the trained data, the input feature of lag 

5min of GHI had the worst accuracy in predicting the 15min and 30min multistep of GHI forecasts. 

Furthermore, and for additional visualization, Figures 11 and 12 show how various models performed 

when the measured GHI values were plotted against the GHI model’s predicted value for the 15min 

and 30min multistep, respectively. 

 

Figure 11. The performance of the CNN model with different data volume and historical 

GHI data for a 15min forecast. (1D-60min: 1 day of data with the previous 60min of GHI 

readings at a 5min interval). 



12347 

AIMS Mathematics  Volume 9, Issue 5, 12323–12356. 

 

Figure 12. The performance of the CNN model with different data volume and historical 

GHI data for a 30min forecast. (1D-60min: 1 day of data with the previous 60min of GHI 

readings at a 5min interval). 
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Table 7. Statistical results of the CNN model for 15min forecast. RMSE and MAE (W/m2); nRMSE, nMAE, and MAPE (%). 

  1 Month  2 Months 
 Day Type R2 RMSE nRMSE MAE nMAE MAPE 

 

R2 RMSE nRMSE MAE nMAE MAPE 

5 min 

Rainy -0.341 151.974 30.213 134.780 26.795 259.437 -0.016 132.290 26.300 107.808 21.433 185.087 

Cloudy 0.054 307.945 31.813 243.428 25.148 186.257 0.111 299.220 30.911 232.845 24.054 530.840 

Partially Cloudy 0.241 272.774 29.521 212.433 22.991 107.753 0.266 268.127 29.018 208.578 22.573 101.295 

Partially Sunny -0.529 380.334 40.808 328.531 35.250 97.006 -0.246 343.408 36.846 293.574 31.499 104.098 

Sunny -0.584 440.813 41.547 383.998 36.192 119.535 -0.389 412.770 38.904 360.339 33.962 122.886 

Average -0.232 310.768 34.780 260.634 29.275 153.998 -0.055 291.163 32.396 240.629 26.704 208.841 

15 min 

Rainy 0.928 34.849 6.928 18.984 3.774 12.896 0.936 33.327 6.626 17.919 3.563 15.809 

Cloudy 0.961 62.132 6.419 36.612 3.782 19.552 0.964 60.122 6.211 34.817 3.597 27.607 

Partially Cloudy 0.957 64.817 7.015 34.049 3.685 10.714 0.956 65.310 7.068 34.563 3.741 10.991 

Partially Sunny 0.997 15.571 1.671 13.606 1.460 4.844 0.999 10.887 1.168 8.206 0.881 3.893 

Sunny 0.999 8.519 0.803 7.035 0.663 3.202 0.999 9.234 0.870 7.917 0.746 3.882 

Average 0.969 37.178 4.567 22.057 2.673 10.242 0.971 35.776 4.389 20.684 2.505 12.437 

30 min 

Rainy 0.903 40.800 8.111 23.025 4.578 21.055 0.914 38.425 7.639 20.759 4.127 16.327 

Cloudy 0.971 54.233 5.603 31.044 3.207 15.604 0.975 49.996 5.165 27.662 2.858 17.823 

Partially Cloudy 0.945 73.707 7.977 38.577 4.175 12.058 0.946 72.497 7.846 36.870 3.990 12.649 

Partially Sunny 0.998 12.818 1.375 9.204 0.988 4.548 0.998 13.396 1.437 9.620 1.032 5.403 

Sunny 0.999 7.837 0.739 6.265 0.590 3.466 0.999 11.493 1.083 10.204 0.962 4.782 

Average 0.963 37.879 4.761 21.623 2.708 11.346 0.967 37.161 4.634 21.023 2.594 11.397 

45 min 

Rainy 0.902 41.108 8.173 25.451 5.060 23.409 0.923 36.540 7.264 21.447 4.264 20.649 

Cloudy 0.966 58.486 6.042 36.243 3.744 21.060 0.970 54.832 5.664 32.137 3.320 18.834 

Partially Cloudy 0.947 71.916 7.783 41.228 4.462 13.285 0.949 70.883 7.671 41.031 4.441 13.138 

Partially Sunny 0.997 15.771 1.692 13.480 1.446 5.385 0.998 13.418 1.440 10.058 1.079 7.146 

Sunny 0.998 13.700 1.291 12.037 1.135 4.174 0.998 13.621 1.284 11.568 1.090 4.274 

Average 0.962 40.196 4.996 25.688 3.169 13.463 0.968 37.859 4.665 23.248 2.839 12.808 

60 min 

Rainy 0.919 37.443 7.444 22.725 4.518 21.549 0.930 34.759 6.910 21.038 4.182 19.585 

Cloudy 0.962 61.399 6.343 37.481 3.872 23.272 0.968 56.676 5.855 35.954 3.714 42.472 

Partially Cloudy 0.952 68.303 7.392 40.576 4.391 12.987 0.955 66.186 7.163 38.273 4.142 13.827 

Partially Sunny 0.996 18.719 2.008 15.613 1.675 6.081 0.997 16.816 1.804 14.065 1.509 5.592 

Sunny 0.999 12.944 1.220 11.090 1.045 5.579 0.999 12.915 1.217 11.286 1.064 6.521 

Average 0.966 39.761 4.881 25.497 3.100 13.894 0.970 37.470 4.590 24.123 2.922 17.600 

Continued on next page 
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  3 Months 
 Day Type R2 RMSE nRMSE MAE nMAE MAPE 

5 min 

Rainy -0.646 168.403 33.480 154.267 30.669 284.358 

Cloudy -0.049 324.220 33.494 255.725 26.418 188.281 

Partially Cloudy 0.051 304.964 33.005 226.944 24.561 96.020 

Partially Sunny -0.487 375.088 40.245 321.385 34.483 97.544 

Sunny -0.740 461.897 43.534 397.667 37.480 116.884 

Average -0.374 326.914 36.752 271.198 30.722 156.617 

15 min 

Rainy 0.932 34.317 6.822 18.810 3.740 13.913 

Cloudy 0.960 63.231 6.532 36.973 3.820 19.278 

Partially Cloudy 0.964 59.416 6.430 31.726 3.434 10.497 

Partially Sunny 0.999 11.253 1.207 8.045 0.863 3.653 

Sunny 0.999 12.395 1.168 10.286 0.969 3.723 

Average 0.971 36.122 4.432 21.168 2.565 10.213 

30 min 

Rainy 0.878 45.755 9.096 26.549 5.278 22.744 

Cloudy 0.967 57.363 5.926 33.197 3.429 17.103 

Partially Cloudy 0.960 62.285 6.741 33.940 3.673 11.302 

Partially Sunny 0.998 13.105 1.406 10.487 1.125 4.577 

Sunny 0.999 9.498 0.895 7.852 0.740 3.787 

Average 0.961 37.601 4.813 22.405 2.849 11.903 

45 min 

Rainy 0.893 42.847 8.518 26.249 5.219 20.571 

Cloudy 0.961 62.614 6.468 39.114 4.041 22.113 

Partially Cloudy 0.969 54.981 5.950 31.723 3.433 9.937 

Partially Sunny 0.994 23.007 2.469 20.362 2.185 10.605 

Sunny 0.999 12.464 1.175 10.853 1.023 4.753 

Average 0.963 39.183 4.916 25.660 3.180 13.596 

60 min 

Rainy 0.905 40.448 8.041 25.105 4.991 22.392 

Cloudy 0.961 62.626 6.470 38.588 3.986 21.106 

Partially Cloudy 0.972 52.145 5.643 28.364 3.070 9.984 

Partially Sunny 0.996 19.159 2.056 16.062 1.723 5.718 

Sunny 0.998 13.567 1.279 10.638 1.003 3.610 

Average 0.967 37.589 4.698 23.751 2.955 12.562 

5.2. Hyperparameter tuning  

The hyperparameter tuning process conducted with the 5min ahead forecast was also employed 

with the 15min and 30min multistep forecast of the GHI values. Figures 13, 14, and 7 show the 

performance comparison to obtain the optimal number of ConvLayers, filters, and learning rates for 

the 15min and 30min horizon forecasts, respectively. Figures 13 and 14 depict the statistical error 

results of 1, 2, and 3 ConvLayers with the number of filters as 32, 64, 100, and 128 of the 15min and 

30min horizons, respectively.  

For the 15min and 30min forecasting horizons, it can be seen that the design with 3 ConvLayers, 

each with 100 filters (3-ConvLayer (100)), had the best forecasting outcomes. Hence, 3 ConvLayers 

with 100 filters were selected to continue in the hyperparameter tuning process for the cases of 15min 

and 30min. On the other hand, and for learning rate tuning, Figure 7 reveals that 0.001 and 0.0001 are 

optimal values for 15min and 30min multistep, respectively. Consequently, Table 4 presents the 

optimal CNN configurations selected for 15min and 30min of GHI forecasting of the study site. 
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Figure 13. The performance comparison to obtain the optimal number of ConvLayers and 

filters for the 15min forecasting horizon. 

 

Figure 14. The performance comparison to obtain the optimal number of ConvLayers and 

filters for the 30min forecasting horizon. 

5.3. Comparing the proposed CNN with other forecasting algorithms  

Here, a comparison is accomplished between the proposed CNN model and other forecasting 

algorithms. Since RNN and ANN performed the best compared to RF and SVR in the case of 5min 

ahead forecast, the RNN and ANN are selected to be compared with the optimal CNN model in the 

case of 15min and 30min.  

According to Tables 8 and 9, the proposed CNN forecasting models with optimal input features 

and configurations outperformed RNN and ANN models in predicting the future values of GHI with 

noticeably low statistical error results for all the day types. For the 15min case, Table 8 shows that the 

average RMSE values of proposed CNN, RNN, and ANN were 30.569 W/m2, 35.759 W/m2, and 
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43.058 W/m2, respectively. On the other hand, and for the 30min case, Table 9 indicates that the 

average R2 values of proposed CNN, RNN, and ANN were generated to be 0.933, 0.919, and 0.914. 

Table 8. Statistical results of the CNN model with optimal configurations compared to 

other ML models for a 15min forecast. RMSE and MAE (W/m2); nRMSE, nMAE, and 

MAPE (%). 

CNN 

Day Type R2 RMSE nRMSE MAE nMAE MAPE 

Rainy 0.930707 34.20283 6.799768 18.85526 3.748561 13.26084 

Cloudy 0.976319 48.71237 5.03227 26.70142 2.758411 12.74513 

Partially Cloudy 0.973232 51.21305 5.542538 25.72208 2.783775 10.97661 

Partially Sunny 0.998963 9.906341 1.062912 7.205727 0.773147 3.537772 

Sunny 0.999367 8.813277 0.830658 7.752396 0.730669 4.057151 

Average 0.975717 30.56957 3.853629 17.24738 2.158913 8.915503 

RNN 

Day Type R2 RMSE nRMSE MAE nMAE MAPE 

Rainy 0.904618 40.12841 7.977815 25.0472 4.979563 16.5717 

Cloudy 0.967473 57.08935 5.89766 25.11826 2.594862 14.74114 

Partially Cloudy 0.970538 53.72851 5.814774 30.75228 3.328169 11.36507 

Partially Sunny 0.997388 15.72194 1.686904 9.222514 0.98954 6.908786 

Sunny 0.998801 12.12546 1.142834 9.387336 0.884763 5.382341 

Average 0.967764 35.75874 4.503997 19.90552 2.555379 10.99381 

ANN 

Day Type R2 RMSE nRMSE MAE nMAE MAPE 

Rainy 0.872276 46.43584 9.231778 29.03691 5.772746 20.50227 

Cloudy 0.962532 61.27265 6.329819 35.73584 3.691719 18.87583 

Partially Cloudy 0.930234 82.67886 8.947929 48.29123 5.226324 17.57485 

Partially Sunny 0.997417 15.63435 1.677506 12.73531 1.36645 6.541495 

Sunny 0.999299 9.270155 0.873719 7.680705 0.723912 3.599812 

Average 0.952352 43.05837 5.41215 26.696 3.35623 13.41885 

Table 9. Statistical results of the CNN model with optimal configurations compared to 

other ML models for a 30min forecast. RMSE and MAE (W/m2); nRMSE, nMAE, and 

MAPE (%). 

CNN 

Day Type R2 RMSE nRMSE MAE nMAE MAPE 

Rainy 0.884291 44.19796 8.78687 31.1768 6.198171 24.86742 

Cloudy 0.844454 124.8436 12.89706 81.47719 8.417065 42.91131 

Partially Cloudy 0.939979 76.68758 8.299522 43.66264 4.725394 16.0358 

Partially Sunny 0.998022 13.68148 1.46797 10.31797 1.107078 8.019125 

Sunny 0.998863 11.80963 1.113066 10.22706 0.963907 5.07522 

Average 0.933122 54.24404 6.512898 35.37233 4.282323 19.38177 

RNN 

Day Type R2 RMSE nRMSE MAE nMAE MAPE 

Rainy 0.834329 52.88608 10.51413 37.11608 7.378942 25.91648 

Cloudy 0.838339 127.2736 13.1481 67.30181 6.952666 34.58024 

Partially Cloudy 0.930889 82.28961 8.905802 48.27343 5.224397 17.30105 

Partially Sunny 0.997367 15.7834 1.693497 8.306134 0.891216 6.402013 

Sunny 0.9976 17.15679 1.617039 13.24123 1.247995 8.263789 

Average 0.919705 59.07789 7.175713 34.84773 4.339043 18.49271 

ANN 

Day Type R2 RMSE nRMSE MAE nMAE MAPE 

Rainy 0.832421 53.18969 10.57449 40.05009 7.962244 31.48269 

Cloudy 0.820569 134.0866 13.85192 81.81275 8.451731 39.32261 

Partially Cloudy 0.92617 85.0529 9.20486 50.46915 5.46203 17.84484 

Partially Sunny 0.995512 20.60753 2.211108 14.80705 1.58874 8.625684 

Sunny 0.996983 19.23387 1.812806 14.2376 1.341904 6.303567 

Average 0.914331 62.43412 7.531038 40.27533 4.96133 20.71588 
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5.4. One week of forecasting  

The 15min and 30min multistep forecasts were also conducted for the randomly selected week 

(December 5–11, 2022). This step is to further examine the performance of the developed CNN models. 

Table 6 lists the error values of the generated results based on one week, while Figure 10 shows the 

performance of the forecasting results when they are plotted against the observed GHI readings. For 

the 15min case, the RMSE and MAE values were 29.248 W/m2 and 15.761 W/m2, respectively, while 

RMSE and MAE values were found to be 60.040 W/m2 and 33.486 W/m2 for the case of 30min, 

respectively. As a comparison between the 5min, 15min, and 30min ahead forecasts, Table 6 reveals 

that as the forecasting horizon increased, more error was expected in the forecasting results. For 

example, the R2 was found to be 0.999 for the 5min forecast horizon, while it was found to be 0.983 

and 0.927 for 15min and 30min forecasting horizons, respectively. Hence, it is expected to obtain high 

error values if the forecasting horizons increase to be, for example, 60min at 5min intervals.  

5.5. Analysis of execution time 

The system setup used for the simulations in the case of a 5min ahead forecast was used in the 

cases of 15min and 30min ahead forecasts of the GHI values. In the case of the 15min forecast, the 

optimal prediction model took an average of 42 seconds to run for the five days that were chosen, 

while it took an average of 51 in the case of the 30min forecast. However, most of the running time 

was consumed in the training phase. 

6. Hardware implementation and potential challenges 

Our forecasting model using CNN with optimized architecture can be implemented into hardware 

to be used for energy management applications. This can be achieved by deploying the model into a 

microcontroller or a single-board computer, such as Raspberry Pi, and integrating it into an energy 

management system. The system can receive real-time data from a solar radiation device and use our 

proposed model to forecast the future output of the photovoltaic system. The forecasted output can 

then be used to optimize the energy management system, such as scheduling energy consumption and 

storage, or selling the excess energy to the grid. By implementing our model into hardware, we can 

provide a reliable and accurate forecasting tool for energy management, which can lead to cost savings 

and more efficient use of renewable energy sources.  

There are a number of research constraints that must be considered while analyzing the study’s 

possible limitations while creating a CNN prediction model for GHI. CNN initially requested a 

significant volume of GHI data. It can be challenging to gather trustworthy GHI data with shorter time 

periods because of measurement irregularities or sensor problems. Second, in this research work the 

CNN was trained using certain amounts of data (1 day, 1 week, 1−3 months) owing to the fact that 

CNNs learn features from raw data. However, determining the pertinent features or data volume can 

be challenging because it involves considerable thought and technical experience. Finally, when 

dealing with large datasets or intricate structures, training CNN models for GHI forecasting can be 

computationally demanding. For models to be trained effectively, sufficient computational resources—

including strong GPUs—are required, which can be costly for certain users. Therefore, resolving these 

issues is essential to guaranteeing the model’s dependability and practicality in real-world applications.   
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7. Conclusions and future work 

Forecasting solar irradiance has gotten a lot of interest owing to the growing demand for 

renewable energy. However, the expensive cost of climate observatories makes gathering 

meteorological data difficult, impeding the development of precision forecasting models. Therefore, 

this research intended to overcome this barrier by developing a framework to forecast GHI values even 

in the absence or inaccuracy of meteorological data. A forecasting model based on the convolution 

neural network (CNN) algorithm was developed using merely lag measurements of GHI as input, with 

no external variables. The CNN forecasting outputs with different network designs was investigated 

through a heuristic configurations paradigm. Furthermore, the performance of the developed model 

was then compared to that of other popular forecasting algorithms over predicting horizons of 5, 15, 

and 30min. By analyzing the outcomes derived from the most effective forecasting model and 

evaluating the performance of estimation algorithms, the conclusion can be summarized as follows: 

- Based on the criteria for model accuracy, a duration of two months' worth of data proves 

sufficient for constructing high-accuracy forecasting models for 5min and 15min horizons. 

However, to achieve similarly good forecasting results for a 30min horizon, three months of 

data is recommended.  

- Regarding the model fitting accuracy, the developed CNN forecasting models outperformed 

other forecasting models (RNN, ANN, RF, and SVR) in forecasting GHI output. The average 

RMSE prediction results under different forecasting horizons of 5min, 15min and 30min 

considering different types of days (rainy, cloudy, partially cloudy, partially sunny, and sunny) 

with CNN model were 2.262, 30.569, and 54.244 W/m2, respectively. 

- Forecasting model accuracy rapidly decreased, beginning with a high predicting result 5min 

ahead and ending with a 30min prediction. As the time horizon increased, the accuracy of 

various models steadily fell, and the uncertainty in GHI forecasting observations grew.  

Finally, the framework developed in this study holds the potential for predicting GHI output in 

other countries, offering a valuable tool for enhancing energy management strategies. However, there 

exists opportunities for further exploration to enhance the accuracy of GHI prediction models. A hybrid 

deep learning model, such as CNN-LSTM and RNN-LSTM, can be investigated to acquired more 

spatial features in the GHI data. Furthermore, extending the duration of available data, such as 

spanning over 2 weeks or 6 months, warrants deeper examination, particularly in non-real-time 

applications. Another potential avenue involves leveraging metaheuristic optimization algorithms like 

particle swarm optimization and genetic algorithms. These could optimize CNN architectures, 

revealing the model’s sensitivity to variations in CNN designs. 
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