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1. Introduction

The envelope of a moving sphere with variable radius is characterized as a canal surface, which is
frequently used in computer-aided design (CAD) and computer-aided geometric design (CAGD) for
solid and surface modeling. A canal surface is an envelope of a one-parameter set of spheres centered
at the center curve c(s) with radius r(s). The spheres that are specified by the radius function r(s) and
the center curve c(s) are combined to form a canal surface, which is obtained by the spine curve c(s).
These surfaces have a wide range of uses, including form reconstruction, robot movement planning,
the creation of blending surfaces, and the easy sight of long and thin objects like pipes, ropes, poles,
and live intestines. The term “tubular surface” refers to these canal surfaces if the radius function r(s)
is constant (for more details, see [1-8]).
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Tubular surfaces are one of the enormous vital subjects of surface theory. In R?, a tubular surface
is a fundamental and well-known device that is used for geometric construction. Due to this place of
tubular surfaces, numerous geometers and designers have explored and acquired numerous properties
of tubular surfaces, see for instance [9-12].

In this article, we investigate the geometric conditions for the tubular surfaces to have generic
singularities as a front (i.e., cuspidal lips, cuspidal beaks, and Swallowtails). Moreover, we study the
tubular Weingarten surfaces which fulfill nontrivial connection between components of the
set {K, K;;, H, H;;}, where (K, H) and (K;;, H;;) are Gaussian curvatures.

The paper can be organized as follows: We provide a brief review of the geometry of surfaces,
particularly Frenet and Darboux frames related to our study of tubular surfaces in Section 2. In
Section 3, we investigate the singularities of tubular surfaces with a Darboux frame and provide some
findings from these surfaces. Section 4 provides tubular Weingarten and linear Weingarten
surfaces (W-and LW-surfaces) in accordance with a nontrivial functional relation between their
curvatures. To enhance our findings and provide a practical demonstration, we include some
computational examples in Section 5. These examples not only serve to illustrate our primary results
but also feature graphical representations for clarity.

2. Preliminaries

In this part, we show a few ideas, equations, and summaries of curves and surfaces in R3 which
can be tracked down in the course readings on differential geometry, see [1-3]. A curve is regular if it
admits a tangent line at each point of the curve. In the following , all curves are assumed to be regular.
Let a(s) : I € R — R? be a unit speed curve in R?; by «(s) and 7(s) we denote the natural curvature
and torsion of «, respectively. The Frenet equations are:

T'(s) 0 k(s) O T(s)
N'(@s) |=| —«(s) O 7(s) N(s) |. 2.1)
B'(s) 0 -1(s) O B(s)

The Darboux frame is an alternative approach to defining a new moving frame constructed on a surface.
One can exist on a surface in Euclidean or non-Euclidean spaces [13]. The Darboux frame of @ = a(s)
is expressed as follows:

T'(s) 0 Ko(s)  Ku(8) Y[ T(s)
g(s) |=] —ke(s) O To(s) || g() |, (2.2)
n'(s) —Kkn(s) —To(s) O n(s)
and the relation matrix between Serret-Frenet and Darboux frames is given by
T(s) 1 0 0 T(s)
g(s) |=10 cos? sind N(s) |, 2.3)
n(s) 0 —sind cos?d B(s)

where «, is the geodesic curvature, , is the normal curvature, and 7, is the geodesic torsion of a(s).

They are defined as:

dl
Kg:Kcosﬂ,Kn:Ksinﬂ,Tg:T+d—. 2.4)
Ry
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In addition, k, and 7, can be calculated as follows:

da d*a “n da nxdn
=\75 75 b} Te = D) -5 /-
8 ds’ ds? § ds ds
Let n(u,v) be the standard unit normal vector field on a surface ' = ((u,v) defined by n :‘g(”i;(j’u,

where Y; = % and i = 1, 2. Therefore, the metric (/) of Y is
I = glldu2 + 2gpdudv + gzzdvz,

where g1 = (X, Y.), g12 = (Y., X,), and g» = (X, (). Also, the 2" fundamental form (II) of Y is
II = hyydu® + 2hppdudv + hypdv?,

where hy; = (X, n), hip = {Y,,,n), and hy, = (Y,,,n). The Gaussian curvature K, and mean curvature
H are respectively, expressed as:

_ hihy — h3, _ hi182 — 2812012 + giihxn

K , (2.5
gngxn - &h 2(g1182 - &%)
From Brioschi’s formula [14, 15], the second Gaussian curvature K;; is expressed as
—huz’zz +hio — hz;’“ }% hizy — ]%
hipy — 221 I hy |-
1 bz hia hy
K =— 2 h h , (2.6)
hz (h) % 222,1
% hiy  hio
2L ohy o hy
where h = det(h;;), hjj. = %, and h;j.p = %. Furthermore the second mean curvature Hj; is
1
Hy=H- 5A(ln VIK]). (2.7)
where L a P
y y -1
A= —— hh’—1; (hY)=(h;;) . 2.8
\/Wau’[\/ﬁ aw] ( ) ( f) (28)

2.1. Criteria for singularities of fronts

In this subsection, we will utilize a similar strategy on the peculiarity hypothesis for groups of
double smooth capabilities. Nitty gritty depictions are viewed as in the books [16, 17]. Let U C R? be
an open set and f : (U, p) — (R3,0) a map germ. Two map germs f;: (R%,0) — (R?,0) (i = 1, 2), are
A-equivalent if there exist diffeomorphism germs g; :(R%,0) — (R?,0), and g, :(R?,0) — (R?,0) such
that 5 0 g = gy o fi holds. A map germ f : U C R?> — R3 is called a (wave) front if there exists a
unit vector field v of R? along f such that £ = (f, v) is a Legendrian immersion. Since £ = (f,v) is
Legendrian,

df,v)y=0,and (v,v) =1, 2.9)
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hold. For a front f , we define a function A : U c R? - R by A(u, v) = det(f,, f,,v). The function A is
called a discriminant function of f.

We call p € U a singular point of f if rank(df,) < 1. The set of singular points S(f) of f is
the zero set of A. A singular point p € U of f is said to be non-degenerate if dA(p) # 0. Let
p be a non-degenerate singular point of a front f . Then S(f) is parameterized by a regular curve
v(t) : (-&,&) — U near p. Moreover, there exists a non-vanishing vector field n along y such that
df (n(®)) = 0. This vector field n is called a null vector. For further details, see [11, 12]. Under
these notations, we present the criterion for the cuspidal edges, Swallowtails, and cuspidal butterfly as
follows:

Proposition 2.1. Let f : U C R? — R3 be a front and p a non-degenerate singular point of f. Then
we have:

(1) f is A-equivalent to cuspidal edge CE at p if and only if nA(p) # 0, where nd means the directional
derivative Dy A,

(2) f is A-equivalent to Swallowtail SW at p if and only if nA(p) = 0, and n* A(p) # 0,

(3) f is A-equivalent to cuspidal butterfly CBF at p if and only if nA(p) = n*A(p) = 0, and n* A(p) # 0.

Here,

2
CE = {(xl,xZ, x3)|x1=u, xp =

a3 =,
SW = {(xl, X2, X3)|x1 = u, xp = W+, =4+ 2uv} , (2.10)

CBF = {(xl, X2, X3)|x) = 43 + uPv, xy = Su* + 2uv, x; = v} .

These surfaces are shown in the following figures (see Figures 1, 2a and 2b, respectively).

Figure 1. The cuspidal edge (CE) surface.

AIMS Mathematics Volume 9, Issue 5, 12170-12187.
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(a) (b)
Figure 2. (a) The Swallowtail (S W) surface; (b) the cuspidal butterfly (CBF) surface.

Now, we turn to degenerate singularities. Let p be a degenerate singular point of the front f. If
rank(df,) = 1, then there exists n near p; if g € S(f), then df, (n()) = 0. Criteria for degenerate
singularities are as follows:

Proposition 2.2. Let f : U C R?> — R3 be a front and p a degenerate singular point of f. Then we
have the following:

(1) f is A-equivalent to cuspidal lips CLP if and only if rank(d f,) = 1, and the det (HA(p)) > 0, where
det (HA(p)) denotes the determinant of the Hessian matrix of A at p (see Figure 3b);

(2) f is A-equivalent to cuspidal beaks CBK if and only if rank(df,) = 1, det(HA(p)) < 0, and
17*A(p) # 0 (see Figure 3a).

(a) (b)
Figure 3. (a) The cuspidal beaks CBK surface; (b) the cuspidal lips CLP surface.
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Here, for a function A : (U, u,v) — R, H A is the matrix defined by

(2.11)

HA(u,v) = ( Auc Auy ),

/114\1 AVV
and

CLP = {(xl,xz,x3)|x1 =3u* +2uPV?, X =+, x3 =, } ,

CBK ={(x1, X, x3)lxy = 3u* = 20V, xp = u® — w?, x3 = v}
3. Singularities of tubular surfaces

Here, we study the singularity of a tubular surface, and give the conditions for this surface to be CE,
SW, CBF, CLP, and CBK singularities in terms of k,(s), ,(s), and 7,(s). By utilizing the Darboux frame,
the tubular surfaces of radius r > 0 about the B(s) = f T (s)ds is the surface with parametrization

T :Q(s,¢) =p(s)+ r(coseg +sinen). 3.1

3.1. Local singularities

Singularties are essential for understanding the properties of tubular surfaces. So, after simple
calculations, we have

{ Q,(s, ) = (1 —rKgcosgo—rK,,singo)T—rTgsingog+rTgcosgon, (3.2)

Q,(s,9) = —r(sinp g —cospn).
From Eq (3.2), we can show that X" has a singularity at Q (s, ¢) if and only if
|Qs x Q|| = 1 = r&g cos ¢ — rx, sing = 0.

This is equivalent to
A(S, ) = Ky COS ¢ — 1k, Sing — 1.

Therefore, the Hessian matrix of A(s, ¢) at a singular point is given by

r K, COSQ =T K,SiNQ —rK,Sing —rK,CoS¢y

HA(s, p) = ;o ’ ) ,
—r K, SINQ — T K, COSQ  —T Ky COS P + I Ky SN
and
2 .
det (HA(p)) = — r* cos® PKgky + K, ) + r* cos ¢ sin PKnky — 2Ky, + KoKy

— 7% sin? oK,k + K:).
Now it is easy to prove the following lemma.

Lemma 3.1. The tubular surface X' parameterized by Eq (3.1) is a front.
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Lemma 3.2. Let X be the tubular surface parameterized by Eq (3.1 ). Then rank(dQ,) < 1 at p if and
only if

1
Kq COS @ + K, SN = —, 3.3)
r

is satisfied.

Proof. We suppose that a tubular surface X’ parameterized by Eq (3.1) has singularity at p. Then it
satisfies the Eq (3.3). Conversely, if Eq (3.3) holds, in view of Eq (3.2), then

Q,(s, ) = 7,Qu(s, @), (3.4)
which means that rank(dQ,,) < 1. This completes the proof.

Proposition 3.1. Let X' be a tubular surface parameterized by Eq (3.1). If p is a non-degenerate
singular point for X, then dA(p) # 0 if and only if

’

Kg
— # tang, 3.5)

n

or
Ke
— # —cote, 3.6)
Kn

is satisfied.

Proof. Suppose that Y’ be the tubular surface parameterized by Eq (3.1). Then, it has singularity at p if
and only if Eq (3.3) holds. Conversely, if Eq (3.3) holds, it is clear that:

dA(p) =r ((K;, cos ¢ — K;, sin go) ds + (—Kg sin ¢ — K, COS <p) dga) , (3.7

which means that p is a non-degenerate singular point dA(p) # 0 if and only if K;, cos ¢ — K, sing # 0
or K, sin @ + k, cos ¢ # 0. Hence, the proof is completed.

So, we find the following result.

Corollary 3.1. Let p be a degenerate singular point for . Then we have dA(p) = 0 if and only if
Ky/K, = tan @, and Ky /K, = — cot .

Now we are ready to state our main theorems:

Theorem 3.1. Let p be a non-degenerate singular point for X'. Then
(1) Y is A-equivalent to the CE at p if and only if nA(p) # 0, that is,

(Kng - Kn) sing + (KnTg + K;,) cosg # 0. (3.8)
(2) X is A-equivalent to the SW at p if and only if nA(p) = 0, and > A(p) # O, that is,
(Kg‘['g - K;) sing + (K,,‘rg + K;,) cosp =0,

and

’

” 2 . ’ ’ ” 2
.~ Kyt K,,Tg) sing + (2KnTg + KnTg + Ky — Kng) cosg # 0. (3.9)

(2/<ng + KT
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is A-equivalent to the at p if and only if nA(p) = n°A(p) =0, and 7° A(p) # O, that is,
(3) X is A val, he CBF if and only if nA(p) = *A(p) = 0, and *A(p) # 0, that i

(Kng - Kn) sing + (KnTg + Kg) cosp =0,

2

’ ’ ’” . ’ ’ ” 2 _
(2/<ng + KgTy — Ky, + KnTg) sing + (ZKHTg + KTy + Ky — Kng) cosg =0,

and

14 ’ ’ ’” ”r ’ 2 ’ 3 .
(3/<ng + 3K, Ty + KTy = K, + 3K,Tg + 3K, T T, — Kng) sin ¢
’ ’ ’

” 7"’
2
+ KTy + K 3Kng 3KngTg

+ (3/(;;75, + 3K;1Tg - KnTz) cosp # 0.
Proof. (1) Since p is a singular point of X', we have

A(p) = rky cOs @ — rk, sing — 1.
Because p is a non-degenerate singular point, the null vector filed 7 is defined as

0 0

U:a—Tg%.

Therefore,
nA(p) =r ((K:g cos @ — K, sin (p) + (Kng sin ¢ + K, T, COS go)) .
So, we get: nA(p) # 0 if and only if

(Kgrg - Kn) sin ¢ + (Knrg + K;,) cosg # 0.

(2) Similarly, we have:

2 _ ’ ’ ’” 2 . ’ ’ 1”7 2
nAp)=r [(2Kng + KgT, — K, + KnTg) sin ¢ + (2Kn‘['g + KTy + Ky — Kng) cos 90] .

By using Case (1), we have: 74(p) = 0, and n?A(p) # 0 if and only if
(Kgrg - Kn) sin ¢ + (Knrg + K;,) cosp =0,

and
4 4 ” 2 . ’ ’ 7" 2
(ZKng + KgTy — Ky + K,ng) sing + (2Kn‘rg + Kn Ty + Ky — Kng) cosp # 0.

(3.10)

(3) By a similar procedure as in Case (1) and Case (2), we have nA(p) = n?A(p) = 0, and °A(p) # 0,

if and only if
(Kng - Kn) sin ¢ + (KnTg + Kg) cosg =0,
’ ’ " 2 . ’ ’ ” 2 _
(2/<ng + KgTy — Ky, + KnTg) sing + (ZKHTg + KTy + Ky — Kng) cosg =0,
and

" ’ ’ ’” ”r ’ 2 ’ 3 .
(3/<ng + 3K, Ty + KTy = K, + 3K, T + 3K, T T, — Kng) sin ¢
’ ’ ’

+ (3/(;;75, +3K,T

W To - KnTz) cosg # 0.

” 7"’
2
+ KTy + K 3/<ng 3KngTg

Therefore, using Proposition 1, the proof is complete.

AIMS Mathematics Volume 9, Issue 5, 12170-12187.
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Theorem 3.2. Let X be a tubular surface parameterized by Eq (3.1), and p is a degenerate singular
point. Then, one has the followings:
(1) X is A-equivalent to CLP if and only if rank(df,) = 1, and

cos? P(Kgky + K;f) — €O @ Sin (KK, — 2K, + KeK;) + sin” @(k,K! + K;;) <0. (3.11)
(2) X is A-equivalent to CBK if and only if rank(df,) = 1,

cos? @Kk, + K;ZZ) — COS @ SN (KK, — 2K, + KeK;)) + sin” @(k,K. + Kg) > 0, (3.12)
and

’ 3 .
+ 3K, TgT, = Kng) sin ¢

— KyTy) cos ¢ # 0. (3.13)

" !’ ’ 7 ”nr ’ 2
(3Kng + 3Kng +KeTy — K, + 3KnTg

” i 2
+ KTy + K, 3Kng 3KngTg

+ (3/(” Tg + 3K,T,

Proof. Let p be a degenerate singular point of Y, then Eqs (3.7) and (3.8) are hold. Therefore, using
Proposition 2, the proof is complete.

3.2. The relation among the curvature functions

Presently, we concentrate on tubular surfaces fulfilling a few conditions concerning their curvatures
as follows:
According to Egs (3.2), we find

2
g = (1 — 7Kg COS @ — I Ky, SIN <p) + r2‘r§, g = rZTg, and g, = . (3.14)

The normal vector of Q is

g X .
N(s, @) = QxQ, _ cos g + sin ¢n. (3.15)

Qs x Q|

By a straightforward calculation, we get

Q= r((Kng - K,,) sin g — (KnTg + Kg) cos <p) T
+ (Kg - r(KgKn + T;,) sing — r(:<§ + Tﬁ) cos go)g,
+ (Kn - r(Kﬁ + Tf,) sing — r (ngn - T;,) cos ga) n,
Q. = r(Kg sin ¢ —K,,cosgo) T-rt,cospg—rtgsingn,
Q, =—rcospg —rsingn.
This prompts the components of (/1); hyy, hy», and hy, as follows:
2

g’

]’l12 = =TT, I’l22 = —r. (316)

hi1 = Ky COS @ + Ky, SIN @ — 2rKyKy, SIN @ COS ¢ — rl<§ cos ¢ — ri sin® @ — r7

AIMS Mathematics Volume 9, Issue 5, 12170-12187.
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Therefore, we get
—Kg COS @ — Ky SIN @ + 27Kk, SIN @ COS @ — r(k% cos® @ + k2 sin” )

ru
: : 2 2 2 32 I
_ Kg COS @ + Ky SIN @ — FKgKy SN @ COS ¢ — Ik, COS™ ¢ — 1k, sin” ¢ — 7

= o

b

2

2
where y = (1 — I Kg COS Q@ — I Ky, SIN ga) . And from Eq (3.16), we get

i1 = =Ky SINQ + Ky COS @ — 2rKeKy COS @ + 2rKyky Sin” @ + 2r(K2 — k2) sin g cos ¢,
hi122 = =Ky COS @ — Ky SIN @ + 8k, Sin ¢ €08 @ + 2r(k? — k2)(cos? ¢ — sin” ),

hii1 = Ky COS@ + Ky, sing — 2r (K;,Kn + ng;l) sin ¢ cos ¢
=2r (KgK;, cos? @ + Kk, sin” ¢ + TgT;,) ,
Moy = —rty, hiop = hooy = happ = hoo 1 = hiz12 = 0.
From Egs (2.6), (3.16), and (3.18), we find
-1 )
Ky = A2 (—2hh11,22 - rh“’z) )

where

h=-r (Kg COS ¢ + Ky, SIN @ — 27KgK,, SIN ¢ COS @ — rK§ cos’ p — I’Ki sin’ go) ,
Also, we have:
sin® ¢ — &

cos? ¢ — rk2

. . 2
Kq COS ¢ + Ky, SIN @ — I'KyKy, SIN ¢ COS ¢ — 1K .

8
2u

=

1
—EA IDJ

From Egs (3.17), (3.19), and (3.20), we obtain the result:

. . 2 a2 2 in
—Kg COS ¢ — Ky SINQ + 21Ky, SIN ¢ COS ¢ — F(K, COS™ @ + K, SIN” @)

T

Corollary 3.2. The Gaussian curvatures of (' are

. . 2
—Kg COS ¢ — Ky SIN @ + TKgK, SINQ COS @ + 1K

”

ru
~ ~ 2 _p

_ KgCOSQ + Ky SN — rKgky Sin g cos ¢ — rig — &
2u ’

and

2h (Kg COS ¢ + Ky SIN @ — 47K yk,, Sin @ COS go) -

Ky = a0 ;
: - 2 _p
_ Ky COS @ + Ky SiN ¢ — FKgky Sin g cos @ — kg — &
11 —
2
1 —Kgy COS 0 — Ky SIN @ + 'Kk, SINQ COS @ + 7K,
_EA In .
r

(3.17)

(3.18)

(3.19)

(3.20)

AIMS Mathematics Volume 9, Issue 5, 12170-12187.
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4. Tubular LW-surfaces

Now, for a tubular LW-surfaces X', an extension of Eq (3.1) for a nontrivial functional relation
between a pair {A, B}, A # B, of the curvatures K, K;;, H, and Hj; are studied. Thus, by using
Eqgs (3.17), (3.19) and (3.20), one can get the differentiation of K, K;;, H, and H;; concerning s and ¢.
In any case, the upsides of these estimations are long to such an extent that we can overlook them. In
this manner, we have the accompanying cases:

() f(K, H) = (K), (H), - (K),, (H), =0,

(i) f(K, Ki1) = (K), (Kip), — (K), (K1) =0,

(iii) f(H, Kyp) = (H); (K11)¢ - (H)¢ (K, =0,

(iv) f(H ,Hyp) = (H); (H11)¢ - (H)¢ (Hip, =0,

) f(Kir » Hyp) = (K (Hp), — (Kip), (Hpp)g = 0.

From the primary case, one can see that it has evaporated indistinguishably. Hence we have

Corollary 4.1. The tubular surface X' is a W-surface.

From the second and third cases, one can get the two Jacobian equations, and we conclude that
Kk, = k, = 0, which leads to k; = k, = constant. Consequently, we obtain the following result.

Theorem 4.1. The tubular surface X is a W-surface generated by a circle.

Similarly, from the fourth and fifth cases, the two Jacobian equations are split to sixteen conditions
and satisfied when «, = 7, = constant. Subsequently, we find the following theorem.

Theorem 4.2. The tubular surface M is a W-surface generated by a circular helix a with non-zero
constant curvatures (see Figure 4).

(a) (b)
Figure 4. (a) The cylindrical helix a(s); (b) the tubular surface Y’y along a(s).

AIMS Mathematics Volume 9, Issue 5, 12170-12187.
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Finally, one can see that the following linear relations hold:

Theorem 4.3. For a tubular surface, the following hold:

(i) aK + bH = ¢, where a + cA*> # Oandk, = k, =0,

(it) aK + bK;; = ¢ ,where b =c =0and k; = k, = 0,

(iti) aH + bK;; = ¢, where b = 0, and k = 0,

(iv) aH + bHy; = ¢, wherea+b +cA # 0,7, # 0, and k, = k,, = 0,
(v) aHy + bKy = c,wherea+b +cAd # 0,7, # 0, and k, = k, = 0.

Here, a, b, and c are non-zero arbitrary constants.
As aresult, we give the following corollary:

Corollary 4.2. The tubular surface M is an open part of a circular cylinder.

5. Applications

Now, we will introduce two computational examples for constructing tubular surfaces to support
our main results.

Example 5.1. Consider the regular surface parameterized by
S1(u,v) = (uv,vcos (u),vsin(u)).

Darboux frame vectors of the curve a(s) = (s,cos(s),sin (s)), which lies on the regular surface S,
are

1 sin(s) cos(s)

S R A
2(s) = s ,ZCos(s)+ssin(s)’—scos(s)+2sin(s))’
n(s) = — cos? (s) — sin® (s)’ scos (s) — sin (s), cos (s) + ssin (s))’

Also, we have

-2
K =
g b
V2 + 52
—s
Kp, = ,
V2 + §2
2
T, =

Thus, according to Eq (3.1), the constructed tubular surface Y(s,v) associated with the Darboux

AIMS Mathematics Volume 9, Issue 5, 12170-12187.
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frame of radius r > 0 along a(s) is parametrized by (see Figure 4b):

cos(v)(2 cos(s)—cos(v) sin(s))

V9+cos(2v) ’

s+

_ cos(v)? 2 sin(v)
Tl = cos (s) \/9+COS(2V) v4+COS(V)2 ?

__2cos(v)
V9+cos(2v)

cos(v) sin(v)

\Y; 4+cos(v)?

+ sin (s) —

For 'Yy, we obtain

36+3652 + 11s* + 8 V2 (2 + s2)3/2 cos (v) + 4 cos (2v)
—s*cos (2v) + 8s (2 + s2)3/2 sin (v)
+4V2ssin (2v) + 2 V2s% sin (2v)

-

2

V2(2 + 5)

gn = , 80 =1,

64 V2 + 96 V252 + 64 V2s* + 16 V256 + 2V2 + &2 (76 +7652 + 23s4) cos (v)
~8V2(-2+ ) (2 + s2)2 cos (2) + 8 V2 + 52 cos (3v)

1 —852 V2 + s2cos (3v) — 65* V2 + s2cos (3v)
huy = - +76 V25 V2 + 52 sin (v) + 76 V253 V2 + s2 sin (v) ;

+23 V255 V2 + s2sin(v) + 128ssin (2v) + 1285% sin (2v)
+3257 sin (2v) + 12 V25 V2 + s2sin (3v)
+4 V25 V2 + s2sin 3v) — V25° V2 + 52 sin (3v)

_ 8(2+ 2)5/2 18 + 952 + 8 V2 V2 + 52 cos (v)
n S —(-2+ 5?) cos (2v) + 85 V2 + &2 sin (v) + 2 V2ssin (2v) |’

52 (4 +252+ V2V2 + s2cos (v) + s V2 + s2 sin(v))

h12 = s
2+ 2 18+ 952 + 8 V2 V2 + s2cos (v)
R)
- (—2 + s2) cos (2v) + 85 V2 + s2sin (v) + 2 V2ssin (2v)
2V2 + s2cos (v) + \/§(4+2s2 +sV2 ¥ szsin(v))
h22 -

18 + 952 + 8 V2 V2 + s2 cos (v)
‘/2 2
s \/ - (—2 + s2) cos (2v) + 85 V2 + s2sin (v) + 2 V2ssin (2v)

Moreover, we obtain
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-51(2+82) 1002 (2 + 52) + 52 (4 + )
“24V2V2 + 2 +36 V252 V2 + 52

-1 —(4- 125 + 5%) - 2005 V2 + &2 _

m ~1005° V2 + 82 - 104 V25 (2 + 5°) ’

7252+ 2+ 1253 V2 + 52
+42s (—2 + sz)

K'i(s, 1)

5 3/2

227(2+52) +304V2(2 + 52)
—100(—4 +5*) +32V2V2+ 52 +4]
—48 V25 V2 + 52 +s(—12+s2)

76(2+ )" +50VZ(2+ )
+4]  424V2 + 52 —452V2 + 52
—\/E(—2+s2)

=
3]
1]

+s

26VZ(2+52) +70(2+2)"

—10\5(—4+s4) +4V2 + 52

— ~6sV2+ 52 +35V2(2+52)

+s| +40(2+5%) +6V2V2+ &2
—V2s2V2 + 52

18 + 952 — (-2 + 5?)
2V2 + 52 +8s5s V2 + §2
+442 (2 2+s2+s)

HY (s, 1)

w .

3/2

3

Example 5.2. Let us consider the regular surface parameterized by
So(u,v) = (1 +vcos (u),vsin (1), 2vsin (g)) )

Darboux frame vectors of the curve B(s) = (1 + cos(s),sin(s),2sin (%)), which lies on the regular
surface S, are:

T(s) = |- V2 sin (s) V2 cos (s) V2 cos (%)
= V3 +cos(s) V3+cos(s) V3+cos(s))

(3+6 cos(s)—cos(2s))

2(7-3 cos(s)) V3+cos(s)’
_ (=3+cos(s)) sin(s)
gls) = V(T=3 cos(s)) V3+cos(s)” | »

H S
4vsin( 5

V(7-3 cos(s)) V3+cos(s)
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n(s)

Also, we have

\/5(2 cos(s) sin( 3 )—cos( %) sin(s))

V(7-3 cos(s)) ’
\ﬁ(cos( %) cos(s)+2 sin( %) sin(s))
(7-3 cos(s)) ’
V2

(7-3 cos(s))

2V2

“ T T 3ees o)’
3sin(%)
o T RT3 )
3sin ($)sin (s)
T 7 3cos(s)

Thus, according to Eq (3.1), the tubular surface »(s,v) associated with the Darboux frame of radius
r > 0 along B(s) is the surface with the parametrization (see Figure 5b):

Y, = Sin (S) T VT3 cos(s)) V3+cos(s) (7-3 cos(s)) ’
(s 4sin( %) _ V2
2sin (2) t T 3w Vi \VV2(7=3 cos(s))

1+cos(s)+

\/5(2 cos(s) sin( %)—cos( %) sin(s))
(7-3 cos(s)) ’

(3+6 cos(s)—cos(2s))
2 4/(7=3 cos(s)) V3+cos(s)

\/E(cos( %) cos(s)+2 sin( %) sin(s))

(=3+cos(s)) sin(s)

Remark. It should be noted that the calculations of the tubular surface X', can be calculated using

Mathematica.

(a)
Figure 5. (a) The regular space curve S(s); (b) the tubular surface X', along B(s).
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Example 5.3. Let y = y(u) be a space curve which lies on a regular surface and has a cusp at uy = 0
(see Figure 6a),
y(u) = {cosu + usinu, 0, u cos u — sin u}. 5.1

Darboux frame vectors of y are calculated as follows:

T o= UCcosu 0 usinu
- \/ﬁ ] ) \/; ]
uVu? sinu \/ﬁ uVu? cos u
g = -
V2 +it Ve +id V2 +dt |

{ usinu —utcosPu—utsin®u  wucosu } (5.2)
n = {— , ,— . .
Vu? + u* Vu? + u* Vu? + u*
Therefore, the tubular surface associated with these Darboux vectors along y(u) is given by
: ViZ cos vsinu usinusiny
cosu+usinu + = -
YS — _ Vii2 cos v n (—uzv cos? u—u?v sin? u) sinv (5 3)
Vu2+u4\F Vi +uty ’ ’
2 . ;
LCOS U + WNuPcosucosy _ in . ucosusiny
Vu?+ut Vi2+ut
then
u(l +u2) cos u(u2 cos v+ \/172( VuZ+u*—sin v))+sin u(u2 cos v+(uz)3/2 sin v)
\/L?(l+u2) Vil +ut ’
Vu2+u4( Vi2 cos v—sin v)
T3u = 2 ’ ]
u(1+u2)
—usin u((u2 +u4) cos v+ ‘/u>2(1+u2)( Vu?+u*—sin v))+cos u(uz cos v+(u2)3/2 sin v)
\m(lﬂtz) Vi +ut
usin u(cos v+ ViZ sin v)
i 3
Y a = —u? cos v+ Yu? siny ) 54
Y Vit (54)
U cos u(cos v+ Vil sin v)
Vil +ut

From Eq (5.4), we get

1+ 30+ 2u* + (-1 +u2)0052v+4\/ﬁcosv(\/u2+u4—sinv)—4\/u2+u4sinv

1
Y3, X V3| = —
(5 3l \/5\/ T+

which means X5 has a singularity if and only if

1 \/1 + 30 + 2u* + (-1 +u2)0052v+4\/ﬁcosv(\/u2+u4—sinv)—4\/u2 + utsiny
V2

1+ u?

=0.

Consequently, (5 represents a front surface, and among its singular points are those denoted
as (0,nm), ie., n=0,1,2,.... (see Figure 6b).

AIMS Mathematics Volume 9, Issue 5, 12170-12187.
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(a) (b)
Figure 6. (a) y(s) has a cusp at (0, 0); (b) (5 has singularities at (0, ).

6. Conclusions

In this work, we studied the geometric properties and singularities of tubular surfaces with a
Darboux frame in R?. Also, the local singularities of tubular Weingarten surfaces and relations among
their curvature functions were studied. This study was intended to clear away to conduct the
geometric analysis of tubular surfaces through the geometric conditions for these surfaces to have
generic singularities as a front ( 1.e., cuspidal lips, cuspidal beaks, and Swallowtails).
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