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1. Introduction

Queueing theory is dedicated to effectively solving practically important problems related to sharing
and scheduling the use of restricted resources among different potential users (orders) in various areas
of human practice. A high diversity of potential applications in telecommunication, manufacturing,
transportation, logistics, finance, health care, and other systems has led to the formulation of a great
variety of different queueing models and their analysis in the literature since the early 1900s. An
effective use of a restricted resource affords the possibility of managing the simultaneous service of
many orders. Two basic ways to provide a simultaneous service to a lot of orders are as follows: 1) the
division of the resource into a finite number of parts (in the simplest case, equal parts) and the use of
each part (server, device, agent, etc.) for the service of a definite order; and 2) the offer of a service to
the admitted orders by using the whole resource.

The analysis of the first choice dominates in the existing literature. The subject of this paper is a
queueing model that focuses on the second possibility. Different variants of this possible realization
could be considered. One popular approach suggests the time division of the resource, namely, the time
is divided into short slots in which each admitted order receives full access to the resource itself. When
the slot ends, the access is granted to another user while the customer, who has just ended his/her own
access, waits for the assignment of another slot. This mechanism is called time-sharing and has been
successfully analyzed in terms of so-called polling systems; see, e.g., [1–3].

If the length of a slot in the time-sharing discipline is infinitely small, the processor-sharing (PS )
discipline is obtained. The simplest variant of the latter discipline is the egalitarian PS discipline,
according to which all orders are always admitted to the system upon arrival and are processed at an
equal rate that is inversely proportional to the number of serviced orders. Another type is called
discriminatory PS , where all orders are always admitted to the system but the orders can have a
different speed of processing; see, e.g., [4]. Extensive reviews of research on queues with the PS
discipline can be found in [5, 6].

The essential advantage of the PS discipline is the permanent full use of the resource when there are
orders in the systems. This advantage can turn into a disadvantage, as was mentioned in [7]. Besides
the technological problems in the implementation of the PS discipline in practical systems, the main
two disadvantages are as follows:

(i) The resource can be potentially infinitely divisible, but the orders can have minimum
requirements for the rate of service. Thus, dividing the resource into too many parts is an infeasible
option;

(ii) the flow of orders can have maximum requirements for the rate of service. A user of the system,
which generates the orders at the rate of, say, λ, does not need the service rate µ such that µ > λ. Thus,
dividing the resource into too small of a number of parts is also an infeasible option.

A reasonable way to mitigate disadvantage (ii) is described in [8] for the so-called mixed service
discipline, which considers the differentiation of arriving orders into two classes. Class-1 orders need
a permanent service rate. Class-2 orders admit service with a variable rate in the PS mode. The total
resource is correspondingly separated into two parts. One part is dedicated to the service of a limiting
number of class-1 orders. Another part, as well as the temporarily unused share of the first part, is
used for the simultaneous service of an unlimited number of class-2 orders. The analysis, implemented
in [8], shows the high efficiency of this mixed service discipline.
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Concerning the mitigation of disadvantage (i), the limited PS (LPS ) is recommended for use instead
of the classical PS discipline. The LPS discipline also suggests that all of the orders admitted for
service are serviced simultaneously. However, some kind of admission control is implemented in such
a way that the number of simultaneously serviced orders is limited by some fixed in-advance integer
number. Such a number is called a multiprogramming level; see, e.g., [9], or, for a concurrency limit;
see, e.g., [10]. Different scenarios of an order behavior, i.e., when the order arrives while the number
of orders receiving service is equal to the limit, have been considered. They include the variants when
the arriving order is lost, joins a finite or infinite buffer, or makes repeated attempts to enter the service
at a later time. The literature on queues with the LPS discipline is already quite extensive; such as that
in [7, 11–22].

Most of the mentioned papers deal with queues with the LPS discipline and are devoted to systems
with homogeneous orders. However, orders in many real-world systems may be heterogeneous and
have different requirements for the desired service rate, as well as different values (importance) for
the system. In the case of heterogeneous orders, modifications of the LPS discipline, similar to the
discriminatory PS mentioned above or generalized PS , such as that in [23], can be applied.

In this paper, we consider a queueing model with heterogeneous orders with various priorities.
The priority is provided through a combination of the mechanism that is typical for queues with the
discriminatory PS discipline (giving different speeds of service for orders of different classes), as well
as the one for classical multi-server queues with order acceptance control. We assume admission
control via the provision of a preemptive priority. This means that each type of order has a certain
priority. If an order arrives when the number of processed orders is less than the maximum value, it
is admitted for service regardless of its priority. If it arrives when the number of processed orders has
reached its maximum value, then the arriving order pushes out of service a serviced order of the lowest
priority among the orders of a lower priority than the arriving order. The pushed-out order is assumed
to be lost. If all orders have a priority that is not lower than the arriving order, then this order is lost.
Indeed, we assume that a batch arrival of orders is possible. Therefore, many low-priority orders can
be simultaneously lost. A more detailed description of such a scenario is given in the next section.

The main contributions of this paper are as follows:

• A new mechanism of priority provisioning in a queueing system with heterogeneous traffic, a
fixed bandwidth of the server, and an LPS service discipline are proposed and analyzed. This
mechanism assumes a combination of providing different nominal service rates to orders of
different types and controlling order access and a possibility of interruption of service of
low-priority orders because of the preemptive priority discipline.
• The possibility of a temporal provision of service to all orders at a proportionally reduced rate

when the sum of the nominal service rates of all servicing orders exceeds the capacity of the
server is explored.
• Order impatience, i.e., the possible interruption of unfinished service in the case of a long service

duration, is taken into account.
• A dynamic change (increase or decrease) in the order priority during their service is considered,

which essentially allows for improvement of the quality of system operations. The increase in
priority during the order service represents an effective mechanism to prevent long processing
orders from being pushed out of service by just-arrived higher-priority orders. Such pushing
out, indeed, means a waste of the resources of the system that have thus far been consumed by
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the service of the long-serviced order. In contrast a decrease in priority during the service may
be reasonable due to the reduction of the value of a long servicing order, e.g., because of its
obsolescence or spoilage. A possibility of a priority change was previously considered only for
systems without the use of PS or LPS disciplines; see, e.g., [24–35] and the references therein. In
the mentioned papers, the priorities could be changed only during the waiting time of the orders.
In our model, customer waiting is not possible and the priorities can be dynamically changed
during the service time of the orders. Management based on the priorities during the servicing of
orders under the LPS discipline, which reduces the amount of wasted system resources, is more
important than the mechanism of picking up of orders for service.
• Unlike most of the mentioned papers, the analysis of the model has been implemented under an

essentially more realistic assumption about the arrival flow than the stationary Poisson process.
We suggest the batch-marked Markov arrival process (BMMAP), which is a generalization of the
well-known Markov arrival process (MAP). MAP allows to consider not only the mean arrival
rate, as in the case of the stationary Poisson arrival process, but all of the moments of distribution
of the inter-arrival times, as well as the possible correlation of these times. Note that the positive
correlation deteriorates the performances of a queueing system relative to that of the system with
the stationary Poisson arrival process. The BMMAP is a more general process than the MAP for
two reasons: arriving orders can have different types, and the arrival of orders can occur, not one
by one, but in batches of a random size. If only one-by-one arrivals are possible, the BMMAP
turns into the MMAP; see [36].

Potential fields of application of priority queueing models include the following ones; see,
e.g., [24]. In information transmission networks, signaling information is more important than the
routine sent by the users, as time-sensitive information should be transferred more urgently than the
elastic, time-insensitive information. The transmission of driving safety information in transportation
systems is more urgent than the transmission of infotainment-related information. The handover user,
who has arrived at the cell of a mobile network, has to be treated with another priority than the new
user by establishing a connection within a given cell. In the emergency healthcare system, the patients
can be sorted and treated by injury severity. In food delivery services, the most rapidly deteriorating
(perishable) items have to be delivered first. A suitable choice of priorities can essentially increase the
revenue of the service provider. However, as the customers wait or processing occurs, the situation
can change and the assigned priorities must be dynamically varied. As a convincing example, the
treatment of patients in emergency departments is usually mentioned. Upon patient’s arrival, the
doctors implement a so-called triage, i.e., classification of the patients into several categories
according to the severity of the condition and threat to life. The patients are then treated according to
their categories. After a certain amount of time, the health condition of any patient can improve or
deteriorate and the intensity of his/her treatment can be decreased or must be increased. The decision
about the capacity of the emergency department and the required equipment has to take into account
the rate of patient arrivals and available statistics about the usual results of the initial triage and
possible changes of the health condition of a patient after the triage. The model considered in this
paper can be helpful for the optimal design of an emergency department and a policy of patient
admissions or redirection to another hospital.

The paper is organized as follows. In Section 2, a detailed description of the constructed queueing
model is given. The dynamics of the considered queueing model are presented in Section 3 through
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the use of a continuous-time multidimensional Markov Chain (MC). Explicit expressions for the
infinitesimal generator of the chain are also obtained. In Section 4, formulas for the key performance
characteristics of the system are reported. Some results of the numerical experiments are
demonstrated in Section 5. The paper ends with conclusions in Section 6.

2. Mathematical model

We consider a queueing system with a flexible LPS , whose scheme of operation is presented in
Figure 1. According to the flexible LPS scheme, the LPS discipline is not used permanently, but only
in the case of a shortage of the available server capacity (bandwidth).

( )M

.........
Multitype arrivals

Processor sharing N

BMMAP

type 2

type 1

type M

Figure 1. Scheme of operation of the system.

Orders that enter the system are divided into M types. The input flow of orders is described by the
BMMAP. Order arrivals in the BMMAP are defined by the irreducible continuous-time MC νt, t ≥ 0,
that has the finite state space {1, . . . ,W}. The sojourn time of the MC νt, t ≥ 0, in the state ν is
exponentially distributed by using the positive parameter λν. After this time expires, the chain jumps
to the state ν′, where ν′ ∈ {1, 2, . . . ,W}, ν′ , ν, without the generation of orders with probability
p0(ν, ν′), and it jumps to the state ν′, where ν′ ∈ {1, 2, . . . ,W}, with probability p(k)

m (ν, ν′); then, a batch
consisting of k orders of type-m is generated. Here, we assume that the maximum batch size of type-m
orders is limited by the parameter Km,Km ≥ 1. Indicate by K the maximum batch size among all types
of orders, i.e., K = max{Km, m = 1,M}. Hereinafter, the notation m = 1,M means that the integer
parameter m admits the values in the set {1, 2, . . . ,M}.

The parameters that define the BMMAP can be stored in the square matrices D0 and D(m)
r , m =

1,M, k = 1,Km, of size W, defined by their entries:

(D0)ν,ν = −λν, (D0)ν,ν′ = λνp0(ν, ν′), ν, ν′ = 1,W, ν , ν,

(D(k)
m )ν,ν′ = λνp(k)

m (ν, ν′), ν, ν′ = 1,W, k = 1,Km,m = 1,M.

The matrix

D(1) = D0 +

M∑
m=1

Km∑
k=1

D(k)
m

is a generator of the MC νt, t ≥ 0.
Denote by θ the stationary probability vector of the states of the MC νt, t ≥ 0. This vector is found

to be the unique solution to the system given by

θD(1) = 0, θe = 1.
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Hereinafter, 0 is a zero row vector and e is the column vector consisting of ones.
The average intensity λm of type-m order arrivals is given by

λm = θ
Km∑
k=1

kD(m)
r e,m = 1,M.

The average intensity λ of order arrivals is given by λ =
M∑

m=1
λm.

For more information about the BMMAP, see, e.g., [37].
As we deal with the LPS service discipline, the rate of service of an arbitrary order can be changed

many times during its service. Therefore, there is a need to explain how the service time of an order
of type-m, m = 1,M, is defined. Denote by B the capacity (throughput, bandwidth) of the server. If
an order is interpreted as some portion of the information that should be processed by a server or a
channel of a telecommunication system, the bandwidth can be measured, e.g., in megabits per second
(Mbps). We assume that the size of an order of type-m is random, having an exponential distribution
with the parameter αm; hence, the mean size of an order of type-m is α−1

m megabits. Also, we suppose
that a type-m order needs a service rate (or bitrate measured in Mbps) that is equal to β̂m. Thus, the
mean required service time of the type-m order is equal to (β̂mαm)−1. Correspondingly, the required
(nominal) service rate of a type-m order is βm = β̂mαm.

We assume that the maximum number of orders that can be serviced in the system simultaneously
is equal to N, which has to depend on either the bandwidth B or the required service rates for different
types of orders. An optimal (with respect to some criterion) value of N can be chosen based on the
results of the analysis presented below.

In this analysis, first, we fix an arbitrary finite value of N, N ≥ 1. Under such an assumption, a
situation can occur whereby the sum of the required service rates of the orders that receive service
is higher than the bandwidth B, especially if the fixed value of N is large. We suppose that such a
situation is not extraordinary and, if it occurs, all servicing orders are serviced, not at the required rate,
but at a reduced rate, defined in the following way.

Let s(m) be the current number of type-m orders receiving service, 0 ≤ s(m) ≤ N,m = 1,M,
M∑

m=1
s(m) = N and

M∑
m=1

s(m)β̂k > B. Then, the reduced service rate of a type-m order is defined by

B
M∑

k=1
s(k)β̂k

βm, m = 1,M.

The arriving orders have distinct priorities. Precisely, the type-1 orders have the highest priority and
the type-M orders have the lowest priority. If an order of any type arrives when the number of orders
in the system is less than N, it is admitted for service. If an order of type-m arrives when the number
of orders in the system equals N, it is admitted for service only if some orders receiving service are of
type-m′, where m′ > m. In this case, an order of the lowest type (among the ones receiving service)
terminates the service and is lost. If an order of type-m arrives when the number of orders in the system
is equal to N and all orders receiving service are of type {1, . . . ,m}, then the arriving order is lost.

As the various orders can arrive in batches, we need to distinguish the discipline of individual orders
from this batch acceptance. Each order arriving in a batch of size, say, k, is considered to be the rth
order in the batch, with the probability 1

k , r = 1, k, and the orders from one batch are accepted by the
system according to this enumeration. The so-called partial admission discipline is considered, and this
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suggests that, if the sum of the number of orders in an arriving batch, say, k, and the number i of orders
receiving service is higher than N, i.e., i + k > N, then only N − i orders are immediately admitted for
service. The rest of the i + k − N orders can be individually (according to their numeration in a batch)
admitted for service if the appropriate number of low-priority orders are presented in the system. The
scenario of low-priority orders that are removed from service is described above. The orders of a batch
that were not included in the current servicing round are lost. For example, if a batch consisting of
five orders arrives when service is provided to N − 2 orders, one of which has a lower priority than
the arriving batch, then three orders from the arriving batch are accepted for service, while two orders
from this batch and an order of the lower priority are lost.

As the service is received, each order of type-m, m = 1,M, can change (increase or decrease) its
priority. We assume that, after an exponentially distributed time with the parameter φm, φm ≥ 0, any
type-m, m = 1,M, order becomes a type-l order with probability pm,l, l = 1,M, l , m, independently

of the other orders. Here,
M∑

l=1, l,m
pm,l = 1, m = 1,M. For instance, if we consider a model whereby

orders can only increase their priority, we should put pm,l = 0 for l ≥ m. The intensity φm can be equal
to zero if type-m orders, m = 1,M, cannot change their priority. Note that an increase or a decrease in
the priority of a single order can lead to the occurrence or disappearance of a shortage of bandwidth.
This, in turn, can imply the necessity of a service rate reduction for all orders, or a return to the nominal
service rate.

The orders admitted for service can be impatient and depart from the system without completing
the service, independently of other orders. If, during an exponentially distributed time with parameter
γm, m = 1,M, a type-m order does not succeed in finishing the service, this order is removed from the
system permanently (i.e., it is lost). If, during the service, the order changes its priority and becomes
a type-m′ order, then the patience time restarts and has an exponential distribution with parameter
γm′ , m′ = 1,M.We indicate the set of parameters γm, m = 1,M, with γ = (γ1, . . . , γM).

In what follows, the described queueing system is discussed.

3. Description of the dynamics of the considered queueing system by using a MC

Let nt, nt = 0,N, be the number of serviced orders, s(m)
t be the number of serviced orders of type-

m, m = 1,M, and 0 ≤ s(m)
t ≤ nt,

M∑
m=1

s(m)
t = nt, at time t. Since service with a reduced rate is possible,

the actual service rate of an order is equal to its nominal service rate βm if the total used bandwidth at

time t, defined as
M∑

k=1
s(k)

t β̂k, is less than the bandwidth B of the server. Otherwise, the actual service

intensity is equal to the proportionally reduced nominal service intensity B
M∑

k=1
s(k)

t β̂k

βm, m = 1,M.

It is easy to prove that the process

ζt = {nt, νt, s
(1)
t , . . . , s

(M)
t }, nt = 0,N, νt = 1,W, s(m)

t = 0, nt, m = 1,M,
M∑

m=1

s(m)
t = nt, t ≥ 0,

comprehensively describes the behavior of the queueing system under consideration and is a
continuous-time MC.
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Since this MC is irreducible and has a finite state space, the stationary probabilities of the state of
the system

π(n, ν, s(1), . . . , s(M)) = lim
t→∞

P{nt = n, νt = ν, s
(1)
t = s(1), . . . , s(M)

t = s(M)}

exist for any values of the system parameters.
We enumerate the states of the process ζt in the direct lexicographic order of the components (nt, νt)

and the reverse lexicographic order of the components of the vector process snt
t , where

snt
t = {(s(1)

t , . . . , s
(M)
t ), 0 ≤ s(m)

t ≤ nt, m = 1,M,
M∑

m=1

s(m)
t = nt}.

Finally, we indicate the set of process states by ζt, having the value n of the component nt as level n of
the MC ζt, n = 0,N. Following the introduced enumeration, we construct the row vectors πn, n = 0,N,
for the stationary probabilities of the states belonging to the level n.

It is well known that the vectors of stationary probabilities πn, n = 0,N, satisfy the conditions of
the following system of linear algebraic equations (equilibrium equations or Chapman-Kolmogorov
system):

(π0,π1, . . . ,πN)G = 0, (π0,π1, . . . ,πN)e = 1 (1)

where G is the generator of the MC ζt.
To calculate these vectors, we first need to write down the explicit form of the generator G. The

most difficult task here is to analyze the transition intensities of the components of the
multidimensional process snt

t , which determines the number of orders of each type in the system. To
this end, we implement four steps.

In Step 1, we describe the process of servicing a single order in the system when the system is
not overloaded and the order receives the nominal required service intensity regardless of its type, and
when there are also no removals of the order from the service. In Step 2, we analyze the process of sn

t

that describes the simultaneous service of n orders, provided that these orders receive the nominal (not
reduced) service rate and there is no removal of the orders that are out of the service. In Step 3, we
consider the chance of removing an order from the service because of the arriving orders with a higher
priority. Finally, in Step 4, we account for the possibility of order service at a reduced rate.

Step 1. To describe the process of servicing a single order when the system is not overloaded
and the order receives the nominal required service intensity regardless of its type, and when there
are no removals of orders from the service, we analyze various scenarios of an order service. It can
be verified that the service time has a distribution that is an extension of the so-called generalized
phase-type distribution introduced in [38].

As the underlying process of service for an arbitrary order, consider the continuous-time MC st, t ≥
0, with the space of transient states {1, . . . ,M}. The initial state of the MC st at the beginning of service
is determined by by the probability vector bm, that is,

bm = (0, . . . , 0︸  ︷︷  ︸
m−1

, 1, 0, . . . , 0︸  ︷︷  ︸
M−m

), m = 1,M,

if the incoming order has the type-m. The transitions of the underlying process within the space of the
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transient states are defined by the sub-generator given by

S =



−β1 − φ1 − γ1 p1,2φ1 p1,3φ1 · · · p1,M−1φ1 p1,Mφ1

p2,1φ2 −β2 − φ2 − γ2 p2,3φ2 · · · p2,M−1φ2 p2,Mφ2

p3,1φ3 p3,2φ3 −β3 − φ3 − γ3 · · · p3,M−1φ3 p3,Mφ3
...

...
. . .

...
...

...

pM,1φM pM,2φM pM,3φM · · · pM,M−1φM −βM − φM − γM


.

Step 2. We analyze the process of sn
t that describes the simultaneous service of n orders, provided

that these orders receive the nominal (not reduced) service rate and there is no removal of orders from
the service.

Assume the following:

• Matrix Yn = Yn(Φ), n = 1,N, contains the transition intensities of this process when some order
changes the priority. Here, the matrix Φ defines the intensities associated with increasing and
decreasing the priority. It is given by the following formula:

Φ = S + diag{βm + φm + γm, m = 1,M}

where diag{. . . } is a diagonal matrix whose diagonal elements are specified by the elements or a
vector given in the brackets;
• Matrix Pn(bm) defines the transition probabilities of the process sn

t at the moment that the servicing
of a new type-m order, n = 0,N − 1, m = 1,M, begins;
• Matrix Ln(β), n = 1,N,β = (β1, β2, . . . , βM), sets the transition intensities of the process sn

t at the
end of the service of one of the orders;
• Matrix Γn(γ) describes the intensities of transition of the process sn

t when one of n orders departs
from the system due to impatience. A detailed description of these matrices and the used
algorithms for their calculation are presented, for example, in [39–41].

Note that Yn, n = 1,N, denotes square matrices of size Tn, the matrices denoted by Pn(bm), n =
0,N − 1, have size Tn × Tn+1, and the matrices Γn(γ) and Ln(β), n = 1,N, have size Tn × Tn−1, where
Tn =

(
n+M−1

M−1

)
, n = 1,N.

Step 3. Due to the preemptive priority of some types of orders, it is necessary to account for the
event of removing an order from the service because of arriving orders with a higher priority. Because
the orders arrive in batches, we assumed above that they are randomly numbered. We suggest that
system be designed such that the orders attemp to push out from service the ones with lower priorities,
and, if it is necessary and possible, one by one. This means that the order with the number 1 makes the
first attempt, the order with the number 2 makes the second attempt, and the order with the last number
makes the last attempt. Note that these attempts are not implemented sequentially, but instantaneously,
at the same moment. To account for transitions of the process sN

t when a single order causes the system
to remove a low-priority order, we introduce the following matrices.

• Em, m = 1,M − 1, denotes square matrices of size TN whose elements determine the transition
probabilities of the process sN

t when an order of type-m, m = 1,M − 1, arrives at the system;
there is no free space for it, and the incoming order tries to remove an order with lower priority
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from the service. Each row and column of Em corresponds to some states {s1, s2, . . . , sM} and
{s′1, s

′
2, . . . , s

′
M} of the process sN

t , t ≥ 0, numbered in the reverse lexicographic order. The arrival
of a high-priority order that pushes out of service a low-priority order, has to imply, with
probability 1, the transition of the vector process sN

t into another fixed state. Therefore, all
elements in each row of the matrix Em are equal to zero, except for one element that is equal
to 1. In the row of matrix Em corresponding to the state {s1, s2, . . . , sM}, element 1 is located in
the column corresponding to the same state {s1, s2, . . . , sM} only if sl = 0 for all l, M ≥ l > m. In
this case, the received order of type-m is lost since orders with a lower priority are absent in the
service. If sl > 0 for some l, M ≥ l > m, and j∗ is the maximum of such values l, then element 1
is located in the column corresponding to the state given by

{s1, . . . , sm−1, sm + 1, sm+1, . . . , s j∗−1, s j∗ − 1, 0, . . . , 0}.

In this case, an order of type- j∗ has the lowest priority among the ones serviced in the system, and
an incoming order of type-m pushes one order of type- j∗ out of service. This order is removed
from the system (is lost).

Step 4. To consider the important fact that all orders receive the reduced service rate when the total
required bandwidth is higher than the bandwidth B of the server, we also use the following additional
notations:

• an = Ln(β̂)e, n = 1,N, where
β̂ = (β̂1, β̂2, . . . , β̂M).

The components of the vector an define the sum of all desired service rates of the serviced orders
under the corresponding states of the process sn

t ;
• dn, n = 1,N, denotes column vectors of size Tn, and elements denoted by (dn)l, l = 1,Tn, are

defined as

(dn)l =

{
1, if (an)l ≤ B,
B

(an)l
, otherwise.

The components of the vector dn define the reduction factors for desired service rates under the
corresponding states of the process sn

t ;
• ∆n = −diag{Yne + Γn(γ)e + diag{dn}Ln(β)e}, n = 1,N.

After the implementation of Steps 1–4, we are ready to write down the explicit form of the generator
G of the MC ζt. Since orders can enter the system in batches and leave the system only one at a time,
it is obvious that this generator is a block upper Hessenberg matrix of the following form:

G =



G0,0 G0,1 G0,2 G0,3 . . . G0,N−1 G0,N

G1,0 G1,1 G1,2 G1,3 . . . G1,N−1 G1,N

O G2,1 G2,2 G2,3 . . . G2,N−1 G2,N
...

...
...

...
. . .

...
...

O O O O . . . GN,N−1 GN,N


.

The diagonal elements of the blocks Gn,n, n = 0,N, are negative and their modules determine the
intensity of the exit from the corresponding states of the MC. The non-diagonal elements of these
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blocks are non-negative and determine the transition intensities of MC ζt within the level n. The block
elements Gn,n−1, n = 1,N, and Gn,n+l, n = 0,N − 1, l = 1,N − n, are non-negative and determine
the intensities of the MC ζt transitions from the level n to the levels n − 1 and n + l, l = 1,N − n,
respectively.

Theorem 1. The non-zero blocks of the generator G have the following form:

G0,0 = D0,

Gn,n = D0 ⊕ (Yn + ∆n), n = 1,N − 1, (2)

GN,N = D0 ⊕ (YN + ∆N) +
M∑

m=1

Km∑
k=1

D(k)
m ⊗ (Em)k, (3)

Gn,n+k =

M∑
m=1

δk≤Km D(k)
m ⊗

n+k−1∏
l=n

Pl(bm), n = 0,min{N − 1,K}, k = 1,min{N − n,K}, (4)

Gn,N =

M∑
m=1

( Km∑
k=N−n+1

D(k)
m ⊗

N−1∏
l=n

Pl(bm)(Em)k−(N−n) + D(N−n)
m ⊗

N−1∏
l=n

Pl(bm)
)
, (5)

Gn,n−1 = IW ⊗

(
diag{dn}Ln(β) + Γn(γ)

)
, n = 1,N, (6)

where I is the identity matrix of the corresponding dimension, δA is the indicator of an event A, and ⊗
and ⊕ denote Kronecker products and the sums of matrices, respectively; see [42].

Proof. The proof is carried out by analyzing possible transitions of the MC ζt on an interval of
infinitesimal length.

As already remarked, the diagonal elements of the blocks Gn,n, n = 0,N, are negative and their
modules determine the intensity of the exit from the corresponding states of the MC. The non-diagonal
elements of the blocks Gn,n, n = 0,N, are non-negative and determine the transition intensities among
the respective states of the MC.

When n = 0, no service is provided and all possible transitions of the MC ζt (and exits from
its states) can occur only due to the transitions (or exits) of the underlying MC of arrivals νt. Thus,
G0,0 = D0.

Consider the case that n = 1,N − 1: along with the transitions of the underlying MC of arrivals νt,

transitions caused by changes of the priority of the orders, described by the matrix Yn, are possible. The
exits from the states, along with the exits of the underlying MC of arrivals νt, can occur due to the exits
caused by the change of a priority, changes of the vector for the underlying process of service (at the
required or reduced rate), or order removal because of impatience. The rates of these exits are given by
the diagonal entries of the diagonal matrix ∆n. Therefore, we obtain that Gn,n = D0⊗ ITn+ IW⊗(Yn+∆n).
Taking into account the definition of the Kronecker sum of matrices (see [42]), we obtain formula (2).

Focus on the case that n = N: in addition to the already explained summand D0 ⊕ (YN + ∆N), we

obtain the summand
M∑

m=1

Km∑
k=1

D(k)
m ⊗ (Em)k. It corresponds to the possible transitions of the MC ζt caused

by the arrival of batches of the size k of type-m orders, k = 1,Km, m = 1,M. As the number of orders
in the system is already equal to the limiting value N, the arrived orders try to push out of service
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low-priority orders, if any exist. The matrix (Em)k describes transitions of the vector for the underlying
process sN

t of a service that occurred as the result of k sequential trials. As a result, we get formula (3).
The matrix Gn,n+k, k = 1,min{N − n,K}, n = 0,min{N − 1,K}, describes the rates of transition that

lead to an increase of the number of orders in the system from n to n + k. Such an increase can occur
if the batch of k orders of any type-m such that k ≤ Km arrives. The service of each of these orders
begins, and the initial states of the underlying processes of service are installed. It is easy to show that
probabilities of the transitions of the vector for the underlying process of service at this moment are

equal to the entries of the matrix
n+k−1∏

l=n
Pl(bm). From these considerations, we have formula (4).

Formula (5) is explained similarly. Only here, the number of orders in the system after transition
becomes equal to N. If an arriving batch of orders of any type consists of exactly N−n orders, we have
the same situation as in the explanation of formula (4). But, if the size k of the type-m order batch is
more than N − n, the service begins only on N − n servers, while the other k − (N − n) orders of this
batch try to push out of service low-priority orders, if any exist. This explains the multiplier (Em)k−(N−n)

in the first summand in formula (5).
Formula (6) describes the transition rates of the MC ζt when the number of orders in the system

decreases from n to n − 1. Such transitions can be induced by an order loss due to impatience or
the service completion of one order. Here, the use of the vector dn indicates the decrease in service
intensity in the case of a bandwidth shortage.

The theorem is proven. □

The number of equations in the system (1) with a block upper Hessenberg structure of the generator
G can be large, and the solution for this system on a computer requires highly complex computations.
To solve this system, it is recommended to use an algorithm that effectively accounts for the sparse
structure of the generator. In particular, we recommend the numerically stable algorithm developed
in [24].

4. System performance characteristics

After the computation of the vectors denoted by πn, n = 0,N, we can determine various useful
performance indicators of the queueing system under consideration.

The average number of orders in the system is given by

Norders =

N∑
n=1

nπne.

The average number N(m)
orders of type-m orders in the system, where m = 1,M, is defined as

N(m)
orders =

N∑
n=1

πn(IW ⊗ Ln(bm))e.

Here, the matrix Ln(bm) is computed by using the same algorithm as that for the matrix Ln(β), n = 1,N,
replacing the vector β of service rates by the stochastic vector bm.
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The intensity of the output flow of successfully serviced orders is equal to

µout =

N∑
n=1

πn(IW ⊗ diag{dn}Ln(β))e.

The intensity of the output flow µ(m)
out of successfully serviced orders of type-m, m = 1,M, equals

µ(m)
out =

N∑
n=1

πn(IW ⊗ diag{dn}Ln(β̃m))e.

Here, the vector β̃m of size M has all zero components, except for the m-th one that is equal to βm, m =
1,M.

The rate µimp, i.e., the rate at which orders leave the system due to impatience, is equal to

µimp =

N∑
n=1

πn(IW ⊗ Γn(γ))e.

The departure rate µ(m)
imp of type-m orders m, m = 1,M, due to impatience is computed as follows:

µ(m)
imp =

N∑
n=1

πn(IW ⊗ Γn(γ̃m))e.

Here, the vector γ̃m of size M has all zero components, except for the m-th one that is equal to γm, m =
1,M.

The probability of losing an arbitrary order is given by

Ploss = 1 − λ−1µout.

The probability of losing an arbitrary order due to impatience is given by

Pimp = λ
−1µimp.

The probability of losing an arbitrary order because of the arrival of a batch of orders for which
there is not enough space is equal to

Parrival−loss = λ
−1

( N∑
n=0

M∑
m=1

Km∑
k=N−n+1

(k − (N − n))πn(D(k)
m ⊗ ITn)e

)
= Ploss − Pimp.

It is evident that k − (N − n) orders are lost if a batch of k orders of any type arrives when the number
of processed orders equals n, where k > N − n. Using the formula of the total probability, the rate of

flow of the lost orders is
( N∑

n=0

M∑
m=1

Km∑
k=N−n+1

(k − (N − n))πn(D(k)
m ⊗ ITn)e

)
. Dividing the rate of flow of the

lost orders by the rate of arriving orders, we get the formula for Parrival−loss.
Assume that Rm,l is the diagonal matrix of size TN , whose diagonal entries determine the number of

times the corresponding entry of the identity matrix of size TN is shifted when this matrix is sequentially
multiplied l times by the matrix Em, l = 1,Km, m = 1,M.
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The probability of losing an arbitrary order because of the pushing out of service by higher-priority
orders is calculated as follows:

Ppush−loss = λ
−1

(N−1∑
n=0

M−1∑
m=1

Km∑
k=N−n+1

πn(D(k)
m ⊗

N−1∏
l=n

Pl(bm))(IW ⊗ Rm,k−(N−n))e

+

M−1∑
m=1

Km∑
k=1

πN(D(k)
m ⊗ ITN )(IW ⊗ Rm,k)e

)
.

Observe that each shift occurs only when some low-priority order is pushed out of service. Therefore,
the expression in the brackets in the given formula for Ppush−loss represents the rate of orders being
pushed out of service, as calculated by using the formula for total probability. Dividing this rate by the
order arrival rate λ, we obtain the formula for Ppush−loss.

The probability of losing an arbitrary arriving order upon entry to the system due to the lack of
space and the inability to push out a low-priority order from service is calculated as follows:

Pent−loss = λ
−1

(N−1∑
n=0

M∑
m=1

Km∑
k=N−n+1

πn(D(k)
m ⊗

N−1∏
l=n

Pl(bm))(IW ⊗ ((k − (N − n))ITN − Rm,k−(N−n))e

+

M∑
m=1

Km∑
k=1

πN(D(k)
m ⊗ ITN )(kITN − Rm,k)e

)
= Parrival−loss − Ppush−loss.

Note that the definitions of the loss probabilities Parrival−loss and Pent−loss are similar. The difference
between them is as follows. The first one is the probability that, at an arbitrary arrival moment, an
order loss happens. The lost order may either be from a just-arrived batch or a pushed-out-of-service
order. The second probability considers the possibility of the loss of an arriving order.

The existence of two different formulas for the calculation of the probabilities Parrival−loss and
Pent−loss is helpful to control the accuracy of the computation of the probability vectors πn, n = 0,N.

The probability of losing an arbitrary order of type-m upon arrival to the system due to the lack of
space and the inability to knock out a low-priority order from service is defined as

P(m)
ent−loss = λ

−1
m

(N−1∑
n=0

Km∑
k=N−n+1

πn(D(k)
m ⊗

N−1∏
l=n

Pl(bm))(IW ⊗ ((k − (N − n))ITN − Rm,k−(N−n))e

+

Km∑
k=1

πN(D(k)
m ⊗ ITN )(kITN − Rm,k)e

)
.

The probability that, at an arbitrary moment, a bandwidth shortage occurs in the system is equal to

Psharing =

N∑
n=1

πn(IW ⊗ diag{qn})e

where qn n = 1,N, denotes column vectors of size Tn, and elements denoted by (qn)l, l = 1,Tn, are
defined as follows:

(qn)l =

{
0, if (an)l > B,
1, otherwise.
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Correspondingly, the probability that, at an arbitrary moment, no bandwidth shortage occurs in the
system is equal to Pno−sharing = 1 − Psharing.

The average intensity λ̂(m)
to of the type-l, l = 1,M, m , l, order transformation to the type-m, m =

1,M, orders is computed as follows:

λ̂(m)
to =

M∑
l=1, l,m

pl,mφlN
(l)
orders.

The average intensity λ̃(m)
f rom of the type-m, m = 1,M, order transformation to the other types of

orders is given by

λ̃(m)
f rom =

M∑
l=1, l,m

pm,lφmN(m)
orders.

The probability of the loss of an arbitrary type-m order due to impatience, i.e., P(m)
imp−loss, m = 1,M,

is given by

P(m)
imp−loss =

µ(m)
imp

λm + λ̂
(m)
to − λ̃

(m)
f rom

.

5. Numerical examples

It is intuitively evident that the bandwidth, B, of the server and the number of orders N, that can be
admitted for simultaneous service have a deep effect on the performances of the system. The goal of
the presented numerical results is to quantitatively highlight the impact of B and N on the main features
of the system.

Assume that the number of types of arriving orders, M, is 3. The arriving BMMAP is defined by
matrices of size 2:

D0 = diag{−0.529945028,−0.5425546},

D(1)
1 =

(
0.00643918 0.0070831
0.00611722 0.00643918

)
, D(2)

1 =

(
0.0128784 0.0099807
0.0122344 0.0135223

)
,

D(3)
1 =

(
0.0177077 0.0170638
0.0164199 0.0189956

)
, D(4)

1 =

(
0.0193175 0.0196395
0.0199615 0.0189956

)
,

D(1)
2 =

(
0.0325179 0.0647138
0.0972316 0.0962657

)
, D(2)

2 =

(
0.0482939 0.112686
0.0486158 0.112364

)
,

D(1)
3 =

(
0.0482939 0.0321959
0.001235 0.009765

)
, D(2)

3 =

(
0.0643918 0.000643918
0.024563 0.0076329

)
,

D(3)
3 =

(
0.011532 0.004566
0.0197839 0.012412

)
.

The mean arrival rates of orders of different types are as follows:

λ1 = 0.0321031, λ2 = 0.0466686, λ3 = 0.0212283.
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The mean arrival rates of the batches of order of different types are as follows:

λbatch
1 = 0.0110805, λbatch

2 = 0.0306644, λbatch
3 = 0.0115951.

The total mean arrival rate is λ = 0.1.
The nominal service rates are fixed to be as follows:

β1 = 0.05, β2 =
1

35
, β3 =

1
80
.

The parameters of the exponential distribution of the duration of time before the change of priority are
as follows:

φ1 = 0, φ2 = 0.03, φ3 = 0.03.

The matrix P = ||pm,l||m,l=1,3, which defines the probabilities of the changes in the type of orders, is
given by

P =


0 0.2 0.8
1 0 0

0.5 0.5 0

 .
Because φ1 = 0, type-1 orders cannot change the priority. Thus, the probabilities in the first row of the
matrix P do not have any effect.

The impatience rates were chosen as

γ1 = 0.003, γ2 = 0.002, γ3 = 0.001.

Let us vary the bandwidth of the server, B, in the range [50, 500] with step equal to 50 and the limit of
simultaneously serviced orders, N, in the range [1, 30] with one step.

Figures 2–5 show the dependencies of the average number of orders Norders and the average number
of type-m orders, m = 1, 3, N(m)

orders on the parameters N and B. We notice that, when the bandwidth B
is sufficiently large, say, larger than 200, the effect of the parameter N is not very essential. The shown
average numbers, more or less, essentially increase only for small values of N. With the subsequent
increase of N, the average numbers of orders become constant. It is clear because, for large B, the
service rate is high and the probability that the maximum number of orders, N, receives the service is
small for large N.
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Figure 2. The dependence of the average number of orders Norders in the system on the
parameters N and B.
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Figure 3. The dependence of the average number of type-1 orders N(1)
orders in the system on

the parameters N and B.
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Figure 4. The dependence of the average number of type-2 orders N(2)
orders in the system on

the parameters N and B.
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Figure 5. The dependence of the average number of type-3 orders N(3)
orders in the system on

the parameters N and B.

But, when the bandwidth B is relatively small, the influence of the parameter N drastically grows.
An increase of N implies a sharp increase of Norders and N(m)

orders, where m = 1, 3. These figures can
be helpful when choosing the minimum value of B and the maximum value of N for which the mean
number of service orders does not exceed a predetermined number.

Figures 6–9 illustrate the dependencies of the loss probabilities of the orders entering the system
Pent−loss and P(m)

ent−loss,m = 1, 3, on the parameters N and B. These probabilities are very large when N
is small. The dependence on B is weaker, but such probabilities can increase when the value of B is
small.
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Figure 6. The dependence of the probability Pent−loss on the parameters N and B.
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Figure 7. The dependence of the probability P(1)
ent−loss on the parameters N and B.
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Figure 8. The dependence of the probability P(2)
ent−loss on the parameters N and B.
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Figure 9. The dependence of the probability P(3)
ent−loss on the parameters N and B.
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Figure 10 illustrates the dependence of the loss probability Parrival−loss on the parameters N and B.
This probability is large when N is small and quickly decreases with the increase of N. For large N,
it is not negligible when B is small, and it becomes very small with the increase of B. Notice that the
surface in this figure looks similar to the one in Figure 6 for the probability Pent−loss. However, these
surfaces are different.
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Figure 10. The dependence of the probability Parrival−loss on the parameters N and B.

Figure 11 shows the dependence of the probability of an arbitrary order loss due to impatience
Pimp−loss on the parameters N and B. As it may be anticipated, this probability sharply increases when
the bandwidth B is small but a large number of orders can be admitted to service. Due to the small
bandwidth, many orders receive a reduced service rate. Thus, their service time is long, and their loss
due to impatience becomes very likely. The data in this figure may help to match the limit N with
the bandwidth W to avoid numerous losses of orders as caused by excessively mild restrictions on the
admission of arriving orders.
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Figure 11. The dependence of the probability Pimp−loss on the parameters N and B.

The above figures are quite easily tractable. Less obvious is the surface, which describes the
behavior of the probability of removal from service of an admitted low-priority order, Ppush−loss; see
Figure 12. The smallest value of this probability, for any B, is achieved for N = 1. This is clear
because only one order can be accepted for service, and, regarding its removal from service, it is
mandatory that no type-1 order is in service and the arriving order is not rejected upon arrival and has
higher priority. This event has a relatively low probability. When N increases, the probability of this
event increases because (i) fewer orders are rejected upon arrival and more low-priority orders are
admitted for service and become the potential targets of being pushed out, and (ii) more high-priority
orders can arrive and interrupt the service of low-priority orders. However, with a further increase in
N, the probability of rejection of an arbitrary order, including low-priority orders, decreases. Thus, the
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number of potential targets increases, which decreases the probability of existing order being pushed
out, namely, an arbitrarily considered order. These intuitive considerations can help us to understand
the observed effect. But, the concrete value of the number N after which the probability Ppush−loss

starts decreasing can be found only by using the results of the above algorithmic analysis. There is
also a natural effect in Figure 12 that indicates that the probability Ppush−loss is essential when the
bandwidth is small.
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Figure 12. The dependence of the probability Ppush−loss on the parameters N and B.

Figure 13 illustrates the behavior of the probability Ploss of losing an arbitrary order (due to any
reason). Because Ploss = Parrival−loss + Pimp−loss, the form of the surface in Figure 13 is predefined by
one of the surfaces in Figures 10 and 11.
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Figure 13. The dependence of the probability of losing an arbitrary order Ploss on the
parameters N and B.

Figure 14 shows the dependence of the probability Pno−sharing on the parameters N and B. This
probability approaches the value 1 when B increases. When B is small, this probability quickly
decreases when N increases, and the situation that the bandwidth B is sufficient for the service of all
orders becomes rare. Under any fixed value of B, this figure can help one to answer the following
managerial question: How many orders can be admitted to the system to guarantee that an arbitrary
order will receive the required, not the reduced, service rate with a probability higher than some
value? For example, this value can be fixed in a service-level agreement between customers
generating the orders and the service provider.
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Having proved the impact of the parameters N and B on the system performance measures, we
can solve various problems of unconditional or conditional (with restrictions on the values of certain
performance measures) optimization of the system operation. As an example, we fix the following
criterion for the quality of the system’s operation:

E = E(B,N) = aµout − c1λPent−loss − c2λPpush−loss − c3λPimp−loss − d1B − d2N.

The value E represents the revenue that the service provider gains per unit of time. Here, a is the
revenue earned through the service of one order, and ck, k = 1, 2, 3, denotes the charges because of
the loss of one order because of admission control as a result of the order removal caused by higher-
priority order arrival or an excessively long servicing (due to order impatience). The coefficient d1 is
the cost of the use of a unit of bandwidth during a unit of time. The coefficient d2 is the cost of the
possible maintenance of one order in service (i.e., the cost of a used multiplexer per order) during a
unit of time.

Consider the following values of the cost coefficients:

a = 5, c1 = 1, c2 = 3, c3 = 4, d1 = 0.0005, d2 = 0.001.

We fixed the values ck, k = 1, 2, 3, to be c1 < c2 and c1 < c3 because it seems better not to admit an
order into the system at all (and not to waste the system’s resources for its processing) than to admit
it upon arrival, spend system resources, but then obtain no revenue and disappoint the user who has
generated this order. We also assumed c2 < c3 to increase the value of type-3 orders. Due to being the
lowest priority, type-3 orders are more often pushed out of service and have the longest service time
(with the lowest impatience rate).

The 3-D graph that shows the dependence of the revenue criterion E on the parameters N and B is
in Figure 15. Table 1 contains additional information about the optimal values N∗ of N and E∗ of the
criterion E for several values of the available bandwidth B.
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Figure 15. The dependence of the revenue criterion E on the parameters N and B.
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Table 1. The optimal values E∗ and N∗ for different values of the bandwidth B.

B 50 100 150 200 250 300 350 400 450 500
E∗ 0.111 0.2962 0.3344 0.3247 0.3045 0.2814 0.2571 0.2324 0.2075 0.1825
N∗ 6 15 14 13 13 12 12 12 12 12

Thus, the optimal value E∗(B∗,N∗) is 0.33438. It is achieved when the server bandwidth equals 150
and the limiting value N is equal to 14. It is worth noting that the optimal value of the criterion achieved
when B = 150 is essentially higher than the values of this criterion when B is small (E = 0.110987 for
B = 50) and when B is large (E = 0.182535 for B = 500). Thus, the obtained results can be important
for managerial aims.

As it was mentioned above, a variety of different possible optimization problems can be solved with
the use of the results presented above.

6. Conclusions

We introduced and explored a new discipline for the simultaneous service of heterogeneous orders
with different service requirements and importance. The proposed approach is realistic for applications
in a lot of real-world systems. It is assumed that there is a limit N on the number of orders that
can be processed in the system at the same time. When the number of orders in the system is not
high, they receive a desired constant share of bandwidth (and service rate), depending on their types.
Their service processes are mutually independent, as in a conventional multi-server queueing system.
However, when the sum of the bandwidths of the orders admitted to the system exceeds the total
available bandwidth, the orders are serviced at proportionally reduced rates. An order that arrives
when the number of serviced orders is equal to the limit pushes out of service an order of the lowest
priority that is currently receiving service, if any exist. The order, whose service is interrupted, is lost.
The patience time of any order is restricted, and the order can be removed from the system without full
service. Orders can change their priority during the service.

The choice of the optimal value of N is a non-trivial and challenging problem. If N is too small,
many orders are rejected upon arrival and the system may be underutilized. If N is too large, the service
can become too slow and many orders cannot receive full servicing due to either being pushed out by
the arrival of an order of higher priority or impatience. In both cases, due to the loss of orders, the
revenue obtained by the service provider is low. Therefore, the problem of the optimal choice of N
arises and has been addressed in this paper.

The model analysis was done under the realistic assumption that the orders arrive according to a
BMMAP process, which is a generalization of the known MAP process to the cases of heterogeneous
orders and their batch arrival. The feasibility of the proposed algorithmic analysis has been shown
through the use of a numerical example. In particular, we have presented the result of computing the
optimal value of the limit of the number of orders that can receive service simultaneously.

The considered model assumes a loss of orders that occurs when the number of serviced orders is
at its maximum. In the future, presented analysis will extended to scenarios in which there is also a
restriction on the total bandwidth of the orders admitted for service. It is intuitively clear that, due to
the random nature of the flow of arriving orders, the limit defining this restriction can be higher than
the server bandwidth. A large excess of the limit over the server bandwidth can ensure an essential
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increase in the provider’s revenue, but it worsen the quality of the user’s service. Thus, some reasonable
trade-off should be found through the use of adequate mathematical modeling of the system. Results
can be extended to cases in which the rejected or pushed-out order can be stored in a buffer of infinite
or finite capacity or can attempt service entry after a random amount of time.

The paper focused on the performance evaluation of the considered model under fixed values of its
parameters, including the priorities of the different types of orders, the time until the possible change
of each priority, and the probabilities of different changes of a priority. Based on this information, the
problem of the optimal choice of all or some of these parameters can be solved. This is a possible issue
for future research activities.
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