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Abstract: Currently, the discrete Hopfield neural network deals with challenges related to searching 

space and limited memory capacity. To address this issue, we propose integrating logical rules into the 

neural network to regulate neuron connections. This approach requires adopting a specific logic 

framework that ensures the network consistently reaches the lowest global energy state. In this context, 

a novel logic called major 1,3 satisfiability was introduced. This logic places a higher emphasis on 

third-order clauses compared to first-order clauses. The proposed logic is trained by the exhaustive 

search algorithm, aiming to minimize the cost function toward zero. To evaluate the proposed model 

effectiveness, we compare the model’s learning and retrieval errors with those of the existing non-

systematic logical structure, which primarily relies on first-order clauses. The similarity index 

measures the similarity benchmark neuron state with the existing and proposed model through 

extensive simulation studies. Certainly, the major random 1,3 satisfiability model exhibited a more 

extensive solution space when the ratio of third-order clauses exceeds 0.7% compared to first-order 

clauses. As we compared the experimental results with other state-of-the-art models, it became evident 

that the proposed model achieved significant results in capturing the overall neuron state. These 

findings emphasize the notable enhancements in the performance and capabilities of the discrete 

Hopfield neural network. 
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1. Introduction 

Artificial neural networks (ANN), drawing inspiration from the complex operations of the human 

brain, have triggered a global revolution in the field of artificial intelligence [1]. They act as a powerful 

tool across various sectors including medicine [2], economics [3], transportation [4], education [5], 

and business [6] to facilitate the development of advanced systems to solve complex intelligent 

computations. These networks, resembling the neurons in the human brain, consist of interconnected 

neurons that “learn” from examples and generalize beyond learning data. Each neuron acts as a simple 

processing unit, with inputs weighted to determine network strength [7,8]. Following this, the neurons 

combine all inputs and generate an output, the fundamental principle established by [9]. By employing 

a specific rule or activation function, the neuron produces an output based on the principle of Hebbian 

learning, emphasizing the significance of recurrent activation patterns in strengthening neural 

connections. The Hopfield neural network (HNN) is a prominent example of an ANN that was 

characterized using an associative learning model. Within this network, data is stored using a bipolar 

representation and linked by synaptic weights. Over time, great improvements have been made to this 

network to address optimization challenges. Through the implementation of performance metric tasks, 

ANN practitioners craft the most effective structure for the HNN. Although substantial progress has 

been made in recent years, still more findings are needed in the optimal configuration of HNN [10]. 

Therefore, identifying the most suitable symbolic arrangement to govern the HNN requires special 

attention, especially when dealing with limited capacity and addressing the challenge of local 

minimum energy in resolving complex optimization problems. 

Boolean satisfiability (SAT) is known as the task of determining a configuration that fulfills a 

given Boolean formula [11,12]. A Boolean formula involves operations with Boolean variables that 

result in outcomes of either TRUE or FALSE, often represented as {–1,1}. For example, as described 

by [13], a conjunctive normal form (CNF) formula is composed of multiple clauses. Every clause is 

composed of a set of combined literals. The satisfaction of a CNF formula depends on setting the 

Boolean variables in a manner that satisfies all the clauses simultaneously. In their study, [14] utilized 

the highest capabilities of the discrete Hopfield neural network (DHNN) to enhance a structured SAT 

logical function referred to as 3-satisfiability (3SAT). In this specific logical rule, each clause consists 

of exactly three literals. This study explores pattern satisfiability with a specific focus on 3SAT and 

the model integration with DHNN. Furthermore, in their study, [15] introduced an evolved iteration 

of 3SAT called maximum k satisfiability (MAXkSAT) within the structure of the DHNN. The 

presented research was enhanced through the application of the clonal selection algorithm derived in 

the DHNN, achieving a notably superior global minima ratio. However, in the retrieval phase of the 

DHNN, the inclusion of non-redundant literals in MAXkSAT led to imperfect outcomes. The 

introduction of various non-systematic logical rules that allow for different orders and systematic 

logical rules is being overtaken by their non-systematic counterparts in dominance. Continuously, the 

research by [16] utilized a hybrid technique to optimize the 2SAT logical rule with DHNN. It is 

important to note that DHNN was used to minimize logical inconsistencies when interpreting the logic 

clauses. The introduction of 2SAT brought about a revolution in logical rules, giving way for the 

development of maximum 2 satisfiability (MAX2SAT). This new framework adopts a systematic logic 

structure with negative literals, giving exciting possibilities and outcomes. Additionally, it is 

interesting to note that the DHNN has the remarkable ability to reproduce MAX2SAT behavior across 

various performance measurements. These growths are truly revolutionizing the field of systematic 

logic. The work by [17] presented noteworthy research that explores the implementation of the 3SAT 

logical rule in DHNN. This work is part of a modified clonal selection algorithm (CSA) to accomplish 



12092 

AIMS Mathematics  Volume 9, Issue 5, 12090–12127. 

the effectiveness of 3SAT by successfully evaluating real data sets using the reverse analysis method. 

This demonstrates the power of systematic SAT in accurately representing and analyzing real-world 

data sets. The strategy of 2SAT [18] incorporated a mutation operator within the retrieval phase of the 

DHNN. This new method adds another layer of complexity and effectiveness to their methodology. 

The exhaustive search (ES) algorithm indicates that utilizing an optimizer during the retrieval phase 

can greatly enhance the ability to uncover additional solutions within various search areas. Based on 

the observations from the previous study, there is a very negative impact on the global minimum ratio 

when the number of neurons increases in the systematic logic or the non-systematic logic. Therefore, 

structuring the logical rules is a crucial method to get a global solution to the network. The logical rule 

may be systematic or non-systematic with clauses that contain positive or negative literals, which can 

have a huge impact on the network. 

The new exploration by [13] proposed using logical structure as a paradigm for DHNN instead 

of a tool for optimization. Logic was implemented due to the ability of the database capacity to 

explicitly state information with the systematic approach and incorporate resolution techniques. These 

attributes greatly assist the DHNN in providing evidence and challenging the desired objective of the 

network. The integration of logic as a symbolic rule within DHNN has paved the way for the 

development of various other representations of logic. One noteworthy example is the Abdullah 

method [13], which enables the identification of the optimal synaptic weight linked to the embedded 

logical rule. The Abdullah method shows how logic-driven approaches continue to advance and 

enhance neural network technologies. In their study, [19] introduced the innovative use of 2SAT logic 

in DHNN. To enhance the efficiency of 2SAT, they cleverly utilized a genetic algorithm during the 

learning phase. This optimization technique proved to be highly effective in their research. The study 

of [20] developed a unique approach called random 2 satisfiability (RAN2SAT) that combines first-

order and second-order clauses as non-systematic logical rules. Another exploration in systematic logic 

called weighted random 2 satisfiability (r2SAT) in DHNN was a concept introduced by [21]. The 

involvement of the logic phase in this logical structure ensures that the appropriate ratio of negated 

literals is imposed on RAN2SAT. This innovation has significant implications for enhancing problem-

solving capabilities. However, the binary neurons in a DHNN may offer simplicity but it is also 

important to note that the use of continuous values within the range of –1 to 1 can sometimes result in 

precision issues and inaccuracies. 

The research by [22] embarked on an interesting study. The study discovered ways to expand and 

explore more solution spaces in neural networks. Building upon this work, [22] went a step further by 

introducing a third-order clause. This allowed for the creation of higher-order non-systematic logic. 

This new research opens up exciting possibilities for advancing the field of logic into DHNN. The 

exploration into the elaboration of a novel logical rule known as random 3 satisfiability (RAN3SAT) 

merges 3SAT logic with the established RAN2SAT concept. This exploration represents an exciting 

leap forward in this field of research. The results of the integration of RAN3SAT into DHNN have led 

to the exciting discovery of surpassing RAN2SAT when the RAN3SAT increases toward the ratio of 

global minima. This finding highlights the superior performance of RAN3SAT in this regard. However, 

it is important to note that RAN3SAT struggles with the capacity to handle a lower number of neurons. 

To address this issue, [23,24] proposed a revolutionary election algorithm (EA). This algorithm was 

specifically designed to enhance the learning phase of RAN3SAT by optimizing the model for 

maximum efficiency and effectiveness. By incorporating the EA into the process, they were able to 

overcome the limitations previously faced in this area of study. This incorporation enables the DHNN 

to achieve an optimal final neuron state with higher neuron variation and a low similarity index. The 

EA enhances the storage capacity of the DHNN through a non-systematic logical rule. Another study 
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by [25] has introduced a variant in logical structure called major 2 satisfiability (MAJ2SAT) leading 

to further advancement in logical rules. This novel approach incorporates a significant proportion of 

2SAT clauses relative to the total number of clauses that enhanced problem-solving capabilities. The 

increased presence of 2SAT clauses in non-systematic logical rules significantly impacts the final 

neuron state, creating a wider dimension of possibilities. In this regard, MAJ2SAT surpasses the 

current systematic logical rule by achieving a higher ratio of global minima and diversity while 

utilizing an equivalent number of neurons. This demonstrates the superior performance and efficiency 

of MAJ2SAT in comparison to its counterparts. In a recent study, [26] explored stimulation data in the 

domain of non-systematic logical rule structures. They expertly merged the characteristics of 

systematic and non-systematic logic to introduce Y random 2 satisfiability (YRAN2SAT). This novel 

approach offers promising new insights and possibilities in the field of logical rules. This method 

combines logical rules with symbolic instruction, significantly improving the effectiveness of the 

DHNN. The advantage of both these techniques is that they offer unparalleled benefits and enhance 

the overall performance of DHNN. In their research, [27] introduced a new higher-order non-

systematic logic called G random k satisfiability (GRAN3SAT). GRAN3SAT randomly generates a set 

of clauses of first-, second-, and third-orders. The integration of GRAN3SAT into a DHNN shows the 

wide storage capacity and capability to handle difficult dimensional problems. Another innovative non-

systematic logic developed by [28] in the S-type random k satisfiability model introduces a unique 

approach by assigning negative literals in the logical structure. This method relies on statistical 

parameters to ensure an accurate and efficient neural network. The introduction of a probability-based 

system enhances the overall logical analysis process to improve the results. This integration aims to 

reduce logical rules associated with the zero-cost function. The S-type random k satisfiability also 

involves identifying the synaptic weight configuration of the DHNN that yields a cost function 

equivalent to the fulfilled δ2SAT. While new approaches in non-systematic logic have been developed 

to explore the storage capacity of neural networks, there is little research being conducted utilizing 

major higher-order clauses within neural networks. These major higher-order clauses have the potential 

to significantly expand the search space, allowing for increased storage capacity. 

In this research study, we propose the application of major higher-order clauses instead of first-

order clauses, which has not been thoroughly explored in previous literature. The performance of the 

DHNN in terms of the combination of major higher-order and minimum lower-order clauses has 

received limited attention. This research aims to examine how the integration of major higher-order 

and minimum lower-order clauses can help reduce errors in both the learning and retrieval phases. By 

examining the impact of this integration, the study seeks novel findings on a potential solution for 

reducing errors and improving overall performance. This research holds significant promise for 

enhancing the effectiveness and accuracy of future learning and retrieval processes. The major random 1,3 

satisfiability (MR1,3SAT) is an innovative approach that combines major higher-order and lower-order 

non-systematic logical rules within the DHNN. By utilizing the higher-order logical rule, MR1,3SAT 

achieves wider storage capacity. The introduction of MR1,3SAT aims to significantly enhance the 

storage capacity of DHNN by carefully combining higher-order and lower-order clauses. This research 

seeks to understand the impact of this integration on reducing errors during both the learning and 

retrieval phases of the network. By presenting novel findings in this unexplored area, we contribute 

valuable insights that can potentially revolutionize the effectiveness and accuracy of future learning 

and retrieval processes by offering an outperforming solution to improve the overall performance in 

DHNN. On the other hand, the lower-order logical rule aids in making precise predictions and 

classifications. Our work represents an initial effort to combine clauses as a logical rule within a 

DHNN to contain all previously proposed sets of logical rules. The main objectives of this study are 
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stated below: 

(a) To formulate a new non-systematically logical rule named MR1,3SAT by combining major 

higher-order with minimum first-order logical rules into a single formula. This logic involves 

the selection of major third-order clauses based on a ratio and accommodates non-redundant 

variables. 

(b) The implementation of MR1,3SAT in a discrete Hopfield neural network involves finding the 

minimum cost function of the sub-logical rule that is satisfiable. In this approach, neurons are 

represented as a literal in the logical rule, and their optimal synaptic weights are determined 

by comparing the cost function with the Lyapunov energy function. 

(c) To evaluate the performance of the proposed hybrid network, we use simulated datasets. This 

hybrid network comprises MR1,3SAT, the ES algorithm, and the discrete Hopfield neural 

network. This method will evaluate how this logical structure is able to perform well with less 

error in the learning and retrieval phase. 

(d) To compare the performance of the newly proposed MR1,3SAT approach with the existing 

non-systematic logical rules during both the learning and retrieval phases, the similarity index 

is used to measure the lower similarity between the final neuron and the benchmark neuron 

state. 

The organization of this paper is outlined as follows: Section 2 presents the motivation for this 

research. Progressing to Section 3, we delve into the complete integration of MR1,3SAT into a DHNN. 

The specifics of the experimental setup and the metrics utilized to assess performance throughout the 

simulation are expressed in Section 4. The exploration of the behavior and effectiveness of DHNN-

MR1,3SAT across parameters and stages along with a comparative analysis against established logical 

rules is conducted in Section 5. Finally, Section 6 contains the discussion of the results obtained in this 

research, and Section 7 concludes and discusses the future work of this research. 

2. Motivation 

In this section, we will discuss the motivation behind our work. Each motivation addresses the 

new exploration of existing works and how the proposed logical structure can fill the gaps in the field. 

This study aims to introduce a new way of organizing or understanding information in the field of 

discrete Hopefield neural networks. 

2.1. Exploring the adaptability of non-systematic logic 

The establishment of the logical rule facilitates the transition of DHNN neuron performance from 

the initial state to the final state. The absence of this rule exposes the DHNN to the risk of becoming 

trapped in a cycle of trial and error, lacking a clear bias toward converging into a state of absolute 

minimal energy. In such scenarios, the initial neuron state attained through a specific DHNN 

configuration presents a potential solution to an optimization problem. Previous research by [14,15] 

has effectively integrated the k-satisfiability logical rule into the DHNN. Nevertheless, the final neuron 

state in these engages by a fixed number of dimensions per clause. To illustrate, [14] generated a final 

neuron state that approaches a hundred percent of the local minima ratio. However, their approach 

limitation is two dimensions, which restricts the formulation variables in defined clauses and 

consequently limits the capacity of the logical rules. This constraint becomes more visible when 

higher-order logical rules as demonstrated by [15] are integrated into the DHNN. The satisfiability of 
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the logical structure increases when the tendency of neuron connection across different clauses rises 

in the overall neuron count. 

Following the findings of [26], they introduced a novel strategy of introducing random second-

order and first-order clauses to assist issues related to overfitting. Their methodology diverges notably 

from that of random k satisfiability (RANkSAT), which imposes constraints on clause utilization. 

Similarly, [27] follows a comparable approach by incorporating randomly generated third-order, 

second-order, and first-order clauses within the DHNN to amplify the adaptability of the logical 

framework during the retrieval phase. In our current study, we present a logical rule that directly 

addresses these limitations. Our approach entails the utilization of a major random generator which 

produces third-order clauses as well as minimal first-order clauses. This innovation empowers the 

DHNN to proficiently represent non-systematic logical rules that effectively transcend the previously 

mentioned problems. 

2.2. Restricted storage capabilities 

In DHNN the higher-order logical rules take into account the connections between three variables 

at the same time that become better at representing complex patterns. The increased logical structure 

capability has the potential to enhance performance in tasks that demand the capturing of complex 

relationships. Non-systematic logic splits structurally from systematic logic by accommodating 

fluctuations in the number of variables per clause randomly upon the specific logical formula. Typically, 

non-systematic logical rules can be classified into two overarching viewpoints, utilizing first-order 

clauses and not involving first-order clauses to express the rules. However, the involvement of first-

order clauses within non-systematic logic has been identified as presenting challenges when it comes 

to achieving satisfaction. This is because of some limitations of the interpretations available which 

lead to the logical rule containing first-order clauses to minimize the logical rule cost function. For 

instance, an illustrative case is RAN2SAT [24], which integrates first-order clauses. This particular 

approach was deemed ineffective during the learning phase as it requires a greater number of iterations 

to attain the desired cost function. When the HNN fails to reach the absolute minimum cost function 

during the learning process, the network could potentially retrieve inaccurate synaptic weights. 

Consequently, this increases the probability of becoming trapped within local minimum energy states. 

Conversely, the second perspective of non-systematic logic entails the exclusion of first-order clauses 

that bears a direct connection to the principal logic. 

The authors in [22] proposed a variant of RAN3SAT that combines second-order and third-order 

clauses. This new logical formulation was successfully integrated into the HNN, which resulted in the 

highest global minima ratio among all RAN3SAT variants. The introduction of third-order clauses into 

the formulation aids in augmenting the storage capacity of the HNN. As a result, the DHNN exhibits 

heightened efficiency in recovering neuron states across various logical orders. While the capacity to 

satisfy the cost function with potential interpretations surpasses that of the non-systematic logic of the 

RANkSAT, accurate interpretations remain confined to the predetermined count of first-, second-, or 

third-order clauses allocated to the logical formulation. Consequently, this situation prompted our 

study to adopt the strategy of randomly generating major third-order clauses. This approach aims to 

address the limitation observed in RANkSAT, which confines the storage capacity for retrieving 

diverse solution states that fulfill the cost function. This complication can be effectively addressed by 

proposing a different order logical rule that includes both third-order and first-order clauses, thereby 

enabling the retrieval of an expanded range of final neuron states to achieve the global minimum energy. 
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2.3. Performance of major clauses 

The work [25] introduced MAJ2SAT clauses integrated into the DHNN as logical structure 

MAJ2SAT. The aim of implementing MAJ2SAT is to emphasize the incorporation of more features 

from 2SAT rather than 3SAT into DHNN. By constructing an efficient MAJ2SAT, we can expand our 

exploration of a broad solution space. In another attempt, [29] introduces major 3 satisfiability by 

exploring the previous work by [30]. Their study incorporates a multi-objective election algorithm into 

the learning phase of major 3 satisfiability logic. This addition aims to improve the learning process 

by utilizing the exploration and exploitation mechanism while replacing the ES. This leads to the major 

higher-order clauses having the potential to increase the storage capacity, accuracy, and diversity of 

DHNN. To achieve this, it becomes imperative to contemplate the integration of higher content 

addressable memory (CAM). The CAM is greatly influenced by the availability and quality of the 

retrieval phase. It is crucial to have a sample and accurate final neuron state to achieve optimal results. 

Sufficient and diverse learning examples that cover the range of logical rules and their combinations 

can help the network learn effective weight configurations. Adequate representation of both major 

third-order and lower first-order clauses in the retrieval phase is crucial for the network to generalize 

well to the unseen behavior of the final neuron state. 

3. MR1,3SAT logic 

The major random k satisfiability (MRkSAT) is an incredibly useful non-systematic logical 

structure presented in the easily understandable CNF. It consists of a sequence of clauses with random 

literals, and the numbers of clauses and literals are randomly determined. MRkSAT is mainly 

comprised of k-SAT, where the value of k is either 1 or equal to 3. In the context of k-SAT, there is a 

collection of p literals and q clauses. Each literal in this context can have a value of either TRUE or 

FALSE, denoted as [–1,1]. The well-defined structure of MR1,3SAT is as follows: 

(a) A set of p variables, 1 2 3, , ,...., nA A A A . 

(b) A set of clauses, denoted as Z, is defined as  1 2 3 ,, , ,... ,C C C CtZ N N N N=  whereby 

 1, ,
i

T

C i iN m n i t =              (1) 

, 0.7,
n
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i i
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m
 =   

+
         (2) 

n , ,i i i iq m m n= +            (3) 

where im  represent the number of the third-order clauses, and in  represents the number of the 

first-order clauses. 

(c) The third logic clause is represented as n ,i iq m= + where i im n . 

(d) A set of literals, where each literal can be either a variable A or the negation of variable .A  

(e) The number of q distinct clauses presented, interconnected by the logical AND (∧) operator. 

Each clause within this collection is composed of precisely three literal variables forming the basis 

of the k-SAT clause, and in which each im  consists of exactly three variables forming the k-SAT 

clause, and the in  consist of first-order clauses that every logical clause normally has exactly k 
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variables that are linked with the OR (  ) operator. The general formula for the MR1,3SAT ex-

pression is 

1,3 ,m
MR SAT i j i i

n
i jL C C= ==          (4) 

where 

( )

( )

, 3,

, 1.

i i ik
i

i

A B C k
C

D k

   =
= 

=

        (5) 

Where  ,, , , , ,k
i i i i i i iC A A B B C C     and  ,k

i i iC D D=   are variables in 1,3MR SATL . The 
3
iC  

refers to the third-order clauses, and the 
1
iC  refers to the first-order clauses. A possible example of the 

formulation of the logical structure given with the im  more than 0.7 is 

( ) ( ) ( ) ( ) ( )1,3 1 1 1 2 2 2 3 3 3 1 2 ,MR SATL A B C A B C A B C D D=               (6) 

( ) ( ) ( )1,3 1 1 1 2 2 2 1 .MR SATL A B C A B C D=             (7) 

As presented in the above equation, 1,3MR SATL   is satisfiable when ( ), , , i i i iA B C D   in the initial 

neuron state is  1,1,1,1, 1,1,1,1, 1,1,1− − −  , which represents true, or when the ( ), , , i i i iA B C D   initial 

neuron state is  1,1,1,1, 1,1,1,1, 1,1,1− − − , it is not satisfied. The major third-order logical structure does 

not consider redundant literals, as it is not satisfied when the initial neuron state represents true. 

4. MR1,3SAT in the discrete Hopfield neural network 

A DHNN is a computational model consisting of interconnected neurons without any hidden 

layers. Unlike traditional neural networks, the neurons in a DHNN are updated asynchronously, 

meaning they are updated one at a time rather, simultaneously. This asynchronous updating approach 

helps eliminate the possibility of neuron oscillations, ensuring stable and reliable computations [25]. 

The neurons in DHNN are represented in bipolar values of –1 and 1 [19]. The neuron updates in the 

DHNN are as follows: 

1, ,

1, .

n

ijk j k
ii

if W S S
S

otherwise


     

= 
−      


      (8) 

Here, iS  is represents the neuron state, while the ijkW  is the synaptic weight from neuron state i 

to k, and the    is the threshold value of the neuron state. The DHNN strength lies in its parallel 

computing capabilities and quick convergence, which can exhibit an effective capacity for CAM. This 

property makes DHNN suitable for tasks that involve pattern recognition, associative memory, and 

information retrieval. The synaptic weight does not have any interconnection with others, i.e., 

0ijk kijW W= =  . When the first-order clauses connection is added to Eq (8), any similar neuron 

connection will result in a synaptic weight of zero. 1,3MR SATL  is assigned as a logic into the DHNN as 

each neuron is a variable. The variables in the 1,3MR SATL  will be randomly applied as a clause in Eq (6) 
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until the total number of neurons is satisfied. The cost functions 1,3MR SATL  of putting the logical rule 

into the DHNN are given as below in Eq (9): 

1,3
1 1

,MR SAT

m nNC

ij
i j

L L
+

= =

=          (9) 

where NC is the number of clauses, and m+n is the number of variables in 1,3MR SATL . The inconsistency 

of 1,3MR SATL  denoted as per Eq (10): 

( )

( )
1,3

1
1 , ,

2
L

1
1 , .

2

ij

A

MR SAT

A

S if A

S if A


− 

= 
 +


       (10) 

In order to successfully incorporate 1,3MR SATL  into the DHNN model, it is essential to ensure that 

the associated cost function 1,3MR SATL  is minimized to zero. The DHNN is designed to search for an 

interpretation that results in a cost function value of zero. By minimizing the cost function, the network 

aims to find a solution where all constraints are satisfied, and the objective is achieved. This ensures 

that the DHNN produces an optimal outcome, providing valuable insights and accurate results. By 

identifying a consistent interpretation, it becomes possible to determine the optimal synaptic weight 

for 1,3MR SATL   [25]. However, if 1,3MR SATL   is not equal to zero ( )1,3 0MR SATL     it indicates that 

1,3MR SATL  cannot be considered as satisfiable. This leads to the synaptic weight being nearly random. 

In order to ensure accurate retrieval of the final neuron state in the DHNN, it is crucial to employ 

effective learning methods during the learning phase with the primary objective of achieving 

1,3 0MR SATL = . 

In this study, the weights for DHNN-MR1,3SAT are obtained using the Wan Abdullah method, 

which relies on identifying logical inconsistencies [13]. Each neuron is assigned a truth value, and the 

objective is to minimize the cost function by maximizing the number of satisfied clauses. In the 

retrieval stage, before establishing the final state of the neuron the local field plays a significant role 

in fine-tuning the obtained output [31]. The neurons state is asynchronously modified by applying the 

local field equation. Eq (11) represents the local field 

k

( ) ,
n n n

i ijk j k ij j i
i j i j i

h t W S S W S W
  

= + +         (11) 

where iS  represents the initial state and updated state of neuron i, and ijkW  and iW  denote the synaptic 

weights for the third- and first-orders of the DHNN, respectively. The primary objective of 

incorporating 1,3MR SATL   into MR1,3SAT is to achieve a more final state during the retrieval phase 

which adheres to various logical rules. For example, Eq (11) is utilized to connect the final neuron 

state with more third-order clauses than first-order clauses as per Eq (6) or (7). The local field plays a 

crucial role in determining the effectiveness of the final neuron states generated by the DHNN. Its 

impact on the overall performance cannot be underestimated. Subsequently, the retrieved final states 

are interpreted to determine if the final solution is overfit or not. This interpretation is carried out based 

on the updating equation, which can be described by 
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( )
( )1, tanh 0,

1
1, ,

i
i

if h
S t

otherwise

        
+ = 

−     
      (12) 
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h h

i h h

e e
h

e e

−

−

−
=

+
        (13) 

ih  is the local field of the network, and the hyperbolic tangent function (tanh) is applied to ih  

representing the hyperbolic activation function (HTAF), which is a squashing function that ensures the 

neural network operates efficiently. During the learning phase, the cost function is compared with the 

Lyapunov energy function of the DHNN to determine the synaptic weight. Consequently, the 

magnitude of the final neuron state can be assessed using the Lyapunov energy function. The equation 

1,3MR SATL    as demonstrated in Eqs (14) and (15), refers to the minimum values from the energy 

function as per the formula for 
1,3

min

MR SATL  in Eq (15): 

1,3
,

1 1
,

3 2
MR SAT

n n n n n

ijk i j k ij i j i i
i j i k i j j i i

L W S S S W S S W S
  

 = − − −          (14) 

1,3

min .
8 2MR SAT

i i
L

m n
 = +          (15) 

After the DHNN-MR1,3SAT learning phase is finished, the synaptic weights derived from it are 

applied during the retrieval phase. It is essential to highlight that network relaxation is paramount in 

reaching an accurate final state [21]. As the number of neurons increases, more interconnected neurons 

are involved in the process of saving and receiving information. However, it should be acknowledged 

that an inefficient relaxation mechanism can result in numerous local minima solutions. In order to 

achieve a state of relaxation and stability within the network, the neuron updates are executed utilizing 

the highly effective Sathasivam relaxation method [25]. The exchange of information between neurons 

is computed using the formula 

.
new
i idh dh

R
dt dt

=          (16) 

In Eq (16), 
new
ih  is a new local field after the relaxation, while ih  represents the local field of the 

network and R denotes the relaxation rate. In our research, we utilize a relaxation rate of R=3. It is 

crucial to differentiate between the global minimum solution and the local minimum solution to ensure 

that the convergence property of the proposed MR1,3SAT is satisfied. Additionally, the performance 

of the final neuron state must satisfy 

1,3 1,3

min ,MR SAT MR SATLL Tol −          (17) 

where Tol represents a pre-established tolerance value of MR1,3SAT. Eq (17) determines whether the 

final neuron state satisfies the constraints of the 1,3MR SATL . 

Figure 1 illustrates the schematic diagram showing the DHNN-MR1,3SAT implementation. The 

diagram is divided into two primary phases: the learning phase, and the retrieval phase. During the 

learning phase, the random arrangement of clauses for 1,3MR SATL  is determined and then translated into 

a Boolean algebra representation. Each clause within is associated with a neuron. In this phase, the 
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objective of MR1,3SAT is to assign the neuron states that satisfy the cost function described in Eq (10). 

By achieving the optimal neuron assignment, we can calculate the optimal synaptic weight which will 

later be employed in the retrieval phase. The retrieval phase involves utilizing the obtained synaptic 

weight to retrieve the desired information. 

 

Figure 1. Schematic drawing for DHNN-MR1,3SAT. 

Figure 2 illustrates the methodological flowcharts employed in this paper. The green-coloured 

border signifies the learning phase processes conducted in this study. The clear presentation 

demonstrates how MR1,3SAT is initialized and progresses through the learning phase to attain optimal 

synaptic weights using the respective equations. Conversely, the red-coloured border indicates the 

retrieval phase of MR1,3SAT within the DHNN. This section also distinctly illustrates the sequence of 

steps involved in achieving minimum energy at the conclusion of the DHNN process in MR1,3SAT. 

Algorithm 1 shows the pseudocode for the DHNN employed in the context of MR1,3SAT in this study. 
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Figure 2. Flow chart of DHNN-MR1,3SAT. 
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Algorithm 1. Pseudocode of DHNN-MR1,3SAT 

Input: Parameters, COMBMAX, trial number, relaxation rate and tolerance value; 

Output: The final neuron state and global minimum solutions 

 

1 

 Generate MR1,3SAT initial neuron state. 

For 1 to NN do 

2             {logic phase} 

3                     Initialized MR1,3SAT 

4                    while, n , ,i i i iq m m n= +   0.7   

5           do {learning phase} for 

6                   Minimize cost function by Eq (10); 

7                   Calculate synaptic weight by using Abdullah method and store in CAM; 

8                   Calculate global minimum energy 
1,3

min

MR SATL by Eq (15); 

9      end for 

10             do {Retrieval phase} for 

11                 Initialize the random neuron state; 

12                 Calculate the local field by Eq (11); 

13                 Calculate HTAF by Eq (13); 

14                if tanh [hi] ≥ 0 

15                 Update neuron state by Eq (12); 

16      end for  
17                 do (Calculate final neuron energy by Eq (15)) for; 

18                        Verify global or local minimum energy by using Eq (17); 

19             end if (Tol < 0.001) 

                   Global minima solutions; 

20             else 

21                     

              end if 

22          end 

23            Local minimum solution; 

end for 

24  End for 

25  End 

5. Experimental settings of DHNN-MR1,3SAT 

This section provides an explanation of the proposed logic output and the assessment through 

multiple evaluation metrics across all phases. The aim is to verify the efficacy of integrating a statistical 

parameter into MR1,3SAT, which is designed for logic generation. Furthermore, detailed explanations 

are given for the simulation platform, parameter assignment and performance metrics. In all models, the 

ES algorithm was utilized, and we employed a trial-and-error approach to minimize the cost function [25]. 

Table 1 provides the summary of the parameters involved in the MR1,3SAT. 
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Table 1. List of parameters for DHNN- MR1,3SAT. 

Parameter Parameter values 

Number of learning (v) 100 [18] 

Number of combination (n) 100 [18] 

Number of trials (φ) 100 [32] 

Number of neurons (NN) 1  NN  130 

Tolerance value (Tol) 0.001 [11] 

Synaptic weight method Abdullah [13] 

Relaxation rate (R) 3 [11] 

Threshold CPU time 24 hours [20] 

Learning iteration (ϕ)   [26] 

Initialization of neuron 

states 

Random [27] 

Learning algorithm ES 

Threshold constraint of 

DHNN (θ) 

0 [18] 

Activation function HTAF [22] 

Order of clauses First and third-order logic 

5.1. Exploring simulation data for effective analysis 

The experiments were conducted using Dev C++ Version 5.11 and executed using open-source 

software and a 64-bit Windows 10 operating system. To ensure unbiased interpretation of the findings, 

the simulations were performed on a single personal computer with an Intel Core i5 processor. To 

ensure impartiality, the same medium specifications were employed. Figure 2 illustrates each 

configuration of DHNN-MR1,3SAT, where the green blocks denote the learning phase, while the red 

blocks signify the retrieval phase. 

Third-order clauses in the DHNN play a vital role in capturing complex non-linear relationships 

among variables which extend two-way interactions. These clauses facilitate the high capacity of 

complex data patterns that can enhance the precision of models [33]. These third-order clauses 

introduce heightened interactions between three variables, which introduce an augmented realm of 

logical combinations and relationships. Consequently, the network of logical structure becomes more 

complex by involving a more advanced stimulation strategy. Nonetheless, the incorporation of major 

third-order clauses augments network complexity, demanding larger network structures, expanded 

learning stimulation data and prolonged training durations. The information gathered from major third-

order clauses introduces specific solutions by ensemble techniques that involve combining multiple 

models to improve overall performance without falling into the overfitting trap. The complexity grows 

in the higher-order model in terms of the interpretability, and is able to reduce unsatisfied models. 

However, strategies such as error analysis and neuron similarity analysis can predict the major third-

order clauses performance in every mechanism in the DHNN. 

5.2. Performance metrics 

In this section, we provide an explanation of the performance metrics employed for evaluating 

the efficacy of the proposed DHNN-MR1,3SAT in comparison to other established approaches. The 

performance assessment focuses on two essential phases of the DHNN: the learning phase and the 
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retrieval phase. In the learning phase, the DHNN model aims to minimize inconsistency, which is 

represented by the network cost function. The retrieval phase of the DHNN plays a vital role in 

assessing the proposed MR1,3SAT approach. It consists of evaluating the final state that achieves the 

absolute minimum energy, and also considers the similarity of the neuron states. Analyzing this phase 

is essential as it provides a broad understanding of how flexible and effective the proposed MR1,3SAT. 

5.2.1. Configuring the learning and retrieval phases 

This subsection introduces a range of performance metrics for evaluation, which include root 

mean square error (RMSE), mean absolute error (MAE), sum of squared error (SSE), and mean 

absolute percentage error (MAPE). These metrics offer robust measures to accurately assess the 

performance and effectiveness of the proposed models or systems. These metrics have been selected 

based on previous studies [22,25,27] and are deemed relevant for this study. Eqs (18)–(25) represent 

the performance metrics for both the learning and retrieval phases. A zero value for these errors 

indicates an optimal learning and retrieval phase. In the learning process, we utilized a string of 130 

neurons for learning iterations, as well as the same number of neurons for learning samples. For this 

process, it is important to note that the learning iterations and the number of learning samples can vary 

depending on the number of neurons in the neural network, as different numbers of neurons result in 

different numbers of iterations. 

In this analysis, there are eight performance metrics to assess the effectiveness of both the learning 

and retrieval phase of the suggested network. During the learning phase, we aim to evaluate the 

network ability to minimize the cost function associated with the logical rule. On the other hand, during 

the retrieval phase the network is able to achieve the ideal final neuron state through convergence. The 

RMSE and MAE in the learning phase are used to measure the gap between the maximum clauses and 

the satisfied clauses in the proposed network model [34]. While in the retrieval phase the RMSE and 

MAE are used to measure the accuracy achieved by the proposed model. The RMSE and MAE in the 

learning and retrieval phase are described in Eq (18) as 

( )
2

max
1

1
,Learn i

i

RMSE


=

=  −         (18) 

where   is the number of neuron combinations, max  refers to the maximum clauses in the model, 

and i  represents the total number of satisfied clauses in the model. In the retrieval phase, the RMSE 

equation is given by 

( )1,3 1,3

2

1

,
MR SAT MR SAT

Retriev

L L

e
i

G L
RMSE



=

−
=        (19) 

where 
1,3MR SATLG  is the number of global minimum solutions, and 

1,3MR SATLL  is the number of local 

minimum solutions. The metric ω is the number of combinations, while ρ is number of trials in the 

DHNN-MR1,3SAT model, which evaluates the quality of the proposed model. The MAE is a metric 

defined as the average of the absolute gap between the maximum clauses and the satisfied clauses. The 

formula for calculating MAE in the learning and retrieval phase is 
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( )max
1

1
,Learn i

i

MAE


=

=  −          (20) 

( )max
1

1
.Retrieve i

i

MAE


=

=  −          (21) 

The MAPE measures the magnitude of the error in percentage in the learning and retrieval phase 

to evaluate the current performance of the DHNN-MR1,3SAT model by measuring the difference in 

the percentage between the maximum number of clauses and the actual satisfied clauses [35]. The 

formula of MAPE in both phases is given by 

max

1

100
,

i
Learn

i i

MAPE


 =

 − 
=


        (22) 

1,3 1,3

1

100
.

MR SAT MR SAT

Ret e

L L

riev
i

G L
MAPE



 =

−
=       (23) 

The SSE used in this research evaluates and quantifies the overall error or discrepancy between the 

maximum number of clauses and the total satisfied clauses by the proposed DHNN-MR1,3SAT model. 

The SSE provides a single and easily interpretable number that represents the total error [36]. Equation 

(24) in the learning phase and Eq (25) in the retrieval phase are used to calculate the SSE in this work. 

( )
2

max
1

,Learn i
i

SSE


=

=  −          (24) 

( )1,3 1,3

2

1

.
MR SAT MR SATLRetrieve L

i

SSE G L


=

= −       (25) 

5.2.2. Setting for energy analysis 

To facilitate the energy analysis, we have employed the approach of [17,30], utilizing both global 

minima and local minima ratios. In the retrieval phase the energy minimization achieved by DHNN-

MR1,3SAT was recorded as similar to the previous performance metrics. The energy analysis can be 

determined by utilizing Eqs (26)–(28). 

1,3
1

,
MR SATGloba Ll

i

Q G


=

=          (26) 

1,3
1

,
MR SATLocal L

i

Q L


=

=          (27) 

( )1,3 1,3

2
min .MR SAT MR SATEnergy LLSSE  −=       (28) 

5.2.3. Setting for similarity index 

As stated in [37], when the DHNN has an initial neuron state, it may lead to bias in the retrieval 
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phase. This bias emerges due to the DHNN learning to memorize the ultimate neuron state outright. 

To tackle this concern, we can implement a potential solution by following a systematic approach. This 

involves generating all neuron states using Eq (29), which helps minimize any potential positive (PP) 

and potential negative (PN) biases. The similarity index serves as a metric for quantifying the 

correlation between the neurons ultimate state and the desired neuron state in the retrieval phase of 

MR1,3SAT. The definition of the optimal neuron state, denoted as 
optimal
iS is 

1, ,
1, .

optimal if A
i if A

S  
− 

=         (29) 

The equation includes A, which represents the positive literal, and A  , which represents the 

negative literal present in every clause of MR1,3SAT. Thereby, 
optimal
iS  represents the ideal neuron 

state. It is important to note that Eq (29) takes into account the final neuron state that achieves the 

global minimum energy. In this context, the quality of the final neuron state will be evaluated using 

the Jaccard index, JaccardS  [24] 

1
.JaccardS

e f g
=

+ +
        (30) 

Moreover, it is crucial to note that during this experiment, the instances of false positives and 

false negatives may result in a trap in the local minimum ratio [38]. As a result, an examination of the 

similarity index (SI) defined in Eq (30) will be conducted. Random clauses and literals will be 

generated in 1,3MR SATL   logic. Additionally, Eqs (31) and (32) represent the total variation (TV) of 

DHNN-MR1,3SAT. As mentioned previously, the similarity analysis will be a comparison between the 

final neuron states obtained and the reference neuron states listed in Table 2. 

( )
1 1

,
n

i
i n

TV J


= =

=            (31) 
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( ) ( )

( ) ( )13 1,3
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      (32) 

Table 2. Variable specification for the similarity index. 

Variable 
max

i
S  i

S  

e 1 1 

f 1 –1 

g –1 1 

5.3. Comparison of method and baseline models 

Given that the main objective of this paper is to evaluate the performance of the logic structure 

by measuring the effectiveness of major third-order clauses, in order to assess this experiment, a 

comparison is made with existing logics in the DHNN. This comparison focuses on three aspects: logic 

structure, retrieval phase and quality of the solution. By examining these behaviors in the logic, we 

can gain insights into their effectiveness and determine their impact on the overall performance of the 
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system [39]. 

To examine the impact of controlling a majority of clauses in the third order and non-systematic 

logic structure, we investigate how manipulating the majority of clauses influences the behavior and 

performance of the logic. To evaluate the capability of the logical rule in controlling lower order 

clauses and accurately reflecting the behavior of the dataset, we aim to determine how effectively 

major clauses can control the lower order clauses and ensure that the logic aligns with the behavior of 

the given dataset. By conducting these investigations and comparisons, we can gain insights into the 

performance and effectiveness of the non-systematic major higher-order logical structure behaviors. 

After the implementation of MR1,3SAT in the DHNN, it is necessary to assess its performance 

by comparing the quality of the final neuron state with baseline models. Furthermore, an evaluation is 

conducted to analyze the neuron variations in the retrieval phase, which can identify the presence of 

global minima solutions and the level of neuron variation. By conducting these evaluations and 

comparisons, we can obtain a deeper understanding of how well the selected logic in the DHNN 

performs in comparison to the chosen recent logics with non-systematic structures. 

(a) RAN2SAT, as introduced by [24], is a logical rule that combines second- and first-order 

clauses and is implemented in the DHNN as the first non-systematic logic. The logic under 

consideration, denoted as MR1,3SAT, exhibits structural differences compared to RAN2SAT 

while incorporating major higher-order clauses. RAN2SAT is known to provide a wider range 

of synaptic weights due to the connection of the first-order clause. In this approach, each literal 

state is randomly defined, but the number of clauses for each order can be predetermined. 

Specifically, the range of the number of neurons extends from 3 50NN  . 

(b) RAN3SAT, by [22], extended the previous research by [24] by introducing RAN3SAT. This 

new approach incorporated higher-order logic specifically 3SAT clauses, 2SAT clauses, and 

first-order clauses within a non-systematic SAT structure. The goal was to address the 

interpretability limitations of existing non-systematic SAT structures by increasing the number 

of neurons per clause. While the number of clauses for each sequence was chosen randomly 

and the literal state was explicitly defined, the number of neurons was limited within a specific 

range which spanned from 6 50NN  . 

(c) RAN3,1SAT, by [22], features different combinations from the RAN3SAT that compared the 

different order clauses within the logical structure. This innovative approach extended the non-

systematic SAT structure by incorporating higher-order logic, specifically 3SAT and first-order 

clauses exclusively. The primary objective of RAN3,1SAT was to explore the potential of non-

systematic SAT structures by increasing the allocation of neurons per clause. While the number 

of clauses for each sequence was randomly chosen compared to the MR1,3SAT, there was a 

limitation in the selection of clauses. Moreover, the number of neurons of RAN3,1SAT was 

limited within a specific range, which varied between 6 50NN  . 

(d) YRAN2SAT, introduced by [26], is a special logical rule referred to as Y-type random 2-

satisfiability. YRAN2SAT stands out due to its unique approach toward randomly generating 

first- and second-order clauses. It combines both systematic and non-systematic logic that 

results in a novel framework. YRAN2SAT offers significant flexibility in exploring the search 

space, allowing for a high potential for diverse solutions by incorporating features from both 

types of clauses. In this approach, the logical structure defines the total number of clauses 

while the literal states are randomly assigned. The range of the number of neurons is specified 

as 1 50NN   , providing a defined scope for the number of neurons in the YRAN2SAT 

model. 
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(e) GRAN3SAT, was introduced by [27], as an innovative logical framework, referred to as G-

type RAN3SAT. This framework entails the random creation of first-order, second-order, and 

third-order satisfiability logical rules. The involvement of a third-order clause contributes to 

enhancing the expressive power of this proposed logic. The effectiveness of this logic was 

evaluated through four distinct simulation scenarios differing in terms of clause counts, ratios 

of positive and negative literals, learning attempts, and iterations. The range for the number of 

neurons is specified as 6 150NN  . 

5.4. Benchmark dataset 

This paper proposes a model that generates bipolar interpretations from simulated datasets in a 

random manner with a particular focus on major higher-order clauses. The logical representation 

employed in the simulations serves as the foundational structure for the generated simulated data. 

Simulated datasets are frequently employed to model and analyze the effectiveness of SAT logical 

structure as demonstrated in the works of [22,24,25,27]. 

6. Results and discussion 

In this section, we propose a logical output and measure the effectiveness through the utilization 

of diverse evaluation metrics in each phase. The objective is to clarify the efficacy of integrating a 

MR1,3SAT structure. Furthermore, we delve into discussions concerning the simulation platform, 

parameter assignments, and metric performance. The simulations were executed with a designated 

count of neurons denoted as NN. To be precise, the experiments were conducted up to NN=100 to 

analyze training error, testing error, and energy analysis. In this case, the similarity index metric placed 

the simulations at NN=130 as the simulation reached a 100% local minimum ratio. 

6.1. Learning phase 

This section focuses on assessing the errors of all models during the learning phase of the DHNN. 

In the learning phase, the ES plays a crucial role in facilitating the learning phase by verifying clause 

satisfaction and the model achieved zero-cost function. This section provides insight into the proposed 

model synaptic weight management for all logical combinations of MR1,3SAT. 

6.1.1. Learning error analysis 

In this section, we employed RMSE, MAE, MAPE, and SSE as metrics to quantify the error in 

the learning phase. These metrics evaluate the capability of SAT structures to be learned in the DHNN 

by assessing the fitness of exhaustive search. Figures 3–6 display the errors attained by various DHNN 

models in the restricted learning environment with NH=100. Tables 3–6 shows that the “+” symbol 

represents the proposed logic MR1,3SAT surplus when compared to existing non-systematic logic. On 

the other hand, the “–” symbol represents the existing losses when compared with existing methods. 

The “Ð” column indicates the difference in error between the proposed MR1,3SAT and existing non-

systematic logics. 

ES enables the learning phase to verify the fulfilment of clauses. In Table 3 and Figure 3, it can 

be observed how the proposed model manages synaptic weights for various logical combinations, 

including both major the higher-order and first-order clauses. The results indicate that the RMSE 
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learning values were at their lowest when the range of higher-order neural network activations were 

generated in the MR1,3SAT formula. This suggests that accurate synaptic weights can be obtained by 

incorporating more third-order clauses in the MR1,3SAT logical rules. On the other hand, the 

MR1,3SAT model outperformed when the NN increases in the DHNN without required additional 

learning iterations with the cost function. A low RMSE value can also indicate the ability of the model 

to avoid overfitting, which means that the model has learned to fit the learning data too closely and 

generalize to new data. This leads to obtaining optimal synaptic weights. 

Table 3. The RMSE learning phase of MR1,3SAT between existing non-systematic orders. 

NN 
MR1,3SAT RAN2SAT RAN3SAT RAN3,1SAT YRAN2SAT GRAN3SAT 

RMSE RMSE Ð RMSE Ð RMSE Ð RMSE Ð RMSE Ð 

1-10 1.97 2.84 -0.88 1.29 0.67 2.56 -0.60 5.07 -3.11 2.14 -0.18 

11-20 6.05 9.63 -3.58 8.10 -2.05 7.17 -1.11 10.65 -4.60 5.53 0.52 

21-30 9.48 15.85 -6.37 11.44 -1.96 11.54 -2.06 13.66 -4.18 11.44 -1.96 

31-40 11.67 23.88 -12.21 17.85 -6.18 15.90 -4.23 20.90 -9.22 14.57 -2.90 

41-50 16.34 29.85 -13.51 20.88 -4.54 21.88 -5.54 30.85 -14.51 21.89 -5.55 

51-60 20.67 35.82 -15.15 26.85 -6.17 25.87 -5.20 32.84 -12.16 25.86 -5.19 

61-70 24.72 41.79 -17.07 32.84 -8.11 31.84 -7.12 37.81 -13.09 30.85 -6.12 

71-80 31.79 49.75 -17.96 38.81 -7.02 35.82 -4.03 52.74 -20.95 35.82 -4.03 

81-90 32.83 55.72 -22.89 41.79 -8.96 41.79 -8.96 55.72 -22.89 36.81 -3.97 

91-100 36.79 61.69 -24.90 47.76 -10.97 45.77 -8.98 59.70 -22.91 43.78 -6.99 

101-110 37.65 67.66 -30.01 50.75 -13.10 51.74 -14.09 68.66 -31.01 45.77 -8.12 

111-120 45.77 75.62 -29.85 56.72 -10.95 55.72 -9.95 73.63 -27.86 48.76 -2.99 

121-130 46.77 83.58 -36.82 62.69 -15.92 61.69 -14.93 77.61 -30.85 57.71 -10.95 

+/=/- 
 

13/0/0 12/0/0 13/0/0 13/0/0 12/0/1 

Avg 24.81 42.59 32.14 31.49 41.53 29.30 

Min 1.97 2.84 1.29 2.56 5.07 2.14 

Max 46.77 83.58 62.69 61.69 77.61 57.71 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  
 

Figure 3. RMSE in the learning phase. 

Table 4 and Figure 4 below show the impressive results achieved by MR1,3SAT in terms of MAE 
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during the learning phases. It is worth noting that when we minimize MAE learning, we can observe 

a similar pattern to what has been observed in the existing logical structure. This further highlights the 

effectiveness and reliability of MR1,3SAT in producing accurate outcomes. With the help of the 

DHNN, the ideal final neuron state aligns perfectly with the performance of the MR1,3SAT model. 

This dynamic capability ensures that optimal results are achieved, unlocking the maximum potential 

of the MR1,3SAT. 

Table 4. The MAE learning phase MR1,3SAT between existing non-systematic orders. 

 

Figure 4. MAE in the learning phase. 
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NN MR1,3SAT RAN2SAT RAN3SAT RAN3,1SAT YRAN2SAT GRAN3SAT 

MAE MAE Ð MAE Ð MAE Ð MAE Ð MAE Ð 

1-10 1.50 2.43 -0.92 0.94 0.56 2.14 -0.63 4.57 -3.07 1.69 -0.19 

11-20 5.10 9.40 -4.30 7.53 -2.43 6.63 -1.53 10.44 -5.34 4.80 0.30 

21-30 8.69 15.72 -7.03 11.06 -2.37 11.25 -2.56 13.49 -4.80 11.06 -2.37 

31-40 10.90 23.76 -12.87 17.71 -6.82 15.81 -4.91 20.79 -9.89 14.18 -3.28 

41-50 15.90 29.70 -13.81 20.77 -4.87 21.76 -5.87 30.69 -14.80 21.78 -5.88 

51-60 20.37 35.64 -15.27 26.69 -6.32 25.74 -5.37 32.67 -12.30 25.72 -5.36 

61-70 24.46 41.58 -17.12 32.67 -8.21 31.68 -7.22 37.62 -13.16 30.69 -6.23 

71-80 31.58 49.50 -17.92 38.61 -7.03 35.64 -4.06 52.48 -20.89 35.64 -4.06 

81-90 32.67 55.45 -22.78 41.58 -8.92 41.58 -8.92 55.45 -22.78 36.61 -3.95 

91-100 36.59 61.39 -24.80 47.52 -10.94 45.54 -8.96 59.41 -22.82 43.56 -6.98 

101-110 37.37 67.33 -29.96 50.50 -13.13 51.49 -14.12 68.32 -30.95 45.54 -8.18 

111-120 45.54 75.25 -29.70 56.44 -10.89 55.45 -9.90 73.27 -27.72 48.51 -2.97 

121-130 46.53 83.17 -36.63 62.38 -15.84 61.39 -14.85 77.23 -30.69 57.43 -10.89 

+/=/- 
 

13/0/0 13/0/0 13/0/0 13/0/0 12/0/1 

Avg 24.40 42.33 31.88 31.24 41.26 29.02 

Min  1.50 2.43 0.94 2.14 4.57 1.69  

Max 46.53 83.17 62.38 61.39 77.23 57.43 
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Table 5 reveals the MAPE values for MR1,3SAT and the existing proposed method. In these 

findings, specifically within the range of 11 130NN  , there is an observable trend as the MAPE 

value increases in the proposed model tends to converge towards 100%. A MAPE value of 100% 

signifies a notable distinction between the maximum fitness and the achieved neuron fitness. On the 

contrary, research by [40] indicates that a lower MAPE percentage signifies a heightened level of 

accuracy. Thus, it can be deduced that a smaller MAPE value is indicative of a superior forecasting 

performance. Figure 5 is a variation graph representing the results from Table 5. 

Table 5. The MAPE learning phase of MR1,3SAT between existing non-systematic orders. 

NN 
MR1,3SAT RAN2SAT RAN3SAT RAN3,1SAT YRAN2SAT GRAN3SAT 

MAPE MAPE Ð MAPE Ð MAPE Ð MAPE Ð MAPE Ð 

1-10 37.62 60.72 -23.10 31.34 6.28 53.42 -15.80 76.24 -38.62 42.28 -4.66 

11-20 63.73 93.99 -30.26 83.70 -19.97 82.83 -19.09 94.87 -31.13 68.50 -4.77 

21-30 79.00 98.26 -19.25 92.16 -13.15 93.77 -14.77 96.37 -17.37 92.19 -

13.18 31-40 83.82 99.01 -15.19 98.41 -14.58 98.79 -14.96 99.01 -15.19 94.50 -

10.68 41-50 93.51 99.01 -5.50 98.89 -5.37 98.92 -5.41 99.01 -5.50 99.00 -5.48 

51-60 96.99 99.01 -2.02 98.87 -1.87 99.01 -2.02 99.01 -2.02 98.94 -1.94 

61-70 97.86 99.01 -1.15 99.01 -1.15 99.01 -1.15 99.01 -1.15 99.01 -1.15 

71-80 98.70 99.01 -0.31 99.01 -0.31 99.01 -0.31 99.01 -0.31 99.01 -0.31 

81-90 98.98 99.01 -0.03 99.01 -0.03 99.01 -0.03 99.01 -0.03 98.96 0.03 

91-100 98.88 99.01 -0.13 99.01 -0.13 99.01 -0.13 99.01 -0.13 99.01 -0.13 

101-110 98.34 99.01 -0.67 99.01 -0.67 99.01 -0.67 99.01 -0.67 99.01 -0.67 

111-120 99.01 99.01 0.00 99.01 0.00 99.01 0.00 99.01 0.00 99.01 0.00 

121-130 99.01 99.01 0.00 99.01 0.00 99.01 0.00 99.01 0.00 99.01 0.00 

+/=/- 
 

11/2/0 10/2/1 11/2/0 11/2/0 11/2/0 

Avg 88.11 95.62 92.03 93.83 96.74 91.42 

Min 37.62 60.72 31.34 53.42 76.24 42.28 

Max 99.01 99.01 99.01 99.01 99.01 99.01 

 

Figure 5. MAPE in the learning phase. 
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Additionally, Table 6 and Figure 6 highlight a crucial point: the formulation of the SSE learning 

phase. The values in Table 6 are in the form of logarithms *10,000 for the axis of y. These changes 

recorded the overall performance errors throughout the learning phase. These results enhance the 

accuracy and effectiveness of the learning process with the minimum error in the learning phase of the 

proposed model. The minimum SSE error in the DHNN-MR1,3SAT learning phase reduced the 

magnitude of errors. 

Table 6. The SSE learning phase of MR1,3SAT between existing non-systematic orders. 

NN MR1,3SAT RAN 2SAT RAN3SAT RAN3,1SAT YRAN2SAT GRAN3SAT 

SSE SSE Ð SSE Ð SSE Ð SSE Ð SSE Ð 

1-10 32 119 -87 16 16 77 -45 481 -450 44 -12 

11-20 514 7279 -6765 2347 -1833 1677 -1164 9633 -9119 511 3 

21-30 2585 24589 -22004 8408 -5824 9841 -7256 17652 -15067 8453 -5868 

31-40 5183 57600 -52417 30683 -25500 24809 -19626 44100 -38917 14621 -9437 

41-50 18184 90000 -71816 43306 -25122 47819 -29635 96100 -77916 48308 -30124 

51-60 36308 129600 -93292 71989 -35681 67600 -31292 108900 -72592 66829 -30522 

61-70 57656 176400 -

118744 

108900 -51244 102400 -44744 144400 -86744 96100 -38444 

71-80 99430 250000 -

150570 

152100 -52670 129600 -30170 280900 -

181470 

129600 -30170 

81-90 108639 313600 -

204961 

176400 -67761 176400 -67761 313600 -

204961 

135955 -27317 

91-100 134408 384400 -

249992 

230400 -95992 211600 -77192 360000 -

225592 

193600 -59192 

101-

110 

142653 462400 -

319747 

260100 -

117447 

270400 -

127747 

476100 -

333447 

211600 -68947 

111-

120 

211600 577600 -

366000 

324900 -

113300 

313600 -

102000 

547600 -

336000 

240100 -28500 

121-

130 

220900 705600 -

484700 

396900 -

176000 

384400 -

163500 

608400 -

387500 

336400 -

115500 +/=/- 
 

13/0/0 13/0/0 13/0/0 13/0/0 12/0/1 

Avg 79853 244553 138958 133863 231374 114009 

Min 32 119 16 77 481 44 

Max 220900 705600 396900 384400 608400 336400 

 

Figure 6. SSE in the learning phase. 
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6.2. Retrieval phase 

This section focuses on evaluating the performance of various logical structures during the 

retrieval phase of the DHNN. This section is divided into two parts, namely an analysis of retrieval 

errors, and an assessment of the quality of the final neuron states. The quality analysis includes 

measures such as total variation and similarity analysis. 

6.2.1. Retrieval error analysis 

Retrieval error analysis holds great significance in investigating the behavior of MR1,3SAT 

concerning synaptic weight management and the relationship with global or local minima solutions. 

Once the DHNN completes the verification of clause satisfaction involving the minimization of the 

cost function, the synaptic weights are generated using the Abdullah method [13]. When the cost 

function reaches zero, it signifies the retrieval of optimal synaptic weights during the retrieval phase, 

leading to a global minimum solution. Tables 7–10 show that the “+” symbol represents the proposed 

logic MR1,3SAT surplus when compared to existing non-systematic logic. On the other hand, the “–” 

symbol represents the existing losses when compared with existing methods. The Ð column indicates 

the difference in error between the proposed MR1,3SAT and existing non-systematic logics. 

Table 7. The RMSE retrieval phase of MR1,3SAT and existing non-systematic orders. 

NN 
MR1,3SAT RAN 2SAT RAN3SAT RAN3,1SAT YRAN2SAT GRAN3SAT 

RMSE RMSE Ð RMSE Ð RMSE Ð RMSE Ð RMSE Ð 

1-10 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

11-20 0.00 52.00 -52.00 2.00 -2.00 3.00 -3.00 67.00 -67.00 0.00 0.00 

21-30 0.00 94.00 -94.00 33.00 -33.00 47.00 -47.00 84.00 -84.00 27.00 -27.00 

31-40 3.00 100.00 -97.00 89.00 -86.00 93.00 -90.00 100.00 -97.00 43.00 -40.00 

41-50 41.00 100.00 -59.00 96.95 -55.95 98.00 -57.00 99.80 -58.80 99.00 -58.00 

51-60 68.00 100.00 -32.00 98.00 -30.00 100.00 -32.00 100.00 -32.00 98.00 -30.00 

61-70 87.00 99.90 -12.90 100.00 -13.00 100.00 -13.00 100.00 -13.00 100.00 -13.00 

71-80 95.00 100.00 -5.00 100.00 -5.00 100.00 -5.00 100.00 -5.00 100.00 -5.00 

81-90 98.00 100.00 -2.00 100.00 -2.00 100.00 -2.00 100.00 -2.00 99.00 -1.00 

91-100 97.00 100.00 -3.00 100.00 -3.00 100.00 -3.00 100.00 -3.00 100.00 -3.00 

101-110 98.00 99.99 -1.99 100.00 -2.00 100.00 -2.00 100.00 -2.00 100.00 -2.00 

111-120 99.56 99.92 -0.36 99.94 -0.38 100.00 -0.44 100.00 -0.44 100.00 -0.44 

121-130 100.00 99.95 0.05 100.00 0.00 99.80 0.20 99.97 0.03 99.97 0.03 

+/=/- 
 

11/1/1 11/2/0 11/1/1 11/1/1 10/2/1 

Avg 60.50 88.14 78.38 80.06 88.52 74.31 

Min 0.00 0.00 0.00 0.00 0.00 0.00 

Max 100.00 100.00 100.00 100.00 100.00 100.00 
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Table 8. The MAE retrieval phase of MR1,3SAT and existing non-systematic orders. 

NN MR1,3SAT RAN 2SAT RAN3SAT RAN3,1SAT YRAN2SAT GRAN3SAT 

MAE MAE Ð MAE Ð MAE Ð MAE Ð MAE Ð 

1-10 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

11-20 0.00 0.52 -0.52 0.02 -0.02 0.03 -0.03 0.67 -0.67 0.00 0.00 

21-30 0.00 0.94 -0.94 0.33 -0.33 0.47 -0.47 0.84 -0.84 0.27 -0.27 

31-40 0.03 1.00 -0.97 0.89 -0.86 0.93 -0.90 1.00 -0.97 0.43 -0.40 

41-50 0.41 1.00 -0.59 0.97 -0.56 0.98 -0.57 1.00 -0.59 0.99 -0.58 

51-60 0.68 1.00 -0.32 0.98 -0.30 1.00 -0.32 1.00 -0.32 0.98 -0.30 

61-70 0.87 1.00 -0.13 1.00 -0.13 1.00 -0.13 1.00 -0.13 1.00 -0.13 

71-80 0.95 1.00 -0.05 1.00 -0.05 1.00 -0.05 1.00 -0.05 1.00 -0.05 

81-90 0.98 1.00 -0.02 1.00 -0.02 1.00 -0.02 1.00 -0.02 0.99 -0.01 

91-100 0.97 1.00 -0.03 1.00 -0.03 1.00 -0.03 1.00 -0.03 1.00 -0.03 

101-110 0.98 1.00 -0.02 1.00 -0.02 1.00 -0.02 1.00 -0.02 1.00 -0.02 

111-120 1.00 1.00 0.00 1.00 0.00 1.00 0.00 1.00 0.00 1.00 0.00 

121-130 1.00 1.00 0.00 1.00 0.00 1.00 0.00 1.00 0.00 1.00 0.00 

+/=/-  10/3/0 10/3/0 10/3/0 10/3/0 9/4/0 

Avg 0.61 0.88 0.78 0.80 0.89 0.74 

Min 0.00 0.00 0.00 0.00 0.00 0.00 

Max 1.00 1.00 1.00 1.00 1.00 1.00 

Table 9. The MAPE retrieval phase of MR1,3SAT and existing non-systematic orders. 

NN 
MR1,3SAT RAN 2SAT RAN3SAT RAN3,1SAT YRAN2SAT GRAN3SAT 

MAPE MAPE Ð MAPE Ð MAPE Ð MAPE Ð MAPE Ð 

1-10 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

11-20 0.00 0.01 -0.01 0.00 0.00 0.00 0.00 0.01 -0.01 0.00 0.00 

21-30 0.00 0.01 -0.01 0.00 0.00 0.00 0.00 0.01 -0.01 0.00 0.00 

31-40 0.00 0.01 -0.01 0.01 -0.01 0.01 -0.01 0.01 -0.01 0.00 0.00 

41-50 0.00 0.01 -0.01 0.01 -0.01 0.01 -0.01 0.01 -0.01 0.01 -0.01 

51-60 0.01 0.01 0.00 0.01 0.00 0.01 0.00 0.01 0.00 0.01 0.00 

61-70 0.01 0.01 0.00 0.01 0.00 0.01 0.00 0.01 0.00 0.01 0.00 

71-80 0.01 0.01 0.00 0.01 0.00 0.01 0.00 0.01 0.00 0.01 0.00 

81-90 0.01 0.01 0.00 0.01 0.00 0.01 0.00 0.01 0.00 0.01 0.00 

91-100 0.01 0.01 0.00 0.01 0.00 0.01 0.00 0.01 0.00 0.01 0.00 

101-110 0.01 0.01 0.00 0.01 0.00 0.01 0.00 0.01 0.00 0.01 0.00 

111-120 0.01 0.01 0.00 0.01 0.00 0.01 0.00 0.01 0.00 0.01 0.00 

121-130 0.01 0.01 0.00 0.01 0.00 0.01 0.00 0.01 0.00 0.01 0.00 

+/=/-  4/9/0 2/10/0 2/11/0 4/9/0 1/12/0 

Avg 0.01 0.01 0.01 0.01 0.01 0.01 

Min 0.00 0.00 0.00 0.00 0.00 0.00 

Max 0.01 0.01 0.01 0.01 0.01 0.01 
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Table 10. The SSE retrieval phase of MR1,3SAT and existing non-systematic orders. 

Based on Figure 7 and Table 7, MR1,3SAT demonstrated minimal errors in the range of 

1 130NN  . Meanwhile, during this specific interval, the GRAN3SAT is also in its retrieval phase 

and shows excellent performance by generating global minimum solutions with the proposed logic. 

 

Figure 7. RMSE in the retrieval phase. 
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underfitting during the learning and retrieving of the neuron variations. This is why the model needs 

to increase the number of neurons. Interestingly, from the retrieval errors it can be observed that, after 

NN=40, there were also lower RMSE retrieval errors in the corresponding proposed model compared 

to the existing models. This is proof that the existence of major order third-order clauses is able to 

retrieve the ideal final neuron state by exploring more of the solution space. 

Conversely, in the range of 1 30NN  , MR1,3SAT experienced an optimal retrieval phase in 

Table 8 and Figure 8 that shows the results in the lowest errors compared to existing logical structures. 

The results can assess the optimal and suboptimal retrieval phases by examining the number of global 

and local minima solutions generated by the proposed model. In summary, when considering all the 

non-systematic logic discussed, the combinations of RANkSAT exhibit a similar energy profile 

characterized by a continuous decrease toward the equilibrium neuron state [41]. This suggests that at 

130NN = , the proposed model generates a comparable number of global minima solutions. 

 

Figure 8. MAE in the retrieval phase. 

The choice of the search algorithm plays a critical role in determining the quality of the solution 

for synaptic weight management. However, it is important to note that the “trial and error” nature of 

ES can impact the minimization of the cost function for such searching algorithms [18]. If ES fails to 

identify the optimal synaptic weight, it may have a negative impact on the retrieval phase, potentially 

leading to a local minimum solution. Alternatively, increasing the number of learning iterations can 

assist the proposed MR1,3SAT in achieving an optimal retrieval phase its shown in Figures 8–10. This 

is because a higher number of iterations has the potential to yield a global minimal solution. One might 

question why the local minima solution is considered “bad” in the approach. In our simulation, the 

local minima solution is deemed insignificant because a higher number of local solutions can disrupt 

the measurement of the similarity in the final states of the neurons. Therefore, this experimental setup 

aids the network in avoiding several local minima solutions. 
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Figure 9. MAPE in the retrieval phase. 

It is worth noting that different combinations with non-systematic logical structures yield varying 

results. Specifically, RAN2SAT exhibits the highest errors compared to other combinations. 

Conversely, GRAN3SAT demonstrates greater stability and produces fewer errors in terms of synaptic 

weight management in the 1 30NN  only. This discrepancy can be attributed to the logical structure 

of SAT with different orders. The involvement of third-order logic proves to be the most effective 

combination as the probability of obtaining a satisfied interpretation for third-order logic is higher than 

that of first-order logic. On the other hand, the logical structure of first-order logic can disrupt the 

process of retrieving correct synaptic weights, which can consequently result in higher retrieval errors. 

In fact, the MR1,3SAT restricted the first-order existence clauses. 

 

Figure 10. SSE in the retrieval phase. 
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6.3. Energy analysis 

This section delves into a detailed exploration of the energy profile and the types of solutions, 

whether global or local, generated by MR1,3SAT. Tables 11 and 12 shows the analysis of the energy 

profile involved examining the differences in energy by comparing the values of RMSE, MAE, MAPE, 

and SSE between the minimum energy and the final energy. These comparisons can be observed in 

Figures 11 and 12. As the NN increases for all non-systematic logical structures, the number of global 

minimum solutions decreases. In the minimum energy analysis, it is important to note that logical 

structures with more literals correspond to the presence of more clauses and require a greater number 

of iterations to generate feasible solutions. Figure 11 provides further insight demonstrating that 

higher-order logical structures with major clauses achieve more consistent global minima solutions. 

Another perceptive is that the absence of logical structures containing first-order clauses have the 

lowest probability of obtaining satisfying interpretations compared to randomly selected clauses in 

non-systematic logic. 

This indicates that non-systematic logical structures are more susceptible to neuron oscillations. 

Additionally, an interesting finding is observed in Figure 11, where within the range of 1 50NN 

we see that MR1,3SAT can retrieve the highest number of global minimum solutions without any 

difference in energy. This can be attributed to optimal synaptic weight management, which facilitates 

the optimal retrieval phase and ensures consistent final neuron states. The significance of the energy 

profile is to know how well the model has performed in the neural network. The major higher-order 

clauses significantly improve the solution space in the neural network and is able to store a greater 

capacity. 

Table 11. The comparison with global minimum and local minimum of MR1,3SAT and 

existing non-systematic orders. 

NN 
MR1,3SAT RAN 2SAT RAN3SAT RAN3,1SAT YRAN2SAT GRAN3SAT 

Zm Lm Zm Lm Zm Lm Zm Lm Zm Lm Zm Lm 

1-10 10000 0 8400 1600 10000 0 10000 0 10000 0 10000 0 

11-20 10000 0 0 10000 9400 600 10000 0 2100 7900 10000 0 

21-30 8700 1300 100 9900 8100 1900 7000 3000 3000 7000 7900 2100 

31-40 5600 4400 0 10000 3100 6900 1200 8800 0 10000 7800 2200 

41-50 3300 6700 0 10000 500 9500 0 10000 100 9900 6600 3400 

51-60 1000 9000 80 9920 100 9900 300 9700 0 10000 0 10000 

61-70 203 9797 0 10000 0 10000 0 10000 0 10000 200 9800 

71-80 0 10000 0 10000 0 10000 0 10000 0 10000 6 9994 

81-90 0 10000 0 10000 0 10000 0 10000 0 10000 0 10000 

91-100 0 10000 0 10000 0 10000 0 10000 0 10000 0 10000 

101-110 0 10000 0 10000 0 10000 0 10000 0 10000 58 9942 

111-120 0 10000 1 9999 0 10000 0 10000 0 10000 0 10000 

121-130 0 10000 0 10000 0 10000 0 10000 0 10000 16 9984 

Avg Zm 2984.85 660.08 2400.00 2192.31 1169.23 3275.38 
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Table 12. The SSE energy of MR1,3SAT and existing non-systematic orders. 

NN 
MR1,3SAT RAN2SAT RAN3SAT RAN3,1SAT YRAN2SAT GRAN3SAT 

SSE SSE Ð SSE Ð SSE Ð SSE Ð SSE Ð 

1-10 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

11-20 0.00 0.24 -0.24 0.01 -0.01 0.02 -0.02 0.81 -0.81 0.00 0.00 

21-30 0.00 0.54 -0.54 0.24 -0.24 0.23 -0.23 0.55 -0.55 0.21 -0.21 

31-40 0.01 1.20 -1.19 0.85 -0.84 0.59 -0.58 0.76 -0.75 0.41 -0.40 

41-50 0.31 1.35 -1.05 1.09 -0.79 0.78 -0.48 1.28 -0.98 0.91 -0.60 

51-60 0.61 1.66 -1.05 1.01 -0.40 0.89 -0.28 1.63 -1.02 1.06 -0.45 

61-70 0.93 1.68 -0.75 1.39 -0.45 1.05 -0.12 1.83 -0.90 1.29 -0.36 

71-80 1.34 1.91 -0.58 1.74 -0.40 1.13 0.21 1.72 -0.39 1.51 -0.17 

81-90 1.17 2.27 -1.10 1.76 -0.59 1.20 -0.03 1.92 -0.75 1.85 -0.68 

91-100 1.49 2.31 -0.82 1.92 -0.43 1.30 0.19 2.41 -0.93 2.22 -0.74 

101-

110 

1.64 2.21 -0.57 2.15 -0.51 1.45 0.19 2.56 -0.92 2.65 -1.01 

111-

120 

1.65 2.30 -0.65 2.54 -0.89 1.49 0.16 2.68 -1.03 2.47 -0.82 

121-

130 

1.87 3.14 -1.27 2.79 -0.93 1.63 0.23 2.55 -0.69 2.62 -0.75 

+/=/- 
 

12/1/0 12/0/1 8/1/4 12/1/0 11/2/0 

Avg 0.85 1.60 1.34 0.90 1.59 1.32 

Min 0.00 0.00 0.00 0.00 0.00 0.00 

Max 1.87 3.14 2.79 1.63 2.68 2.65 

 

Figure 11. Global minimum in the retrieval phase. 
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Figure 12. Local minimum in the retrieval phase. 

The findings of [18] suggest that the Lyapunov energy function is bounded and plays a crucial 

role in determining the dynamics of the Hopfield neural network. In the case of DHNN-MR1,3SAT, 

the energy function serves as an indicator of the optimality of the produced solutions. This finding is 

consistent with the research conducted by [42], which explores the quality of solutions in other types 

of Hopfield networks, including the kernel Hopfield neural network (KHNN) and the mean field theory 

Hopfield neural network (MFTHNN). According to their study, the Lyapunov energy function is a 

significant factor in observing the convergence of DHNN. In Table 12 and Figure 13, it can be observed 

that the SSE energy increases with NN. This phenomenon occurs due to a lower probability of obtaining 

a satisfying interpretation for the minimum cost function that causes the higher level of energy. The 

minimum energy of various order non-systematic logic can be influenced by the existence and 

manipulation of different SAT clauses which affect the constraints and behavior of the logic circuit 

ultimately impacting its energy consumption or efficiency. 

 

Figure 13. SSEEnergy in the retrieval phase. 
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The findings of this paper suggest that the MR1,3SAT demonstrates the lowest energy difference 

among various non-systematic logic orders. This observation may explain why this particular logic is 

capable of achieving minimum energy compared to other orders. The study employed a bipolar neuron 

representation with values ranging from –1 to 1. Interestingly, the presence of a zero value eliminates 

a specific coefficient which can be in zero energy. However, the study emphasizes the significance of 

the Lyapunov energy function which demonstrates the process of energy minimization by the proposed 

model. The focus of this study was on major clauses which were restricted in the learning phase. In a 

similar study conducted by [18], multiple DHNN models were examined in a non-restricted learning 

environment that signified a lower energy profile. Therefore, the conclusion drawn is that a higher 

number of learning iterations can lead to the attainment of a global minimum energy. It is possible to 

make modifications to enhance the quality of solutions provided by non-systematic logic in DHNN. 

6.4. Similarity analysis 

The similarity index (SI) serves as a metric that allows for the assessment of the similarity or 

dissimilarity between different data items. The study by [24] proposed the use of SI, including the 

Jaccard index, Sockel Sneat, Dice, and the TV parameter, to evaluate the performance and 

characteristics of the DHNN model when applied to logical satisfiability. These indexing parameters 

can help analyze the similarity, dissimilarity, and variations within the neural network that provide 

valuable information about the effectiveness and behavior of the model in solving SAT instances [43]. 

According to Figure 14, the MR1,3SAT model exhibits the lowest Jaccard similarity index (JSI) 

within the range of NN=1 to NN=130. This suggests a significant deviation and bias in the generated 

final states. The elevated JSI value indicates that the model is prone to overfitting since the MR1,3SAT 

model is able to produce detectable differences in the final state pictured in Figure 14. The JSI value, 

which is a measure of similarity, is produced by the MR1,3SAT model. However, there is no value in 

between NN=60 to NN=100 in RAN2SAT, RAN3SAT RAN3,1SAT, and YRAN2SAT, indicating that the 

generated final neuron states vary as the number of neurons increases [18]. The decreases in JSI are 

attributed to the fewer benchmark neurons generated during the retrieval phase by the proposed model. 

 

Figure 14. Jaccard index in the retrieval phase. 
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Beyond that, the JSI decreases to provide meaningful values because all the solutions retrieved 

by the network are local solutions. This is attributed to the nature of the ES algorithm, which operates 

based on trial and error and may hinder the minimization of the cost function. As a result, ES fails to 

produce the optimal synaptic weights during the learning phase, subsequently impacting the final 

neuron states generated by the model at the end of the computation. 

According to [44], if the total neuron variation TV increases during the retrieval phase, it could 

mean that the model is converging well or is experiencing stability. This can lead to avoid overfitting, 

where the model becomes too specialized to the learning data and does generalize well when the 

number of neurons increases. In contrast, if the total neuron variation increases during the learning 

phase, it could indicate that the model is learning to generalize better and is making progress toward 

minimizing the error in the learning data. 

Referring to Figure 15, for NN≥81 it can be observed that the value of TV for MR1,3SAT reached 

its lowest point. This indicates that all the final states of neurons converged to local solutions, resulting 

in a TV value of 0. Furthermore, MR1,3SAT exhibited the highest TV value before reaching NN≤90 

models compared to other existing models when the higher-order clauses were able to retrieve a wider 

range of solutions. We can see that the existing model GRAN3SAT achieves the highest TV in the 

smaller NN due to the higher probabilities of the third-order and second-order clauses in the particular 

model. Conversely, the effectiveness of other non-systematic models declined as the global minimum 

energy decreased (as shown in Figure 11). Consequently, this leads to a decrease in TV value, and 

eventually TV reached 0 since there were no final neuron states that achieved the global minimum 

solution. 

 

Figure 15. Total neuron variation in the retrieval phase. 
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suggests that the model has the potential to enhance the self-learning process, indicated by [22]. 

Second, the DHNN-MR1,3SAT approach exhibits the ability to retrieve accurate synaptic weights 

leading to the attainment of global minimum solutions. This is particularly noteworthy because it 

remains effective even within a restrictive learning environment. In other words, the model can adapt 

and find optimal solutions regardless of the limitations imposed during learning. Finally, when 

comparing different ratios of MR1,3SAT (with specific total clauses), the results show fewer errors, 

more stable errors, a greater variety of neuron variations, and overall energy minimization. Specifically, 

the DHNN-MR1,3 SAT approach outperformed the existing non-systematic logic that consists of first-

order logical combination in terms of error reduction when the number of learning sets was set to 100. 

In conclusion, our research highlights the significant strengths of the DHNN-MR1,3SAT 

approach. By formulating the combination of third-order and first-order, the model can provide a wider 

range of neuron variations, enhance the self-learning process, retrieve accurate synaptic weights, and 

achieve global minimum solutions. Additionally, the major third-order clauses of MR1,3SAT offer 

improved error reduction, stable errors, diverse neuron variations, and energy minimization. The novel 

logical structure MR1,3SAT existence of the major higher-order clauses hold the potential to advance 

pattern recognition in real-world data analysis. This advancement can benefit applications in image 

processing, natural language processing, and other domains that rely on sophisticated data 

interpretation. It is crucial not only for these applications, but also for sectors such as finance, 

healthcare, and manufacturing, where rapid and precise decision-making is paramount. These findings 

contribute to our understanding of efficient logical rule integration and the potential applications in the 

field. 

In future work, with the MR1,3SAT we will conduct an examination using metaheuristics in the 

learning and retrieval phases to optimize diversity and achieve global solutions. The application of 

metaheuristics in both phases is advantageous for generating diverse solutions. During the learning 

phases, synaptic weight analysis can be employed to address the impact of the energy function and 

global solutions on synaptic weights. Additionally, according to the existing work proposed by [44–46], 

fractional-order systems can capture complex behaviors of the neural network. These studies also 

proved that integer-order systems could be advantageous in modeling the dynamics of neutral networks. 

Notably, the resilient architecture of artificial neural networks combined with our proposed logic 

provides a solid foundation for practical applications, such as predicting natural disasters. In this 

context, each neuron represents data attributes such as rainfall trends, river levels, drainage, and ground 

conditions. These attributes are embedded into the logic-mining approach suggested by [32], leading 

to the development of induced logic with predictive and classificatory capabilities. This logic mining 

also emphasizes the integration of fractional-order dynamics and bifurcation control mechanisms to 

enhance the representation of complex dynamics [46–48] and better capture real-world behaviors 

within neural networks. We will evaluate their applicability and effectiveness in stabilizing and 

controlling neural network dynamics considering potential applications in areas such as pattern 

recognition and information processing. 
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