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1. Introduction

Fractional differential equations have developed rapidly due to their applications, see [1–7].
Compared to classical integer-order equations, fractional differential equations offer a more accurate
representation of memory effects in diverse materials and processes. Many scholars have devoted
their efforts to exploring this topic and have achieved significant advancements. By using semigroup
theory, the noncompact measures conditions, the references [8] studied local and global existence
and uniqueness of mild solutions for fractional impulisive evolution differential equations of order
0 < α ≤ 1. By using semigroup theory, the properties of noncompact measures, the references [10–12]
studied local and global existence of solutions for a class of fractional evolution equations of order
0 < α ≤ 1. By the generalized Darbo fixed point theorem and Schauder fixed point theorem, the
reference [14] investigated the existence and uniqueness of mild solutions for fractional impulsive
integro-differential evolution equations of order 1 < β ≤ 2 with nonlocal conditions. By using the
cosine family theory, the Mönch fixed point theorem, the reference [15] studied the existence of mild
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solutions for fractional impulsive integro-differential evolution equations of order 1 < β ≤ 2 with
nonlocal conditions. By using the two-step Adomian decomposition method, the reference [16, 17]
found an analytical solution of for fractional order integro-differential equation, meanwhile, established
results for the existence and uniqueness of a solution with the help of some fixed point theorems
and the Banach contraction principle. Many evolution processes are characterized by abrupt state
changes, which can be effectively modeled using impulsive differential equations. There are two types
of impulses: instantaneous impulses and non-instantaneous impulses. The theory of instantaneous
impulses often describes some processes which have a sudden change in their states at certain
times, particularly in the fields of biology, dynamics, physics, and engineering. However, in the
management and optimal control of life phenomena, there exist numerous non-instantaneous impulsive
phenomena. The classical instantaneous impulsive differential system is not suitable to describe such
phenomena, whereas differential equations with the non-instantaneous impulse offer a more suitable
framework. Differential equations with non-instantaneous impulses have found extensive applications
in areas such as pesticide dynamics, pest control, integrated environmental management, and fishery
resources. Therefore, it is worthwhile to explore the non-instantaneous impulsive differential system.
Many scholars have dedicated their efforts to investigating this subject and have achieved notable
advancements. For further details, please refer to [18–23]. In comparison to the results of differential
equations with instantaneous impulses, there are fewer results available for differential equations with
non-instantaneous impulses.

The non-instantaneous impulses were first proposed by Hernandez and Regan [18]. In [18], the
authors studied the following integer order equations:

u′(t) = Au(t) + f (t, u(t)), t ∈ (si, ti+1], i = 1, 2, ..., n,
u(t) = gi(t, u(t)), t ∈ (ti, si], i = 1, 2, ..., n,
u(0) = u0,

where A : D(A) ⊂ X → X is the generator of a C0-semigroup of bounded linear operators (T (t)), t ≥ 0 is
defined on a Banach space X, and the impulses start abruptly at the points ti and their action continues
on the interval [ti, si]. Utilizing the semigroup theory and fixed point theory, they established the
existence of mild solutions.

Pierri et al. [20] studied the following differential equation:
x′(t) = Ax(t) + f (t, x(t)), t ∈ (si, ti+1],
x(t) = gi(t,Ni(t)(x)), t ∈ (ti, si], i ∈ N,
x(0) = x0,

where they gave the existence of mild solutions on [0,+ ∝).
The literature [21] considered the following fractional nonautonomous evolution equations with

delay: CDβt x(t) = A(t)x(t) + f (t, x(τ1(t)), x(τ2(t)), ..., x(τl(t))), t ∈ J = [0,T ],
x(0) = x0 ∈ E,

where A(t)t∈J is a family of closed and linear operators defined on a dense domain D(A) in Banach
space E into E and the operator A(t) depends on t.
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In [18, 20], the authors studied the integer order equation with non-instantaneous impulse, where
the operator A did not depend on t. In the process of proving the theorem, the nonlinear function f
required the Lipschitz condition; meanwhile, the compression coefficient was less than 1. In [21], the
authors derived mild solutions using the Banach contraction mapping principle without employing the
contraction coefficient 0 < k < 1.

Inspired by the literature mentioned earlier, we explore the following nonlinear fractional integro-
differential equations with nonlocal conditions and non-instantaneous impulses:

C
0 Dβt u(t) = A(t)u(t) + f (t, u(t), (H1u)(t), (H2u)(t)), t ∈ (si, ti+1], i = 1, 2, ..., n,
u(t) = li(t, u(t)), t ∈ (ti, si], i = 1, 2, ..., n,
u(0) + g1(u) = u0 ∈ X,

(1.1)

where C
0 Dβt represents the Caputo fractional derivatives of order β ∈ (0, 1], u(·) ∈ X, A(t) ⊂ X is a

closed linear operator, and A(t) depends on t. J = [0,T ], 0 = s0 < t1 ≤ s1 < t2 ≤ ... < tn ≤ sn < tn+1 =

T < +∞. f ∈ C[J × X3, X], li : J × X → X, and g1 : X → X are also continuous. H1 and H2 are defined
by

H1u(t) =
∫ t

0
h1(t, s, u(s))ds, H2u(t) =

∫ T

0
h2(t, s, u(s))ds,

D = {(t, s) | 0 ≤ s ≤ t ≤ T }, h1 ∈ C[D × X, X], h2 ∈ C[J × J × X, X].

In this paper, we utilize the Mönch fixed point theorem, the non-compact measure, and the method
of stepwise estimation to eliminate the Lipschitz condition for the nonlinear function f . Additionally,
we do not require the compressibility coefficient to be less than 1. The key findings in this study
enhance and extend some previous results.

2. Preliminaries

We suppose that (X, ∥ · ∥) is a Banach space, J = [0,T ], J0 = [0, t1], Ji = (ti, ti+1], i = 1, 2, ...n −
1, Jn = (tn,T ], and

PC[J, X] = {u : J → X | u ∈ C[(ti, ti+1], X],

and there exist
u(t−i ), u(t+i ) with u(t+i ) = u(t−i ), i = 1, 2, .., n}.

Obviously, PC[J, X] is a Banach space endowed with PC-norm ∥u∥pc = supt∈J u(t).
Definition 2.1. [2] The Caputo fractional derivative of order β ∈ (0, 1] for a function u(t) is given by

C
t0 Dβt =

1
Γ(p − β)

∫ t

t0

u(p)(s)
(t − s)1+β−p ds,

where p = [β] + 1.
Definition 2.2. [24] We assume that A(t) : D(A) ⊂ E → E is a closed linear operator. We define the
resolvent set of A(t) by ρ[A(t)]. If there exist a nonnegative constant ω ≥ 0 and a strongly continuous
function Uβ : R2

+ → B(E) satisfying

(λβI − A(s))−1x =
∫ ∞

0
e−λ(t−s)Uβ(t, s)xdt,Reλ > ω, x ∈ E,
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then we call A(t) the generator of a β-resolvent family. Uβ(t, s) is called the β-resolvent family
generated by A(t).
Property 2.1. [24] Uβ(x, y) has the following properties:

(1) Uβ(x, x) = I,Uβ(x, y) = Uβ(x, r)Uβ(r, y) for 0 ≤ x ≤ r ≤ y ≤ T ;
(2) For 0 ≤ x ≤ y ≤ T, (x, y)→ Uβ(x, y) is strongly continuous.

Definition 2.3. [25] We suppose that D is a space and mapping T : D→ D. If there exists x0 ∈ D such
that T x0 = x0, then x0 ∈ D is called the fixed point of operator T.
Lemma 2.1. [14] Suppose B ⊂ PC[J, X] is equi-continuous and bounded, then for t ∈ Ji, α({u(t)|u ∈ B})
is continuous and

α

({∫
J

u(t)dt : u ∈ B
})
≤

∫
J
α (B(t)) dt.

Lemma 2.2. [26] Suppose B ⊂ PC[J, X] is equi-continuous and bounded, then CoB ⊂ PC[J, X] is
equi-continuous and bounded.
Lemma 2.3. [27] For any R > 0, the function f is uniformly continuous and bounded on J × B4

R
where BR = {u ∈ X : ∥u∥ ≤ R}, if B ⊂ PC[J, X] is equi-continuous and bounded, then
{ f (t, u(t), u(τ(t)), (H1u)(t), (H2u)(t) : u ∈ B} ⊂ PC[J, X] is also equi-continuous and bounded.
Lemma 2.4. [27] Suppose B ⊂ PC[J, X] is bounded and equi-continuous, then

αPC(B) = sup
t∈J
α(B(t)).

Lemma 2.5. [6] Suppose B ⊂ PC[J, X] is a bounded set, then

α(B(J) ≤ αPC(B)).

Lemma 2.6. [27] Suppose that r ∈ C[J,R+] meets

r(t) ≤ N1

∫ t

0
r(s)ds + N2t

∫ t

0
r(s)ds + N3t

∫ T

0
r(s)ds, t ∈ J,

where N1 > 0,N2 ≥ 0,N3 ≥ 0 are constants. If one of the following conditions holds

(i) T N3(eT (N1+T N2) − 1) < N1 + T N2,

(ii) T (2N1 + T N2 + T N3) < 2,

then r(t) ≡ 0, t ∈ J.
Lemma 2.7. (Mönch fixed point theorem) [7] We assume that X is a Banach space, Ω ⊂ X is open and
bounded, θ ∈ Ω, and Q : Ω→ Ω is a continuous operator and meets the following condition:

(i) u , λQu, 0 ≤ λ ≤ 1, u ∈ ∂Ω;
(ii) If W ⊂ Ω is countable and W ⊂ co({θ} ∪ Q(W)), then W is relatively compact.

Thus, Q exists at least a fixed point on Ω.
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Definition 2.4. u ∈ PC[J, X] is called a mild solution of (1.1) if u(t) satisfies equations:

u(t) =



Uβ(t, 0)(u0 − g1(u)) +
∫ t

0
Uβ(t, s) f (s, u(s), (H1u)(s), (H2u)(s))ds, t ∈ [0, t1],

li(t, u(t)), t ∈ (ti, si], i = 1, 2, ..., n,

Uβ(t, si)li(si, u(si)) +
∫ t

si

Uβ(t, s) f (s, u(s), (H1u)(s), (H2u)(s))ds, t ∈ (si, ti+1], i = 1, 2, ..., n.

3. Main results

We first give the following hypotheses.

(H1) f : J × T 3
R → X is uniformly continuous and bounded, where TR = {u ∈ PC[J, X] : ∥u∥PC ≤ R} .

(H2) There exist p(t, ·), q(t, ·) ∈ L[J,R+], such that

∥ h1(t, s, u(s)) ∥≤ p(t, s) ∥ u(s) ∥ +eh, (t, s) ∈ D, u ∈ X,

∥ h2(t, s, u(s)) ∥≤ q(t, s) ∥ u(s) ∥ +eg, (t, s) ∈ J × J, u ∈ X,

h0 = max
0≤s≤t≤T

∫ t

0
p(t, s)ds < +∞, g0 = max

0≤s,t≤T

∫ T

0
q(t, s)ds < +∞.

(H3) There exist b1 ∈ L[J,R+], b2, b3 ∈ L2[J,R+] satisfying

∥ f (s, u(s), u1, u2) ∥≤ b1(s) + b2(s) ∥ u1 ∥ +b3(s) ∥ u2 ∥ .

(H4) Suppose li ∈ C[J × X, X], g1 ∈ C[PC[J, X], X]. For u ∈ PC[J, X], there are nonnegative constants
d ≥ 0, e ≥ 0 such that

∥ g1(u) ∥≤ d ∥ u ∥PC +e.

(H5) There exist nonnegative constants Lh, Lg, Lli(i = 1, 2, ..., n) such that for any bounded subset B ⊂
X, we have

α(h1(t, s, B)) ≤ Lhα(B), α(h2(t, s, B)) ≤ Lgα(B), α(li(t, B)) ≤ Lli

∫ t

0
α(B)ds.

(H6) There exist constants Lk ≥ 0(k = 1, 2, 3) satisfying one of the following conditions:

(i) T M∗(2(L1 + Lli) + T LhL2 + T LgL3) < 2,
(ii) T LgL3(eT M∗(L1+Lli+T L2Lh) − 1) < (L1 + Lli) + T L2Lh,

and for any bounded subset S k ⊂ X(k = 1, 2, 3), we have

α( f (t, S 1, S 2, S 3) ≤
3∑

k=1

Liα(S k).
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(H7) There exists a constant Lg1 > 0 such that for any bounded subset B ⊂ PC[J, X], we obtain

α(g1(B)) ≤ Lg1

∫ t

0
α(B)ds.

(H8) There exist constants Yk ≥ 0(k = 1, 2, 3) meeting conditions (i) or (ii):

(i) T LgY3(eT M∗(Y1+Lli+Lg1+TY2Lh) − 1) < (Y1 + Lli + Lg1) + TY2Lh,

(ii) T M∗(2(Y1 + Lli + Lg1) + T LhY2 + T LgY3) < 2,

and for any bounded subset S k ⊂ X(k = 1, 2, 3),

α( f (t, S 1, S 2, S 3) ≤
3∑

i=1

Yiα(S k).

Theorem 3.1. We assume that conditions (H1) − (H6) are fulfilled, and g1 is compact, then the
problem (1.1) exists at least one mild solution.

Proof. We initially define the operator Q : PC[J, X]→ PC[J, X] by

Qu(t) =



Uβ(t, 0)(u0 − g1(u)) +
∫ t

0
Uβ(t, s) f (s, u(s), (H1u)(s), (H2u)(s))ds, t ∈ [0, t1],

li(t, u(t)), t ∈ (ti, si], i = 1, 2, ..., n,

Uβ(t, si)li(si, u(si)) +
∫ t

si

Uβ(t, s) f (s, u(s), (H1u)(s), (H2u)(s))ds, t ∈ (si, ti+1], i = 1, 2, ..., n.

(3.1)
The fixed point of operator Q in PC[J, X] is a solution of problem (1.1). Next, we will prove that

operator Q has a fixed point in PC[J, X].
As f is uniformly continuous, g1, li are continuous, and Uβ(t, s) is strongly continuous, we can get

that Q is continuous.
Next, we prove that Ω0 = {u ∈ PC[J, X]|u = λQu, λ ∈ [0, 1]} is bounded. In fact, if y0 ∈ Ω0, then

there exists 0 ≤ λ0 ≤ 1 satisfying y0(t) = λ0(Qy0)(t), t ∈ J.
When t ∈ [0, t1], we have

y0(t) =λ0(Qy0)(t) = λ0Uβ(t, 0)[u0 − g1(y0)]

+ λ0

∫ t

0
Uβ(t, s) f (s, y0(s), (H1y0)(s), (H2y0)(s))ds.

(3.2)

Let y(t) =∥ y0(t) ∥ . By (H2) − (H4) and (3.2), we get

y(t) ≤M∗(∥ u0 ∥ + ∥ g1(y0) ∥)

+ M∗
∫ t

0
[b1(s) + b2(s) ∥ H1y0(s) ∥ +b3(s) ∥ H2y0(s) ∥]ds,

where M∗ = max0≤s≤t≤a ∥ Uβ(t, s) ∥ .
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Since

∥ H1y0(t) ∥ ≤
∫ t

0
∥ h1(t, s, y0(s)) ∥ ds

≤ (p(t, s) ∥ y0(s) ∥ +eh)t1

≤ t1h0 ∥ y0(s) ∥ +t1eh,

= t1h0y(s) + t1eh,

similarly, we can get ∥ H2y0(t) ∥≤ t1g0y(s) + t1eg, then

y(t) ≤M∗(∥ u0 ∥ + ∥ g1(y0) ∥) + M∗
∫ t

0
[b3(s)aeh + b4(s)aeg]ds

+ M∗
∫ t

0
[b1(s) + t1b2(s)y(s)h0 + t1b3(s)y(s)g0]ds

≤M1 + M2 + M∗Fy(t),

where

M1 = M∗(∥ u0 ∥ + ∥ g1(y0) ∥) + M∗
∫ t

0
[b2(s)t1eh + b3(s)t1eg]ds,

M2 = M∗
∫ t1

0
b1(s)ds, Fy(t) =

∫ t

0
[t1b2(s)h0 + t1b3(s)g0]y(s)ds.

Therefore F : C[J0,R+]→ C[J0,R+] is completely continuous.
As b2, b3, b4 ∈ L2[J,R+], then

M = (
∫ T

0
[(t1b2(s)h0 + t1b3(s)g0)]2ds)

1
2 < +∞.

Next, we will demonstrate rσ(F) = 0. Because

∥ Fy(t) ∥ ≤
∫ t

0
∥ [t1b2(s)h0 + t1b3(s)g0]y(s) ∥ ds

≤ (
∫ t

0
[t1b2(s)h0 + t1b3(s)g0]2ds)

1
2 (
∫ t

0
∥ y ∥2 ds)

1
2

≤ M ∥ y ∥ t
1
2 ,

∥ F2y(t) ∥ ≤
∫ t

0
∥ (t1b2(s)h0 + t1b3(s)g0)By(s) ∥ ds

≤ (
∫ t

0
[(t1b2(s)h0 + t1b3(s)g0)]2ds)

1
2 (
∫ t

0
(M ∥ y ∥ t

1
2 )2ds)

1
2

≤
1
√

2
M2 ∥ y ∥ t,

∥ F3y(t) ∥ ≤
∫ t

0
∥ (t1b2(s)h0 + t1b3(s)g0)F2y(s) ∥ ds

≤ (
∫ t

0
[(t1b2(s)h0 + t1b3(s)g0)]2ds)

1
2 (
∫ t

0
(

1
√

2
M2 ∥ y ∥ t)2ds)

1
2

≤
1
√

3
√

2
M3 ∥ y ∥ t

3
2 ,
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for any n ∈ N, by mathematical induction, we can obtain

∥ Fny(t) ∥≤
1
√

n!
Mn ∥ y ∥ t

n
2 ,

then
∥ Fn ∥≤

1
√

n!
Mna

n
2 ,

rσ(F) = lim
n→+∞

∥ Fn ∥
1
n= 0.

There is a nonnegative constant C1 ≥ 0 independent of function u satisfying

∥y0(t)∥ ≤ C1, t ∈ J0.

Since l1 is continuous, there is a nonnegative constant β1 ≥ 0 satisfying

∥ l1(t, u(t)) ∥≤ β1,∀t ∈ J, ∥u∥ ≤ C1.

Let

z0(t) =


l1(t, y0(t)), t ∈ (t1, s1],

Uβ(t, s1)l1(s1, y0(s1)) +
∫ t

s1

Uβ(t, s) f (s, y0(s), (H1y0)(s), (H2y0)(s))ds, t ∈ (s1, t2],

l1(t, y0(t+1 )), t = t1,

then z0 ∈ C[[t1, t2], X] and

∥ z0(t) ∥≤ ∥ l1(t, y0(t)) ∥ + ∥ Uβ(t, s1)l1(s1, y0(s1))

+

∫ t

s1

Uβ(t, s) f (s, y0(s), (H1y0)(s), (H2y0)(s))ds ∥

≤ ∥ β1 ∥ +M∗ ∥ β1 ∥ +

∫ t

s1

∥ Uβ(t, s) f (s, y0(s), (H1y0)(s), (H2y0)(s)) ∥ ds

≤(1 + M∗) ∥ β1 ∥ +M∗
∫ t

s1

b1(s)ds + M∗
∫ t

0
[b2(s)Teh + b3(s)Teg]ds

+ M∗
∫ t

0
[t1b2(s)y(s)h0 + Tb3(s)y(s)g0]ds.

Similar to the method from the previous step, we get that there exists C2 ≥ 0 satisfying

∥z0(t)∥ ≤ C2, t ∈ [t1, t2],

therefore,
∥y0(t)∥ ≤ C2, t ∈ J1.

Likewise, we obtain that there exist Cn+1 ≥ 0 satisfying

∥y0(t)∥ ≤ Cn+1, t ∈ Jn.
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Let

C = max{C j|1 ≤ j ≤ n + 1},

then

∥y0(t)∥ ≤ C, t ∈ J.

Hence

∥y0∥PC ≤ C, y0 ∈ Ω0,

so Ω0 is bounded.
We take a constant R satisfying R > C and Ω = {u ∈ PC[J, X]|∥u∥PC ≤ R}, then Ω is bounded and

open. When u ∈ ∂Ω, 0 ≤ λ ≤ 1, we obtain

u(t) , λ(Qu(t)).

We suppose that W ⊂ Ω is a countable set and W ⊂ co({θ} ∪ Q(W)), θ ∈ Ω, then W is relatively
compact.

In fact, as Uβ(t, s) is strong continuity, by the assumption (H1), we obtain that Q(W) is equi-
continuous on Ji(i = 0, 1, ...n), then W is equi-continuous on Ji. ∀u ∈ TR, u1, u2 ∈ [0, t1].

Case 1: ∀t ∈ J0 = [0, t1]. Since g1 is compact, by the assumption (H6) and Lemma 2.1, we obtain

α(W(t)) ≤ α(QW(t))

= α(
∫ t

0
Uβ(t, s) f (s,W(s), (H1W)(s), (H2W)(s))ds)

≤ M∗
∫ t

0
(L1α(W(s)) + L2α((H1W)(s)) + L3α((H2W)(s)))ds,

because

α(H1W(t)) = α(
∫ t

0
h1(t, τ,W(τ))dτ) ≤

∫ t

0
α(h1(t, τ,W(τ))dτ) ≤

∫ t

0
Lhα(W(τ))dτ

= Lh

∫ t

0
α(W(τ))dτ,

then ∫ t

0
α(H1W(s))ds ≤ Lh

∫ t

0
(
∫ s

0
α(W(τ))dτ)ds

= Lh

∫ t

0
dτ

∫ t

τ

α(W(τ))ds

= Lh

∫ t

0
α(W(τ))(t − τ)dτ

≤ Lht
∫ t

0
α(W(τ))dτ.
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Similarly, we can obtain ∫ t

0
α(H2W(s))ds ≤ Lg

∫ t

0
α(

∫ T

0
W(τ)dτ)ds

= Lg

∫ t

0
ds

∫ T

0
α(W(τ))dτ

= Lgt
∫ T

0
α(W(τ))dτ,

hence

α(W(t)) ≤M∗L1

∫ t

0
α(W(s))ds

+ M∗LhL2t
∫ t

0
α(W(s))ds

+ M∗LgL3t
∫ T

0
α((W(s)))ds).

(6)

By assumption (H6) and Lemma 2.6, we get α(W(t)) = 0, t ∈ J0 = [0, t1], and especially α(W(t1)) = 0,
then W is relatively compact on C[J0, X].

Case 2: ∀t ∈ (t1, s1].We obtain

α(W(t)) ≤ α(QW(t)) = α(li(t, u(t))) ≤ Lli

∫ t

0
α(W(s))ds.

By the assumption (H6) and Lemma 2.6, we have α(W(t)) = 0, t ∈ (t1, s1].
Case 3: ∀t ∈ (s1, t2].We obtain

α(W(t)) ≤M∗[Lli

∫ t

0
α(W(s))ds + α(

∫ t

si

f (s,W(s), (H1W)(s), (H2W)(s))ds)]

≤M∗[Lli

∫ t

0
α(W(s))ds +

∫ t

si

α( f (s,W(s), (H1W)(s), (H2W)(s)))ds]

≤M∗[Lli

∫ t

0
α(W(s))ds +

∫ t

si

L1α(W(s) + L2α(H1W(s)) + L3α(H2W(s)))ds]

≤M∗[Lli

∫ t

0
α(W(s))ds + L1

∫ t

si

α(W(s))ds

+ L2Lh

∫ t

si

α(W(s))ds + L3Lg

∫ t

si

α(W(s))ds],

since ∫ t

si

α(H1W(s))ds ≤
∫ t

0
α(H2W(s))ds

≤ Lht
∫ t

0
α(W(τ))dτ,
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∫ t

si

α(H2W(s))ds ≤
∫ t

0
α(H2W(s))ds

≤ Lgt
∫ T

0
α(W(τ))dτ.

Thus

α(W(t)) ≤M∗[Lli

∫ t

0
α(W(s))ds + L1

∫ t

0
α(W(s))ds

+ L2Lht
∫ t

0
α(W(s))ds + L3Lgt

∫ T

0
α(W(s))ds]

=M∗(Llk + L1)
∫ t

0
α(W(s))ds

+ M∗L2Lht
∫ t

0
α(W(s))ds + M∗L3Lgt

∫ T

0
α(W(s))ds.

By (H6) and Lemma 2.6, we get α(W(t)) = 0, t ∈ (s1, t2], then α(W(t)) = 0, t ∈ J1 = (t1, t2], especially
α(W(t2)) = 0; then W is relatively compact on C[J1, X].

Similarly, we can prove that W is relatively compact on C[Ji, X](i = 2, 3, ..., n), so W is relatively
compact on C[J, X].

By Lemma 2.7, Q exists a fixed point, thus problem (1.1) exists a solution u∗ ∈ PC[J, X].
Theorem 3.2. We suppose that (H1 − H5), (H7), (H8) are fulfilled, then problem (1.1) exists at least a
mild solution.
Proof. By Theorem 3.1, we obtain that Ω0 = {u ∈ PC[J, X]|u = λQu, λ ∈ [0, 1]} is bounded. ∀t ∈ J0,

by (H8).We obtain

α(W(t)) ≤ α(QW(t))

≤ M∗α(g1W(t)) + α(
∫ t

0
Uβ(t, s) f (s,W(s), (H1W)(s), (H2W)(s))ds)

≤ M∗[Lg1

∫ t

0
α(W(s))ds +

∫ t

0
(Y1α(W(s)) + Y2α((H1W)(s)) + Y3α((H2W)(s)))ds],

since ∫ t

0
α(H1W(s))ds ≤ Lht

∫ t

0
α(W(τ))dτ,

∫ T

0
α(H2W(s))ds ≤ Lgt

∫ T

0
α(W(τ))dτ,

then

α(W(t)) ≤M∗(Lg1 + Y1)
∫ t

0
α(W(s))ds

+ M∗LhY2t
∫ t

0
α(W(s))ds

+ M∗LgY3t
∫ T

0
α(W(s))ds.
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By assumption (H8) and Lemma 2.6, we get α(W(t)) = 0, t ∈ J0 = [0, t1], especially α(W(t1)) = 0, then
W is relatively compact on C[J0, X]. ∀t ∈ J1 = (t1, s1],

α(W(t)) ≤ α(QW(t)) = α(li(t, u(t))) ≤ Lli

∫ t

0
α(W(s))ds,

by assumption (H8) and Lemma 2.6, we get α(W(t)) = 0, t ∈ (t1, s1].
∀t ∈ (s1, t2], resembling Theorem 3.1. We obtain

α(W(t)) ≤M∗(Lli + Y1)
∫ t

0
α(W(s))ds

+ M∗Y2Lht
∫ t

0
α(W(s))ds + M∗Y3Lgt

∫ T

0
α(W(s))ds.

By (H8) and Lemma 2.6, we get α(W(t)) = 0, t ∈ (s1, t2]; hence, α(W(t)) = 0, t ∈ J1 = (t1, t2], especially
α(W(t2)) = 0, then W is relatively compact on C[J1, X].

Similarly, we obtain that W is relatively compact on C[Ji, X], (i = 2, 3, ..., n), then W is relatively
compact on C[J, X].

By Lemma 2.7, Q exists a fixed point; therefore, problem (1.1) exists a solution.
Remark 3.1. When L4 = 0, the condition (ii) in assumption (H6) is clearly valid. In this situation, the
assumption (H6) can be removed.

4. Example

We study the following problem:

C
0 D

1
2
t u(t) =

u(t)

1 +
√

t
+

e−t

1 + et sin(u(t − τ)) +
1

2(1 + t)

∫ t

0
tu(s) cos sds

+
1

2(1 + et)

∫ 1

0

s sin t
2

u(s)ds, t ∈ [0, 1/4] ∪ (1/2, 3/4],

u(t) =
u(t)

5 + 4t
, t ∈ (1/4, 1/2],

u(0) +
1
4

sin u = u0 ∈ X.

(4.1)

Define

g1(u) =
1
4

sin u, τ(t) = t − τ ≤ t, (H1u)(t) =
∫ t

0
t cos su(s)ds, li(t, u(t)) =

u(t)
5 + 4t

,

(H2u)(t) =
∫ 1

0

s sin t
2

u(s)ds, h1(t, s, u) = tu cos s, h2(t, s, u) =
s sin t

2
u,

f (t, u1, u2, u3, u4) =
u1

1 +
√

t
+

e−t

1 + et sin u2 +
1

2(1 + t)
u3 +

1
2(1 + et)

u4,
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then Eq (4.1) can be transformed into the following form:
C
0 D

1
2
t u(t) = A(t)u(t) + f (t, u(t), u(τ(t)), (H1u)(t), (H2u)(t)), t ∈ [0, 1/4] ∪ (1/2, 3/4],

u(t) = li(t, u(t)), t ∈ (1/4, 1/2],
u(0) + g1(u) = u0 ∈ X.

(4.2)

For any xk, yk ∈ X(k = 1, 2, 3, 4), t ∈ [0, 1], we obtain

∥ f (t, y1, y2, y3, y4) − f (t, x1, x2, x3, x4)∥ ≤
1

(1 +
√

t)
∥ y1 − x1 ∥ +

e−t

1 + et ∥ y2 − x2 ∥

+
1

2(1 + t)
∥ y3 − x3 ∥ +

1
2(1 + et)

∥ y4 − x4 ∥,

∥h1(t, s, y1) − h1(t, s, x1)∥ ≤ ∥y1 − x1∥, ∥h2(t, s, y1) − h2(t, s, x1)∥ ≤
1
2
∥y1 − x1∥,

∥li(t, y1) − lk(t, x1)∥ ≤
1
9
∥y1 − x1∥, ∥g1(y1) − g1(x1)∥ ≤

1
4
∥y1 − x1∥.

If other assumptions of Theorem 3.1 are fulfilled, then system (4.1) exists a mild solution.

5. Conclusions

The literatures [15,17] studied the problem of non-instantaneous impulses of integer order. In
process of proving the theorem, the author used the Lipschitz condition and required the compression
coefficient to be less than 1. By employing the non-compact measure, the method of stepwise
estimation, and the Mönch fixed point theorem, we eliminated the need for the Lipschitz condition and
the requirement of a compressibility coefficient less than 1. The literature [18] studied the problem
of non-instantaneous impulses of fractional order. They gave the mild solutions via the Banach
contraction mapping principle without the condition of compressibility coefficient less than 1, but did
not consider the impulses and nonlocal conditions. Through the use of the β-order solution operator,
the Mönch fixed point theorem, and the method of stepwise estimation, we eliminated the Lipschitz
condition and the requirement of the compressibility coefficient less than 1. This work discusses the
existence of mild solutions, with our future focus directed toward investigating the stability outcomes
of fractional non-instantaneous impulse integro-differential equations.
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