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Abstract: This paper presents a novel methodology aimed at generating chi-square variates within 

the framework of neutrosophic statistics. It introduces algorithms designed for the generation of 

neutrosophic random chi-square variates and illustrates the distribution of these variates across a 

spectrum of indeterminacy levels. The investigation delves into the influence of indeterminacy on 

random numbers, revealing a significant impact across various degrees of freedom. Notably, the 

analysis of random variate tables demonstrates a consistent decrease in neutrosophic random variates 

as the degree of indeterminacy escalates across all degrees of freedom values. These findings 

underscore the pronounced effect of uncertainty on chi-square data generation. The proposed 

algorithm offers a valuable tool for generating data under conditions of uncertainty, particularly in 

scenarios where capturing real data proves challenging. Furthermore, the data generated through this 

approach holds utility in goodness-of-fit tests and assessments of variance homogeneity. 
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1. Introduction 

Among the statistical distributions, the chi-square distribution is very popular and has been used 

in many areas, including medical science [1] and engineering [2]. This distribution has been widely 

used in the goodness of fit test to see whether the data series is independent or not. The chi-square 

distribution is also been used for testing the variation in the variance of the variable, see [3]. The 
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chi-square random variable is the sum of squares of a standard normal random variable. Due to the 

complexity of the systems, it may not possible to note the real data. In such cases, there is a need to 

generate the simulated data that can be applied for estimation and forecasting. The analysis of the 

simulated data is very close to the real data phenomena. As mentioned by [4]. “The simulation 

depends on the application of the study on systems similar to the real systems, and then projecting 

these results if they are appropriate on the real system. The simulation based on generating a series of 

random numbers that are subject to a uniform probability distribution”. In addition, [5] suggested 

generating random variables from the underlying statistical distributions. The random numbers are 

generated using algorithms that are based on statistical distributions. Monahan [6] worked on 

generating chi-square random numbers. Shmerling [7] used the rational probability function in 

generating the random variables. Ortigosa et al. [8] presented the algorithms for the modified 

chi-square distribution. Devroye [9] proposed the simple algorithm for many distributions. 

Devroye [10] discussed the methods to generate non-uniform random variates. Devroye [11] 

presented the algorithm for generalized inverse Gaussian distribution. Luengo [12] worked on 

Pseudo random variate from the gamma distribution. Yao and Taimre [13] proposed the method to 

generate mixed random variables. More algorithms can be seen in [14]. Pereira [15] presented the 

simple method to generate a Pseudo random variate. 

Smarandache [16] introduced descriptive neutrosophic statistics to deal with the data having 

imprecise observations. Neutrosophic statistics is found to be more efficient than classical statistics 

in terms of information obtained from the analysis of imprecise data. The results obtained from the 

neutrosophic statistical analysis reduce to the results of classical statistics when no imprecise 

observation is found in the data. Neutrosophic statistics offers greater information richness compared 

to classical statistics by providing an additional measure known as the degree of indeterminacy. 

Smarandache [17] demonstrated the superior efficiency of neutrosophic statistics over interval 

statistics. Chen et al. [18] and [19] provided the methodology to analyze neutrosophic numbers in 

engineering. Aslam [20] provided the algorithm for neutrosophic DUS-Weibull distribution. 

Smarandache [21] showed that neutrosophic statistics is more efficient than interval statistics. Alhabib 

et al. [22] worked on some statistical distribution under neutrosophic statistics. Khan et al. [23] worked 

on the gamma distribution using neutrosophic statistics. Sherwani et al. [24] presented spine test using 

neutrosophic normal distribution. Granados [25] and Granados et al. [26] proposed several discrete 

and continuous distributions using the idea of neutrosophy. Various algorithms within neutrosophic 

statistics have been introduced in the literature. Guo and Sengur [27] introduced an algorithm for 

neutrosophic c-means clustering. Garg [28] proposed an algorithm incorporating clustering 

techniques along with a novel distance measure. Aslam [29] introduced algorithms utilizing 

sine-cosine and convolution methods within neutrosophic statistics. Aslam [30] presented an 

algorithm for generating imprecise data from the Weibull distribution. Aslam and Alamri [31] 

introduced an algorithm employing the accept-reject method to generate neutrosophic data. 

The existing methods for generating chi-square random variates are limited to deterministic 

environments, rendering them unsuitable for complex scenarios or uncertainty simulations. A 

thorough review of the literature indicates a dearth of algorithms for generating chi-square variates 

using neutrosophic statistics. To address this gap, this paper will introduce the chi-square distribution 

within the framework of neutrosophic statistics. Additionally, algorithms for generating chi-square 

data under neutrosophic statistics will be presented. Simulation methods will be provided for 

scenarios with both small and large degrees of freedom, generating neutrosophic chi-square random 
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variates across varying degrees of indeterminacy/uncertainty. Furthermore, the application of the 

generated data will be discussed. It is anticipated that the degree of uncertainty will significantly 

influence the computation of neutrosophic chi-square variates. The proposed neutrosophic chi-square 

variate is expected to find application in various fields where obtaining original data is impractical or 

prohibitively expensive. 

2. Methods 

In this section, we will introduce normal distribution, standard normal distribution and 

chi-square distribution under neutrosophic statistics. 

2.1 Neutrosophic normal distribution 

Let 𝑥1𝑁,𝑥2𝑁,𝑥3𝑁, … , 𝑥𝑛𝑁  be a neutrosophic normal variable of size 𝑛 . Let 𝑥𝑁 = 𝑥𝐿 +

𝑥𝐿𝐼𝑥𝑁
; 𝐼𝑥𝑁

𝜖[𝐼𝑥𝐿
, 𝐼𝑥𝑈

] be a neutrosophic form of standard normal variate. Note that 𝑥𝐿 presents the 

determinate part (classical statistics) with mean 𝜇  and variance 𝜎2 , 𝑥𝐿𝐼𝑥𝑁
 presents the 

indeterminate part, and 𝐼𝑥𝑁
𝜖[𝐼𝑥𝐿

, 𝐼𝑥𝑈
] is the measure of indeterminacy. The expected value of the 

neutrosophic random variable is given by 

𝐸(𝑥𝑁) = 𝐸(𝑥𝐿) + 𝐼𝑥𝑁
𝐸(𝑥𝐿) = 𝜇(1 + 𝐼𝑥𝑁

).                     (1) 

The variance of neutrosophic random variable is given by 

𝑉𝑎𝑟(𝑥𝑁) = 𝑉𝑎𝑟(𝑥𝐿) + 𝐼𝑥𝑁
2 𝑉𝑎𝑟(𝑥𝐿) = (1 + 𝐼𝑥𝑁

)
2

𝜎2.                 (2) 

Note that 𝐼𝑥𝑁
2 = 𝐼𝑥𝑁

. 

The neutrosophic probability distribution function (npdf) of the normal distribution is given by 

𝑓(𝑥𝑁) =
𝑒

−(
𝑥𝑁−𝜇𝑁

𝜎𝑁
)

2
2⁄

𝜎𝑁√2𝜋
,                               (3) 

where 𝜇𝑁 = 𝜇(1 + 𝐼𝑥𝑁
) and 𝜎𝑁 = √(1 + 𝐼𝑥𝑁

)
2

𝜎2. 

2.2 Neutrosophic standard normal distribution 

Suppose that 𝑧1𝑁,𝑧2𝑁,𝑧3𝑁, … , 𝑧𝑘𝑁 be neutrosophic standard normal variable. Let 𝑧𝑖𝑁 = 𝑧𝑖𝐿 +

𝑧𝑖𝐿𝐼𝑧𝑁
; 𝐼𝑧𝑁

𝜖[𝐼𝑧𝐿
, 𝐼𝑧𝑈

] (1 = 1,2, . . , 𝑘) be a neutrosophic form of a standard normal variate. Note that 

𝑧𝑖𝐿 presents the determinate part (classical statistics), 𝑧𝑖𝐿𝐼𝑧𝑁
 presents the indeterminate part, and 

𝐼𝑧𝑁
𝜖[𝐼𝑧𝐿

, 𝐼𝑧𝑈
] is the measure of indeterminacy. 

When 𝐿 = 𝑈, the neutrosophic standard normal variable can be expressed as 

𝑧𝑖𝑁 = 𝑧𝑖𝐿(1 + 𝐼𝑧𝑁
); 𝐼𝑧𝑁

𝜖[𝐼𝑧𝐿
, 𝐼𝑧𝑈

].                        (4) 
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The neutrosophic mean of 𝑧𝑖𝑁 is given by 

𝐸(𝑧𝑖𝑁) = 𝐸(𝑧𝑖𝐿) + 𝐼𝑧𝑁
𝐸(𝑧𝑖𝑈) = 0.                      (5) 

The neutrosophic variance of 𝑧𝑖𝑁 is given by 

𝑉𝑎𝑟(𝑧𝑖𝑁) = 𝑉𝑎𝑟(𝑧𝑖𝐿) + 𝑉𝑎𝑟(𝑧𝑖𝑈)𝐼𝑧𝑁
= 1 + 1𝐼𝑧𝑁

.                 (6) 

Based on this information, the neutrosophic probability density function (npdf) of standard 

normal distribution is given by 

𝜑(𝑧𝑁) =
𝑒−𝑧𝑁

2 2⁄

√2𝜋
.                                  (7) 

2.3 Neutrosophic chi-square distribution 

In the area of classical statistics, the chi-square distribution is denoted by 𝜒2 with degree of 

freedom 𝑘. Let 𝜒𝑁
2  denotes the chi-square distribution for neutrosophic statistics with 𝑘𝑁 a degree 

of freedom. As mentioned before, 𝑧1𝑁,𝑧2𝑁,𝑧3𝑁, … , 𝑧𝑘𝑁 be neutrosophic standard normal variable, 

then 𝑄𝑁 = ∑ 𝑧𝑖𝑁
2𝑘𝑁

𝑖=1  is distributed as a neutrosophic chi-square distribution 𝑘𝑁 degree of freedom. 

When 𝐿 = 𝑈, 𝑄𝑁 = (1 + 𝐼𝑧𝑁
)

2
∑ 𝑧𝑖𝐿

2𝑘𝑁
𝑖=1 . We will denote it as 𝑄𝑁~𝜒𝑘𝑁

2 . The neutrosophic pdf of a 

chi-square distribution is given by 

𝑓(𝑄𝑁) = [𝑄𝑁
(𝑘𝑁 2⁄ −1)

𝑒−𝑄𝑁 2⁄ ] [2𝑘𝑁 2⁄ Γ(𝑘𝑁 2⁄ )]; 𝑄𝑁 ≥ [0,0].⁄              (8) 

The mean of 𝑄𝑁 with 𝑘𝑁 degree of freedom is given by 

𝐸(𝑄𝑁) = 𝑘𝑁(1 + 𝐼𝑧𝑁
).                             (9) 

The 𝐸(𝑄𝑁
2 ) will be computed as 

𝐸(𝑄𝑁
2 ) = (1 + 𝐼𝑧𝑁

)
2

∫ (𝑄𝐿
2)

𝛼

0
𝑓(𝑄𝑁)𝑑𝑄𝑁.                    (10) 

𝐸(𝑄𝑁
2 ) = 𝑘𝑁(𝑘𝑁 + 2)(1 + 𝐼𝑧𝑁

)
2
.                        (11) 

The variance of 𝑄𝑁 with 𝑘𝑁 degree of freedom is given by 

𝑉𝑎𝑟(𝜒𝑘𝑁
2 ) = 2𝑘𝑁(1 + 𝐼𝑧𝑁

)
2
.                          (12) 

It is important to note that these distributions represent a generalization of those found in 

classical statistics. They revert to classical distributions in the absence of imprecise or uncertain 

values in the data. The proposed distributions operate on the premise that data is acquired within an 

uncertain environment, allowing for their utilization in scenarios where uncertainty is present during 

data recording. 

3. Generating neutrosophic chi-square variate (𝒌𝑵 < 𝟑𝟎) 

In this section, we will present the routine and algorithm to generate neutrosophic chi-square 



12047 

AIMS Mathematics  Volume 9, Issue 5, 12043–12056. 

variate when 𝑘𝑁  is less than 30. The neutrosophic chi-square variate having 𝑘𝑁  a degree of 

freedom will be generated by squaring and adding neutrosophic standard normal variables. The 

routine is explained as follows: 

Step 1: fix the value of 𝑘𝑁. 

Step 2: Generate 𝑘𝑁 standard normal variable 𝑧𝑖𝑁; for 𝑖 = 1 to 𝑘𝑁. 

Step 3: Fix the values of 𝐼𝑁. 

Step 4: Compute the values of 𝑄𝑁 = (1 + 𝐼𝑧𝑁
)

2
∑ 𝑧𝑖𝑁

2𝑘𝑁
𝑖=1  random variate. 

Step 5: Next 𝑖. 
Step 6: Return 𝑄𝑁. 

The algorithm to generate neutrosophic chi-square random variate is also shown with the help 

of Figure 1. 

 

Figure 1. Algorithm to generate chi-square variate when 𝑘𝑁 < 30. 

By following the algorithm, the neutrosophic chi-square random variate for various values of 

𝑘𝑁 and 𝐼𝑁 is presented in Tables 1–2. Table 1 presents the values of a neutrosophic chi-square 

random variate when 𝑘𝑁=3. Table 2 presents the values of a neutrosophic chi-square random variate 

when 𝑘𝑁=4. From Tables 1–2, it can be noted that as the measure of indeterminacy 𝐼𝑁 increases, 

the values of neutrosophic chi-square random variate also increase. For example, from Table 1, when 

𝐼𝑁=0.10, the neutrosophic chi-square random variate is 3.4578 and when 𝐼𝑁=0.80, the neutrosophic 

chi-square random variate is 9.2590. It is also interesting to note that when the values of 𝑘𝑁 

increases, we note the increasing trend in neutrosophic chi-square random variate. For example, 

when 𝑘𝑁=3 and 𝐼𝑁=0.20, neutrosophic chi-square random variate is 4.1151, and when 𝑘𝑁=4 and 

𝐼𝑁=0.20, neutrosophic chi-square random variate is 8.8635. 
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Table 1. Chi-square values when 𝑘 = 3. 

𝐼𝑁=0 𝐼𝑁=0.10 𝐼𝑁=0.20 𝐼𝑁=0.30 𝐼𝑁=0.40 𝐼𝑁=0.50 𝐼𝑁=0.60 𝐼𝑁=0.70 𝐼𝑁=0.80 

2.8577 3.4578 4.1151 4.8295 5.6011 6.4299 7.3158 8.2588 9.2590 

2.1893 2.6491 3.1526 3.6999 4.2910 4.9259 5.6046 6.3271 7.0934 

0.7138 0.8637 1.0279 1.2063 1.3991 1.6061 1.8274 2.0629 2.3127 

0.5115 0.6190 0.7366 0.8645 1.0026 1.1510 1.3096 1.4784 1.6574 

0.6801 0.8230 0.9794 1.1494 1.3331 1.5303 1.7411 1.9656 2.2036 

0.6463 0.7821 0.9307 1.0923 1.2668 1.4542 1.6546 1.8679 2.0941 

3.0556 3.6973 4.4000 5.1639 5.9889 6.8751 7.8223 8.8306 9.9001 

4.1798 5.0575 6.0189 7.0638 8.1924 9.4045 10.7003 12.0796 13.5425 

4.1798 5.0575 6.0189 7.0638 8.1924 9.4045 10.7003 12.0796 13.5425 

4.3789 5.2985 6.3056 7.4004 8.5827 9.8526 11.2100 12.6551 14.1877 

Table 2. Chi-square values when 𝑘 = 4. 

𝐼𝑁=0 𝐼𝑁=0.10 𝐼𝑁=0.20 𝐼𝑁=0.30 𝐼𝑁=0.40 𝐼𝑁=0.50 𝐼𝑁=0.60 𝐼𝑁=0.70 𝐼𝑁=0.80 

6.1552 7.4478 8.8635 10.4023 12.0642 13.8492 15.7574 17.7886 19.9429 

1.3329 1.6128 1.9194 2.2526 2.6125 2.9991 3.4123 3.8521 4.3187 

9.2470 11.1889 13.3157 15.6275 18.1242 20.8058 23.6724 26.7239 29.9604 

5.2438 6.3450 7.5511 8.8620 10.2778 11.7985 13.4241 15.1545 16.9899 

6.1292 7.4163 8.8260 10.3583 12.0132 13.7906 15.6907 17.7133 19.8585 

4.1976 5.0791 6.0446 7.0940 8.2273 9.4446 10.7459 12.1311 13.6003 

3.3166 4.0131 4.7759 5.6050 6.5005 7.4623 8.4905 9.5849 10.7457 

6.1028 7.3844 8.7880 10.3137 11.9615 13.7313 15.6231 17.6371 19.7730 

5.8980 7.1366 8.4932 9.9677 11.5601 13.2705 15.0989 17.0453 19.1096 

1.4373 1.7391 2.0696 2.4290 2.8170 3.2338 3.6794 4.1537 4.6567 

4. Generating neutrosophic chi-square variate (𝒌𝑵 ≥ 𝟑𝟎) 

In this section, we will discuss the routine and algorithm to generate neutrosophic chi-square 

random variate when 𝑘𝑁 is larger than 30. The neutrosophic chi-square random variate with 𝑘𝑁 

degree of freedom will be generated with the help of approximation. When 𝑘𝑁 ≥ 30, due to the 

central limit theorem, the neutrosophic 𝜒𝑘𝑁
2  distribution is shaped like the neutrosophic normal 

distribution that is 𝜒𝑘𝑁
2 ~𝑁( 𝑘𝑁, 2 𝑘𝑁), see [3]. An approximation to 𝛼-percent 𝜒𝑘𝑁

2  value is given 

by 

𝜒𝑘𝑁
2 ≈ 𝑘𝑁 + 𝑧𝛼𝑁

√2𝑘𝑁,                              (13) 

where 𝑧𝛼𝑁
 is neutrosophic standard normal variables with 𝑃(𝑧𝑁 > 𝑧𝛼𝑁

) = 𝛼𝑁. The approximation 

formulas used in practice is given by 

𝜒𝑘𝑁
2 = 𝑖𝑛𝑡(𝑘𝑁 + 𝑧𝛼𝑁

√2𝑘𝑁 + 0.5).                       (14) 

Based on the given information, the routine is stated as follows: 

Step 1: fix the value of 𝑘𝑁. 
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Step 2: Generate 𝑘𝑁 standard normal variable 𝑧𝑖𝑁; for 𝑖 = 1 to 𝑘𝑁. 

Step 3: Fix the values of 𝐼𝑁. 

Step 4: Compute the values 𝜒𝑘𝑁
2 = 𝑖𝑛𝑡(𝑘𝑁 + 𝑧𝛼𝑁

√2𝑘𝑁 + 0.5) random variate using 𝑧𝑖𝑁 obtained 

in Step 3. 

Step 5: Next 𝑖. 
Step 6: Return 𝜒𝑘𝑁

2 . 

The algorithm to generate neutrosophic chi-square random variate is also shown with the help 

of Figure 2. 

 

Figure 2. Algorithm to generate chi-square variate when 𝑘𝑁 ≥ 30. 

By following the algorithm, the neutrosophic chi-square random variate for various values of 

𝑘𝑁 and 𝐼𝑁 is presented in Tables 3–5. Table 3 presents the values of neutrosophic chi-square 

random variate when 𝑘𝑁=35. Table 2 presents the values of neutrosophic chi-square random variate 

when 𝑘𝑁=40. Table 3 presents the values of neutrosophic chi-square random variate when 𝑘𝑁=239. 

From Tables 3–5, it can be noted that as the measure of indeterminacy 𝐼𝑁 increases, the values of a 

neutrosophic chi-square random variate also increase. For example, when 𝐼𝑁=0.10, from Table 3, the 

neutrosophic chi-square random variate is 39.427and when 𝐼𝑁=0.80, the neutrosophic chi-square 

random variate is 41.925. It is also interesting to note that when the values of 𝑘𝑁 increases, we note 

the increasing trend in neutrosophic chi-square random variate. For example, when 𝑘𝑁=35 and 

𝐼𝑁=0.20, neutrosophic chi-square random variate is 39.784, and when 𝑘𝑁=239 and 𝐼𝑁=0.20, the 

neutrosophic chi-square random variate is 250.694. 
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Table 3. Chi-square values when 𝑘 = 35. 

𝐼𝑁=0 𝐼𝑁=0.10 𝐼𝑁=0.20 𝐼𝑁=0.30 𝐼𝑁=0.40 𝐼𝑁=0.50 𝐼𝑁=0.60 𝐼𝑁=0.70 𝐼𝑁=0.80 

39.070 39.427 39.784 40.141 40.497 40.854 41.211 41.568 41.925 

37.345 37.529 37.714 37.898 38.083 38.267 38.452 38.636 38.821 

35.836 35.870 35.904 35.937 35.971 36.005 36.038 36.072 36.106 

41.452 42.047 42.642 43.238 43.833 44.428 45.023 45.618 46.214 

39.260 39.636 40.012 40.388 40.764 41.140 41.516 41.892 42.268 

41.136 41.700 42.264 42.827 43.391 43.955 44.518 45.082 45.646 

45.497 46.497 47.496 48.496 49.496 50.495 51.495 52.495 53.495 

39.241 39.615 39.990 40.364 40.738 41.112 41.486 41.860 42.234 

40.361 40.847 41.333 41.819 42.306 42.792 43.278 43.764 44.250 

37.605 37.815 38.026 38.236 38.447 38.657 38.868 39.078 39.289 

Table 4. Chi-square values when 𝑘 = 40. 

𝐼𝑁=0 𝐼𝑁=0.10 𝐼𝑁=0.20 𝐼𝑁=0.30 𝐼𝑁=0.40 𝐼𝑁=0.50 𝐼𝑁=0.60 𝐼𝑁=0.70 𝐼𝑁=0.80 

44.316 44.698 45.079 45.461 45.843 46.224 46.606 46.987 47.369 

42.472 42.670 42.867 43.064 43.261 43.458 43.656 43.853 44.050 

40.860 40.896 40.932 40.968 41.004 41.040 41.076 41.111 41.147 

46.863 47.499 48.136 48.772 49.408 50.044 50.681 51.317 51.953 

44.520 44.922 45.324 45.725 46.127 46.529 46.931 47.333 47.735 

46.526 47.128 47.731 48.333 48.936 49.538 50.141 50.744 51.346 

51.187 52.256 53.325 54.393 55.462 56.531 57.600 58.668 59.737 

44.500 44.900 45.300 45.700 46.099 46.499 46.899 47.299 47.699 

45.697 46.216 46.736 47.256 47.775 48.295 48.815 49.334 49.854 

42.750 42.975 43.200 43.425 43.650 43.875 44.100 44.325 44.550 

Table 5. Chi-square values when 𝑘 = 239. 

𝐼𝑁=0 𝐼𝑁=0.10 𝐼𝑁=0.20 𝐼𝑁=0.30 𝐼𝑁=0.40 𝐼𝑁=0.50 𝐼𝑁=0.60 𝐼𝑁=0.70 𝐼𝑁=0.80 

248.828 249.761 250.694 251.626 252.559 253.492 254.425 255.358 256.290 

244.321 244.803 245.285 245.767 246.250 246.732 247.214 247.696 248.178 

240.379 240.467 240.555 240.643 240.731 240.819 240.907 240.995 241.083 

255.054 256.609 258.164 259.720 261.275 262.830 264.386 265.941 267.496 

249.325 250.308 251.291 252.273 253.256 254.238 255.221 256.203 257.186 

254.229 255.702 257.175 258.648 260.120 261.593 263.066 264.539 266.012 

265.624 268.236 270.848 273.461 276.073 278.686 281.298 283.910 286.523 

249.277 250.254 251.232 252.210 253.187 254.165 255.143 256.120 257.098 

252.203 253.473 254.743 256.014 257.284 258.554 259.825 261.095 262.365 

245.000 245.550 246.100 246.650 247.200 247.751 248.301 248.851 249.401 

5. Comparative study 

The effect of the degree of uncertainty/indeterminacy on the chi-square variate will be discussed 

now. The chi-square variates under classical statistics are given in Tables 1–5. The chi-square variates 



12051 

AIMS Mathematics  Volume 9, Issue 5, 12043–12056. 

under classical statistics when 𝑘𝑁 < 30 are reported in Tables 1 and 2. The chi-square variates 

under classical statistics when 𝑘𝑁 ≥ 30 are reported in Tables 3–5. From Tables 1–5, we note that 

the values of chi-square variates are higher for the classical statistics. In general, there is an 

increasing trend in neutrosophic chi-square variates. For example, when 𝑘𝑁=35 and 𝐼𝑁=0, the 

chi-square variate under classical statistics provides the value that is 39.070. On the other hand, 

𝑘𝑁=35, and 𝐼𝑁=0.10, the neutrosophic chi-square variate is 39.427. The trends in chi-square variates 

under classical statistics and neutrosophic statistics are given in Figures 3–6. Figures 3 and 4 show 

the curves of chi-square variates when 𝑘𝑁 < 30. From Figures 3 and 4, it can be observed that the 

curve of chi-square variates under classical statistics is lower than the neutrosophic chi-square 

variates at various values of 𝐼𝑁. Figures 5 and 6 present the curves of chi-square variates when 

𝑘𝑁 ≥ 30. From Figures 5 and 6, it can be observed that the curve of chi-square variates under 

classical statistics is lower than the neutrosophic chi-square variates at various values of 𝐼𝑁. In 

addition, it can be noted that when the values of 𝑘𝑁 is larger than 30, the neutrosophic chi-square 

variates are close to 𝑘𝑁. This statistical analysis highlights significant disparities between the data 

generated from the chi-square distribution under uncertainty and that obtained from the chi-square 

distribution under classical statistics. It is evident that the degree of indeterminacy/uncertainty 

significantly influences data generation. Consequently, based on this study, it is concluded that 

decision-makers should exercise caution when employing existing algorithms rooted in classical 

statistics for generating chi-square data. The utilization of such algorithms in uncertain contexts may 

lead to misleading outcomes in decision-making processes. 

 

Figure 3. The chi-square variates when 𝑘𝑁=3. 
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Figure 4. The chi-square variates when 𝑘𝑁=4. 

 

Figure 5. The chi-square variates when 𝑘𝑁=35. 
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Figure 6. The chi-square variates when 𝑘𝑁=40. 

6. Application using big data in transportation 

In this section, we will discuss the application of the neutrosophic chi-square test for big data of 

transportation. [32] used the uncertainty based chi-square for the big data. According to [33], 

uncertainty is always presented in big data, therefore, it is always expected uncertainty or impression 

in transportation data. According to (https://www.mongodb.com/big-data-explained/examples) 

“Airplanes generate enormous volumes of data, on the order of 1,000 gigabytes for transatlantic 

flights. Aviation analytics systems ingest all of this to analyze fuel efficiency, passenger and cargo 

weights, and weather conditions, with a view toward optimizing safety and energy consumption”. 

Suppose that there is uncertainty in this transportation data with a degree of uncertainty that is 0.10. 

Let the degree of freedom is 239. Let us define the null hypothesis 𝐻0: Flight operation is efficient 

vs. the alternative hypothesis 𝐻1: Flight operation is not efficient. From Table 5, the value of 𝜒𝑘𝑁
2  

is 249.761. Suppose that level of significance 𝛼 = 0.10, the tabulated value of the chi-square test is 

267.412. By comparing 𝜒𝑘𝑁
2  with the tabulated value, we will not reject the null hypothesis that the 

flight is efficient. Based on the analysis, it can be concluded that the flight operation is efficient. For 

the same level of significance  𝛼 = 0.10 , the chi-square value under classical statistics is 

𝜒𝑘
2=248.828. By comparing 𝜒𝑘

2=249.761 with the tabulated value, again, we do not reject the null 

hypothesis. But, from this comparison, it can be seen that the 𝜒𝑘
2=249.761 is close to 267.412 as 

compared to 𝜒𝑘𝑁
2 =248.828. The study suggests that the proposed test can effectively be applied to 

test hypotheses concerning flight efficiency within the transportation sector. 

7. Concluding remarks 

The algorithms to generate chi-square random numbers were presented in this paper. The 

methods to generate random variables were presented when the degree of freedom is small and large. 

The results were presented by implementing the proposed algorithms. The results showed that the 

measure of indeterminacy plays an important role in determining chi-square random numbers. From 
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the tables, it was concluded that as the measure of indeterminacy increases, the values of chi-square 

random numbers also increase. This random number generator can be used to generate chi-square 

random numbers under uncertainty. The proposed method holds applicability for generating 

chi-square random numbers across diverse domains such as medical science, engineering, quality 

control, and reliability analysis. Additionally, it can facilitate the application of goodness-of-fit tests 

and tests of variance homogeneity across a variety of fields. The proposed study has a limitation in 

that the data generated from the proposed algorithm is exclusively applicable within uncertain 

environments. Moreover, the proposed neutrosophic chi-square distribution is suitable solely for 

modeling imprecise data. Future research could explore modifications to the simulation method, 

incorporating alternative statistical distributions or sampling schemes. Furthermore, the potential 

application of the proposed test in handling large datasets within metrology and healthcare warrants 

investigation in future studies. Additionally, there is scope for further research into the proposed 

algorithm utilizing the accept-reject method. 
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