
http://www.aimspress.com/journal/Math

AIMS Mathematics, 9(5): 12011–12042.
DOI: 10.3934/math.2024587
Received: 28 January 2024
Revised: 04 March 2024
Accepted: 12 March 2024
Published: 27 March 2024

Research article

GAO-RRT*: A path planning algorithm for mobile robot with low path cost
and fast convergence

Lijuan Zhu1, Peng Duan1,2,*, Leilei Meng1,* and Xiaohui Yang2

1 School of Computer Science, Liaocheng University, Shandong Liaocheng, 252059, China
2 Shandong Provincial Key Laboratory of Network Based Intelligent Computing, Shandong Jinan,

250022, China

* Correspondence: Email: duanpeng@lcu.edu.cn, mengleilei@lcu.edu.cn.

Abstract: Path planning is an essential research topic in the navigation of mobile robots.
Currently, rapidly-exploring random tree star (RRT*) and its variants are known for their probabilistic
completeness and asymptotic optimality, making them effective in finding solutions for many path
planning problems. However, slow convergence rate of the RRT* limits its practical efficiency. To
address this problem, this paper proposed an enhanced RRT* algorithm by refining the extension
process of the exploring tree. This enhancement aims to guide the tree approaching to obstacles (GAO)
while exploring toward the target point. First, GAO-RRT* employed a dual-weighted sample strategy
instead of random sample to guide search direction of the exploring tree. Second, a variable step size
extension strategy was adopted to increase the efficiency of node generation, balancing searching time
and path safety in regions with different obstacles densities. Third, growth status of new nodes was
monitored in real-time, and a reverse growth strategy was proposed to guide the exploring tree to escape
local optima. In addition, parent node creation procedure for new nodes was used to produce a better
initial path. Finally, the proposed GAO-RRT* was compared with three state of the art algorithms
on 16 different instances of four representative environments. Compared to RRT*, Quick-RRT* (Q-
RRT*), and Fast-RRT* (F-RRT*), the results showed that (1) the average path cost of initial solutions
obtained by GAO-RRT* decreased by 38.32%, 29.69%, and 20.44%, respectively; and (2) the average
convergence time of solution obtained by GAO-RRT* to suboptimal (1.05*Cbest) was reduced by
71.22%, 69.69%, and 58.37%, respectively. Simulation results indicated that GAO-RRT* outperforms
the compared algorithms in terms of path cost and convergence speed.

Keywords: mobile robots; path planning; GAO-RRT*; dual-weighted sample strategy; variable step
size extension strategy; reverse growth strategy
Mathematics Subject Classification: 68T40, 68W20

http://www.aimspress.com/journal/Math
http://dx.doi.org/ 10.3934/math.2024587

12012

1. Introduction

Mobile robots have attracted considerable attention and have broad applications in many fields [1].
These applications span industrial automation [2–4], service robots [5, 6], autonomous driving [7, 8],
and medical robots [9]. In the research of related technologies for mobile robots, path planning stands
out as a critical core one. Indeed, the primary goal of path planning is to find a collision-free path from
initial state to target state within the configuration space. Simultaneously, it needs to satisfy multiple
optimization constraints, ensuring that the path is both short and smooth [10].

Research on path planning is gaining increasing popularity. Currently, path planning algorithms
mainly encompass artificial potential field (APF) algorithms [11], intelligent bionic algorithms [12–
14], grid-based search algorithms [15, 16], and sampling-based algorithms [17]. The fundamental
concept of the APF method is to construct a repulsive potential field around obstacles and an attractive
potential field around target point. The resulting force, comprising both repulsion and attraction, guides
robot’s movement within the composite potential field. The paths obtained by this method are smooth
and reliable. However, a notable challenge with APF is its susceptibility to falling into local minima.
Currently, APF utilizes potential environmental fields to enhance search efficiency and is frequently
integrated with other path planning algorithms [18]. Intelligent bionic algorithms, drawing inspiration
from bionic principles in nature, have been employed to solve path planning problems. Commonly
used algorithms include the genetic algorithm [12], ant colony algorithm [13], and particle swarm
optimization algorithm [14], each offering distinct advantages and suitability for optimizing complex
path planning problems. Nevertheless, to solve path planning problems in complex environments,
the reseachers usually design many optimized operators, inevitablely increasing the complexity of
algorithms. In grid-based search methods, A* [15] algorithm is the most famous and widely applied
one. It uses graph theory to discrete state spaces to solve path planning problems. In A* algorithm, it is
assumed that each state corresponds to a grid point, ensuring integrity and optimality of the resolution.
However, the computation time and used memory space grow exponentially as the complexity or
dimension of environment increases. Sampling-based search algorithms are well-suited for scenes
with unknown environmental information, thanks to their minimal requirements on the overall map
environment representation [19]. One well-known example is the rapidly-exploring random tree (RRT)
algorithm [17], which is widely acclaimed for its efficient exploration of state space. It has been proved
probabilistically complete, meaning that if a feasible path exists, the algorithm is guaranteed to find
a solution along with the number of samples. However, the path searched by the RRT algorithm is
usually tortuous or not the optimal one [20].

To overcome the limitations of the RRT algorithm, researchers have put forward various variants
to solve path planning problems in many fields. Among the variants, a notable milestone is the RRT*
algorithm proposed by Karaman and Frazzoli [21]. RRT* aims to improve efficiency and optimality
by minimizing the total path cost through the ChooseParent and Rewire procedures. RRT* revises the
parent vertex of nodes based on the cost function in each iteration, resulting in superior paths compared
to the basic RRT algorithm [22]. Despite its advantages, RRT* still faces challenges in complex
environments such as ineffective node extension and redundant sampling, leading to slow convergence
speed. To accelerate convergence speed, Nasir investigated the RRT*-Smart [23], which incorporates
an exploration-exploitation strategy to intelligently sample and optimize the path, ultimately improving
the convergence speed and reducing path cost. However, the quality of the final path achieved by RRT*-

AIMS Mathematics Volume 9, Issue 5, 12011–12042.

12013

Smart is influenced by the quality of the initial solution [24]. In addition to the method, Informed-
RRT* [25] introduces an informed sampling strategy by constructing an elliptical sampling region to
provide a more focused and informed sampling space based on the starting point, the target point,
and the current path length. By concentrating sampling efforts in regions likely to yield lower-cost
paths, Informed-RRT* accelerates the search for an optimal solution. Nevertheless, it’s worth noting
that Informed-RRT* still relies on the RRT* to generate the initial solution. While this can enhance
the search efficiency, it may also introduce some level of computational overhead due to the additional
computations involved in constructing the informed sampling region. To address this problem, Qureshi
and Howie [26] proposed the Potential RRT* (P-RRT*) by incorporating APF into the RRT*. P-RRT*
addressed the challenge of reducing expansion time toward the target, and it is particularly useful in
scenarios where the configuration space is complex. While APF is effective in guiding exploration,
it’s important to note that P-RRT* may encounter the challenge of local minima. Furthermore,
Fan [27] proposed the improved Bi-P-RRT* algorithm, which introduces the goal-biased strategy
and APF method to further improve the search efficiency. In addition to adopting a goal-directed
approach, researchers also improve the planning efficiency of the RRT* algorithm by modifying the
random expansion of the tree structure [28]. For example, in order to enhance exploration efficiency,
Jeong proposed a novel improvement, the Q-RRT* [29], which adjusts the optimization module of
RRT* based on triangle inequality. Unlike traditional RRT*, Q-RRT* expands the range for selecting
parent nodes. This modification allows the algorithm to explore a broader region of the configuration
space during the tree expansion process. However, it may face limitations in narrow or complex
environments, potentially leading to suboptimal paths [30]. Similar to Q-RRT*, designed to improve
the efficiency of exploration and reduce path cost, Liao proposed the F-RRT* [31]. F-RRT* introduces
two specific procedures, namely FindReachest and CreateNode. The FindReachest procedure aims to
identify a parent node that is close to obstacles for a new node, while the CreateNode procedure aims to
reduce the path cost by creating parent node close to obstacles. Although F-RRT* presents advantages
in terms of reducing path length, it may be associated with a trade-off in convergence speed, especially
in the environments with local traps.

The algorithm proposed in this study is driven by the primary challenges observed in existing path
planning methods. First, it recognizes that optimal paths typically traverse regions close to obstacles,
which are often underutilized by current methods, leading to higher path costs. Second, many RRT*-
based path planning algorithms lack of node growth state detection, heavily relying on the randomness
of sampling for new node generation. Third, existing methods lack an occasional reverse exploring
mechanism, which proves beneficial in navigating challenging scenarios like local traps. To address
these problems, this paper proposed a novel algorithm, GAO-RRT*, which generates better initial
solutions and achieves fast convergence. The main contributions of this study are summarized as
follows.

(1) A dual-weighted sampling strategy is developed to guide the expansion of the exploring tree,
allowing it to not only go toward the target point, but also approach obstacles to shorten path length.
This strategy makes the RRT*-based planner more flexible and adaptable to complex environments.

(2) The current growth status of the exploring tree is monitored and then used to improve the strategy
for generating new nodes, in which a reverse growth strategy is proposed.

(3) The extension of new nodes no longer depends on a predefined step size. The dynamic variable
step size, combined with the reverse growth strategy, is closer to simulating the growth mode of trees

AIMS Mathematics Volume 9, Issue 5, 12011–12042.

12014

in the natural environment, jumping out of local traps, shortening the path length, and accelerating the
convergence rate of the proposed algorithm.

The rest of this paper is organized as follows. Section 2 formalizes two path planning problems and
introduces the state of the art RRT-based algorithms. Section 3 describes the proposed GAO-RRT*
and its detailed components. Section 4 presents the simulation environments, parameter selection,
results, and comparative analysis with the outstanding algorithms. Finally, conclusion is summarized
in Section 5.

2. Background

In this section, two path planning problems are formalized and the state of the art RRT-based
algorithms, such as RRT*, Q-RRT*, and F-RRT*, are introduced.

2.1. Path planning problems

Let X denote the configuration space, Xobs is the obstacle region, and X f ree = X/Xobs is the free
space. (X, xstart, Xgoal) describes a path planning problem, where xstart ∈ X f ree is the initial state and
Xgoal ⊂ X f ree is the target region. Indeed, Xgoal represents a circular region centered on the target point
xgoal. Let a continuous function with bounded variation σ(τ) : [0, 1] → X denote a path. If ∀τ ∈ [0, 1]
is satisfied for σ(τ) ∈ X f ree , the path is a collision-free one.
Problem 1. (Feasible path planning) For the path planning problem (X, xstart, Xgoal), the objective is to
find a collision-free path from an initial state xstart to the target region Xgoal, represented as

σ(τ) : [0, 1]→ X f ree, σ(0) = xstart, σ(1) ∈ Xgoal. (2.1)

If no solution exists, report failure.
Problem 2. (Optimal path planning) Let

∑
be the set of all the feasible paths and c(·) be the cost

function of a feasible path. The optimal path planning problem can be defined as σ∗, which aims to
find a feasible path with the lowest value of the cost function, such that

σ∗ = arg min
σ∈

∑ {c(σ) | σ(0) = xstart, σ(1) ∈ Xgoal,∀τ ∈ [0, 1], σ(τ) ∈ X f ree}. (2.2)

2.2. RRT*

RRT*, as an improved variant of the RRT, is widely used in the field of robotics and path planning. It
provides a powerful algorithmic framework for finding optimal paths in complex and high-dimensional
spaces. The pseudocode of RRT* is presented in Algorithm 1. The most distinction between RRT and
RRT* lies in the additional steps taken by RRT*, ChooseParent, and Rewire procedures. Following the
generation of a new node, RRT* incorporates the ChooseParent procedure to identify a superior parent
node from the existing nodes for the new node. In the Rewire procedure, RRT* optimizes the tree
structure by considering alternative connections, improving the cost of existing paths. Specifically, the
primary goal of ChooseParent is to select an optimal parent for a newly generated node xnew within Xnear

and evaluate whether the chosen nodes have the potential to reduce path cost. If such an improvement
is possible, the parent node of xnew is updated. On the contrary, the aim of Rewire is to assess and
potentially update the parent-child relationships on the tree by checking whether the path cost from

AIMS Mathematics Volume 9, Issue 5, 12011–12042.

12015

xinit to the node of Xnear via its original parent is greater than that via xnew as parents. A concise
overview of some procedures employed by the RRT* algorithm is provided.
• Sample: Returns a random sample state xrand from map. The method of calculating xrand can be
expressed as:

xrand = {xi |xi ∈ map }. (2.3)

• Nearest: Given V and xrand, it returns the node xnearest that is closest to xrand in V. The method of
calculating xnearest can be expressed as:

xnearest = arg min{dist(xi, xrand) |xi ∈ V }. (2.4)

• Steer: This function extends an incremental distance from xnearest to xrand to generate a new state xnew.
• CollisionFree: This function checks whether the local path from xnew to xnearest is collision-free.
• Near: It returns a set of nodes in a hypersphere with a specific radius centered on xnew, where rnear is
the radius. The method of calculating Xnear can be expressed as:

Xnear = {xi |dist(xi, xnew) < rnear, xi ∈ V }. (2.5)

Algorithm 1: RRT*
Input: xstart, Xgoal, nrepeat,map, rnear

Output: T = (V, E)
1 V ← {xstart} , E ← ∅;
2 for i = 1 to nrepeat do
3 xrand ← S ample(i);
4 xnearest ← Nearest(V, xrand);
5 xnew ← S teer(xnearest, xrand);
6 if CollisionFree(xnearest, xnew) then
7 Xnear ← Near(V, xnew, rnear);
8 xparent ← ChooseParent(Xnear, xnearest, xnew);
9 V ← V ∪ {xnew};

10 E ← E ∪
{
(xparent, xnew)

}
;

11 T ← Rewire(T, xnew, Xnear);
12 end
13 end
14 return T = (V, E);

2.3. Q-RRT*

Compared with the RRT*, the Q-RRT* [29] optimizes and adjusts the ChooseParent and Rewire
procedures. The pseudocode of Q-RRT* is displayed in Algorithm 2. In the ChooseParent procedures,
the search range of the possible parent node of xnew includes not only Xnear, but also the ancestor of
Xnear, where dancestor denotes the depth of finding the parent node. According to the triangle inequality,
a parent node that satisfies the requirement and reduces the path cost could be found. Q-RRT* also
considers the depth problem in the Rewire-Q-RRT* procedure, including the ancestors of xnew in the
candidate search range, which significantly reduces the path cost. Algorithm 3 gives the pseudocode of

AIMS Mathematics Volume 9, Issue 5, 12011–12042.

12016

the Rewire-Q-RRT* procedure. A concise overview of new procedures used in Q-RRT* is described
as follows.
• ancestor: Given T = (V, E), a node xp, and a natural number n ∈ N, it returns the n-th parent of xp.
• Ancestry: Given T = (V, E), a node xp, and a natural number dancestor, if the depth dancestor is 0, it
returns ∅; otherwise it returns

⋃dancestor
i=1 ancestor(T, xp, i).

• Cost: Given a node x from V, it returns the full length of the path from xstart to x.
• dist: It returns the Euclidean distance between two nodes xi and x j.
• Parent: Given a node x from V, it returns the parent node of x.

Algorithm 2: Q-RRT*
Input: xstart, Xgoal, nrepeat,map, rnear, dancestor

Output: T = (V, E)
1 V ← {xstart} , E ← ∅;
2 for i = 1 to nrepeat do
3 xrand ← S ample(i);
4 xnearest ← Nearest(V, xrand);
5 xnew ← S teer(xnearest, xrand);
6 if CollisionFree(xnearest, xnew) then
7 Xnear ← Near(V, xnew, rnear);
8 Xparent ← Ancestry(T, Xnear, dancestor);
9 xparent ← ChooseParent(Xnear ∪ Xparent, xnearest, xnew);

10 V ← V ∪ {xnew};
11 E ← E ∪

{
(xparent, xnew)

}
;

12 T ← Rewire-Q-RRT*(T, xnew, Xnear, dancestor);
13 end
14 end
15 return T = (V, E);

Algorithm 3: Rewire-Q-RRT*
Input: T, xnew, Xnear, dancestor

Output: T = (V, E)
1 for each xnear ∈ Xnear do
2 for each x f rom ∈ {xnew} ∪ Ancestry(T, xnew, dancestor) do
3 if Cost(x f rom) + dist(x f rom, xnear) < Cost(xnear) then
4 if CollisionFree(x f rom, xnear) then
5 xparent ← Parent(xnear);
6 E ← (E\{(xparent, xnear)}) ∪ {(x f rom, xnear)};
7 end
8 end
9 end

10 end
11 return T = (V, E);

AIMS Mathematics Volume 9, Issue 5, 12011–12042.

12017

2.4. F-RRT*

F-RRT*, proposed by Liao et al. [31], is designed to improve the initial solution and convergence
rate in path planning. The pseudocode of F-RRT* is shown in Algorithm 4. Indeed, F-RRT* optimizes
path costs by creating a parent node for the new node xnew, instead of selecting it among the existing
vertices. The creation process are divided into two steps, the FindReachest and CreatNode procedures.
Inspired by Q-RRT*, the FindReachest procedure aims to find the reachable vertex xreachest from
the ancestors of xnearest, rather than searching a parent node near xnew. This particular xreachest, once
determined, is considered a candidate parent node for xnew. It should be noted that connecting xreachest

and xnew makes the cost of the path from the xstart to xnew lower than connecting xnearest and xnew. In
order to further minimize the path cost, the CreatNode procedure is implemented to create a new parent
node xcreate in proximity to the obstacle for xnew, leveraging triangle inequality among xnew, xreachest, and
the parent node of xreachest.

Algorithm 4: F-RRT*
Input: xstart, Xgoal, nrepeat,map, rnear, ddichotomy

Output: T = (V, E)
1 V ← {xstart},E ← ∅;
2 for i = 1 to nrepeat do
3 xrand ← S ample(i);
4 xnearest ← Nearest(V, xrand);
5 xnew ← S teer(xnearest, xrand);
6 if CollisionFree(xnearest, xnew) then
7 Xnear ← Near(V, xnew, rnear);
8 xreachest ← FindReachest(T, xnearest, xnew);
9 xcreate ← CreateNode(T, xreachest, xnew, ddichotomy);

10 if xcreate , ∅ then
11 V ← V ∪ {xcreate, xnew};
12 E ← E ∪

{
(Parent(xreachest), xcreate), (xcreate, xnew)

}
;

13 else
14 V ← V ∪ {xnew};
15 E ← E ∪

{
(xreachest, xnew)

}
;

16 end
17 T ← Rewire(T, xnew, Xnear);
18 end
19 end
20 return T = (V, E);

3. GAO-RRT*

This section provides a detailed description of the proposed GAO-RRT*. The core concept of GAO-
RRT* is based on two key considerations: The nodes that make up an optimal path are usually close
to obstacles [32] and occasional reverse growth may be beneficial for the exploring tree to overcome
challenging situations. GAO-RRT* primarily enhances the process of generating new nodes, which

AIMS Mathematics Volume 9, Issue 5, 12011–12042.

12018

includes three procedures: GenerateNewNode, StatisticRecentCollisions, and ReverseNewNode.
Figure 1 presents the flowchart of the proposed GAO-RRT*. In the GenerateNewNode procedure,
the proposed GAO-RRT* employs a dual-weighted sample strategy instead of random sample. The
strategy guides the exploring tree to grow toward the target point while approaching obstacles as much
as possible to shorten the path length. In the StatisticRecentCollisions procedure, the current growth
status of the exploring tree is monitored, and subsequent growth manner is determined based on the
latest statistics. For the ReverseNewNode procedure, when the exploring tree encounters challenges in
its growth, it alternates between reverse and forward growth attempts. It should be noted that the reverse
growth attempt endows the proposed GAO-RRT* with the ability to escape local optima, thereby more
flexibly responding to the challenges encountered.

Figure 1. Flowchart of the proposed GAO-RRT*.

AIMS Mathematics Volume 9, Issue 5, 12011–12042.

12019

Algorithm 5 presents the pseudocode of the proposed GAO-RRT*. Specifically, the 5th
line describes the GenerateNewNode procedure, the 10th line gives the StatisticRecentCollisions
procedure, and lines 11 to 19 are employed to determine whether the ReverseNewNode procedure
will be executed. It should be pointed out that in the proposed GAO-RRT*, we have incorporated the
concept of creating nodes from the F-RRT*, as shown in lines 22 to 30 of Algorithm 5.

Algorithm 5: GAO-RRT*
Input: xstart, xgoal, nrepeat, rnear,map, ddichotomy, lstep,wobs, pcol, pthr, niter

Output: T = (V, E)
1 V ← {xstart},E ← ∅;
2 for i = 1 to nrepeat do
3 xrand ← S ample(i);
4 xnearest ← Nearest(V, xrand);
5 xnew ← GenerateNewNode(xrand, xgoal, xnearest);
6 if CollisionFree(xnearest, xnew) then
7 Acollision(i) = 0;
8 else
9 Acollision(i) = 1;

10 pcol ← S tatisticRecentCollisions(Acollision, i, niter);
11 if pcol > pthr then
12 xrevnew ← ReverseNewNode(T, xnew, xnearest, ddichotomy);
13 if ∼ CollisionFree(xnearest, xrevnew) then
14 continue;
15 end
16 xnew ← xrevnew;
17 else
18 continue;
19 end
20 end
21 Xnear ← Near(V, xnew, rnear);
22 xreachest ← FindReachest(T, xnearest, xnew);
23 xcreate ← CreateNode(T, xreachest, xnew, ddichotomy);
24 if xcreate , ∅ then
25 V ← V ∪ {xcreate, xnew};
26 E ← E ∪

{
(Parent(xreachest), xcreate), (xcreate, xnew)

}
;

27 else
28 V ← V ∪ {xnew};
29 E ← E ∪

{
(xreachest, xnew)

}
;

30 end
31 T ← Rewire(T, xnew, Xnear);
32 end
33 return T = (V, E);

AIMS Mathematics Volume 9, Issue 5, 12011–12042.

12020

3.1. GenerateNewNode

The GenerateNewNode procedure aims to generate a new node that approaches obstacles while
moving toward the target point. It employs a dual-weighted sample strategy, adjusting the weights
of the guidance forces from xobs and xgoal for xnearest. This strategy enables the algorithm to strike
a balance between the requirements of approaching obstacles and growing toward the target point,
making it more flexible and adaptable to complex environments. To further illustrate the working
process of this procedure, Figure 2 illustrated the new node generation using the dual-weighted sample
strategy. As shown in Figure 2(a), the procedure initially identifies the obstacle point xobs nearest to
xrand through the bwdist function, with xobs highlighted in green. Subsequently, in Figure 2(b), utilizing
the parallelogram rule, the combined attractive force of xobs and xgoal guides the tree to extend a branch
from xnearest to xnew. In detail, two weights, denoted by wobs and (1-wobs), respectively, are employed to
balance the growth direction of the new node.

Figure 2. New node generation with the dual-weighted sample strategy. (a) Obtain the
nearest obstacle point xobs to xrand; (b) new node extention process.

Algorithm 6 provides the pseudocode of the GenerateNewNode procedure. When the distance
d between xnearest and xobs is greater than a predetermined step size lstep, indicating a region with
potentially fewer obstacles around the tree, the algorithm extends the new node xnew by lstep.
Conversely, if the distance d is less than or equal to lstep, the algorithm extends new node xnew by
d. It can be observed that, whether observed in line 5 or line 7 in Algorithm 6, the step size for
each extension is a variable. This variable is influenced not only by the environment surrounding the
exploring tree and the target point but also by the weights wobs and (1-wobs). In other words, a larger
step size accelerates the search process in relatively open environments, while a smaller step size proves
beneficial in avoiding collisions in more complex environments with obstacles. This adaptive step size
enhances the search efficiency of the proposed algorithm.

AIMS Mathematics Volume 9, Issue 5, 12011–12042.

12021

Algorithm 6: GenerateNewNode
Input: xrand, xgoal, xnearest

Output: xnew

1 Llable ← bwdist(map);
2 xobs ← Llable(xrand);
3 d ← dist(xnearest, xobs);
4 if d > lstep then
5 xnew ← xnearest + wobs × lstep × (xobs − xnearest)/dist(xobs, xnearest) + (1 − wobs) × lstep × (xgoal −

xnearest)/dist(xgoal, xnearest);
6 else
7 xnew ← xnearest + wobs × d × (xobs − xnearest)/dist(xobs, xnearest) + (1 − wobs) × d × (xgoal −

xnearest)/dist(xgoal, xnearest);
8 end
9 return xnew;

3.2. StatisticRecentCollisions

The StatisticRecentCollisions procedure is designed to monitor the current growth status of the
exploring tree. Algorithm 7 outlines detailed steps for this procedure. As previously mentioned
in the 7th and 9th lines of Algorithm 5, we used the binary values 0 and 1 to record the state of
generating a new node. Indeed, Acollision keeps track of all attempts to generate new nodes during the
algorithm’s execution. Consequently, it is easy to calculate the failure rate of generating new nodes in
the most recent niter iterations, denoted as pcol. It should be noted that pcol refers to the frequency of
collisions rather than probability. This indicator provides valuable insights into the extension status of
the exploring tree. A higher pcol indicates suboptimal growth, prompting concerns about the potential
occurrence of local minima. In such scenarios, it becomes imperative to promptly initiate a reverse
growth process (outlined in lines 11 to 19 of Algorithm 5) to guide the tree out of its growth dilemma.

Algorithm 7: StatisticRecentCollisions
Input: Acollision, i, niter

Output: pcol

1 for j = i : −1 : i − niter do
2 if j > 0 then
3 sum = sum + Acollision(j);
4 else
5 break;
6 end
7 end
8 pcol ← sum/niter;
9 return pcol;

AIMS Mathematics Volume 9, Issue 5, 12011–12042.

12022

3.3. ReverseNewNode

The ReverseNewNode procedure aims to guide the exploring tree in escaping from the regions with
challenging growth conditions. Algorithm 8 provides the pseudocode of this procedure. In detail, the
exploring tree attempts to generate a new node xmid, in the direction from xnearest to xnew. In the event
of failure, the proposed procedure then utilizes mirror symmetry to determine the symmetrical point,
xrevnew, of the midpoint xmid with respect to xnearest. Subsequently, the ReverseNewNode procedure
repeats the above steps and attempts to generate a new node in a limited number of steps, which
create numerous opportunities for the exploring tree to escape local optima. It should be noted that
a parameter named ddichotomy and the distance between xnearest and xrevnew are used as the termination
condition of the ReverseNewNode procedure. It is crucial to clarify that ddichotomy also serves as the
termination condition of the dichotomy during the creation of xcreate in Algorithm 4. This parameter
sharing mechanism not only ensures that new available nodes can be obtained within a limited number
of iterations, but also prevents situations where new generated nodes are too close to existing ones.

Algorithm 8: ReverseNewNode
Input: T, xnew, xnearest, ddichotomy

Output: xrevnew

1 xrevnew ← xstart;
2 dthreshold ← ddichotomy;
3 while dist(xnearest, xrevnew) > dthreshold && ddichotomy > 0 do
4 ddichotomy = ddichotomy − 1;
5 xmid = (xnearest + xnew)/2;
6 if CollisionFree(xnearest, xmid) then
7 xrevnew ← xmid;
8 break;
9 else

10 xrevnew = 2xnearest − xmid;
11 if CollisionFree(xnearest, xrevnew) then
12 break;
13 else
14 xnew ← xrevnew;
15 end
16 end
17 end
18 return xrevnew;

4. Simulation results and analysis

In this section, we conducted a comparative analysis to validate the performance of the proposed
GAO-RRT* against the state of the art algorithms, such as RRT* [21], Q-RRT* [29], and F-RRT* [31].
The reasons for selecting the above three algorithms are as follows: (1) RRT* is a milestone of the
sampling-based algorithm, which has been proven to effectively solve various path planning problems,
and almost all new algorithms use it as a benchmark. (2) Unlike traditional RRT*, Q-RRT* expands the

AIMS Mathematics Volume 9, Issue 5, 12011–12042.

12023

range for selecting parent nodes to path length, which has demonstrated robust fast convergence ability.
(3) F-RRT* optimizes the cost of paths by creating a parent node for the new node instead of selecting
it among the existing vertices, which provides higher performance in the initial solution than almost
all existing sampling-based algorithms. All compared algorithms are implemented using MATLAB
R2019a, and the simulation experiments are executed on an Intel Core i7 processor with 32 GB RAM.
Four representative environment maps, as shown in Figure 3, are employed to verify the effectiveness of
GAO-RRT*. Indeed, Figure 3(a) represents an indoor residential environment based on real floorplan
designs. Figure 3(b) illustrates an outdoor city park map sourced from Nathan Sturtevant’s Mobile
Artificial Intelligence Laboratory [33]. Figure 3(c) exhibits a simple regular environment, while Figure
3(d) displays a cluttered distribution of obstacles. The size of these environment maps is standardized at
500×500 pixels. To ensure the comprehensiveness of the tests, we strategically select the starting point
and target point of the potential path in various directions of the map, including the main diagonal
(MD), the secondary diagonal (SD), the horizontal axis (HA), and the vertical axis (VA). The start
points are marked in red while the target points are marked in green, respectively. Each pair of
coordinate points for directions MD, SD, HA, and VA is represented by rectangles, circles, triangles,
and pentagons, respectively. Table 1 provides the coordinates of the starting and target points in four
environment maps, corresponding to 16 different test instances.

Figure 3. Environment maps for simulations. (a) Indoor environment; (b) Outdoor
environment; (c) Regular environment; (d) Cluttered environment.

AIMS Mathematics Volume 9, Issue 5, 12011–12042.

12024

Table 1. Coordinates of starting and target points used for simulation experiments.

Environments Path direction Start point Target point

Indoor environment

MD (350,390) (50,115)
SD (425,120) (50,400)
HA (214,380) (214,65)
VA (400,280) (33,280)

Outdoor environment

MD (60,60) (365,420)
SD (68,423) (405,70)
HA (215,455) (215,45)
VA (75,120) (430,120)

Regular environment

MD (140,60) (340,430)
SD (145,410) (340,65)
HA (240,60) (240,420)
VA (55,240) (410,240)

Cluttered environment

MD (60,60) (420,420)
SD (30,375) (375,65)
HA (280,45) (280,440)
VA (35,200) (395,200)

4.1. Choosing parameter

Appropriate parameter values have a significant impact on the algorithm’s performance and
practical applications. This impact extends beyond the convergence speed, robustness, and stability of
the algorithm, encompassing the efficient utilization of resources. In this study, GAO-RRT* considers
four key parameters, including the weight used to balance the growth direction of the new node (wobs),
the number of recent iterations when calculating the success rate of new node extension (niter), the
predefined step size (lstep), and the search radius (rnear).

Following preliminary testing, Table 2 displays the four factor levels of the four parameter values.
In this study, the design of experiment (DOE) Taguchi method [34] is used to test the influence of these
four parameters. As the four parameters are set with four factor levels, an orthogonal array L16(44) is
used. Each parameter combination is independently run 30 times for statistical robustness, resulting
in a total of 16 × 30 = 480 results. To determine the most suitable parameter values, the algorithm
employs the relative percentage increase (RPI) [35] of the objective value as a performance measure,
as illustrated in formula (4.1).

RPI =
fi − fbest

fbest
× 100 (4.1)

where fi refers to the average time value obtained by the algorithm when running a special combination
of parameters, and fbest represents the best time value among 480 running results. The formula makes
it clear that the smaller the value of RPI, the closer the time performance of the parameter combination
is to the optimal value among all parameter combinations. In other words, a smaller RPI signifies
superior time performance for that set of parameters. Table 3 presents the corresponding RPI values for
16 orthogonal parameter combinations. Additionally, Table 4 displays the average RPI values for each

AIMS Mathematics Volume 9, Issue 5, 12011–12042.

12025

parameter level along with its associated significance. The Delta represents the difference between the
highest and lowest RPI values for each parameter, which indicates how much each parameter influences
the algorithm. The Rank refers to the strength ranking of the parameters’ influence for the algorithm.
Notably, wobs emerges as the most influential parameter, followed by lstep, niter, and rnear. Figure 4
illustrates the trend of factor levels for the four parameters. According to the analysis of the results,
the optimal parameter configuration is determined to be wobs = 0.7, niter = 20, lstep = 20, rnear = 50.

Table 2. Value levels for the four parameters.

Parameters
Parameter level

1 2 3 4

wobs 0.3 0.5 0.7 0.9
niter 5 10 20 40
lstep 10 20 30 40
rnear 35 50 65 80

Table 3. Orthogonal combination of parameters and its corresponding RPI response value.

Experimental
number

Parameters RPI response
valuewobs niter lstep rnear

1 1 1 1 1 1.1624
2 1 2 2 2 0.7897
3 1 3 3 3 1.0115
4 1 4 4 4 1.0489
5 2 1 2 3 0.2191
6 2 2 1 4 0.4590
7 2 3 4 1 0.0838
8 2 4 3 2 0.1751
9 3 1 3 4 0.1148
10 3 2 4 3 0.1596
11 3 3 1 2 0.2998
12 3 4 2 1 0.0828
13 4 1 4 2 0.2918
14 4 2 3 1 0.2594
15 4 3 2 4 0.0776
16 4 4 1 3 0.2851

AIMS Mathematics Volume 9, Issue 5, 12011–12042.

12026

Table 4. The average RPI response values and rank of the parameters.

Level wobs niter lstep rnear

1 1.003 0.447 0.552 0.397
2 0.234 0.417 0.292 0.389
3 0.164 0.368 0.390 0.419
4 0.228 0.398 0.396 0.425

Delta 0.839 0.079 0.260 0.028
Rank 1 3 2 4

Figure 4. Factor level trend chart of four parameters.

4.2. Efficiency of the StatisticRecentCollisions procedure

To demonstrate the effectiveness of the StatisticRecentCollisions, we coded two types of GAO-
RRT* algorithms. One is with all the components discussed in Section 3, namely, GAO-RRT*, and the
other one is with all of the other components except the StatisticRecentCollisions (non-SRC, NSRC),
namely, GAO-NSRC-RRT*. All the parameters of the two algorithms remain equivalent to ensure a
fair comparison.

The comparison results of the two algorithms in the outdoor environment are listed in Table 5. The
first column represents the path direction, the second column indicates the compared algorithms, and
the following columns display the mean, standard deviation, maximum, and minimum values of three

AIMS Mathematics Volume 9, Issue 5, 12011–12042.

12027

metrics: Computation time, path cost, and path smoothness.
It can be concluded from Table 5 that: (1) In terms of computation time, GAO-RRT* achieved

optimal values for all instances. (2) In terms of path cost, GAO-RRT* obtained the optimal average
value for all instances. Although the minimum value is equivalent to GAO-NSRC-RRT*, the standard
deviation and maximum value of GAO-RRT* have achieved the best, except for the MD direction. (3)
In terms of path smoothness, GAO-RRT* obtained all optimal values in the SD, HA, and VA directions.
Therefore, the performance demonstrates that the proposed GAO-RRT* algorithm is better than the
GAO-NSRC-RRT* algorithm, and the effectiveness of StatisticRecentCollisions has been verified.

Table 5. Comparison results obtained by GAO-NSRC-RRT* and GAO-RRT* in the outdoor
environment.

Path
direction

Algorithm
Time Path cost Path smoothness

Mean Std Max Min Mean Std Max Min Mean Std Max Min

MD
GAO-NSRC-RRT* 1.81 1.71 9.68 0.46 617.60 58.55 737.28 509.65 3.36 1.26 6.27 1.58

GAO-RRT* 0.30 0.13 0.66 0.10 610.42 59.92 743.54 508.35 3.68 1.45 7.85 1.43

SD
GAO-NSRC-RRT* 1.31 0.62 2.44 0.39 645.62 92.78 916.90 514.60 4.35 1.59 8.14 2.30

GAO-RRT* 0.26 0.11 0.49 0.11 609.28 60.23 703.47 516.53 4.09 1.38 7.38 1.92

HA
GAO-NSRC-RRT* 1.20 0.89 5.25 0.31 554.65 54.53 701.77 475.89 3.40 1.89 7.16 0.61

GAO-RRT* 0.27 0.17 0.95 0.13 541.41 24.38 629.45 485.12 2.12 1.54 6.63 0.51

VA
GAO-NSRC-RRT* 1.73 1.22 5.09 0.26 523.66 130.37 900.05 413.57 3.95 2.10 9.06 1.29

GAO-RRT* 0.35 0.15 0.98 0.14 465.28 82.12 848.05 409.48 2.88 1.71 6.93 1.28

4.3. Comparison of initial path generation

To evaluate the performance of GAO-RRT*, each compared algorithm executed 30 independent
runs on 16 different instances of four environments. These algorithms are executed under identical
conditions with the same sampling sequence. To demonstrate the results, the starting point and the
target point are denoted by red and green dots, respectively, in each environment map. The exploration
paths, depicted by gray lines, illustrate the expansion of the exploring tree, while the obtained initial
path is represented by blue lines. Metrics for evaluating performance include running time, path
cost, and path smoothness. Violin charts are used to display detailed statistical data of the path cost
simulation results.

4.3.1. Indoor environment

Figure 5 provides the initial paths obtained by the compared algorithms in MD direction of the
indoor environment. From this figure, it can be observed that RRT* employs random sampling across
the entire state space, resulting in vertices expanding in various directions. Q-RRT* optimizes the
structure of the exploring tree to achieve more direct paths. Notably, both F-RRT* and GAO-RRT*
exhibit lower path costs than Q-RRT*. In Figure 5(d), GAO-RRT* is shown to generate fewer nodes
during path exploration compared to the other three algorithms, highlighting its advantage in terms of
path cost.

AIMS Mathematics Volume 9, Issue 5, 12011–12042.

12028

Figure 5. Initial paths obtained by the compared algorithms in MD direction of the indoor
environment. (a) RRT*: Cinit = 494.03; (b) Q-RRT*: Cinit = 483.81; (c) F-RRT*: Cinit =

471.98; (d) GAO-RRT*: Cinit = 458.48.

Table 6 presents the simulation results for running time, path cost, and path smoothness metrics
obtained by the compared algorithms. The first column indicates path directions, the second column
represents the compared algorithms, and the subsequent columns display mean, standard deviation,
maximum, and minimum values for the three metrics, respectively. The observations from this table
are as follows: (1) GAO-RRT* achieved the lowest average values in running time in most cases,
except for the instance in the HA direction. Despite RRT* attaining the minimum time values in
all instances, GAO-RRT* demonstrated superiority by achieving the lowest standard deviations and
maximum values. It is important to note that the simple steps of RRT* allows it to quickly find an
initial solution when encountering a favorable sample distribution, demonstrating its advantages in
the time. However, the quality of the solution in terms of path cost and path smoothness may not
be guaranteed. (2) In terms of path cost and path smoothness, GAO-RRT* consistently obtained the
lowest average values and standard deviations, maintaining an advantage in most of the maximum and
minimum values. These findings indicate that GAO-RRT* demonstrates higher stability and robustness
than the compared algorithms, suggesting its potential to generate a better initial path.

AIMS Mathematics Volume 9, Issue 5, 12011–12042.

12029

Table 6. Simulation results for running time, path cost, and path smoothness metrics obtained
from the indoor environment.

Path
direction

Algorithm
Time Path cost Path smoothness

Mean Std Max Min Mean Std Max Min Mean Std Max Min

MD

RRT* 0.46 0.57 2.40 0.01 495.25 20.02 566.15 464.60 5.48 1.40 9.66 3.70
Q-RRT* 0.48 0.56 2.29 0.02 486.14 14.70 521.03 461.54 3.62 0.82 5.92 2.13
F-RRT* 1.04 0.67 2.62 0.22 473.07 16.44 510.76 457.52 2.24 0.33 3.62 1.68

GAO-RRT* 0.33 0.28 1.26 0.08 463.92 10.79 507.23 457.41 2.23 0.33 3.57 2.05

SD

RRT* 0.49 0.43 1.56 0.07 629.32 25.95 711.91 585.15 6.76 1.80 12.67 4.63
Q-RRT* 0.56 0.47 1.84 0.10 620.36 20.22 665.09 583.33 4.23 2.02 9.16 1.82
F-RRT* 0.43 0.27 1.48 0.10 602.56 21.31 646.70 569.10 3.31 1.49 6.16 1.56

GAO-RRT* 0.38 0.26 1.27 0.11 601.53 17.93 621.54 571.41 2.83 1.44 5.74 1.56

HA

RRT* 0.20 0.38 2.01 0.01 393.66 59.99 559.63 330.79 4.51 1.29 6.38 1.52
Q-RRT* 0.22 0.37 1.92 0.02 382.58 57.75 533.20 329.85 2.86 1.31 5.01 0.87
F-RRT* 0.67 0.79 4.02 0.09 380.14 53.79 516.36 326.96 2.41 1.21 5.47 0.50

GAO-RRT* 0.46 0.34 1.60 0.14 362.04 43.34 512.73 324.73 2.15 1.15 5.22 0.75

VA

RRT* 0.47 0.60 2.90 0.06 520.01 46.52 608.81 454.82 6.17 1.38 10.51 3.53
Q-RRT* 0.56 0.67 3.35 0.08 515.71 45.99 603.43 451.92 4.11 0.74 6.10 2.76
F-RRT* 0.45 0.44 2.03 0.11 482.25 43.88 575.65 433.31 3.30 0.51 4.56 2.52

GAO-RRT* 0.42 0.32 1.55 0.10 480.90 39.60 549.00 433.84 3.09 0.51 4.27 2.48

Figure 6 illustrates the statistical results of path cost obtained by the compared algorithms after 30
simulations in the indoor environment. The meaning of each violin chart in horizontal direction is the
frequency of a special value, i.e., frequency of path cost value. It can be seen that GAO-RRT* exhibits
a more stable and compact data distribution in all instances, with mostly smaller outliers compared to
the comparison algorithms.

AIMS Mathematics Volume 9, Issue 5, 12011–12042.

12030

Figure 6. Visualization results of path cost obtained by the compared algorithms in the
indoor environment. (a) MD direction; (b) SD direction; (c) HA direction; (d) VA direction.

4.3.2. Outdoor environment

Figure 7 depicts the initial paths obtained by the compared algorithms in SD direction of the outdoor
environment. These figures distinctly demonstrate that, using the same sampling sequence, F-RRT*
and GAO-RRT* are capable of finding paths that closely approach the optimal one. In contrast, owing
to the extensive sampling space, RRT* and Q-RRT* encounter challenges in efficiently obtaining
valid nodes, leading to a higher path cost compared to the other two algorithms. Additionally, it is
noteworthy that GAO-RRT* excels in producing a shorter and smoother path.

AIMS Mathematics Volume 9, Issue 5, 12011–12042.

12031

Figure 7. Initial paths obtained by the compared algorithms in SD direction of the outdoor
environment. (a) RRT*: Cinit = 612.04; (b) Q-RRT*: Cinit = 607.85; (c) F-RRT*: Cinit =

574.11; (d) GAO-RRT*: Cinit = 556.69.

The statistical results for running time, path cost, and path smoothness metrics collected by the
compared algorithms are presented in Table 7. Key observations from Table 7 include: (1) In MD,
SD, and HA directions, GAO-RRT* achieved superior values in average values, standard deviations,
and maximum values of all three metrics, respectively. (2) In VA direction, although GAO-RRT*
was slightly passive in term of time metric, it exhibited significant advantages in path cost and path
smoothness. These results indicate that in an environmental map with local traps, GAO-RRT* still
generates better initial paths.

Table 7. Simulation results in running time, path cost, and path smoothness metrics obtained
from the outdoor environment.

Path
direction

Algorithm
Time Path cost Path smoothness

Mean Std Max Min Mean Std Max Min Mean Std Max Min

MD

RRT* 0.31 0.54 3.02 0.03 661.84 68.85 802.24 542.70 6.98 2.34 10.99 2.91
Q-RRT* 0.32 0.56 3.12 0.03 650.78 67.39 801.04 535.06 4.63 2.06 8.92 2.02
F-RRT* 0.61 0.55 2.40 0.13 637.36 67.60 778.27 531.32 3.88 1.94 9.95 1.48

GAO-RRT* 0.30 0.13 0.66 0.10 610.42 59.92 743.54 508.35 3.68 1.45 7.85 1.43

SD

RRT* 0.31 0.46 2.23 0.02 640.87 76.22 777.78 526.39 8.22 2.02 12.90 4.5
Q-RRT* 0.37 0.53 2.62 0.03 634.70 75.62 766.48 523.55 5.57 2.02 10.63 2.85
F-RRT* 0.30 0.16 0.83 0.10 629.14 62.74 723.21 514.00 4.69 1.39 7.39 2.26

GAO-RRT* 0.26 0.11 0.49 0.11 609.28 60.23 703.47 516.53 4.09 1.38 7.38 1.92

HA

RRT* 0.27 0.35 1.67 0.02 585.10 74.81 855.20 512.40 6.31 2.74 12.63 3.04
Q-RRT* 0.33 0.40 1.93 0.03 577.15 74.35 850.39 505.64 4.09 2.84 10.45 0.54
F-RRT* 0.39 0.39 1.87 0.09 572.18 72.10 738.63 485.19 3.60 2.43 9.41 0.52

GAO-RRT* 0.27 0.17 0.95 0.13 541.41 24.38 629.45 485.12 2.12 1.54 6.63 0.51

VA

RRT* 0.20 0.16 0.55 0.01 509.82 124.29 880.77 415.88 5.29 2.29 11.50 3.02
Q-RRT* 0.25 0.18 0.62 0.02 505.91 124.56 882.57 415.04 3.41 2.04 8.52 1.27
F-RRT* 0.50 0.48 2.22 0.11 472.74 86.21 823.19 410.00 2.92 1.77 7.04 1.29

GAO-RRT* 0.35 0.15 0.98 0.14 465.28 82.12 848.05 409.48 2.88 1.71 6.93 1.28

AIMS Mathematics Volume 9, Issue 5, 12011–12042.

12032

Figure 8 presents the statistical results of the path cost obtained by the compared algorithms after
30 simulations in the outdoor environment. Key observations from Figure 8 are as follows: (1) In
Figure 8(a), most of path cost obtained by GAO-RRT* fall below the median line, suggesting that the
generated paths have relatively lower costs for the majority. (2) In Figure 8(b), although the median
value of path cost obtained by GAO-RRT* is not the best one, Q3 and Q1 values of path cost are better
than those achieved by the compared algorithms. Additionally, the difference between the maximum
and minimum path cost values is smaller. (3) In Figure 8(c),(d), GAO-RRT* produces fewer or smaller
outliers than the other three algorithms. This indicates that GAO-RRT* is stable and less susceptible
to generating outliers.

Figure 8. Visualization results of path cost obtained by the compared algorithms in the
outdoor environment. (a) MD direction; (b) SD direction; (c) HA direction; (d) VA direction.

4.3.3. Regular environment

Figure 9 displays the initial paths obtained by the compared algorithms in HA direction of the
regular environment. As seen in Figure 9, the exploring trees generated by RRT* and Q-RRT* have
numerous branches, and the obtained paths are more redundant. In contrast, F-RRT* and GAO-RRT*
obtain shorter paths with fewer nodes, thanks to the procedure of creating nodes. Benefitting from the
dual-weighted sample strategy, GAO-RRT* produces a shorter initial path compared to F-RRT*.

AIMS Mathematics Volume 9, Issue 5, 12011–12042.

12033

Figure 9. Initial paths obtained by the compared algorithms in HA direction of the regular
environment. (a) RRT*: Cinit = 441.99; (b) Q-RRT*: Cinit = 440.60; (c) F-RRT*: Cinit =

422.59; (d) GAO-RRT*: Cinit = 374.99.

After 30 independent runs, the statistical results for running time, path cost, and path smoothness
metrics are collected as shown in Table 8. From Table 8, it can be observed that: (1) GAO-RRT*
obtained all optimal values in both path cost and path smoothness metrics from all four instances. (2)
In terms of time, GAO-RRT* failed to achieve the best values, while RRT* actually obtained the best
results. This phenomenon can be attributed to the relatively simple execution steps of RRT*, making
it particularly suitable for environments with reasonable regular layouts. F-RRT* and GAO-RRT*
require more time to create nodes and optimize path cost in comparison to RRT* or Q-RRT*. These
findings confirm that GAO-RRT* has better stability in finding a better initial solution with path cost
and path smoothness.

AIMS Mathematics Volume 9, Issue 5, 12011–12042.

12034

Table 8. Simulation results in running time, path cost, and path smoothness metrics obtained
from the regular environment.

Path
direction

Algorithm
Time Path cost Path smoothness

Mean Std Max Min Mean Std Max Min Mean Std Max Min

MD

RRT* 0.06 0.07 0.38 0.01 542.59 69.63 695.24 463.80 5.78 1.28 8.74 4.22
Q-RRT* 0.08 0.08 0.44 0.02 528.06 68.66 684.17 451.06 2.49 1.07 5.67 0.18
F-RRT* 0.77 0.42 1.85 0.25 517.10 65.78 661.15 439.71 1.75 0.98 3.95 0.14

GAO-RRT* 0.52 0.45 1.84 0.14 456.97 14.72 499.27 439.41 1.15 0.67 3.24 0.14

SD

RRT* 0.06 0.06 0.26 0.01 502.85 62.43 651.02 438.23 5.76 1.07 9.01 3.98
Q-RRT* 0.08 0.07 0.30 0.02 489.86 61.65 629.66 423.58 2.69 1.11 4.62 0.49
F-RRT* 0.90 0.64 3.01 0.24 486.98 64.88 625.23 417.89 1.71 0.91 3.77 0.20

GAO-RRT* 0.19 0.13 0.80 0.08 432.21 9.45 447.68 417.09 1.31 0.60 2.41 0.18

HA

RRT* 0.06 0.07 0.36 0.01 492.43 88.21 700.87 379.69 4.91 1.53 8.08 2.56
Q-RRT* 0.08 0.07 0.38 0.01 473.32 78.12 682.50 377.26 2.13 1.01 4.68 0.63
F-RRT* 0.64 0.36 1.54 0.22 458.62 81.81 654.53 370.34 1.54 0.70 3.61 0.57

GAO-RRT* 0.40 0.36 1.63 0.10 386.08 22.27 434.74 367.82 1.35 0.54 2.55 0.55

VA

RRT* 0.04 0.04 0.18 0.01 449.87 71.29 691.04 384.27 4.01 1.49 8.88 1.88
Q-RRT* 0.06 0.05 0.22 0.01 433.79 72.26 678.33 381.57 1.53 1.33 4.24 0.49
F-RRT* 0.46 0.29 1.42 0.08 434.50 67.25 636.96 372.41 1.77 1.36 4.97 0.40

GAO-RRT* 0.23 0.09 0.55 0.13 396.56 17.99 452.60 372.18 0.75 0.74 2.80 0.36

Figure 10 illustrates the statistical results of the path cost obtained by the four algorithms after 30
simulations in the regular environment. Observing Figure 10, it is evident that GAO-RRT* maintains
a significant advantage in terms of path cost. Additionally, from the height of the violin plots, GAO-
RRT* produces the lowest cost and exhibits the most stability.

AIMS Mathematics Volume 9, Issue 5, 12011–12042.

12035

Figure 10. The path cost performance of the four algorithms in the regular environment. (a)
MD direction; (b) SD direction; (c) HA direction; (d) VA direction.

4.3.4. Cluttered environment

Figure 11 presents the initial paths obtained by four compared algorithms in VA direction of the
cluttered environment. The results reveal that the RRT* and Q-RRT* hardly produce effective nodes,
resulting in a higher path cost compared to the other algorithms. Simultaneously, it can be observed
that GAO-RRT* performs the best in yielding an initial solution.

AIMS Mathematics Volume 9, Issue 5, 12011–12042.

12036

Figure 11. Initial paths obtained by the compared algorithms in VA direction of the cluttered
environment. (a) RRT*: Cinit = 413.32; (b) Q-RRT*: Cinit = 411.35; (c) F-RRT*: Cinit =

374.09; (d) GAO-RRT*: Cinit = 365.15.

The statistical results for running time, path cost, and path smoothness metrics collected by the
compared algorithms are given in Table 9. Analyzing Table 9, it can be concluded that: (1) In terms
of time, GAO-RRT* achieved the lowest average, standard deviation, and maximum values in all four
instances. (2) Regarding path cost and path smoothness, GAO-RRT* obtained almost all the best
values, except for the minimum value of path cost in the SD direction. These findings indicate that
GAO-RRT* is a good candidate for solving path planning problems in the cluttered environment.

Table 9. Simulation results in running time, path cost, and path smoothness metrics obtained
from the cluttered environment.

Path
direction

Algorithm
Time Path cost Path smoothness

Mean Std Max Min Mean Std Max Min Mean Std Max Min

MD

RRT* 0.60 1.16 4.30 0.02 622.60 44.71 745.88 552.44 9.70 2.42 16.38 5.92
Q-RRT* 0.73 1.35 4.98 0.04 610.91 40.14 698.44 544.43 7.71 2.19 14.01 4.17
F-RRT* 0.70 1.14 6.23 0.10 597.58 43.78 686.67 528.64 5.83 1.79 10.07 2.74

GAO-RRT* 0.45 0.63 3.05 3.05 588.94 36.10 649.18 526.99 4.87 1.46 8.65 1.77

SD

RRT* 0.31 0.41 1.47 0.01 601.03 72.78 806.04 506.44 9.10 2.63 15.41 4.53
Q-RRT* 0.39 0.49 1.82 0.02 589.03 65.10 739.75 495.39 7.26 2.86 16.20 3.78
F-RRT* 0.31 0.33 1.41 0.04 577.07 64.73 730.23 483.41 5.90 1.99 11.03 2.15

GAO-RRT* 0.30 0.22 1.05 0.08 575.99 48.47 668.74 495.74 5.64 1.82 10.87 3.11

HA

RRT* 0.45 0.67 3.33 0.03 515.24 71.31 719.86 423.45 7.48 2.52 11.98 3.06
Q-RRT* 0.55 0.76 3.67 0.04 508.07 71.45 723.18 723.18 5.81 2.66 14.01 1.64
F-RRT* 0.54 0.93 5.07 0.05 501.11 53.11 624.68 424.38 5.10 1.80 8.05 1.73

GAO-RRT* 0.36 0.33 1.60 0.06 496.44 51.48 597.71 421.30 4.51 1.68 7.55 1.58

VA

RRT* 0.40 0.97 4.32 0.01 455.04 75.09 693.25 368.23 6.67 2.95 17.17 2.33
Q-RRT* 0.49 1.15 5.12 0.01 449.53 71.87 666.84 364.70 4.84 2.42 11.29 1.33
F-RRT* 0.19 0.22 1.17 0.03 449.48 57.55 613.98 363.65 4.52 1.67 8.71 1.51

GAO-RRT* 0.18 0.21 1.11 0.04 438.16 51.00 570.84 362.82 4.18 1.40 7.53 1.01

Figure 12 illustrates the statistical results of the path cost obtained by the four algorithms after 30

AIMS Mathematics Volume 9, Issue 5, 12011–12042.

12037

simulations in the cluttered environment. From Figure 12, the following observations can be made: (1)
GAO-RRT* obtains a more stable and compact data distribution in all instances, as indicated by the
height of the violin plots. (2) GAO-RRT* almost has no outliers, except for the results in VA direction.
These results further emphasize the reliability and stability of GAO-RRT*.

Figure 12. Visualization results of path cost obtained by the compared algorithms in the
cluttered environment. (a) MD direction; (b) SD direction; (c) HA direction; (d) VA
direction.

4.4. Comparing algorithms on the converge

To compare the convergence of four algorithms, the parameters in simulation and the sample
sequences used in each trial are the same. Each algorithm in the simulation is performed for 60
seconds, and the path cost is recorded once per second. The optimal path obtained within 60 seconds
of runtime is determined by the lowest path cost generated by the algorithms. Figure 13 provides path
cost over computation time achieved by the compared algorithms on four selected instances, i.e., the
MD direction of indoor environment, the SD direction of outdoor environment, the HA direction of
regular environment, and the VA direction of cluttered environment. It can be observed that GAO-
RRT* generates relatively better solutions in less time under the same conditions; hence, the time
required for GAO-RRT* to converge to the suboptimal path is much shorter than that of the compared
algorithms. From these convergence curves, we can conclude that the proposed algorithm, GAO-RRT*,

AIMS Mathematics Volume 9, Issue 5, 12011–12042.

12038

has remarkable convergence ability than the other algorithms.

Figure 13. Path cost over computation time achieved by the compared algorithms in
four environments. (a) Indoor environment (MD direction); (b) Outdoor environment
(SD direction); (c) Regular environment (HA direction); (d) Cluttered environment (VA
direction).

5. Conclusions

This paper proposes an enhanced version of the RRT* algorithm to address the challenge of slow
convergence rate. The proposed GAO-RRT* employs a dual-weighted sample strategy to optimize the
search direction of the exploring tree. By monitoring the growth status of nodes and combining with
a reverse growth strategy, GAO-RRT* facilitates the tree’s escape from regions with local traps. Four
representative maps with 16 test instances are employed to evaluate the capabilities of GAO-RRT*.
Experimental results show that the average deviation of running time for GAO-RRT* in finding the
initial path is 0.53, 0.47, and 0.44 times that of RRT*, Q-RRT*, and F-RRT*, respectively. In addition,

AIMS Mathematics Volume 9, Issue 5, 12011–12042.

12039

compared with these three algorithms, the results of GAO-RRT* have reduced path cost by 38.32%,
29.69%, and 20.44% respectively, and reduced path smoothness by 54.57%, 30.07%, and 13.82%,
respectively. The excellent performance of GAO-RRT* is verified in terms of computation time, path
cost, and path smoothness metrics. In short, it can be concluded that the proposed GAO-RRT* is a
good candidate when solving path planning problems of mobile robot.

The limitations of this study are as follows: 1) This study focuses on solving the shortest path
and accelerating convergence speed, while ignoring other path indicators such as path safety and
dynamic constraints of the mobile robot. 2) The proposed algorithm mainly concentrates on solving
path planning problems in static environments, without considering the interference of dynamic targets.

In future work, the following directions will be explored: 1) We will integrate path safety and
kinematic constraints into path planning and apply the proposed algorithm to the navigation of a
home service robot. 2) The proposed path planning algorithm will consider environmental constraints,
especially the challenges posed by dynamic obstacles. 3) The problem of multi-robot collaborative
path planning will also be a considered research topic in the coming years.

Use of AI tools declaration

The authors declare they have not used Artificial Intelligence (AI) tools in the creation of this article.

Acknowledgments

This work was supported by the Opening Fund of Shandong Provincial Key Laboratory
of Network based Intelligent Computing, the National Natural Science Foundation of China
(52205529, 61803192), the Natural Science Foundation of Shandong Province (ZR2021QE195), the
Youth Innovation Team Program of Shandong Higher Education Institution (2023KJ206), and the
Guangyue Youth Scholar Innovation Talent Program support received from Liaocheng University
(LCUGYTD2022-03).

Conflict of interest

The authors declare that there is no conflict of interest.

References

1. L. Liu, X. Wang, X. Yang, H. Liu, J. Li, P. Wang, Path planning techniques
for mobile robots: Review and prospect, Expert Syst. Appl., 227 (2023), 1–30.
https://doi.org/10.1016/j.eswa.2023.120254

2. Z. Zhou, L. Li, A. Fürsterling, H. J. Durocher, J. Mouridsen, X. Zhang, Learning-based object
detection and localization for a mobile robot manipulator in SME production, Robot. Comput.
Integr. Manuf., 73 (2022), 1–12. https://doi.org/10.1016/j.rcim.2021.102229

3. M. Pantscharowitsch, B. Kromoser, Automated subtractive timber manufacturing-joinery machines
versus industrial robots, J. Manuf. Sci. Eng., 145 (2023), 1–15. https://doi.org/10.1115/1.4056924

AIMS Mathematics Volume 9, Issue 5, 12011–12042.

http://dx.doi.org/https://doi.org/10.1016/j.eswa.2023.120254
http://dx.doi.org/https://doi.org/10.1016/j.rcim.2021.102229
http://dx.doi.org/https://doi.org/10.1115/1.4056924

12040

4. K. Hu, Z. Chen, H. Kang, Y. Tang, 3D vision technologies for a self-developed
structural external crack damage recognition robot, Autom. Constr., 159 (2024), 1–19.
https://doi.org/10.1016/j.autcon.2023.105262

5. J. Holthöwer, J. van Doorn, Robots do not judge: Service robots can alleviate embarrassment in
service encounters, J. Acad. Mark. Sci., 51 (2023), 767–784. https://doi.org/10.1007/s11747-022-
00862-x

6. M. Zhang, G. Tian, Y. Zhang, P. Duan, Service skill improvement for home robots: Autonomous
generation of action sequence based on reinforcement learning, Knowl. Based Syst., 212 (2021),
1–15. https://doi.org/10.1016/j.knosys.2020.106605

7. J. Cheng, L. Zhang, Q. Chen, X. Hu, J. Cai, A review of visual SLAM methods
for autonomous driving vehicles, Eng. Appl. Artif. Intell., 114 (2022), 1–17.
https://doi.org/10.1016/j.engappai.2022.104992

8. H. Kim, Y. Choi, Development of autonomous driving patrol robot for improving underground
mine safety, Appl. Sci., 13 (2023), 1–19. http://doi.org/10.3390/app13063717

9. Z. Jiang, S. E. Salcudean, N. Navab, Robotic ultrasound imaging: State-of-the-art and future
perspectives, Med. Image Anal., 89 (2023), 1–26. https://doi.org/10.1016/j.media.2023.102878

10. B. Song, Z. Wang, L. Zou, An improved PSO algorithm for smooth path planning of mobile
robots using continuous high-degree Bezier curve, Appl. Soft Comput., 100 (2021), 1–11.
http://doi.org/10.1016/j.asoc.2020.106960

11. O. Khatib, Real-time obstacle avoidance for manipulators and mobile robots, Int. J. Robot. Res., 5
(1986), 90–98. http://dx.doi.org/10.1177/027836498600500106

12. W. Deng, X. Zhang, Y. Zhou, Y. Liu, X. Zhou, H. Chen, et al., An enhanced fast non-dominated
solution sorting genetic algorithm for multi-objective problems, Inf. Sci., 585 (2022), 441–453.
https://doi.org/10.1016/j.ins.2021.11.052

13. L. Wu, X. Huang, J. Cui, C. Liu, W. Xiao, Modified adaptive ant colony optimization algorithm
and its application for solving path planning of mobile robot, Expert Syst. Appl., 215 (2023), 1–37.
https://doi.org/10.1016/j.eswa.2022.119410

14. C. Pozna, R. E. Precup, E. Horváth, E. M. Petriu, Hybrid particle filter-particle swarm optimization
algorithm and application to fuzzy controlled servo systems, Inst. Electr. Electron. Eng. Trans.
Fuzzy Syst., 30 (2022), 4286–4297. http://dx.doi.org/10.1109/TFUZZ.2022.3146986

15. Z. Zhang, J. Jiang, J. Wu, X. Zhu, Efficient and optimal penetration path planning for stealth
unmanned aerial vehicle using minimal radar cross-section tactics and modified A-Star algorithm,
Int. Soc. Autom. Trans., 134 (2023), 42–57. https://doi.org/10.1016/j.isatra.2022.07.032

16. Y. Zhang, G. Tian, X. Shao, S. Liu, M. Zhang, P. Duan, Building metric-topological map to efficient
object search for mobile robot, Inst. Electr. Electron. Eng. Trans. Ind. Electron., 69 (2022), 7076–
7087. https://doi.org/10.1109/TIE.2021.3095812

17. S. M. LaValle, J. J. Kuffner Jr, Randomized kinodynamic planning, Int. J. Robot. Res., 20 (2001),
378–400. http://dx.doi.org/10.1177/02783640122067453

AIMS Mathematics Volume 9, Issue 5, 12011–12042.

http://dx.doi.org/https://doi.org/10.1016/j.autcon.2023.105262
http://dx.doi.org/https://doi.org/10.1007/s11747-022-00862-x
http://dx.doi.org/https://doi.org/10.1007/s11747-022-00862-x
http://dx.doi.org/https://doi.org/10.1016/j.knosys.2020.106605
http://dx.doi.org/https://doi.org/10.1016/j.engappai.2022.104992
http://dx.doi.org/http://doi.org/10.3390/app13063717
http://dx.doi.org/https://doi.org/10.1016/j.media.2023.102878
http://dx.doi.org/http://doi.org/10.1016/j.asoc.2020.106960
http://dx.doi.org/http://dx.doi.org/10.1177/027836498600500106
http://dx.doi.org/https://doi.org/10.1016/j.ins.2021.11.052
http://dx.doi.org/https://doi.org/10.1016/j.eswa.2022.119410
http://dx.doi.org/http://dx.doi.org/10.1109/TFUZZ.2022.3146986
http://dx.doi.org/https://doi.org/10.1016/j.isatra.2022.07.032
http://dx.doi.org/https://doi.org/10.1109/TIE.2021.3095812
http://dx.doi.org/http://dx.doi.org/10.1177/02783640122067453

12041

18. J. Rao, C. Xiang, J. Xi, J. Chen, J. Lei, W. Giernacki, et al., Path planning for dual UAVs
cooperative suspension transport based on artificial potential field-A* algorithm, Knowl. Based
Syst., 277 (2023), 1–20. https://doi.org/10.1016/j.knosys.2023.110797

19. Y. Tang, S. Qi, L. Zhu, X. Zhuo, Y. Zhang, F. Meng, Obstacle avoidance motion in mobile robotics,
J. Syst. Simul., 36 (2024), 1–26. http://dx.doi.org/10.16182/j.issn1004731x.joss.23-1297E

20. Y. Guo, X. Liu, Q. Jia, X. Liu, W. Zhang, HPO-RRT*: A sampling-based algorithm for UAV
real-time path planning in a dynamic environment, Complex Intell. Syst., 9 (2023), 7133–7153.
https://doi.org/10.1007/s40747-023-01115-2

21. S. Karaman, E. Frazzoli, Sampling-based algorithms for optimal motion planning, Int. J. Robot.
Res., 30 (2011), 846–894. http://dx.doi.org/10.1177/0278364911406761

22. W. Zhang, L. Shan, L. Chang, Y. Dai, SVF-RRT*: A stream-based VF-RRT* for USVs path
planning considering ocean currents, Inst. Electr. Electron. Eng. Robot. Autom. Lett., 8 (2023),
2413–2420. http://dx.doi.org/10.1109/LRA.2023.3245409

23. J. Nasir, F. Islam, U. Malik, Y. Ayaz, O. Hasan, M. Khan, et al., RRT*-SMART: A
rapid convergence implementation of RRT, Int. J. Adv. Robot. Syst., 10 (2013), 1–12.
http://dx.doi.org/10.5772/56718

24. J. Fan, X. Chen, Y. Wang, X. Chen, UAV trajectory planning in cluttered environments based
on PF-RRT* algorithm with goal-biased strategy, Eng. Appl. Artif. Intell., 114 (2022), 1–12.
http://dx.doi.org/10.1016/j.engappai.2022.105182

25. J. D. Gammell, S. S. Srinivasa, T. D. Barfoot, Informed RRT: Optimal sampling-based path
planning focused via direct sampling of an admissible ellipsoidal heuristic, In: 2014 IEEE/RSJ
international conference on intelligent robots and systems, Chicago, IL, USA, IEEE, 2014, 2997–
3004.

26. A. H. Qureshi, Y. Ayaz, Potential functions based sampling heuristic for optimal path planning,
Auton. Robot., 40 (2016), 1079–1093. http://dx.doi.org/10.1007/s10514-015-9518-0

27. J. Fan, X. Chen, X. Liang, UAV trajectory planning based on bi-directional
APF-RRT* algorithm with goal-biased, Expert Syst. Appl., 213 (2023), 1–12.
http://dx.doi.org/10.1016/j.eswa.2022.119137

28. L. Ye, F. Wu, X. Zou, J. Li, Path planning for mobile robots in unstructured orchard environments:
An improved kinematically constrained bi-directional RRT approach, Comput. Electron. Agric.,
215 (2023), 1–17. http://doi.org/10.1016/j.compag.2023.108453

29. I. B. Jeong, S. J. Lee, J. H. Kim, Quick-RRT*: Triangular inequality-based implementation of
RRT* with improved initial solution and convergence rate, Expert Syst. Appl., 123 (2019), 82–90.
http://dx.doi.org/10.1016/j.eswa.2019.01.032

30. J. Ding, Y. Zhou, X. Huang, K. Song, S. Lu, An improved RRT* algorithm for robot
path planning based on path expansion heuristic sampling, J. Comput. Sci., 67 (2023), 1–12.
http://dx.doi.org/10.1016/j.jocs.2022.101937

31. B. Liao, F. Wan, Y. Hua, R. Ma, S. Zhu, X. Qing, F-RRT*: An improved path planning
algorithm with improved initial solution and convergence rate, Expert Syst. Appl., 184 (2021),
1–12. http://dx.doi.org/10.1016/j.eswa.2021.115457

AIMS Mathematics Volume 9, Issue 5, 12011–12042.

http://dx.doi.org/https://doi.org/10.1016/j.knosys.2023.110797
http://dx.doi.org/http://dx.doi.org/10.16182/j.issn1004731x.joss.23-1297E
http://dx.doi.org/https://doi.org/10.1007/s40747-023-01115-2
http://dx.doi.org/http://dx.doi.org/10.1177/0278364911406761
http://dx.doi.org/http://dx.doi.org/10.1109/LRA.2023.3245409
http://dx.doi.org/http://dx.doi.org/10.5772/56718
http://dx.doi.org/http://dx.doi.org/10.1016/j.engappai.2022.105182
http://dx.doi.org/http://dx.doi.org/10.1007/s10514-015-9518-0
http://dx.doi.org/http://dx.doi.org/10.1016/j.eswa.2022.119137
http://dx.doi.org/http://doi.org/10.1016/j.compag.2023.108453
http://dx.doi.org/http://dx.doi.org/10.1016/j.eswa.2019.01.032
http://dx.doi.org/http://dx.doi.org/10.1016/j.jocs.2022.101937
http://dx.doi.org/http://dx.doi.org/10.1016/j.eswa.2021.115457

12042

32. J. Ou, S. H. Hong, P. Ziehl, Y. Wang, GPU-based global path planning using genetic algorithm with
near corner initialization, J. Intell. Robot. Syst., 104 (2022), 1–17. http://doi.org/10.1007/s10846-
022-01576-6

33. A. Hidalgo-Paniagua, M. A. Vega-Rodrı́guez, J. Ferruz, N. Pavón, Mosfla-mrpp: Multi-objective
shuffled frog-leaping algorithm applied to mobile robot path planning, Eng. Appl. Artif. Intell., 44
(2015), 123–136. http://dx.doi.org/10.1016/j.engappai.2015.05.011

34. Z. Yu, P. Duan, L. Meng, Y. Han, F. Ye, Multi-objective path planning for mobile robot
with an improved artificial bee colony algorithm, Math. Biosci. Eng., 20 (2023), 2501–2529.
http://dx.doi.org/10.3934/mbe.2023117

35. X. He, Q. K. Pan, L. Gao, J. S. Neufeld, J. N. D. Gupta, Historical information based iterated
greedy algorithm for distributed flowshop group scheduling problem with sequence-dependent
setup times, Omega, 123 (2024), 1–19. https://doi.org/10.1016/j.omega.2023.102997

© 2024 the Author(s), licensee AIMS Press. This
is an open access article distributed under the
terms of the Creative Commons Attribution License
(http://creativecommons.org/licenses/by/4.0)

AIMS Mathematics Volume 9, Issue 5, 12011–12042.

http://dx.doi.org/http://doi.org/10.1007/s10846-022-01576-6
http://dx.doi.org/http://doi.org/10.1007/s10846-022-01576-6
http://dx.doi.org/http://dx.doi.org/10.1016/j.engappai.2015.05.011
http://dx.doi.org/http://dx.doi.org/10.3934/mbe.2023117
http://dx.doi.org/https://doi.org/10.1016/j.omega.2023.102997
http://creativecommons.org/licenses/by/4.0

	Introduction
	Background
	Path planning problems
	RRT*
	Q-RRT*
	F-RRT*

	GAO-RRT*
	GenerateNewNode
	StatisticRecentCollisions
	ReverseNewNode

	Simulation results and analysis
	Choosing parameter
	Efficiency of the StatisticRecentCollisions procedure
	Comparison of initial path generation
	Indoor environment
	Outdoor environment
	Regular environment
	Cluttered environment

	Comparing algorithms on the converge

	Conclusions

