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1. Introduction

Let D be a Banach space. A mapping Υ defined on U ⊆ D is called nonexpansive (sometimes, it is
called a mapping that does not increase distances) whenever for any u, v ∈ U,

||Υu − Υv|| ≤ ||u − v||.

A fixed point of Υ is an element q0 ∈ U that satisfies the equation q0 = Υq0. Often, we specify the fixed
point set of Υ as FΥ. In 1965, Browder [1] was the first mathematician who obtained an elementary
existence theorem of fixed points for nonexpansive mappings on the convex closed bounded sets in
Hilbert spaces. Very soon, this result was extended to other studies done by Kirk [2], Gohde [3], and
Browder [4] to uniformly convex Banach spaces (UCBSs).
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The simplest and most basic iterative scheme in the theory of fixed points is attributed to Picard [5].
The Picard iterative scheme can used for finding fixed points of contraction-type mappings, but it is
not applicable under nonexpansive mappings. Hence, when a mapping is nonexpansive, we try to
use the Mann iterative algorithm [6], which is more general than the mentioned Picard scheme. The
convergence rate of both the Picard and Mann iterative schemes is slow and often cannot be applied to
obtain a common fixed point. In [7], Ishikawa introduced a new iteration for finding fixed points of a
certain category of nonlinear mappings for which the Mann [6], iteration fails to converge. After this,
Agarwal et al. [8] provided a new iteration, called the S-iteration and proved that it was faster than all
of the above iterative schemes. Ullah et al. [9] gave a faster iterative scheme, called the K∗ iteration and
proved that it had a fast convergence in comparison to many other leading iterative schemes, including
the above iterative schemes. Fixed point theory of nonexpansive and contraction mappings find many
useful applications in various fields of applied sciences (see [10–19]). Recently, Debnath [20, 21]
worked on a Górnicki-type pair of mappings and F-contractive mappings. He established a criterion
for existence and uniqueness of common fixed points for such a pair without assuming continuity
of the underlying mappings. Thus, it is very natural to investigate some extensions of the class of
these mappings in order to expand its area of application. To achieve this aim, in [22], Jachymski
first combined the graph theory with the theory of fixed points, and obtained the BCP in the context
of a complete metric space furnished with a directed graph. After that, Aleomraninejad et al. [23]
suggested iterative schemes to obtain fixed points of G-contractions and G-nonexpansive mappings in
the framework of Banach spaces equipped with graphs. Later, Tiammee et al. [24] obtained Browder-
type convergence result for G-nonexpansive mappings in the context of Hilbert spaces with directed
graphs.

In 2016, Tripak [25] introduced a modified Ishikawa-type iterative algorithm to obtain common
fixed points of G-nonexpansive maps as follows:

u0 ∈ U,
vn = (1 − βn)un + βnΥ1un,

un+1 = (1 − αn)un + αnΥ2vn,

(1.1)

where Υ1 and Υ2 are two G-nonexpansive mappings and αn, βn ∈ (0, 1). Suparatulatorn et al. [26],
in 2018, constructed a modified S -type iteration to obtain common fixed points of G-nonexpansive
maps as follows: 

u0 ∈ U,
vn = (1 − βn)un + βnΥ1un,

un+1 = (1 − αn)Υ2un + αnΥ2vn.

(1.2)

With the above algorithm, the authors proved numerically that (1.2) converges better than (1.1) under
G-nonexpansive maps.

Inspired by the above works, recently, Thianwan and Yambangwai [27] proposed a new iteration
method for finding common fixed points of G-nonexpansive maps and analyzed its convergence in the
context of a uniformly convex Banach space furnished with a graph:

u0 ∈ U,
vn = (1 − βn)un + βnΥ1un,

un+1 = (1 − αn)Υ1vn + αnΥ2vn.

(1.3)
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They proved numerically that the iterative algorithm (1.3) converges better than both iterative
schemes (1.1) and (1.2) under G-nonexpansive mappings.

Now, it is very natural to ask the following question:
Is there an iteration technique that can be used to find common fixed points of a G-nonexpansive

mapping and converges faster than all of the above iterative schemes?
To answer the above question, we have proposed the following new iterative scheme based on the

K∗- iterative scheme of Ullah and Arshad [9] as
u0 ∈ U,
wn = (1 − βn)un + βnΥ2un,

vn = Υ2 ((1 − αn)wn + αnΥ2wn) ,
wn+1 = Υ1vn, n ∈ N.

(1.4)

The purpose of this research was to establish weak and strong convergence of our suggested iterative
algorithm (1.4) toward a common fixed point of two G-nonexpansive mappings. In order to support the
main goal, we have offered an example and have shown that our new iteration suggests highly accurate
numerical results in comparison to the above iterative schemes. Therefore, we have extended several
famous results of the current literatures. Eventually, we have given an application of one result for
solving split feasibility problems (SFPs).

2. Preliminaries

In order to establish our main theorems, we have collected the elementary concepts, lemmas, and
notions.

Regard a nonempty set U in a Banach space and define the set

∆ = {(u, u) : u ∈ U}.

Also, we shall use the notation VG to represents the set of all vertices that coincide with set U in a
directed graph G. Moreover, the set EG stands for edges that have essentially all loops, that is, ∆ ⊆ EG.
Now we suppose that G contains no parallel edge for identifying the graph G having the pair (VG, EG).
Assume that G−1 is the conversion of G. In this case, set

E−1
G = {(v, u) ∈ U2 : (u, v) ∈ EG}. (2.1)

Now, we suggest the concept of a dominated set and dominated elements as follows. Notice that a
given set U is said to be dominated by the element u0 if for any choice of u ∈ u, the pair (u0, u) is in
the set EG. On the other hand, the element u0 is said to be dominated by the set U if for any choice of
u ∈ U, the pair (u, u0) is in the set EG.

In the sequel, we consider a selfmap Υ of U. Assume that Υ is an edge preserving map, that is, Υ

satisfies the condition (u, v) ∈ EG ⇒ (Υu,Υv) ∈ EG. Then Υ is called G-nonexpansive if the following
estimate holds:

||Υu − Υv|| ≤ ||u − v||, for every choice of (u, v) ∈ EG. (2.2)

The concept of G-demiclosedness is given in the following.
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Definition 2.1. A selfmap Υ on a set U is called G-demiclosed at the point 0 if and only if for every
weakly convergent sequence, namely, {un} in U whose weak limit is q0 ∈ U, one has

(un, un+1) ∈ EG, Υun → 0 ⇒ Υq0 = 0.

The following definition provides a property for certain Banach spaces. The mentioned property is
termed as the Opial’s property, which was first introduced by Opial in [28].

Definition 2.2. A Banach space D is said to be equipped with the Opial’s property if for arbitrary
weakly convergent sequence {un} ⊆ D with limit q0, the following estimate is fulfilled

lim sup
n→∞

||un − q0|| < lim sup
n→∞

||un − p0||,

for all p0 ∈ D − {q0}.

The following definition is about the semi-compactness of the given mapping.

Definition 2.3. [29] A selfmap Υ on a subset U of a Banach space is known as semi-compact on U
if for any choice of a convergent sequence {un} in the set U that satisifies the condition limn→∞ ||Υun −

un|| = 0, one can extract a convergent subsequence, namely, {unk} of {un}.

Definition 2.4. Let U be a subset of a Banach space and G = (VG, EG) denotes the directed graph in
such a way that VG = U. In this case, the set U is said to be equipped with the property WG (resp.
equipped with the property SG) if for any choice of sequence {un} in the set U that is weakly convergent
(resp. strongly convergent) to a point, namely, q0 ∈ U and (un, un+1) ∈ EG, one can find a subsequence,
namely, {unk} of {un} with the property (unk , q0) ∈ EG.

Lemma 2.5. [26] Assume that D denotes a Banach space that is enriched with the Opial’s property.
In this case, if U ⊆ D is enriched with the property WG and Υ is a self G-nonexpansive map on U,
then I − Υ is G–demiclosed at the point 0; that is, for any sequence, {un} ⊆ U such that un → q0 and
||un − Υun|| → 0, it follows that q0 ∈ FΥ.

Every UCBS possesses the following useful characterization. This characterization was suggested
for the first time by Schu in [30].

Lemma 2.6. [30] Suppose that a UCBS D is given. If the sequence {αn} is such that 0 < c ≤ αn ≤

r < 1 and the two sequences, namely, {un} and {vn} in D, satisfy the conditions lim supn→∞ ||un|| ≤ z,
lim supn→∞ ||vn|| ≤ z, and limn→∞ ||αnun + (1 − αn)vn|| = z, where z is any real number in the interval
[0,∞), then the estimate limn→∞ ||un − vn|| = 0 always holds.

The following lemma is also necessary for establishing our weak convergence result.

Lemma 2.7. [31] D denotes a Banach space that is enriched with the Opial’s property and {un} ⊆ D.
Assume that some pair of two points u, v ∈ D for which lim supn→∞ ||un − u|| and lim supn→∞ ||un − v||
exists. If {un j} and {unk} denote any arbitrary weakly convergent subsequences of {un} with weak limits
u and v, then the equation u = v is to be held.

Since a UCBS is reflexive, we will also need the following lemma.
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Lemma 2.8. [32] Assume that D denotes a reflexive Banach space and {un} ⊆ D. If this sequence is
bounded in D and there are some weakly convergent subsequences, namely, {un j} and {unk} of {un}, and
both admit the same weak limit, namely, q0 ∈ D, then {un} itself is weakly convergent to q0.

Lemma 2.9. [27] Suppose a selfmap Υ on a subset U of a UCBS is G-nonexpansive. If U is enriched
with the property WG, then the operator I − Υ is eventually G-demiclosed at the point 0.

3. Main results

Now, we are able to start our main results. Before going to convergence results, we need a key
proposition as follows. Note that, throughout the section, we may use the notation F for the set FΥ1 ∩

FΥ2 .

Proposition 3.1. Suppose that D is a UCBS enriched with a directed graph and ∅ , U ⊆ D is convex
and closed. Assume that Υ1 and Υ1 are G-nonexpansive selfmaps on U with F , ∅. In addition, we
assume VG = U and the set EG is convex, G is transitive, and we set the sequence of iterates {un} by
using (1.4) for any starting guess u0 ∈ U. If q0 in the set F is such that (u0, q0), (q0, u0) ∈ EG, then
all the pairs (un, q0), (vn, q0), (wn, q0), (q0, un), (q0, vn), (q0,wn), (un, vn), (un,wn), and (un, un+1) are also
in the set EG.

Proof. The proof will be completed using induction. To do this, since (u0, q0) ∈ EG, it follows from
the edge preserving property of the mapping Υ2 that (Υ2u0, q0) ∈ EG. Due to the convexity of the set
EG, we get (w0, q0) ∈ EG. Now since (w0, q0) ∈ EG, it follows from the edge preserving property of the
mapping Υ2 that (Υ2w0, q0) ∈ EG. Now EG is convex,Υ2 is edge preserving, and

(Υ1u0, q0), (Υ2w0, q0) ∈ EG.

It follows that (v0, q0) ∈ EG. Again, since (v0, q0) ∈ EG and the fact that mapping Υ is edge preserving,
we obtain (Υ1v0, q0) ∈ EG. Similarly, Υ2 is edge preserving, (Υ2u1, q0) ∈ EG, and we obtain (w1, q0) ∈
EG, because the set EG is convex. Hence due to the edge preserving property of the mapping Υ2, so one
has (Υ2w1, q0) ∈ EG. Again due to the convexity of EG, (Υ1w1, q0), (Υ2w1, q0) ∈ EG and the mapping
Υ2 is edge preserving, one has (y1, q0) ∈ EG. Also by the edge preserving property of the mapping Υ1,
one has (Υ1v1, q0) ∈ EG, and hence we obtain (w2, q0) ∈ EG. Next, we suppose that (uk, q0) ∈ EG. Now,
the set EG is convex and Υ2 is edge preserving, one has (Υ2uk, q0) ∈ EG and (wk, q0) ∈ EG. On the
other hand, one can apply the edge preserving property of the mapping Υ2 on (wk, q0) ∈ EG, and thus
we get (Υ2wk, q0) ∈ EG. Since the set EG is convex and (Υ1uk, q0), (T2wk, q0) ∈ EG and the mapping
Υ2 is edge preserving, we get (vk, q0) ∈ EG. Also the mapping Υ1 is edge preserving; it follows that
(uk+1, q0) ∈ EG. Due to the edge preserving property of the mapping Υ2, one has (Υ2uk+1, q0) ∈ EG and
thus (wk+1, q0) ∈ EG, since the set EG is convex. Now, EG is convex and (Υ1uk+1, q0), (Υ2wk+1, q0) ∈ EG

and the mapping Υ2 is edge preserving. We can write (vk+1, q0) ∈ EG. Hence, we conclude that
(un, q0), (vn, q0), (wn, q0) ∈ EG for any choice of n ≥ 0. In a way similar to the above, one can prove
that (q0,wn), (q0, vn), (q0,wn) ∈ EG. But the set G is transitive. So, one can write

(un, vn), (un,wn), (vn,wn), (un, vn+1) ∈ EG.

Thus, the proof is finished. �
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Lemma 3.2. Suppose that D,U,Υ1,Υ2, F, and the sequence of iterates {un} be the same as what is
given in Proposition 3.1. If the pairs (u0, q0), (q0, u0) are in the set EG for every choice of u0 ∈ U and
q0 ∈ F, then we have:

(i) limn→∞ ||un − q0|| exists;
(ii) limn→∞ ||Υ1un − un|| = 0 = limn→∞ ||Υ2un − un||.

Proof. (i) Since both the mappings Υ1 and Υ2 are G-nonexpansive, from Proposition 3.1, one can write
(un, q0), (vn, q0), (wn, q0) ∈ EG. Accordingly, we have

||un+1 − q0|| = ||Υ1vn − q0||

≤ ||vn − q0||

= ||Υ2((1 − αn)wn + αnΥ2wn) − q0||

≤ ||(1 − αn)wn + αnΥ2wn − q0||

≤ (1 − αn)||wn − q0|| + αn||Υ2wn − q0||

≤ (1 − αn)||wn − q0|| + αn||wn − q0||

= ||wn − q0||

= ||(1 − βn)un + βnΥ2un − q0||

≤ (1 − βn)||un − q0|| + βn||Υ2un − q0||

≤ (1 − βn)||un − q0|| + βn||un − q0||

≤ ||un − q0||.

Eventually, we observe that ||un+1 − q0|| ≤ ||un − q0|| for any choice of n ≥ 0. It yields that the
real sequence {||un − q0} is non-increasing and, accordingly, is bounded. Therefore, we conclude that
limn→∞ ||un − q0|| exists.

Now we prove (ii). We first take F , ∅ and fix any q0 ∈ F. By (i), limn→∞ ||un − q0|| exists. Put

lim
n→∞
||un − q0|| = z. (3.1)

As we proved above, we write

lim sup
n→∞

||wn − q0|| ≤ lim sup
n→∞

||un − q0|| = z. (3.2)

Υ2 is G-nonexpansive. So

lim sup
n→∞

||Υ2un − q0|| ≤ lim sup
n→∞

||un − q0|| = z. (3.3)

Again, as proved above, we estimate

z = lim inf
n→∞

||un+1 − q0|| ≤ lim inf
n→∞

||wn − q0||. (3.4)

From (3.2) and (3.4), we have
z = lim

n→∞
||wn − q0||. (3.5)
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Using (3.5), one has

z = lim
n→∞
||wn − p|| = lim

n→∞
||(1 − βn)(un − q0) + βn(Υ2un − q0)||.

Hence,
z = lim

n→∞
||(1 − βn)(un − q0) + βn(Υ2un − q0)||. (3.6)

By Lemma 2.6, we have
lim
n→∞
||Υ2un − un|| = 0.

In a similar way,
lim
n→∞
||Υ1un − un|| = 0.

Subsequently, we obtain
lim
n→∞
||Υ1un − un|| = 0 = lim

n→∞
||Υ2un − un||.

Both proofs are complete. �

We will now consider the assumption that the space is enriched with the Opial’s property, and
provide a weak convergence result for G-nonexpansive maps by applying the iterative scheme (1.4).

Theorem 3.3. Suppose that D,U,Υ1,Υ2, F, and the sequence of iterates {un} be the same as what is
given in Proposition 3.1. Assume that U has the property WG and the pairs (u0, q0), (q0, u0) are in the
set EG for each choice of u0 ∈ U and q0 ∈ F. Then {un} weakly converges to a point of F if D is
enriched with the Opial’s property.

Proof. According to Lemma 3.2, the sequence of iterates {un} is bounded in U and limn→∞ ||un − p0||

exists. Since D is UCBS, it follows that D is reflexive. Suppose {un} is weakly convergent to a point
u ∈ U. But in Lemma 3.2(ii),

lim
n→∞
|||Υ1un − un|| = 0 = lim

n→∞
||Υ2un − un||.

Hence, from Lemma 2.5, we have u ∈ F. Now, we take two subsequences, namely, {unk} and {un j} of the
sequence of iterates {un} such that both are convergent to u and v, respectively. Applying Lemma 2.5,
one gets u, v ∈ F. Hence using Lemma 3.2(i), limn→∞ ||un−u|| and limn→∞ ||un−v|| exist. By Lemma 2.7,
we obtain u = v. Subsequently, the sequence of iterates {un} is weakly convergent to a point of F. �

In the following result, we do not need the Opial’s property of the space D.

Theorem 3.4. Let D,U,Υ1,Υ2, F, and the sequence of iterates {un} be the same as what is given in
Proposition 3.1. Assume that U has the property WG and the pairs (u0, q0), (q0, u0) are in the set EG

for every choice of u0 ∈ U and u0 ∈ F. Then {un} converges weakly to a point of F if F is dominated
by u0 and F dominates u0.

Proof. The proof is clear. �

The next theorem is based on the following condition (B).
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Definition 3.5. [29] Suppose that Υ1 and Υ2 are two selfmaps of the subset U in a UCBS D. In this
case, Υ1 and Υ2 are said to be with the condition (B) if one has a nondecreasing map g such that
g(0) = 0 and g(α) > 0 for any α ∈ (0,∞) and max{||u−Υ1u||, ||u−Υ2u||} ≥ ψ(ds(u, F)) for every choice
of u ∈ U, where ds(u, F) stands for the norm distance between u and the set F.

Theorem 3.6. Suppose that D,U,Υ1,Υ2, F, and the sequence of iterates {un} are the same as what is
given in Proposition 3.1. Assume that the pairs (u0, q0), (q0, u0) are in the set EG for every choice of
u0 ∈ U and q0 ∈ F. If F is dominated by u0, F dominates u0, then {un} converges strongly to a point of
F provided that the mappings Υ1 and Υ2 are equipped with condition (B).

Proof. In view of Lemma 3.2(i), limn→∞ ||un − q0|| exists. It follows that limn→∞ ds(un, F) exists for any
choice of q0 ∈ F.Thus, using Lemma 3.2(ii),

lim
n→∞
||Υ1un − un|| = 0 = lim

n→∞
||Υ2un − un||.

Now condition (B) gives

g(ds(un, F)) ≤ max{||un − Υ1un||, ||un − Υ2un||}.

In any case, we get limn→∞ g(ds(un, F)) = 0. It follows that limn→∞ ds(un, F)) = 0. Therefore, there
exists a subsequence {un j} of {un} and {qs} in F such that ||uns − qs|| ≤

1
2s for all choices of s ≥ 0. Since

the proof of Lemma 3.2(i) provides that {un} is non-increasing, then

||uns+1 − q j|| ≤ ||uns − qs|| ≤
1
2s .

Therefore,

||qs+1 − qs|| ≤ ||qs+1 − uns+1 || + ||uns+1 − qs||

≤
1

2s+1 +
1
2s

≤
1

2s−1 → 0, when s→ ∞.

Hence, we proved that {qs} form a Cauchy sequence in F and thus, it has a limit, namely, p0. Since
F is a closed subset of U, we must have p0 ∈ F. Now, applying Lemma 3.2(i) on p0, we get that
limn→∞ ||un − q0|| exists. This proves that the point p0 ∈ F is the strong limit of {un}. Hence, the proof
is finished. �

We close this section by giving a strong convergence theorem using the semi-compactness
assumption.

Theorem 3.7. Suppose that D,U,Υ1,Υ2, F, and the sequence of iterates {un} are the same as what is
given in Proposition 3.1. Assume that U has the property SG and the pairs (u0, q0), (q0, u0) are in the
set EG for every choice of u0 ∈ U and q0 ∈ F. If F is dominated by u0, F dominates u0, then {un}

converges strongly to a point of F provided that the mappings Υ1 and Υ2 are semi-compact.
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Proof. From Lemma 3.2(i), the iterative sequence {un} is essentially bounded and

lim
n→∞
||Υ1un − un|| = 0 = lim

n→∞
||Υ2un − un||.

By semi-compactness of Υ1 or Υ2, one has a subsequence {unk} such that

lim
k→∞
||unk − q0|| = 0, (3.7)

for some element q0 ∈ U. By property SG of U, and keeping in mind the transitivity of G, one has
(unk , q0) ∈ EG. Hence

lim
k→∞
||unk − Υiunk || = 0, (i = 1, 2). (3.8)

Using (3.7) and (3.8) and being G-nonexpansive of Υi, one has

||q0 − Υiq0|| ≤ ||q0 − unk || + ||unk − Υiunk || + ||Υiunk − Υiq0||

≤ ||q0 − unk || + ||unk − Υiunk || + ||unk − q0||

= 2||q0 − unk || + ||unk − Υiunk || → 0.

Subsequently, we obtained q0 = Υiq0. This shows that q0 is a point of F. Accordingly,
limn→∞ ds(unk , F) exists by Theorem 3.6. But ds(unk , F) ≤ ds(unk , q0)→ 0, that is,

lim
n→∞

ds(unk , F) = 0.

In view of the proof of Theorem 3.6, we conclude that {un} converges strongly to a common fixed point
of Υ1 and Υ2. �

4. Numerical example

Next, we will discuss an example of G-nonexpansive mappings that are not nonexpansive. We will
connect our new modified iterative scheme and other iterative schemes from the literature to show the
effectiveness of our results. We will use some numerical tables for this purpose.

Example 4.1. Define two mappings Υ1 and Υ2 as follows:

Υ1u = u +
12 arcsin−1(1 − u)

18
,

and
Υ2u = u

1
4 .

In this case, both Υ1 and Υ2 are G-nonexpansive and admit a common fixed point 1.

We now take αn = βn = 0.5 and obtain Tables 1–3 for various values of u0. The graphical
comparison is given in these cases in Figures 1–3.
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Table 1. Comparison of various iterations for u0 = 1.2.

n New (1.4) Thianwan (1.3) S (1.2) Ishikawa (1.1)
0 1.2 1.2 1.2 1.2
1 1.0123859386 1.0756643868 1.0868146410 1.1196953341
2 1.0008037129 1.0287446908 1.0377867331 1.0718861233
3 1.0000523138 1.0109537143 1.0164894180 1.0432711048
4 1.0000034058 1.0041799009 1.0072056196 1.0260838084
5 1.0000002217 1.0015959266 1.0031507977 1.0157372183
6 1.0000000144 1.0006094727 1.0013781533 1.0094999288
7 1.0000000009 1.0002327726 1.0006028804 1.0057366219
8 1.0000000001 1.0000889044 1.0002637484 1.0034648088
9 1 1.0000339563 1.0001153877 1.0020929321
. . . . .
. . . . .
. . . . .

21 1 1.0000000003 1.0000000057 1.0000049489
22 1 1.0000000001 1.0000000025 1.0000029900
23 1 1 1.0000000011 1.0000018065
24 1 1 1.0000000005 1.0000010914
25 1 1 1.0000000002 1.0000006594
26 1 1 1.0000000001 1.0000003984
27 1 1 1 1.0000002407
. . . . .
. . . . .
. . . . .
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Figure 1. Graphical comparison of different iterative schemes for u0 = 1.2.
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Table 2. Comparison of various iterations for u0 = 1.5.

n New (1.4) Thianwan (1.3) S (1.2) Ishikawa (1.1)
0 1.5 1.5 1.5 1.5
1 1.0290417199 1.1923944719 1.2207787459 1.2962458207
2 1.0018762181 1.0727931850 1.0958340352 1.1766367539
3 1.0000523138 1.0276584880 1.0416965272 1.1058166689
4 1.0000079482 1.0105406503 1.0181912777 1.0635918574
5 1.0000005175 1.004022412 1.0079483819 1.0382940901
6 1.0000000337 1.001535816 1.0034753998 1.0230895279
7 1.0000000022 1.0005865199 1.0015200975 1.0139328453
8 1.0000000001 1.0002240068 1.0006649677 1.0084115026
9 1 1.0000855565 1.000290907 1.0050796598
. . . . .
. . . . .
. . . . .

21 1 1.0000000008 1.0000000143 1.0000120065
22 1 1.0000000003 1.0000000063 1.0000072539
23 1 1.0000000001 1.0000000027 1.0000043826
24 1 1 1.0000000012 1.0000026478
25 1 1 1.0000000005 1.0000015997
26 1 1 1.0000000002 1.0000009665
27 1 1 1.0000000001 1.0000005839
28 1 1 1 1.0000003528
. . . . .
. . . . .
. . . . .

46 1 1 1 1

New

Thianwan

S

Ishikawa

1.0000 1.0005 1.0010 1.0015
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Figure 2. Graphical comparison of different iterative schemes for u0 = 1.5.
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Table 3. Comparison of various iterations for u0 = 1.9.

n New (1.4) Thianwan (1.3) S (1.2) Ishikawa (1.1)
0 1.9 1.9 1.9 1.9
1 1.0486666838 1.4033824472 1.4542642842 1.5310077792
2 1.0031280319 1.1536373468 1.1995308532 1.3143734715
3 1.0002034772 1.058174495 1.0866111569 1.1873240273
4 1.0000132465 1.0221235889 1.0376985031 1.112168284
5 1.0000008624 1.0084348414 1.0164510048 1.0673889846
6 1.0000000561 1.0032193688 1.0071888526 1.0405730575
7 1.0000000037 1.0012292851 1.0031434698 1.0244607882
8 1.0000000002 1.0004694696 1.0013749488 1.0147592445
9 1 1.0001793041 1.0006014788 1.0089100251
. . . . .
. . . . .
. . . . .

21 1 1.0000000017 1.0000000296 1.0000210493
22 1 1.00000000007 1.0000000129 1.0000127172
23 1 1.00000000003 1.0000000057 1.0000076833
24 1 1.00000000001 1.0000000025 1.000004642
25 1 1 1.0000000011 1.0000028045
26 1 1 1.0000000005 1.0000016944
27 1 1 1.0000000002 1.0000010237
28 1 1 1.0000000001 1.0000006185
29 1 1 1 1.0000003737
. . . . .
. . . . .
. . . . .
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Figure 3. Graphical comparison of different iterative schemes for u0 = 1.9.
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Now we suggest different values for the initial points and the parameters αn, βn, and also, we set
stopping criterion as ||un − q∗|| < 10−10, and note to keep in mind that q∗ = 1 is a common fixed point
of the selfmaps Υ1 and Υ2. The numerical results are then given in Tables 4–6.

Table 4. When αn = n
n+8 and βn = 1

n+6 .

The required number of iterations for obtaining the fixed point
u0 Ishikawa (1.1) S (1.2) Thianwan (1.3) New (1.4)
1.2 32 24 23 10
1.3 32 24 24 10
1.4 32 24 24 10
1.5 33 24 24 10
1.6 33 25 24 10
1.7 33 25 24 10
1.8 33 25 25 10

Table 5. When αn = n+1
5n+4 and βn = n+3

9n+6 .

The required number of iterations for obtaining the fixed point
u0 Ishikawa (1.1) S (1.2) Thianwan (1.3) New (1.4)
1.2 118 36 33 9
1.3 121 36 34 9
1.4 122 37 34 9
1.5 124 37 34 9
1.6 125 38 35 9
1.7 125 38 35 9
1.8 126 39 35 9

Table 6. When αn = 1 − ( 1
√

5n+3
) and βn = 1

(n+1)3 .

The required number of iterations for obtaining the fixed point
u0 Ishikawa (1.1) S (1.2) Thianwan (1.3) New (1.4)
1.2 20 17 17 7
1.3 20 17 17 7
1.4 20 18 17 7
1.5 21 18 18 7
1.6 21 18 18 7
1.7 21 18 18 7
1.8 21 18 18 7

5. Application to split feasibility problems (SFPs)

Suppose that D1 and D2 are Hilbert spaces with directed graphs. Assume that C ⊆ D1 and Q ⊆ D2

are any two nonempty convex and closed sets such that the mappingA : D1 → D2 is any given linear

AIMS Mathematics Volume 9, Issue 5, 11941–11957.
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and bounded function. First, we give the basic concept about a SFP [18] as follows. Mathematically, a
SFP is defined as:

Compute q∗ ∈ C : Aq∗ ∈ Q. (5.1)

As we know from [19], the concept of SFP is applicable to many type of problems in applied
sciences. Thus, the concept of SFP is more important than the many other type of concepts in nonlinear
analysis.

In the present study, first we considered this assumption that our SFP (5.1) possessed one solution
and we wrote S to denote its solution set. By [19], we know that any point q∗ ∈ C eventually solves
the Problem (5.1) if and only if q∗ is the solution for the equation

u = PC(I − ξA∗(I − PQ)A)u,

in which PC and PQ stand for the nearest point projections onto C and Q, respectively. Also, ξ > 0 and
the mapping A∗ specifies the adjoint operator of A. In [10], Byrne used the concept of nonexpansive
mappings. That is, he first proved that for any ξ and 0 < ξ < 2

η
,

Υ = PC(I − ξA∗(I − PQ)G),

is essentially nonexpansive and its CQ iterative scheme given as

un+1 = PC(I − ξA∗(Iid − PQ)A)un, n ≥ 0

is weakly convergent to a point of S.
When a weak convergence is established, naturally we would like to investigate a result for the case

of strong convergence. To do this, we require some more conditions (see [19]) to conduct an analysis
on the recent research about the Halpern-type algorithms.

We have adopted a new method to solve SFPs by applying the concept of G-nonexpansive operators
whose nature is more general than the concept of nonexpansive mappings (we saw this in the example
provided in this paper). We shall examine and confirm that the proposed scheme is convergent to the
solution of the SFP (5.1).

Theorem 5.1. Consider the SFP (5.1) with S , ∅, 0 < ξ < 2
η

, PC(I − ξA∗(I − PQ)A) is a G-
nonexpansive operator and satisfies the condition (B). In this case, the sequence of iterates {un} given
by (1.4) is strongly convergent to some solution, namely, q∗ of the SFP (5.1).

Proof. We can set
Υ = Υ1 = Υ2 = PC(I − ξA∗(I − PQ)A).

Clearly, Υ will be a G-nonexpansive operator. The conclusion of Theorem 3.6 gives the fact that {un}

is strongly convergent in F. As F = S, we deduce that {un} is strongly convergent to some solution,
namely, q∗ of the SFP introduced in (5.1). �

6. Conclusions

(i) We introduced a new modified iterative scheme based on the K∗-iterative scheme for finding
common fixed points of G-nonexpansive mappings.

AIMS Mathematics Volume 9, Issue 5, 11941–11957.
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(ii) We obtained several weak and strong convergence results the for new iterative scheme under
possible mild conditions.

(iii) A comparative numerical experiment was performed which proves the high accuracy of our new
scheme in comparison with the already existing iterative schemes.

(iv) Eventually, we applied our main results to solve SFPs.
(v) Our findings extended and improved the corresponding results of Tripak [25], Suparatulatorn

et al. [26], and Thianwan and Yambangwai [27] with a faster iterative scheme. Moreover,
our theorems unified the main result of the paper written by Ullah et al. [9] to the case of G-
nonexpansive mappings.
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12. A. Moussaoui, S. Radenović, S. Melliani, Fixed point theorems involving FZ-ϑ f -contractions in
GV-fuzzy metrics, Filomat, 6 (2024), 1973–1985.
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