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1. Introduction

The field of fractional calculus, which focuses on the application of fractional derivatives, has been
rapidly developing in recent years. Compared to traditional integer calculus, fractional calculus has a
broader range of applicability in both temporal and spatial scales, enabling more accurate descriptions
of real-world problems. As an important branch of fractional calculus, fractional differential equations
(FDEs) contain fractional derivatives and have been widely applied in various fields, including
chemistry, physics, electrical engineering, economics, and biology [1-3]. These equations hold
significant practical value and have had a profound impact on the theoretical development of calculus,
serving as one of the key foundations in its research. Currently, boundary value problems (BVPs) of
FDE:s are a hot topic of study. Scholars have mainly used fixed point theory [4—8], such as the Banach
fixed point theorem, Schaefer fixed point theorem, and Krasnoselskii fixed point theorem, to establish
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sufficient conditions for the existence and uniqueness (EU) of FDEs solutions. These achievements
have been highly important for deepening our understanding of FDEs and promoting their practical
applications.

Fractional differential equations are of great significance in describing actual network structures,
such as pipelines, gas pipelines, molecular structures, and computer network extensions. In 1980,
Lumer [9] proposed the theory of differential equations on graphs based on the branching space
framework, and this field has since been widely developed for application in multiple disciplines such
as chemical engineering, biology, and physics. Therefore, researchers have a strong interest in the
existence and stability of solutions to BVPs of differential equations and their fractional mathematical
models on graphs.

Graet et al. [10] published their first work in the field in 2014, where they utilized known fixed point
theorems to prove the EU of solutions to fractional BVPs on star graphs. That is, the authors studied
a star graph G = (V(Q) U S(Q), where V = {e), €, 6} and § = {ﬁ, ﬁ)} are sets of three vertices
and of two edges, respectively; ¢ is the junction node and &€, are the edges connecting nodes ¢ to &
with length p; = |e,_e(>)| for i = 1,2. The nonlinear fractional BVPs system on each edge €¢, in their
work [10] is defined as follows:

{ —Dag = m(OFit, @), t€(0,p), i=1,2,
¢1(0) = ¢2(0) = 0, ¢1(p1) = @2(p2), Dipr(p1) + Dpa(p2) = 0,

where D and Dﬁ represent the Riemann-Liouville fractional derivative of orders @ € (1,2] and 8 €
(0, @), respectively; m; : [0,p;] — R are continuous functions with m;(#) # 0 on [0, p;], and F; :
[0,p;] X R — R are continuous functions. The EU of solutions for the BVPs (1.1) are derived by
applying Scheafer’s fixed point theorem and the Banach contraction principle. In 2019, Mehandirata
et al. [11] expanded upon Graef’s earlier work by generalizing it to apply to star graphs comprising
k + 1 nodes and k edges as follows:

CDIilr) = Filt, @i0), “Du0), 1€ (0,0, i =1,2,--- .k,

0i(0) =0, Xy @) =0, i = 1,2,--- .k, (1.2)

wipd) = @i, Lj=1,2,---k, i # ],
where Cbg and CDﬁ represent the Caputo fractional derivative of orders @ € (1,2] and 8 € (0, — 1),
Fi : [0,0;] x R — R are continuous functions; G = V(G) U &G) with V(G) = {e, €, , &} and
S(G) = e = oﬁ)}, i=1,2,---,k}, p; = |a) ,i = 1,2,--- ,k (a collection of k edges incident to a
single node point (see Figure 1)). The EU of the solution to the BVPs (1.2) was proven using the same
fixed-point theorem as in prior work [10].

(1.1)

Figure 1. A sketch of the star graph with k edges.
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The BVPs of FDEs on graphs have attracted widespread attention from scholars, and some
interesting research results have been achieved [12—-19]. For instance, in 2020, Etemad [12] proved
the existence of solutions to fractional BVPs on ethane graphs using Schaefer’s fixed point theorem
and Krasnoselskii’s fixed point theorem. In the same year, Mophou and Leugering [13] proved the EU
of the solution through their study of the optimal control of fractional Sturm-Liouville BVPs on star
graphs. In 2021, Turab [14] verified the existence of solutions to fractional BVPs on hexagonal graphs
using Krasnoselskii’s fixed point theorem and Schaefer’s fixed point theorem. In Han’s study [15],
the Banach contraction mapping principle and Schaefer’s fixed point theorem were applied to the EU
of solutions for BVPs of nonlinear fractional differential equations on star graphs. In 2021, Ali [16]
considered the existence of solutions to fractional BVPs on cyclohexane graphs. Additionally, Zhang
et al. [17] studied the BVPs of fractional Langevin equations on star graphs as follows:

DY (D + W)pilt) = Filt, gi(0), D 0i(1)), 1€ (0,p0), i =1,2,--- ,k,
@i(0)=0, Y&, o) =0, i=1,2,-- ,k (1.3)
‘Pi(Pi) = ()Oj(pj)’ l,] = 1’2, e ’k’ [ # j’

where @ € (0, 1) and 8 € (0, @), A; € R*, D s the ordinary derivative, 7; : [0, p;]XR — R are continuous
functions, and the two fractional operators “D¢ and C@ﬁ denote the Caputo fractional derivatives.
The [17] studied a star graph G = V(G) U E(G), where V = (e, €, -, &) and & = {e; = Ge,
i=1,2,---,k} are sets of k + 1 nodes and set of k edges, with p; = |eT56| The author proved the EU of
the BVP (1.3) solution by utilizing Schaefer’s fixed point theorem and Banach contraction principle.

On the other hand, Ulam stability analysis was proposed by Ulam in the 1940s and further developed
by Hyers. This analysis primarily studies whether the behavior of a system remains stable when there
are slight changes in its parameters. Regarding Banach spaces, S. Banach introduced the famous
fixed-point theorem in 1932. Later, Gleason, Ricciardi, and Ulam provided the theoretical foundation
for Ulam stability by extending this theorem to additive mappings in metric spaces. In the field of
FDE:s, scholars began to study the stability of Ulam in the late 20th century and have achieved some
notable results [20-26]. In 2017, Khan et al. [20] studied the Ulam stability of solutions to fractional
differential equation systems using topological degree methods. In 2019, the same author [21] utilized
the Guo-Krasnoselskii theorem to study the uniqueness of solutions and Ulam stability for differential
equations containing Atangana-Baleanu-Caputo fractional derivatives. The same year, Devi et al. [22]
proved the Ulam stability of specific FDEs and provided examples illustrating their application. More
recently, Zhang et al. [23] studied the existence and Ulam-type stability of solutions to BVPs containing
Caputo fractional derivatives on star graphs. These research studies show that the analysis of stability
for solutions of FDEs is an active and important field of study with significant implications for
understanding the long-term behavior of complex dynamic systems.

Inspired by the above-mentioned research [15, 17, 23], it can be seen that how to solve the mixed
boundary conditions for a class of nonlinear higher-order fractional Langevin equations on a star graph
consisting of k£ + 1 nodes and k edges has not yet been examined. Specifically, this work examines the
following problems:

DD + D)) = Filt 0.2 @i(0), 1€ O, 1= 1,2,k
‘P;(O) = @i(pi) =0, X, QD;'(,D,-) =0,i=1,2,---k, (1.4)
@) = @i, 1,j= 1,2,k i # J,
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where € (0, 1) and 8 € (0, @), A; € R*, 97 is the ordinary second-order derivative, 7 : [0, p;] xR — R
are continuous functions, and the two fractional operators Cbg and CDﬁ denote the Caputo fractional
derivatives. The star graph is G = V(@) UEG), where V = {&. €, .6} and & = {e; = e,
i=1,2,---,k} are sets of k+ 1 nodes and set of k edges, and p; = |e,_65| We consider a local coordinate
system with ¢ as the origin and coordinates ¢ in the interval (0, p;).

This study investigates the existence, uniqueness, and Ulam stability of solutions to nonlinear
fractional BVP (1.4). The EU of the solution to problem (1.4) can be demonstrated by utilizing
Krasnoselskii’s fixed point theorem and Banach’s contraction mapping principle. Meanwhile, the
Ulam stability of this system was verified using the matrix eigenvalue method. Compared with existing
research results, the innovative results presented in this article can be summarized as follows: First,
we extend the fractional Langevin equation on a star graph to higher-order fractional cases. Second,
compared with other research [10, 11, 15,23], the Langevin equation in this paper introduces nonlocal
terms, which increases the difficulty of prior estimation. Third, compared with another study [17],
we not only investigated the existence and uniqueness of solutions to higher-order fractional Langevin
equations, but also extended the relevant results on their Ulam stability. Fourth, compared with prior
research [10,11,15,17,23], the fractional BVP (1.4) considered in this paper are more generalized and
complex, as its nonlinear terms and boundary conditions depend not only on unknown functions, but
also on fractional derivatives. Finally, Theorem 3.1 (see Section 3) proves that the problem (1.4) has
at least one solution. This theorem proposes a linear growth condition for nonlinear terms, reduces
the existence conditions, and thus makes the required existence condition more relaxed than condition
(H3) used in previous literature [11, 15].

The remaining parts of this manuscript are structured as follows. Section 2 proposes the auxiliary
Lemma 2.5, which transforms the BVP (1.4) into an equivalent system (2.1), while reviewing the main
relationships in fractional calculus. Section 3 proves the uniqueness and existence of solutions to the
fractional differential BVP (1.4). Section 4 establishes sufficient conditions for the Ulam stability of
the solution to system (2.1). Section 5 illustrates the main results of this paper regarding the existence,
uniqueness, and Ulam stability of solutions through two examples. Finally, some conclusions are given
in the last section.

2. Preliminaries

In this section, we will revisit the concept of fractional calculus and outline some basic results that
will provide a basis for the subsequent discussions in this paper.
Definition 2.1. []]. Let f € C([a, b],R). Then the Riemann-Liouville fractional integral is given by

1

I;f(7) = m

f (=) f(s)ds, «>0, T>a,

where I'(:) is the classical Euler gamma function.

Definition 2.2. [I]. Let f € C"([a,b],R). Then the Caputo fractional derivative operator of order
a > 0 is defined by

C~a _ 1 fT _ oyrma—1 pn)
Do f(0) = T ). (T =) f"(s)ds, T > a,
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wheren—1<a <nandn € N.

Lemma 2.1. [1]. Let « > 0. Suppose that u € AC"[0, 1]. Then

Igcbgju(f) =u(T)+ 1+ T+ 3T+ 4T,

wherec; €R, i=1,2,---n,n=[a] + 1.

Lemma 2.2. [27]. Suppose that (D"t)(t) and (Ci)gf;”t)(r) exist. Then
D221 = (CDI'N(T), @ > 0,
where n € N and © = d/dr.

Lemma2.3. [I]. Ifa>0,8>a—-1,17>0, then
rg+1) 5
CDa — oz.
6 rB+1- a)Tﬁ

Theorem 2.1 (Urs). [28] Suppose A is a square matrix of order n with positive real entries, i.e.,
A € M,,(R"). Then, the following statements are equivalent:

(i) The eigenvalues of matrix A (in the open unit disc), denoted by A, YA € C with det(Al — A)=0,
e, | <1;
(ii) The matrix (I — A) is nonsingular;
(iii) The matrix (I — A)~" has nonnegative elementsand (I — A) ' = [+ A+ -+ A" +--- .

Theorem 2.2 (Krasnoselskii’s fixed point theorem). [29]. Let P be a closed, bounded, convex, and
nonempty subset of a Banach space Z. Let A and B be two operators such that

(a) Az+ Bze€ Pforall z,Z € P,
(b) A is compact and continuous on P,
(¢) B is a contraction mapping on P.

Then there exists h € P such that h = Ah + Bh.

Lemma 2.4. [1]]. Let @ > 0, ¢ be a function defined on |0, p], and z(t) = ¢(pT). Suppose that CD&IQD
exists on [0, p], t € [0, p], then

D2 (1) = p(CDL 2(1)), T = t/p € [0, 1].

Lemma 2.5. Let a € (n—1,n), ¢ be a function defined on (0, p], and z(t) = ¢(p7). Suppose that CDg’tgo
exists on [0, p], t € [0, p], then

“DGD? + V(1) = p~ DG (D + Ap*)2(1), T=t/p € [0, 1].
Proof. By means of Definition 2.2 and Lemma 2.2, we obtain

CDGAD? + V(1) = “DEF (1) + A°DF (1)
1 ! | pl
f— s) (n+2) ds +
T(n—a) fo =g e

f (1 = )" (s)ds
0
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1 0T 0T

— _ o\rat+l  (n+2)
‘r<n—a> (ot =TT w0

n—a

n a+l (n+2) /lp fT _ay—ae-l (W s (A& —
r(n+2 a)f (- OdS+ ooy ), T e ehds §=s/p)

—a 2
n a+1 (n+2) ds
r(n+2 a)f (- ($)ds

o [y @ =)

p—(l 2CD(I+2Z(T) + /lp QCDgTZ(T)
=p~ D] (D + Ap)z(7).

+

This concludes the proof of Lemma 2.5.

(ot — 8" (s)ds (t = p7)

O

Under the direct application of Lemmas 2.4 and 2.5, BVP (1.4) is equivalently transformed into

system (2.1) defined on [0,1], as given by

€D (D? + ip))zi(1) = p*2 fi1,2(1), p; €D L 2i(T)), T € (0, 1),
Z; (0) =z(1) =0, Z Ipl‘zz"(l) =0,i=1,2,---k,
FM) =), i =12,k i #

where z;(7) = ¢;(0:7), fi(T,u,v) = Fi(piT, u, ).
Lemma 2.6. Let hi(t) € C[0, 1], @ € (0, 1). Then z;(t) is a solution of the BVP

Dy (Z)2+/Lpl)z,(7') = (1), T€O,1), i=1,2,-k,
z(O)—zz(l)—O S22/ (1) =0, i=1,2,---k,
W) =), i, j=1,2,k i # ]

which is given by

_ 1 ’ a+l1 1 : a+1
z:(1) Tat2) fo (t—29) h,-(s)ds—r(a/ ) fo (1 =) hi(s)ds

1 T
+ 2,07 f (1 = $)zi(s)ds — Ap7 f (T — 9)zi(s)ds
0 0

k 1 1
2 ' _aae-lp — 1.02-.
+(1 T);fj(—r(a) fo (1= )" hi(s)ds — A;p%2;(1))
k
(=) > (Al - 4pi(1)
j=1,j#i
2 : 1 : 1
—(1- b= | A =9""(hi(s) - hi(s))ds).
where £;= 2 j=1,2,---k
Zgl/fZ

(2.1

(2.2)

(2.3)
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Proof. Applying the integral operator Ig*z to (2.2) and using Lemma 2.1, we have
zi(T) = —/lipf f (Tt — 8)zi(s)ds + Ig+2hl~(7') - afl) - afz)T - a?)rz, i=1,2,---,k, 2.4)
0

where a{ (i=1,2,---,k, j=1,2,3) are some constants. Deriving both sides of Eq (2.4) from O to 7
gives
(1) = =} fT zi(s)ds + Ig+1h,-(T) - agz) - 27a§3)
and 0
2/ (1) = =pju(0) + [§h(0) - 2a”.
Z/(0) = 0 implies that @ = 0, which leads to
(1) = =Aip; fo T zi(s)ds + I hi(t) — 27a.

Since z/'(1) = /(1) and S5 0722 (1) = 0, we obtain

—Aip7z (1) + Ighi(Dlemr — 24 = =;052,(1) + I§hj(@)ley — 247, i # (2.5)
and

Zk _2( 4piz(1) + Igh | —2(3))——0 2.6
\ =1 Pi 07 2i(1) + Iy hi(T)le=1 - 24; . (2.6)
ccording to (2.5) and (2.6), there is

k k
23 %) =3 7 (-0t + Ihy(0k)
J=1 j=1

k

N Z 077 (=2,032)(1) + Aipizi(1) + Ighj(D)le=y = I hiDle=1 ).

j=1j#
which implies
k
a® == 3" (=12 + 4pP(D) + IR (Dlet — Ighi(Dlec)

J 1,./:1

+ 3 (=020 + Iyl ). @7
=1

By substituting z;(1) = 0 and a\” into in (2.4), we get

1 k
" =12 hi(T)| o1 - A} f (1= 9)zi(s)ds = Y £ (=4;032,(1) + I3 hj(D)le-1)
0

=1

+ 0 (=) + Apf) + Ik, — Ik ). (2.8)

k
=L

Inserting the values from (2.7) and (2.8) into (2.4), we get the solution (2.3). This completes the
proof. O
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3. Existence and uniqueness results

In this section, we prove the existence and uniqueness of the solution to system (2.1). We first define
a Banach space X = {z: z, CﬁﬁTz € C[0, 1]}, with the supremum norm

C
llzllx = lIzll + 119D} Il

where ||z]| = H%g)f] |Z(T)|, IICﬁﬁTZII = m[(%)vl(] |CDgTZ(T)|. It is obvious that the product space (X* = X; x
7€l0, ’ 7€l0, ’

X5 X -+ X Xi, |||lxx) is a Banach space, where the norm is defined by
k
Iz szl = D ladlxs (a2 € XX
By considering Lemma 2.6, we introduce the operator T : X* — X, related to system (2.1) by
T(z1,22, > 20)(@) = (T1(z1, 22, -+ 2)(@), Ta(21, 22, -+ 5 2)(@) -+, Ti(z1, 22, -+ 2)(T))s
forre[0,1]andz; € X, i =1,2,---k, where

T'(Zla 22500, Zk)(T)

a+2
a/+1 -BC '
F(a/+ 2)f (T = 9™ fi(s, 2i(5), ;" T 2i(9))ds

oz+2

a/+1 -BC ‘
F(a+2) f (1= )" fi(s,2i(5). 0,7 D 2i(5))ds

+ 4t f (1 - $)2(s)ds — Ap? f (v - )als)ds
0 0

k
+ (1 — 7'2) Z [j(/l]pfzj(l) - /LPIZZ:(l))

j=1j#i
k a+2
+( 2 ] e )f (1= )7 fi(s,2,(5), pj'BCDﬁ’SZj(S))dS_/ljp§Zj(1))
k a+2
+(1 r) F( ) ( )™ fi(s.2i(5), p; 7D} zi(9))ds

k (z+2

B Z

=1,j

f (1= 9" fi(5,2(9). 0,7 T ,2,(5))ds. (3.1)

Assume that the following conditions hold:

(H,) The functions f; : [0, 1] x R?> — R are continuous, i = 1,2, ,k.
(H3) There exist functions &;(7), n:(1), ¥i(t) € C([0, 1], [0, +0)), such that

Ifi(T, u, V)| < &(T) + (D) O + (D) (D], i =1,2,--- ,k,

forall 7 € [0, 1] and u, v € R?.
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(H3) There exist functions w;(t) € C([0, 1], [0, +c0)), such that
[fi(m, u,v) = fi(m, ur, vl S wi(D(lu —wg| + v —vi]), i = 1,2, Lk,

for all T € [0, 1] and (u, v), (u;, v;) € R2.

For the convenience of calculation, the following symbols are given:

2 2 1 4
0 = + + + ;
FNa+3) Ta+1) Ta@-B+3) T(e+DIG-p)
2 4
0, =

+ .
INa+1) T+ DI'G-p)
Theorem 3.1. Assume that (H,) and (H;) hold, then system (2.1) allows at least one solution on [0,1],

provided that
k
Z 0; < 1,

i=1

where
k
0= [Mn; + 7wy + Qi D B+ pPu) + )]
Jj=1j#i
and
5407 4 42,07
A= Qo™ Q=37 + ———, Q;=22,05 + L
le pl F(3 ﬁ) J'OJ I“(3 _ﬁ)

Aj= @2 & = max &), nf = max [p(7)|, ¥ = max [y;(?)].
007, & = max [E(D)]. 7} = max Ip(0)l. ¥} = max [yi(0)
Proof. Let® = {z = (21,22, z1) € X5 ¢ |lzilly < r}, where r is chosen such that

o (A} + lezl,j;ti Aj-f;)
(1-X5,6)

then ® is a bounded and closed convex subset of the Banach space X*. We define A; and B; on ©® as

) (3.2)

Az, 22,z = (A1zi, 22, 2)(1), An(zis 22, 2)(T) L Ar(zrs 2, 5 2)(T)),
Bi(zi,22, ,z)(1) = (Bl(Zl,Zz, 2 )(T), Ba(z1, 20,0 z)(T) 0, B2, 22,0 ’Zk)(T))’

where
Az, 22, 2)(T)

= pr—z w+1 -8C .
T(a+ 2)f (- fi(s,2i(9), p; Dﬁ Zi(8))ds

a+2

a+1 -BC .
F(a+2)f(1 )™ (s, 2(9), 0,7 DG zi(s))ds
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a/+

2
+(1-1 )Z r( ) f (1= 9" fi(5.2(8). 0" D zj(5))ds

a+2
+(1-71 ) F( ) f (1= )" £i(s, 2:(5), 0,7 D] zi(5))d s
a+2
—(1-1% Z f (1-29)" 1fj(s z;(s), P BCZ)ﬁ 2j(8))ds
Jj=1,j#i

and

1 T
Bi(z1,22,+ , z)(7) =/1iP,-2f (I = $)zi(s)ds — ﬂiﬂ%f (t = 9)zi(s)ds
0 0

k
(=) > 40k

j=1,j#i
k
- 4ptz(1) = (1 =) ) Gp%,(1),
j=1

forallT €[0,1]and z = (21,20, - ,2k) € O.
Now, for every z = (21,22, "+ » ), Z = (1,22, -+ » %) € X¥, we have

|(A~z + Bi2)(7)|

(x+2
0z+1 . ) -BC .
F(a+2) f (1= )| fis. 2i(s), 07 T z))|ds
k a+2

e (r( ) g (5,290,077 T 2 ()| ds + 4,07 |z,-(1)|)

j=1

k
! ”""?fo (=9l 3 610 0]+ et [0
j=1,j#i
k a+2 e
' Z T [ = s s
k a/+2
Z‘ T@) f (1= )| fiCs. 2i(9), 0,7 T zi(s))|ds
a+2 B
SF(a'l+ 3)(61* 7 Il +piﬁ Zz lpz Izl + jz; /llp] ||ZJ||
k p(_t+2
J * % —B 2=
* Z T(a+ 1)(§j +1; Tl o7 1Zill
1 a+
*TaTD Z PTE + R )

J=1j#i
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NI TR A S BT A )
j=1j#i
a+2
T3 & ool >||zl||x)+alpl||zl||x+Zﬂ,p Izl
a+2
+j;}$lﬂjpjllzj|| +A,p,||z,||x+zr( e GRORY:
k a+2

p * - %
i Z T +1)(§ @ +0,0)

<z+2

* —ﬂ % '
e el uDlkl).

From this we can deduce the following:

I(Aiz + B2)()|
2 2 a+2 -8
S(F(a+ D T+ 3)) & + @7 + o UDlzillx) + 3407 Izl
a+2 «
JZJ:# [a + 1)(§ m; + )+ 2]‘;;&1 pr”Zl”x
2 2 a+2 -8
S[(1—‘(61/ +1) F(a/ + 3)) (n; +0; vi) + 3/11pz
k 2 a+2
* D (r( U E 22,0%)|r
J=Lj#i
2 2 af+2 a+2
+ (F(a +1) F(a + 3) . 1;;&1 T(a + 1) (3.3)

By Lemma 2.3 and (H,), we also can get
D) Aiz(r) + €D Bz(7)|

a+2
SW—M f (T = )P fils, 20(8), 0,7 D zl(9))|ds

-B k
1"(;_’3) Z fj/ljpi |Zj(]‘)|

+ r(zl_i’g) L (t— )P Zs)ds +

27F )
+ F(a)lf(3 —ﬁ) JP}HZI (1= )| (s, 259, P, el Zj(S))|dS

2127F
+
I'G-p)

k 02p
Z idp; |ZJ| + r(;_ﬁ)/li,@% |Zi]

J=1j#
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272 k 1 i
F(a/)lf(f) ~B) Z JP(]Hzf (1_S)a_l|fj(s»Zj(s),PjﬂCDg,SZj(S)ﬂds

e
+#23ﬁ_ﬁ) o™ f (1= 9)*"|fiCs, 20(), 7D} zi(9))|ds
SF(QL;@@ + 7 lzill + o w7 | D6 2 rélljg) Iz
F(a+1)2F(3 ﬁ)Zp‘”z(Sunj ‘D),z
. ]
T Ll g Y, el
T+ 1)2r(3 ﬂ),;:#pm(gu”j J% )
rmfﬁﬁé 5@+l + oG, 2.
By using similar computations, we obtain
I°D 4z + BA@)|
S[(F(a —1/3+3) r(a+1;1r(3 ,8)) CRUAT RN rf; ii)%ﬁ)]IIZillx
.
3 (e 7 + ree el

j=1j#i

1 4 +2 4 a+2 *
+(F(a—ﬂ+3)+F(a+1)F(3—,8))’ St Far TG =B Z P&

Jj=1,j#i
- F(oz B+3) F(oz + DHI'G -pB) F(S ﬁ)

oz+ . 4/11[)2
2(77] ‘ﬁwj) + ra _Jﬁ))]r

Jos 2 + o Py) +

12 F(a+l)F(3 B

1 (1+2§.

4 (1+2 s
+(F(a—ﬁ+3) T+ LG —5)) ’ &j- (3.4)

4
T+ DIG-B) Z Pi

j=Lj#i
From (3.3) and (3.4), we get

ITzllyx = ||(Aiz + B2)@)|| +||“D . (Aiz + B2)@)|

k
<02 + PN + Qi D (Qap 0T+ 0 U + Q)|+ Qe + D Qa7

k
j=1j#i j=1,j#i
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k k

<A +p P + Qi+ D A+ U+ Q)r+AE + YA

J=Lj#i j=1,j#i

S@,’I’ + Ni,

where
k
Ni = Alé:t* + Z A]é‘:;k, I = 1,2k
=1, #i

Hence,

k k k
T2l = D ITll < ) 6+ ) Ni<r,
i=1 i=1 i=1

and so A;(z) + B;(2) € O.
On the other hand, the continuity of A; follows from the continuity of functions f; (i = 1,2,--- , k).
Now, we show that the operator A; is uniformly bounded. For this, note that

|(Aiz(r) + D] Aiz(7)|

k k
<[Qip 20 +p U+ D Qo+ YD)+ QupiE + ) 0o

Jj=1,j#i Jj=1,j#i
k k
<[Am +pPun+ D Ay +p |+ ag + Y A
j=1,j#i J=1,j#i

This shows that the operator A; is uniformly bounded on ©.
Now, we show that the operator A; is compact on ®. Let 71,7, € (0, 1), 7| < 75, then we have

|Aiz(12) = Ajz(ry))|

a+2
_ a+1 _ atl * LT = )
e f (2 - 9N ds(E! + 7t llall + o720 €D 2l
(1+2
F(a+2)f (72 = )" ds(& + ] Wil + o, 9|2 )
pa+2
+(T2 TI)Z F( + 1)(§ 77] D‘g,‘rZ]“))
pa+2
+@ - Z SEESIIREL i1 )
Jj=1,j#i
p(1+2
+ @ =D el v ]
PIAE + () +p;’3¢,.>||zl~||x) e
= T(a +3) A
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Tl)

* T +1)Zp3’”(§ RURTIED!

)(Tz 1)

+2
*Tar DY (& + @ +p;

P E + (o +p;’*wf>||z,-||x)

2 2
Fat D) (t; —17) 3.5

and

€D} Az(r) - CD‘.?,,Aizm)l

a2 4o |lzll + o ;
P & +nillzill + p; oz B (g1 — P
Ta-B+2)
AR il + oD s
[(a—B+2)
20577 -1
Zp] i)
T+ 1)r(3 B) &
2(T -7 IB) - Q+2 (g * B, x C@B
* [@+ DI'G-p) Ilz;#pj (& +m; Wil Pozi D
200,77 - 17F) .
L p2 (& + 1} Izl + p; P € D6 zi)

F(a + DI'G3 - ,8)

pa+2 B - a .
Ta-ge5 & + 0+ YDl a - 1)
2 a+2 [ ex % — _ 2-8
F(a+ DI@3 - ,B)Zp (& + (5 +p; ")
2plq+2 * X B s 28 25
" Ta+ DG ﬁ)(€i+<m+p,- Ul )@ " =717
2 _
Z 5 E + iy +p; P ), (3.6)

F(a + DI'G-p) =

L,j#i

From (3.5) and (3.6), we get

|Aiz(2) — Aiz(T1)llx

2pl +2(é: + (nl +,0 ﬁkﬁ )”Zz”X))(T _ T2)
= C(a+1) C
p?+2(é‘:;< + (]71* +pl_ﬁlﬂ;k)||zl”X) T(z+2 _ T(z+2
(e +3) ’ 1
a+2

L P
I'(a-p+3)

)

& + (7 + PPzl (@S P2 = 207
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a+2

4p;
r(a + 1)r(3 B)

Z PFHE + (7 + P

=1,j#i

&+ + DNl @ P = 177F)

2
_Tl)

F(a +1),

4
T+ 1)rG-5

) Z PIE + O+ pUY)

j=1j#i

P

which implies [|A;z(12) — Aiz(t)lly — 0 as 7, — 7y, and so ||A;z2(12) — Aiz(t)llxyx — O as 7, — 7.
Thus, A; is equicontinuous and, by the Arzela-Ascoli theorem, we conclude that the operator A; is a

completely continuous operator.
Next, we prove that the operator B; is a contraction. Letting z,Z € ©®, we have

|Biz() — Biz(7)|

T 1
<Aip; f (1 = 9)1zi(s) = Zi(s)| ds + Aip; f (1 =) [zi(s) — Zi(s)lds
0 0

X k
(=) ) 6407 o (D = (D + (1 =) > 6403 [2(1) = 7,(D)|
=1

j=1j#i
k
+(1-17) €07 1zi(1) = Zi(D)]

j=1,j#i

<3402 llzi — Zl + 2 Z 40} |z - 2l

=1, j#i
and

D, Biz(r) - D), Bz(7)|

/Lpl 1-p _ 20278 & )
F(Z—ﬁ) (T - S) |Zi(S) - Zi(S)ldS + F(3 —ﬂ) Z fj/ljpj |Zj _
27>F * 272 B k
+ f /p] |Zj Z/|+ lp[ |Zl_ l
rG-p) ];# rG-p, %ﬁ
Aip; 2
< — |lz; = Zill + 0%z -z
1—*(3 _,8) 1—*(3 —ﬁ) j—zl J'OJ || J J“
k
24,07
2 = L It _
Nz~ 2l T Ty ki — &l
"o 20 il =2l g g e =

Thus, from (3.7) and (3.8), we get

1Bz - Billx = |Biz - Bzl + |9, Biz — “Df B

Z)|

(3.7)

(3.8)
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2 k

< (3/l,~p,2

j=1,j#i
k
<L Z llzi = z)|l,-
=

Furthermore, we obtain

gl 3 i+ ra—p k-l

k k
IBiz = BZllxe = ) Bz = Bally < Y Lille; = 2|
i=1 i=1

k
>, L; < 1, which means that ® is bounded. We use Theorem 2.2 to show that the operator 7" at least

i=1

has one fixed point, and then system (2.1) has at least one solution.

O

Theorem 3.2. Assume that (H,) and (H3) hold. Then system (2.1) has a unique solution on [0,1], that

is,
k k k
(22 W)+ 2,0 <1,
where
k
Ki= 010+l ) + 0y Z (0™ +
Jj=1,j#i
k
lp[
W, = m[ax [wi(1)|, 3/1’/)’ I'G-p) * ]zlzj“;tz

Proof. We will prove that T is a contraction mapping. For any z = (2, 22, -

X%, r €10,1]. By Eq (3.1), we get

|T:z(7) — T;z(7)|
a+2 a/+2
a+1
F(a+2) f (T —5) |f(s)|ds+ "

3.9
pi),
2
Jp]
s ve ,8))
9Zk)7 Z = (219229' °t 9Zk) €

f (1= 9™ fi(s)|ds

+ Aip; f (T =8 |zi(s) — Zi(s)l ds + /l,»pff (1 =) |zi(s) — zi(s)l ds

a+2
+(1-7 ) (1 — 9" fis)|ds + (1 =) f 0% (1) = Z;(D)|
F( )

j=1

k
+(1=7) Z A | (D = 2]+ (1 =) Y G D) = Z(D)

J=1j#i j=1,j#i
k a/+2
+(1-7° b f 1 —s)! d
( r)j:]Z#l fer ) 49 |7(9)|ds

AIMS Mathematics
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a+2

k
+A=7) ) = ’p’ f(l )" fis)|ds,

j=1j#i

where
fi = £i(5.2(5).0," D0 2(s)) = £i(5.2i(5).0," DY 2u(5)),
= fi(5:2(8), 07 D,25(9)) = fi(5.25(8). 0] T 29, 1= 1,2, k.
Now using assumption (Hz)and 1 — 7> <1 (0 <7 < 1), t;€(0,1),j=1,2,--- ,k, we have
|Tz(t) — T:Z(7)|

pa+2 pt.l_'B-Fz
<Fa s Wil =2l ey Wl - Tl
(1+2W
+ i i = 2l + Z/l!pj ”ZJ Z!” Z [C(a+1) ” Zj Z,“
1
k —ﬁ+2 "
Zl el * Z 45 e =zl
j=1j#i
k a+2 k (1+2
/L. 2 T _i i _i
+j;¢l p; llzi = Zill +J;¢l Ta+ D) ||ZJ Zjf + Z - 1) Iz -zl
—ﬁ+2 ' «Bs2
c p; W Cof L _Cof
JIZJ“# I'la+1) | OSZJ + JIZJ:# (o + 1) || O,SZl”
2W; . ) ]
5m<ﬂ?+2+pi P2l -zl + ||°TE 2 - €T )

k
£30pH -zl +2 Y 403 ||z -z

j=1j#i

T+ 1)(/0(2+2 PN = 2l + |25,z = <24 z)

Z 5+ 0P Wi(fy - 2| + 906,25 - “T0.2])

+F(a+1)

Z 0+ 05 OWill = 2|+ [T,z - 20,2

5
=1,j#i

F(a + 1) |)

Hence, for any z, 7 € X*, we obtain

Tz — T;Zl|
2 2 (04 a— _ _
S(1"(a + 3) * (o + 1))(.0‘ 24 p P IWillz - Zilly + 34021z — Zilly
2 Z JpJ”ZJ ZJ” F(a/+ ) Z (P(HZ _ﬂ+2)Wj||Zj —Z,“X. (3.10)
J=1.j#i J=1,j#i
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On the other hand, using Lemma 2.3,

D, Tiz(r) - “ D Tiz()|

a+2
Sr(a ﬁ+2>f = (“‘")'d” r2- ,B)f (7 =)' PLzi(s) = Z(s)l ds
2-p
r<3 ) Zm,p, F=3* fora 5 F(a)F(3 ﬁ) b 7+2f (1= 9" |fi(s)lds
2028 & 28 &
£ 2= 7] + £}l - %
r(3_’8)1':11';&1' PTG - B) jZIZ,j:#i !
2T2 i a+2 a—1
T T(@rG - ﬁ)}%ff f (1= 9| fi(s)lds
2‘1‘2 ﬁ[ 0z+2
1-— a-1 d
by using similar computations, we get
|}, Tiz(r) - “) T2
(p<_1+2 —,3+2) c B /1p2 B
_—F(a ,8+3) Widllzi — Zl||+|| bﬂ i~ 7Szi||)+ G5 llz: =zl
2

r(3 IB)ZAJPJ ||z, ZJ||+F(3

2
"Ta+1)rG-p 2

ﬁ),z 208 ||z - z,||+r(3 ﬁ)nzl zl

1,j#i

Z 5405 Wil - 2 + 26,2 - 26 2D

2 a2 B sl I 5 — Cof 3,
T+ G- ﬁ)j;¢,(pj+ 07 POW (|2 = zll + 06,25 - 26,z
2

(p§ " +p7_ﬁ+2)Wi(||Zi =zl + ||CD€’SZI' - CDﬁ,sZi

T+ 1rG-5 )

this implies that, for any z,z € X*,
c c -
125, Tiz - “25,. 7|

g1 4
_(F(a ﬁ 73 T+ 1)r(3 )

— 2 —
)0*2 + i P Willz; - Zlly

* oo ﬁ)nzl Zill + 75 ﬁ)jZ 407z -2,

1, j#i

4
T+ IG-p)

> @ w2, a1

Jj=1,j#i
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It follows from (3.10) and (3.11) that

IT:z = Tzllx = Tiz = Tl + |, Tiz — “D, T
2 2 1 4
S( + + +
INa+3) T@+1) T@-B8+3) T(a+DI3-p)

— 2 _
)0t + oL Wil = Zil

5/1 _ k 4/ljp2 _
+ (30! + 77 o IB))”Z’ et ZIZ;# (226} + p =gl 2l
2 4 £ )
a+2 a—B+ 1., _=.
+ (F(a +1) + (e + DI'G3 _ﬁ))j;# (pj to; )W/“Z./ ZJ“X
w2 | - 3 i0; _
<O + I Willzy — Zilly + (3] + G- ﬁ))nzl Zillx
k
@ 2 —,3+2 I, _=.
"2 P ,li’))”Z’ Ao ,IZ#,(’) o Wil =zl
From this it follows that
ITiz — Tizllx
k k k
<(Qi? +pI ) + 0 Z (07 +pi7*) Z Wi Z 2 =zl
j—l J#i i=1 J=1
3000 4 P 21 PV :
+ ( iP; + F(3 ﬁ) + jlz/#( ]p] r(3 IB) Z ||Z] - ZJ.||X

k k
=(K; Z Wi+ L) Z Iz - 2],
i=1 j=1

As a consequence, we obtain

k k k
Tz~ T2l = leTz—TZIIx O k(D W)+ > L)lles - 21
i=1 i=1 i=1

i=1

which, given condition (3.9), proves that operator 7 is a contraction. This implies that 7 has a unique
fixed point on X*, that is, system (2.1) has a unique solution on [0,1]. m]

4. Ulam type stability analysis
In this section, we introduce Ulam type stability concepts for system (2.1). Let g; > 0, f; : [0, 1] X

R? — R be continuous, and ®;(7) : [0, 1] — R* (r € [0, 1]) be nondecreasing. Consider the following
inequalities:

D5 (D + Aip])zi(T) — P fi(x, a(r)p‘*%ﬁ )| <&, i=1,2,- k, (4.1)
D (D + 4pD)zi(@) = pi 2 [ D), p; 7D ()| < By(D)ss, i = 1,2, Lk, (4.2)
6D + 1ip))z(7) - pi P i, zl(ﬂpﬁ%ﬁ ()| S O(D), i=1,2,-- k. (4.3)
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Definition 4.1. [23] System (2.1) is Ulam-Hyers stable if there exists a real number cy, 4,.. 5, > 0
such that, for each € = &(e1,&,---,&) > 0 and for each solution z = (21,22, , %) € X of
inequalities (4.1), there exists a solution 7 = (21,22, -+ ,Zx) € X of system (2.1) with

”Z - Z”X < Chipoo & T S [0, 1]

Definition 4.2. [23] System (2.1) is generalized Ulam-Hyers stable if there exists a function Yy, y, ... 5,
€ CR*,R") with Yy, 4,... ;,(0) = O such that, for each & = g(g),&,,--- , &) > 0 and for each solution
v = (21,22, ,2) € X of inequalities (4.2), there exists a solution 7 = (Z1,Z2, - ,%) € X of
system (2.1) with

”Z - Z”X < Tfl,fz,...,fk(s), TE [0, 1]
Definition 4.3. [23] System (2.1) is Ulam-Hyers-Rassias stable with respect to ® = ®(®y, ©,,--- , D)
€ C([0, 11, RY) if there exists a real number cy, , .. ; ® > 0 such that, for every € = e(&1, &2, -+ ,&) >0

and for each solution 7 = (21,22, ,z) € X of inequalities (4.2), there exists a solution 7 =
(Z1,22, -+ » 1) € X of system (2.1) with

lz = Zllx < chp ., €0(1), T €O, 1].

Definition 4.4. [23] System (2.1) is generalized Ulam-Hyers-Rassias stable with respect to ® =
O(Dy, Dy, -+, D) € C([0,1],R") if there exists a real number cy, 4,.. ,® > 0 such that, for each
solution 7z = (21,22, ,2) € X of inequalities (4.2), there exists a solution 7 = (Z1,Z2,*+ , ) € X of
system (2.1) with

”Z - Z”X < cfl,fz,'“,ﬁc,q)q)(T)’ T€[0,1].

Remark 4.1. A function z = (21,22, ,2) € X is a solution of (4.1), if there exist functions ¢; €
C([0, 1],R) which depend on z; such that

() gD <&, T€[0,1], i=1,2,--- ,k,
(if) D (D* + A4ip})zi(7) = P+ fi(T, zi(T),p;ﬁcﬁﬁJzi(T)) + i), TE[0, 1], i=1,2,--- k.

One can make similar Remarks for inequalities (4.2) and (4.3).

Lemma 4.1. [fz = 21,22+ ) € X is a solution of inequality (4.1), then the following inequalities
hold:
2 2 2 N
(T) — 0;(7)| < + i+ pi=12,--k
|Z (T) (T)l (F(Q + 3) F(Q + 1))8 F(a + 1) j_lzl.#sj :
and
|Cbﬂ Zi(T) —Cbﬂ 91(7_)| S( 1 + 4 )81’
0 07 [a@-B+3) T+ DHIG-p)
4 k
+ > .:1727'."](’
T(a+ I3 -p) Z ot
Jj=1,j#i
where
(T) =——— T—§ i(s)ds e a8)as
(@ +2) Jo Tl +2) Jo
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1 T
+ 2,07 f (1 = 5)6i(s)ds — 2,07 f (T — $)0i(s)ds
0 0
S 1 ! a—
+(1 —12)2;5,.(@]0 (1= 9" hy(s)ds - 1;p30,(1))
k

(=) > 6(0%0,0) - 2ip}61)

j=1,j#i

k 1 1 '
-(1-7) Z fj(@ﬁ (1 =) (hi(s) —h,-(s))ds), i=1,2,---,k

j=1j#i
and
hi(s) = P72 fi(s,2i(5), p; 7D 2ils), 0= 1,2, Lk,
hi(s) =} £i(s, 21(9),0,7CDp 2j(s), i = 1,2, k.
Proof. Given z is the solution of (4.1), then according to Remark 4.1 we have
€DF (D + AipH)z(T) = pe 2 fi(T, 2(0), p;PC D 2i() + i), i = 1,2, -k,

Z(0)=z(1)=0, 35, p722/(1)=0, i = 1,2, -k, (4.4)
ZA)=2/(1), i j=1,2,-k i #j

By Lemma 2.6, the solution of (4.4) is given by

1 ’ a+l 1 1 a+l
ey fo (0= )" 0s) + N5~ fo (1= Y™ i(s) + Bi(s))ds

7i(1) =

1 T
+ 2,07 f (1 = $)zi(s)ds — Aip} f (t — $)zi(s)ds
0 0

k 1 1
+(1-1% Z fj(@ j(; (1 =)' (hj(s) + ¢;(s))ds — ﬂipizj(l))

j=1
k
(=) > (k) - k()
j=1,j#i
2 : 1 : a—1
1= Y b [ 0970 + aods)
j=1,j#i 0
k 1 1
~(1-7 ) fj(@ fo (1= 9" (h(s) + ¢,(s))ds). (4.5)
j=1,j#i

From (4.5), we deduce that

2 1 < 1 1
i —9,' < i lic; ¢ i+ .g;
0 =00 = 737 T 1) Zj:] P St 2 e 24 O

j=1,j#i Jj=1,j#i
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11898

k

= (F(a+3) + T(a + 1)) T+ 1) Z Ej, 1 1,2, Jk

Jj=1,j#i

Similarly, applying the operator CD’gJ on (4.5), we have

Cc ) 1 fT _ ePprlog ‘ /lipiz ’ RN
EﬁTZz(T) S—F(a “552) Jo (t—3) (hi(s) + ¢i(s))ds + r2-5J, (=) "zi(s)ds
2028 & ) 2728 k 1 .

*TG-p) JZ:; Pz + m Z 51[ (1= )" (hj(s) + ¢;(s))ds
2T2_ﬂ 2 2 a—1
+ e _ﬁ)/lipizi(l) m f (1 = )" " (hi(s) + ¢:i(s))ds
2T2 i a—1
" T@IG-p) Z [ - s oonas
2078 &
+ t;A p zi(1), i=1,2,--- ,k.
r'G3-pA) ]:]z;‘il S

Then we have

D) 2i(7) = D} 6:(7)|

1 2 k ’
Sl“(a/—ﬁ+3) I'a+ DG - ,B)Z i€t F(a+l)F(3 B) Z ligj+ r(a+1)r(3_ﬁ)fi8i

J=Lj#i

1 4 4 ' = .o
S(F(a/ _ﬁ + 3) " F(a’ + 1)F(3 —ﬁ)) I"(a, + 1)1-*(3 ﬁ) JZ Ej, 1= 1,2, k.

1,j#i
The proof is completed. m|

Lemmad4.2. Ifz = (21,22, - , 2x) € X is the solution of inequality (4.2). then, the following inequalities
hold:

20; 20 (1 2
Iz,-(r)—e,-(r)ls(r( J(Z)Jrr( Ji 1))),9 farT Z £i®;(1), i=1,2,--- ,k
@ @ @ Jj=1j#i
and
c Di(7) 4(I)j(1)
0210 = 24, 610 ‘( ,3+3)+F(a+l)F(3 ﬁ))g"

k
F(Q’ + 1)1“(3 ﬂ) Z 1901(1), i=1,2,--- k.

J=1#i

Proof. The proof can be obtained using a similar analysis as in Lemma 4.1 and the fact that ®;(1)
i=1,2,---,kare nondecreasing functions. Therefore, the proof is omitted. O
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Theorem 4.1. Suppose that (H,), (H3), and (3.9) hold. If|A| < 1, for every A € C with det(Al — A) = 0,

then system (2.1) is Ulam-Hyers stable, where

Qo +m Q0+
Qoo +m Qo+ 1
A = ) .

Qoo +m Qrop + 1

and

oi = (p*? +P§l_'8+2)Wi, m = (3/11'/3? +

solution of the following BVP:

DY (D + Ap})2i(7) = 2 (T 200), 07O Z(D)), i = 1,2, k,
Z(0) =z(1) = 0, X, p;%z/(1) =0, i=1,2,--

M=), i,j= 1,2,- -k, i #J.

According to Lemma 2.6 and Theorem 3.1, the solution to Eq (4.6) can be expressed as

a

Zi(1) =

+2
(r+1
F(a/+2) f (r- £, 2(5), p; 7D Zi(9))ds

Q07 +
Qoo + 1y

Q0 + 1y

5/11',0,-2
ta-p)

-k,

<z+2
a+1 -8C '
F(a/+ 2) f (1= ) £i(s5.2:(5), 0,7 D) Zi(5))d s

+ 2,07 f (1 = )zi(s)ds — A0} f (T — 9)Zi(s)ds
0

k a+2
2

+(

J=1

k
(=) > 60300 - 4p2E(D))
Jj=1,j#i
k

(x+2
F (1= Z T f (1= 977 fi(s.7(5). 0, D} 2i(s))ds

Jj=Lj#i
k a+2
—(1 =72
-y = o
Jj=1,j#i

Now, by Lemma 4.1, for 7 € [0, 1], we have

|2:(7) — Zi(D] < 1zi(7) = 6i(D] + 16:(T) — Zi(7)]

2 2 2
( )'+r(a+1).

< + &£
I'a+3) T(a+1)

AIMS Mathematics

(e f (1= 5 £(5, 2109, 977 215 — ApP%(D)

f (1= 9" (5,209, 077 D Z())ds, i = 1,2,

J=Ly#

rG-p)
Proof. Letz = (21,22, ,zx) € X be the solution of inequality (4.1) and 7 = (1,22, - - -

k
2, °
—

,Zk) € X be the

(4.6)
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o 2,2
Ta+3) T+l

— 2 _
)52+ pI P Willz: - Zil

k
#3002k = Elle +2 Y 02— 5l

j=L#

F(a+l) Z 05 + 0 "Wl = 21

Jj=1,j#i

and

|70 2i(0) = TG 20| < |0, 2(0) = D00 + | D 6:() - D 77|

S( 1 N 4 Jor + 4 Zk: ‘
Da-p+3) Da+DIG-p/" " T+ DIG-p) 24,
1 4
" (F(oz—ﬁ+ 3 T+ 1)r(3 —,8)

—B+2 -
)i + P Willzi - Zilx

e ﬁ)llz, Zilly + r(3 5 Z 40z -z,

Jj=1,j#i

4 N i
* T T DTG =B ZS (040" W2, - 2,

Jj=1,j#i

Therefore, from (4.7) and (4.8), it follows that
I2:(T) = 2Ol = ||zi(0) = 2| + || D .2:() = €D ,z:(D)|

k 2
@ a- - iP; _
<015 + 0 j;ﬂaﬁglwi 2T Wilz = 2+ (3407 + 53T ﬁ))llz, Zillx
k 42,0 k ~
¢ ) ui s =gl 0 ) Wl -
j=Lj#i j=Lj#i
k 52,07
<Qigi+ @ Y e+ Qi(p* + o T HWillz: - Zilly + (3407 + m—_p’)nzi ~Zilx
j=1,j#i 2
k 5/1 2 k
+ Z (3/11[)3 @3- ﬁ))”zl Zl”x + O Z (pa+2 q_ﬁ+2)W/||Z.i - ZJ'||X
J=1j#i Jj=1,j#i
k k
<0i&+ O Z g+ 0i10illzi — Zilly + millzi — Zilly + Z 7Tj||Zj - Zj”X
J=Lj#i j=1,j#i
k
+ Q2 Z O'j”Zj _Zj”X'
j=1,j#i

Meanwhile, inequality (4.9) can also have the form

_ _ - T
(lz1 = Zillx, lz2 = Zallxs - -+ 5 2k — Zillx)

4.7)

(4.8)

4.9)
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T - -1 N\T
< B(e, &, s a) +Allzr — llx, - s llae — Zllx)”

where

Qh l:]’

B = (biixk> bij = { Or i %

Using matrix A and Theorem 2.1, we get

_ - =1 N\T
(llz1 = Zullxs llzz = Zallxs -+ 5 M2k = Zillx)

<U-A)"'Ber, e, L&), (4.10)
set
€11 Ci2 - Cik
C=(- ﬂ)_IB _ C C21 c Cok
Ck1 Cr2 " Cik

Obviously, ¢;; > 0. Choose € = max{gy, &, - , &}. Then it follows from (4.10) that

Iz = Zlly < (zk:

i=1 i

cij)e = E.. 4.11)

k
=1

Thus, system (2.1) is Ulam-Hyers stable. O

Remark 4.2. Take Yy, 4,.. s(€) = E; in (4.11). Obviously, we have Yy, 4, .. ;(0) = 0. Then, using
Definition 4.2, we conclude that system (2.1) is generalized Ulam-Hyers stable.

Theorem 4.2. Suppose that (H,), (H3), and (3.9) hold. Let ®,(t) € C([0,1],R*) (i =1,2,--- ,k) be
nondecreasing. If || < 1, for every A € C with det(Al — A) = 0, where A is defined as before and the
function @ is defined by

(D = (D((I)la(I)Za tte 7(1)/() € C([O’ 1]’R+)’ (I)(T) = max {gi(T),i = 1,2’ Tt ,k}

d
o ACO N 40;(1) L 200 200 )
Ta-B+3) I+ DIG-B) TL@+3) La+1)

then system (2.1) is Ulam-Hyers-Rassias stable with respect to @.

gi(m) = (

Proof. Assume that z = (21,22, ,%) € X is a solution of inequality (4.2). Also, let 7 =
(Z1,Z2,-++ ,Zx) € X be the unique solution of system (2.1). Then, combining Lemma 4.2 with an
analysis similar to that used to prove Theorem 4.1, we obtain

|z:(7) = Z2;(D)| < |z;(7) = 6,(7)| + |6:(7) — Z;(7)|
zq)i(T) 2CDJ(1) 2 k
S(F(a +3) T+ 1))‘9" T+ Z £i®,(1)

J=1j#i
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2 2
+ + a+2 + q—ﬂ+2 Wiz - z;
(F(a/ + 3) F(Q/ + 1))(pl P ) ”Z Z ”X
k
2 5 2 _
# 34l =zl +2 ) sl =zl
J=1j#i
2 k
+ 0_z+2+ q—ﬁ+2W_ =7 ’.:1,2’“.’]{
Ha+1) j=lj¢i(pj P e =zl

and

€D}, 2:(0) =D Z(D)] < “Df (D)= D}y 0:(D)] + “Df 0:(1) =D Z(7)]
S(Fw “p+3) T+ G- ﬁ>)‘9" T+ DG -5 Z £i®,(1)

j=1j#
1 4

a+2 a—3+2 Mo _ =
+(F(a—ﬁ+3) " ['a + 1)F(3_/3))(pi o " Willei = Zillx

S/Lpl2 _ 4 k i
' _B)”Zi = Zillx + F(3——ﬁ) Z ﬂjpinzj — Zj”X

J=1.j#i

+

i:1,2,"‘,k,

X’

4 k
+ q+2+ q—ﬁ+2 willz. — 5.
(e + DG - p) Z 4P 7 7) J”ZJ <

J=1g#i

Hence, from (4.12) and (4.13), we get
llzi(7) — Zi(DIl

20,(1)  2D,(1) 2 k
S(F(a/ +3) - INa + 1))8i + T(a+ 1) Z g;®;(1)

j=1j#i

2 2 a+2 a—f+2 _
e am a7 A7 Wik =l
k
+ 3207 llzi — Zillx + 2 Z 40z -z,

Jj=Lj#i

2 ¢ . o
* Ia+1) Z (p(sz P B+2)Wj||Zi - Zj”X, i=1,2,- k.

Jj=1,j#i

Similarly, one can obtain

26 2=z

(I),'(T) 4(1)1(1) 4 k
S(F(a -B+3) * I'a+ DI'3 —ﬁ))gi + T(@+ DG -p) Z £;®;(1)

Jj=1,j#i
1 4

+2 a—f3+2 M. _ 3.
* (F(a -B+3) " I+ DI _5))(’01' pi - IWillei — Zill

(4.12)

(4.13)

(4.14)
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52,07 4
e ﬁ)nzl Zll + F /3>,12,¢, 40|z - 7
k
F(a+1)r(3 5 2 @ W =2 =12,k (4.15)

j=1,j#i

From (4.14) and (4.15), we find that

12/(7) = Z(Dllx = llzi(r) = 2Ol + || D}, 2:(x)- D}y z:(7)

k
<gi(me + O Z ei(Dei+01illzi — Zilly + millzi — Zilly
j=L,j#i
k k
+ Z 7l =zl + 2 Z aillz; = zilly- (4.16)
J=1j#i j=1,j#i

We rewrite (4.16) as:

_ - = T
(lz1 = Zillxs llz2 = Zallxs -+ 5 llze — Zillx)

T _ — = T
< ‘B(T)(gla Ey vy gk) + ﬂ(“Zl - Zl”Xa ||Z2 - Z2||X’ T, ”Zk - Zk“X) )

where

(1), 1=,
B =Gy by ={ 575 17

Using matrix A and Theorem 2.1, we get
(lz1 = Zullxs llza = Zallys =+ s ek = Zllx)™ < (= A B(0)(er, €2, 80 (4.17)

and further, we define

ap app - A cii(m) cp(r) - cnl(r)
(I - ﬂ)_l _ 61.21 a.zz : Cl.zk O = CZI.(T) () - cul(T)
Ay Qo+ Qg ci(t) e - (D)

It is easy to verify that
a;; =20, ¢;j(t) =20, i,j=1,2,--- ,k

and

Di(1) &
Clj(T)_aljgj(T)+Q2(D (1) Z ai < alj+Q2 ( ) Z air)gj(T)a i’j: 1’2"" ’k'

r=1,r#j J( ) r=1r#j
Setting € = max{ey, &, - , &}, we have
-zl < Y > (ay+ Q== a)0(e. (4.18)
=1 i=1 8;(0) r=Lr#j
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Let . .
Chofore fis® = Z Z (a; + 0:®,(g™ (0) Z a).
Jj=1 i=1 r=1r#j
By Definition 4.3, system (2.1) is Ulam-Hyers-Rassias stable with respect to ®. O

Remark 4.3. Taking € = 1 in (4.18), we conclude using Definition 4.4 that system (2.1) is generalized
Ulam-Hyers-Rassias stable with respect to ©.

5. Example

(ST

Example 5.1. Consider the BVP (1.4) with @ = %, B
P2 =15: p3 = 5. and

fitt,u,v) = £+ 4(;‘3)2 + NSMV (t,u,v) € [0,01] X R X R,
Htu,v) =55+ + =5 (t,u,v) € [0,02] X R X R,
ftu,v) =20 + s (Lu,v) €0,03] XR X R,

2(z+4)‘

2(z+5)2

Using Lemma 2.5, we obtain the equivalent system

1/2 INS2( , -1/3 1/3
CD / (Z)z + 200)Z1(T) = ( ) ( 4% + (%) 3\/§f,r+2)c© / ZI(T)),

5/2(cost T =173
CDI/Z(DQ + 400)22(7) _ ( )/ ( + % + (4) 63’CDI/2Z2(T))

(5.1)

T -1/3
CDYAD? + 5)a(m) = (1) (277 + 522 + () s D 2s()).

21(0) = 25(0) = 23(0) = 2:(0) = 2(0) = z3(0) =
/(1) =7 (1) = Z{ (1), 9z{(1) + 1625 (1) + 2527 (1)

then
f(n) = 2. &0 = 5=, &0 =27,
1 1 1
m(r) = m, m(7) = W, n3(7) = m,
_ 1_]/3 5 -1/3 1/3
(1) = (2) —3\/5(7__'_2)’ Yo(1) = ( ) \/— Y3(1) = (5 ) 6r+2) +2)

5 1 % 1 % * 1 % 1 * 1 % * 5 * 1
Forte[0,1],wehave &l =<, &£ =3, =2, 0\ =5, 1, =15 13 =500 Y1 =¥5 =3, ¥5= 7. By
calculation, we get

Ly =0.06674, A; = 0.022, A; = 0.01664, Q; = 0.0317, Q; = 0.01168, N; = 0.1982,
L, = 0.06257, Ay = 0.022, A, = 0.01664, Q, = 0.01586, O, = 0.01168, N, = 0.1988,
Ly = 0.07842, A; = 0.1242, A3 = 0.09410, Q3 = 0.0317, &5 = 0.0234, N; = 0.2573,

so, we have

= A7 + 0,200 + Q1+ Ba(ps + 051 w5) + Cu + Ay + pPw) + Q5 = 0.2487,
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0, = Aoy + p5705) + Qo + A (7 + p,7w)) + Q1 + Mg + 037w + Q3 = 0.2445,
0y = As(7s + P70 + Qs + Ay (7 + o)) + Qo + Aoy + 3 w5) + Q= 0.2448,

and

i@,_0736<1 ZN 0.6543.

i=1

Thus,

3

>N, 0.6543

=1+ -

> = = 2.479.
"I 3 e 1-0736

According to Theorem 3.1, BVP (5.1) has at least one solution on [0,1].
Example 5.2. Consider the BVP (1.4) witha =1, B=1, k=3, 1 =L =3 =+, p1 =p2 = p3 =1,
and

fit,u,v) = cost +

(\[ )2(51 nu+v), (t,u,v) € [0,p1] X RXR,

fltouv) = L+ 25l + D, () € [0,02] X R XR,

fg(t,u,v):l+2t2+9%t}g) 1Ht+v) (t,u,v) € [0,p3] X R X R.

Using Lemma 2.5, we obtain the equivalent system

DD + 55)u (™) = (1) [cos T + (sinz (@) + (5D a @),

1
3(yr+3)

-1/3

DD + 3)2@ = (D)L + 2o50a@] + ()72 ),

(5.2)

CDI/Z(Z)Z + 250)23(7') = ( )5/2[1 +27° + 9(-,-+3)(m + ( )_1/3C®(1){3Z3(T))],
21(0) = 25(0) = z3(0) = z1(0) = 22(0) = z3(0) =
/(1) =27 (1) = 25 (1), 9z{(1) + 1627 (1) + 257} (1) =

and for 7 € [0, 1], u, v, u;, v; € R, we can conclude that

1
|f1(T, u,v) — fi(t,uy, v1)| < mdu ~ v| + |u1 - ),
|t u,v) = folr,up, vy)| < = ‘Fm(l =]+ |us = wi)),

2
|f3(T u,v) — f3(, ul,v1)| <% \-/|-_3) |u - v| + |u1 - i),

and so, we get

_ 1 R _2\2
wi(t) = m, wy(T) = m, wi(T) = 9+ 3)-

By simple calculation, we obtain

a=Q0;+m =0.1652, b = Q,o;+n; =0.1316, i = 1,2, 3,
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1
W, =W, = W3 = max [w(7)| = —, o1 =0, =03 =0.0202,
7€[0,1] 2

79
K] = Kz = K3 = 08467, L] = Lz = L3 = 004396, Ty =Ty =713 = 0.02531.

Then

(2 &) 2 W)+ iL,- =0.4450 < 1.

k k
i=1 i=1 i=1
Since all conditions of Theorem 3.2 have been satisfied, therefore, the system (5.2) has a unique
solution in [0,1]. Using the given value, we also have

0.1652 0.1316 0.1316
A=| 01316 0.1652 0.1316 |.
0.1316 0.1316 0.1652

Let
0 =det(AE — A) = (1—-0.4288)(1 — 0.034)2. (5.3)

Solving Eq (5.3) gives
A = 0.4288 < 1, A = /13 =0.034 < 1.

From Theorem 4.1 and Remark 4.2, it can be seen that the system (5.2) is Ulam-Hyers stable and
generalized Ulam-Hyers stable. Similarly, we obtain that system (5.2) is Ulam-Hyers-Rassia stable
and generalized Ulam-Hyers-Rassia stable.

6. Conclusions

This article discussed a class of nonlinear Caputo type higher-order fractional Langevin equations
on a star graph. By utilizing Lemmas 2.4 and 2.5, BVP (1.4) was transformed into system (2.1)
defined on the interval [0,1]. The existence and uniqueness of solutions are proven using fixed
point theorems, specifically the Krasnoselskii fixed point theorem and the Banach contraction
mapping principle. Furthermore, the Ulam-Hyers stability, Ulam-Hyers-Rassias stability, and their
generalized forms are explored based on Definitions 4.1-4.4, which may provide researchers with a
new approach to analyzing the Ulam stability of higher-order fractional differential equations. The
results presented in this article are new and extend some existing literature on this topic (see prior
references [10, 11, 15, 17, 23]). Finally, two examples demonstrated the application of the main
results. One promising avenue for future research is to explore fractional differential equations on
star graphs, including the fractional Sturm-Liouville equation, the fractional Langevin equation with
the p-Laplacian operator, and fractional integral-differential equations.
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