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inherent in autocorrelation frameworks demonstrated by various nonlinear time series, a novel
conceptualization emerges—the periodic threshold autoregressive stochastic volatility (PTAR-SV)
model. This model served as a viable alternative to the conventional periodic threshold generalized
autoregressive conditional heteroskedasticity (TGARCH) process. The inherent probabilistic
framework of the PTAR-SV model incorporated certain essential features, including strict periodic
stationarity, enhancing its analytical robustness. Additionally, this study established the conditions for
higher-order moments to exist within the PTAR-SV model. The autocovariance structure pertaining
to the powers of the PTAR-SV process has been studied. The process of parameter estimation
was scrutinized via the quasi-maximum likelihood technique. This estimation approach involved
assessing likelihood using prediction error decomposition and Kalman filtering. Moreover, we
extended our analysis to include a Bayesian Markov chain Monte Carlo (MCMC) method based on
Griddy-Gibbs sampling, particularly suitable when the distribution of model innovations follows a
standard Gaussian. Through a simulation study, we evaluated the performances of both the quasi-
maximum likelihood (QML) and Bayesian Griddy Gibbs estimates, providing valuable insights into
their respective strengths and weaknesses. Finally, we applied our newly developed methodology to
model the spot rates of the euro against the Algerian dinar, demonstrating its applicability and efficacy
in real-world financial modeling scenarios.
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1. Introduction

The understanding that financial returns’ volatility, or instantaneous variation, is not constant over
time is widely acknowledged. This phenomenon, often termed volatility clustering, manifests as a high
serial autocorrelation in return variances. Instantaneous change and volatility clustering is of particular
importance in financial time series analysis. A prominent tool for modeling volatility is the stochastic
volatility (SV) model, initially introduced by [1]. It stands as a credible alternative to the widely used
autoregressive conditional heteroskedasticity/generalized autoregressive conditional heteroskedasticity
(ARCH/GARCH) family of models. While both model families serve to analyze time-dependent
variances, they differ notably in construction. ARCH/GARCH models typically characterize time-
dependent variances by expressing volatility as a function of past observations or volatility, allowing
for one-step-ahead forecast. Conversely, SV modeling embraces the stochastic nature of volatility,
enabling it to evolve according to a stochastic process. Empirically, SV models offer greater flexibility
than ARCH/GARCH models due to the incorporation of an innovation term into the latent volatility
process [2, 3]. This enhances the model’s ability to capture the dynamics of real-world financial data
more accurately.

Moreover, extensive empirical research has identified an asymmetric volatility response to positive
and negative past returns. This characteristic, known as the leverage effect, was initially elucidated
by [4]. Essentially, financial markets exhibit heightened volatility in reaction to negative shocks,
often termed “bad news”, compared to equivalent-magnitude positive shocks, or “good news”. Despite
the efficacy of the basic versions of the GARCH and SV models, neither inherently accounts for the
leverage effect and asymmetry. This inherent limitation may constrain the applicability and accuracy
of each of these approaches in certain contexts.

To address the asymmetric responses to positive and negative returns, researchers have proposed
extensions to existing models. Research from [5] proposes an extension to the logGARCH model,
which captures such stylized facts by accommodating asymmetric responses. Similarly, [6] explores
asymmetric specifications of GARCH models. In the SV framework, incorporation of the leverage
effect and asymmetry can be achieved by introducing correlations between the volatility process noise
and the observation series noise [7]. This approach enhances the SV model’s ability to capture the
nuanced dynamics of financial markets, including asymmetric responses to market shocks.

Threshold models have made significant contributions to volatility modeling within deterministic
frameworks. Extending this concept to the SV framework would seem both intuitive and promising.
Breidt [8] introduced the threshold SV (TSV) model, integrating the threshold concept into SV
analysis. Drawing on Tong’s foundational work [9], the TSV model posits that volatility dynamics
switch between two regimes based on the nature of incoming information (good or bad). In each
regime, volatility is modeled using a first-order autoregressive process, with transitions between
regimes determined by the signs of lagged stock returns. So et al. [10] proposed a similar approach,
constructing a threshold SV model to capture both mean asymmetry and variance simultaneously. Chen
et al. [11] further generalized the TSV model by incorporating heavy-tailed error distributions. TSV
models have gained popularity for their efficacy in representing financial return volatility [12].

In the standard economic literature, numerous extensions have been suggested to incorporate
additional characteristics of time series data, such as long memory, simultaneous dependence, and
regime changes [13–17]. However, a significant portion of these approaches relies on fixed volatility
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parameters. This approach may fall short of explaining time series data characterized by volatility
that displays a periodic correlation pattern. Such patterns cannot be adequately modeled by TSV
models with parameters that remain constant over time. To overcome this constraint, researchers have
developed models that explicitly integrate periodicity into model parameters. This paper seeks to
explore a novel category of periodic volatility models known as periodic threshold autoregressive SV
(PTAR-SV) models. In PTAR-SV, the logarithm of volatility is represented using a first-order periodic
TAR model; this approach extends the PAR-SV models initially introduced by Aknouche [18] and also
considered by Boussaha and Hamdi [19]. Notably, the PAR-SV model presents certain distinctions
from the periodic SV (PSV) model proposed by Tsiakas [20]. It is crucial to note that in Tsiakas’
formulation, the parameters are represented as a combination of sine and cosine functions along
with suitable dummy variables. However, this representation only captures a particular scenario of
deterministic seasonality and does not provide a comprehensive explanation for periodically correlated
volatilities. Periodicity in SV models was first introduced by Tsiakas [20]. Although the periodic
SV model of Tsiakas [20] has many advantages, it only takes into account a kind of deterministic
periodicity. To model stochastic periodicity in SV models, Aknouche [18] proposed the periodic
autoregressive SV. The main contribution of the present manuscript is to allow for asymmetry in
periodic SVs by combining the works of Breidt [8] and Aknouche [18]. Let us delve into the PAR-SVs

process (Xt, t ∈ Z), defined on
(
Ω,=, P

)
and satisfying the factorization

Xt = et exp
(
1
2

ht

)
, (1.1)

where (et) represents a sequence of independent and identically distributed (i.i.d.) random variables;
these variables are defined on the same probability space; and the sequence (et) is characterized by
having a zero mean and unit variance. Furthermore, the periodic log-volatility process is

ht = α (t) + β (t) ht−1 + γ (t) ηt, (1.2)

where the parameters α (.) , β (.) , and γ (.) are functions that vary periodically with time t, the period
of this variation is denoted as s (i.e., ∀n ∈ Z, α (t) = α (t + ns) , and so on), and (ηt, t ∈ Z) is a sequence
of i.i.d.(0, 1), which achieves the following assumption:

Assumption 1. (et) and (ηt) are independent.

In this context, we introduce the PTAR-SVs. This is formulated as per Eq (1.1) with the periodic
log-volatility process, i.e.,

ht = α (t) +
(
β1 (t) I{Xt−1>0} + β2 (t) I{Xt−1≤0}

)
ht−1 + γ (t) ηt. (1.3)

In Eq (1.3), the functions α (.) , β1 (.) , β2 (.) , and γ (.) switch between s-seasons, denoted by α (.) =
s−1∑
l=0

α(l)I∆(l) (.), β1 (.) =

s−1∑
l=0

β1 (l) I∆(l) (.), β2 (.) =

s−1∑
l=0

β2 (l) I∆(l) (.) and γ (.) =

s−1∑
l=0

γ (l) I∆(l) (.), where

∆ (l) := {st + l, t}, while, as per Eq (1.3), it is possible to express them equivalently in a periodic
version, as follows:

hst+v = α (v) +
(
β1 (v) I{Xst+v−1>0} + β2 (v) I{Xst+v−1≤0}

)
hst+v−1 + γ (v) ηst+v, (1.4)
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for all v ∈ {1, ..., s}. Our model extends the scope of previous models, offering a more comprehensive
framework for volatility analysis. This model can be viewed as an extension of the work by Breidt [8]
in the standard TAR-SV models, when s = 1, and also to the symmetric PAR-SVs models, when
β1 (.) = β2 (.).

This paper is arranged in the following manner. Section 2 introduces the periodic linear state-
space representation and delves into certain probabilistic properties of the proposed model. Section 3
outlines a direct approach to addressing the estimation problem, employing a periodic Kalman filter.
Additionally, in Section 4, we introduce a Bayesian approach using the Griddy Gibbs sampler. The
performance of our proposed estimation method is then evaluated through a simulation study in
Section 5. Real-world applications to the spot rates of the euro against the Algerian dinar log-return
series are examined in Section 6. Finally, Section 7 presents the conclusions that can be drawn from
our study, while the proofs of the main results are provided in the appendices.

2. Probabilistic properties of PTAR-SVs

To enhance the statistical analysis of the proposed model, it is crucial to establish conditions
that ensure certain probabilistic properties of PTAR-SVs, which include periodic stationarity and the
presence of higher moments. To this end, many studies have been published on these properties, such as
the asymmetric standard case, i.e., TAR-SV1, (see, e.g., [8]) and the symmetric standard, i.e., AR-SV1

(see, e.g., [21], and references therein), or the symmetric periodic, i.e., PAR-SVs (see, e.g., [18, 19],
and references therein) cases. As is customary in the modeling of periodic time-varying systems, we
can now express the Eqs (1.1)–(1.4) in a convenient manner. This approach is similar to the one used
by Gladyshev [22] for periodic linear models. In this approach, a time-invariant multivariate random
coefficient AR-SV model is constructed by incorporating seasonal v, where v takes values from the
set {1, ..., s}. Consequently, our focus shifts to the analysis of the properties inherent to this model. To
clarify, if we define s-vectors X′n := (Xsn+1, ..., Xsn+s) , h′n := (hsn+1, ..., hsn+s) , and η′

n
:= (ηsn+1, ..., ηsn+s) ,

the model represented by (1.1)–(1.4) can be then by formulated as a multivariate random coefficient
AR-SV model,  Xn = ∆n exp

(
1
2hn

)
hn = Γ

(1)
n hn−1 + Λn + Γ

(2)
n η

n

, (2.1)

where ∆n := diag (esn+1, ..., esn+s) and Λn, Γ
(1)
n , and Γ

(2)
n are given by

Λ′n :=

α (1) , ...,
l−1∑
k=0

 k−1∏
v=0

ζsn+l−v

α (l − k)︸                          ︷︷                          ︸
l−times

, ...,

s−1∑
k=0

 k−1∏
v=0

ζsn+s−v

α (s − k)

 ,

Γ(1)
n :=



ζsn+1

ζsn+1ζsn+2

O(s,s−1)
...{

s−1∏
v=0
ζsn+v

}

, with ζn := β1 (n) I{en−1>0} + β2 (n) I{en−1≤0},
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Γ(2)
n :=



γ (1) 0 · · · 0
ζsn+2γ (1) γ (2) · · · 0
...

. . .
. . .

...{
s−2∏
v=0
ζsn+s−v

}
γ (1) · · · γ (s − 1) ζsn+s γ (s)


.

Here, O(n,m) signifies an n × m matrix in which all entries are zero and the function I{.} refers to
an indicator function. Deriving directly from the earlier equivalent formulation, we can deduce the
following properties:

2.1. Periodic stationarity

In this context, our current objective is to establish conditions that ensure the existence of a
uniquely strict stationary (in a periodic sense), as defined by Ghezal et al. [5, 23], for a PTAR-SVs

process. We will now initiate our investigation by examining the strict stationarity of the model
represented by Eq (2.1), utilizing a fundamental tool: The highest-Lyapunov exponent for random
matrices that are both independent and periodically distributed (i.p.d.). Given that the sequence{(

Γ
(1)
n ,Λn + Γ

(2)
n η

n

)
, n ∈ Z

}
is an i.p.d. sequence and both E

{
log+

∥∥∥Γ(1)
0

∥∥∥} and E
{
log+

∥∥∥∥Λ0 + Γ
(2)
0 η

0

∥∥∥∥}
are finite, where log+ (x) =

(
log x

)
∨0, based on Brandt’s Theorem [24] (also presented as Theorem 1.1

in Bougerol and Picard [25]), a condition sufficient for the model described by Eq (2.1) to exhibit a
non-anticipative strict stationarity solution is that the highest-Lyapunov exponent linked to the i.p.d.

sequence of matrices Γ := (Γ(1)
n , n ∈ Z) is defined, γ (Γ) := inf

m≥1

1
m

E
{

log

∥∥∥∥∥∥m−1∏
l=0

Γ
(1)
n−l

∥∥∥∥∥∥
}
< 0. To achieve the

desired objectives, taking a multiplicative norm, we can establish the following inequality:

γ (Γ) ≤ inf
n≥1

1
n

E

log

∣∣∣∣∣∣∣
sn−1∏
j=0

ζsn− j

∣∣∣∣∣∣∣
 = log

s∏
j=1

(δ |β1 ( j)| + (1 − δ) |β2 ( j)|) ,

where δ = P (e0 > 0) . We are now able to present a fundamental result that establishes a sufficient
condition for achieving strict periodic stationarity:

Theorem 1. The PTAR-SVs model, given by (1.1)–(1.4), features a unique, non-anticipative, strict
periodic stationarity and periodic ergodic solution. This solution, for t ∈ Z and v ∈ {1, ..., s} , is given
by:

Xst+v = est+v exp

2−1
∑
m≥0

m−1∏
l=0

ζst+v−l

 (α (v − m) + γ (v − m) ηst+v−m)

 , (2.2)

such as the series (2.2) converges almost surely, iff,

s∏
j=1

(δ |β1 ( j)| + (1 − δ) |β2 ( j)|) < 1. (2.3)

Example 1. In the following Table 1, we provide a summary of condition (2.3) for various specific
cases
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Table 1. Condition (2.3) for certain specifications.

Specification Condition (2.3)
Standard TAR-SV1 δ |β1 (1)| + (1 − δ) |β2 (1)| < 1 (c.f., Breidt [8])
Standard symmetric AR-SV1 |β1 (1)| < 1 (c.f., Francq and Zakoı̈an [26])
Symmetric PAR-SVs

∏s
j=1 |β1 ( j)| < 1 (c.f., Aknouche [18])

In the case of the PTAR-SVs model, the presence of explosive seasons, indicated by δ |β1 (v)| +
(1 − δ) |β2 (v)| ≥ 1, does not necessarily eliminate the possibility of having a strictly periodically
stationary solution. Specifically, when s = 2 and with certain parameter conditions such as
β1 (2) = 2β2 (1) = a, β1(1) + 1 = β2(2) = b, along with et { t(3), Figure 1 below illustrates the
regions of strict periodic stationarity.

-6 -4 -2 0 2 4 6

b

-6

-4

-2

0

2

4

6

a

Figure 1. The regions of strict periodic stationarity for the PTAR-SV (solid line) and strict
stationarity for the TAR-SV (dash-dot line).

Other properties, including periodic geometric ergodicity, strong mixing, and moments of the
PTAR-SVs model, are also provided.

2.2. Periodic geometric ergodicity and strong mixing

We now delve into the statistical properties of PTAR-SVs processes, focusing on periodic geometric
ergodicity and strong mixing. We initially establish that

(
hn, n ∈ Z

)
forms a Markov chain with a

state space (Rs,BRs) , where BRs represents the Borel σ-field on Rs. This Markov chain exhibits
time-homogeneous n-step transition probabilities, denoted as Pn

(
h, A

)
= P

(
hn ∈ A

∣∣∣h0 = h
)
, where

h ∈ Rs, B ∈ BRs , P1
(
h, B

)
= P

(
h, B

)
. The invariant probability of the Markov chain is defined as

π (A) =
∫

P
(
h, A

)
π
(
dh

)
. Furthermore, if λ is a Lebesgue measure on (Rs,BRs) , then

(
hn, n ∈ Z

)
is
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λ-irreducible and aperiodic. As a consequence,
(
hn, n ∈ Z

)
demonstrates the property of being strong

Feller (for a more detailed discussion, refer to Meyn and Tweedie’s work [27]). We can then state the
following result:

Theorem 2. Under the condition stated in (2.3), our process (Xt), described by Eqs (1.1)–(1.4), exhibits
geometric periodic ergodicity. Furthermore, if initialized from its invariant measure, (Xt) (resp., (ht))
demonstrates strict periodic stationarity and periodic β-mixing with exponential decay.

2.3. Moments of the PTAR-SVs model

If we assume that the distribution of (et, t ∈ Z) exhibits a symmetry property, this implies that the
odd-order moments of (Xt, t ∈ Z) exist and are zero. Furthermore, assuming that E

{
e2m

t

}
< ∞ for all

m ∈ N∗, we can calculate the even moments of (Xt, t ∈ Z) using well-established results related to the
log−normal distribution. The theorem summarizing these conditions can be presented as follows:

Theorem 3. Consider (Xt, t ∈ Z) to be a strict periodic stationarity solution to Eqs (1.1)–(1.4), where
E

{
e2m

t

}
< ∞, ∀m ∈ N∗ holds. A sufficient condition for E

{
X2m

t

}
to remain finite is:∏

l≥0

E
{
exp

(
m

{∏k−1

j=0
ζst+v− j

}
(α (v − k) + γ (v − k) ηst+v−k)

)}
< ∞ for v = 1, . . . , s. (2.4)

Additionally, the closed-form expression for the 2m-th moment of Xt is:

Ω(2m) (v) := E
{
X2m

st+v

}
= E

{
e2m

st+v

}∏
k≥0

E

exp

m
 k−1∏

j=0

ζst+v− j

 (α (v − k) + γ (v − k) ηst+v−k)


 .

We next present the autocovariance of the powered process. This autocovariance, denoted Ξ
(2m)
v,X (n) ,

is valuable for both model identification and the derivation of specific estimation methods. It is defined
as Ξ

(2m)
v,X (n) = E

{
X2m

st+vX2m
st+v−n

}
.

Theorem 4. Consider (Xt, t ∈ Z) to be a strict periodic stationarity solution to Eqs (1.1)–(1.4), where
E

{
e4m

t

}
< ∞ holds for any positive integer m. Under conditions (2.3), (2.4), and∏

k≥n

E

exp

m

1 +

 n−1∏
j=0

ζ−1
st+v− j



 k−1∏

j=0

ζst+v− j

 (α (v − k) + γ (v − k) ηst+v−k)



 < ∞,

for n ≥ 0, v = 1, . . . , s, we have

Ξ
(2m)
v,X (n) = Ξ(2m)

v,e (n) ×
n−1∏
k=0

E

exp

m
 k−1∏

j=n

ζst+v− j

 (α (v − k) + γ (v − k) ηst+v−k)




×
∏
k≥n

E

exp

m

1 +

 n−1∏
j=0

ζ−1
st+v− j



 k−1∏

j=0

ζst+v− j

 (α (v − k) + γ (v − k) ηst+v−k)



 .

Hence, the autocovariance function for the process
(
X2m

t , t ∈ Z,m ∈ N∗
)

can be expressed as follows:

Cov
(
X2m

st+v, X
2m
st+v−n

)
= Ξ

(2m)
v,X (n) −Ω(2m) (v) Ω(2m) (v − n) ,

for n ≥ 0, v = 1, . . . , s.
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3. QML estimation

Here, we discuss the implementation of the QML estimator (QMLE) based on the periodic Kalman
filter for estimating the parameters associated with the PTAR-SVs model. Let θ′ :=

(
θ1, ..., θs

)
∈ Θ ⊂

R4s, where θ′v :=
(
ϕ′

v
, γ (v)

)
, ϕ′

v
:= (α (v) , β1 (v) , β2 (v)) for all v ∈ {1, ..., s}. The actual parameter

value, symbolized by θ0 ∈ Θ, remains unknown and requires estimation. To undertake this task, let
X = {X1, ..., XsN} denote an observed sample from the distinct, causal, and strict periodic stationarity
solution of (1.1)–(1.4). It is sensible to describe the quasi-likelihood function for θ in the innovation
form, as follows:

log Lθ
(
X
)

= −
Ns
2

log (2π) −
1
2

s∑
v=1

N−1∑
t=0

log
(
E

{
ω̂2

st+v

})
+

ω̂2
st+v

E
{
ω̂2

st+v

} ,
where ω̂t represents the sample innovation at time t, defined as ω̂t = log

(
X2

t

)
− X̂ t|t−1, where X̂ t|t−1

denotes the optimal linear predictor of log
(
X2

t

)
based on the observations log

(
X2

1

)
, ..., log

(
X2

t−1

)
. A

QMLE of θ is identified as any measurable solution, denoted as θ̂n, such that:

θ̂n = argmax
θ∈Θ

log Lθ (X) . (3.1)

The optimal linear predictor is represented by X̂ t|t−1, and the mean square error Q t|t−1 =

E
{(̂

h t|t−1 − ht

)2
}

can be recursively computed using the periodic Kalman filter as follows:

ĥ t|t−1 = α (t) +
(
β1 (t) I{Λt−1>0} + β2 (t) I{Λt−1≤0}

)
Λt−1,

Λt = ĥ t|t−1 + Q t|t−1∆
−1
t

(
log

(
X2

t

)
− ĥ t|t−1 − E

{
log e2

0

})
,

Q t|t−1 = γ2 (t) +
(
β2

1 (t) I{Λt−1>0} + β2
2 (t) I{Λt−1≤0}

)
Γt−1,

Ωt = Q t|t−1 + var
(
log e2

0

)
,

Γt = Q t|t−1 − Q2
t|t−1Ω

−1
t , t = 2, ...,Ns,

with start-up values ĥ 1|0 = E {h1} and Q 1|0 = var (h1) .
The estimation of the unknown parameter is achieved by maximizing the quasi-log-likelihood

log Lθ
(
X
)
. However, explicit formulas for the estimates at the maximum of Lθ

(
X
)

are not readily
available, necessitating the application of numerical optimization methods.

It is crucial to highlight that, under appropriate conditions, the QMLE, θ̂n, which minimizes the loss
function − log Lθ

(
X
)
, has been demonstrated to be consistent and asymptotically normally distributed

(see Ljung [28]). The asymptotic covariance matrix has been established to be the inverse of the
asymptotic information matrix. In spite of these advantageous asymptotic properties, the efficacy of
the periodic Kalman filter and periodic Chandrasekhar filter recursions may diminish in situations that
deviate from normality or linearity. It is widely acknowledged that the QML estimator may not be
optimal in finite samples, leading researchers to explore Monte Carlo-based approximations. This is
particularly relevant to enhancing performance, especially in the context of state-space models such as
SV models.

AIMS Mathematics Volume 9, Issue 5, 11805–11832.



11813

Embarking on the exploration of maximum likelihood through the expectation-maximization (EM)
algorithm, augmented with particle filters and smoothers, marks a significant step forward in enhancing
the robustness of parameter estimation in the context of nonlinear and/or non-Gaussian state-space
models. Particle filters, recognized as sequential Monte Carlo methods, present a potent alternative
to the conventional Kalman filter, especially when confronted with optimal estimation challenges
within nonlinear/non-Gaussian state-space frameworks. Comprehensive surveys of particle methods
are available in Arulampalam et al. [29] and Doucet et al. [30], offering valuable insights into their
applications and methodologies.

To delve deeper into the application of these methodologies, we turn our attention to the linearized
representation obtained by taking the logarithm of X2

sn+v in the assumed periodically stationary PTAR-
SV model. Let h = {h0, h1, ..., hsN} and χ =

{
log X2

1 , ..., log X2
sN

}
represent vectors containing complete

data and log−volatility data, respectively. Given a specific realization of h, the complete log-likelihood
function for the parameter θ can be formulated in the following manner:

log Lθ
(
h, χ

)
= D −

1
2

(
(h0 − κ0) τ−1

0

)2
−

1
2

log τ2
0 −

N
2

s∑
v=1

log γ2 (v)

−
1
2

s∑
v=1

N−1∑
t=0

exp
(
log X2

st+v − hst+v

)
+

1
2

s∑
v=1

N−1∑
t=0

(
log X2

st+v − hst+v

)
−

1
2

s∑
v=1

N−1∑
t=0

(
hst+v − α (v) −

(
β1 (v) I{Xst+v−1>0} + β2 (v) I{Xst+v−1<0}

)
hst+v−1

)2 γ−2 (v) ,

where D represents a constant that is independent of θ and h0 follows a Gaussian distributionN
(
κ0, τ

2
0

)
.

In instances of incomplete data, a widely adopted approach to parameter estimation is the recursive
EM algorithm (see Dempster et al. [31]). This iterative method is recognized for its versatility
in computing maximum likelihood estimation (MLE). The EM algorithm is iterative, generating a
sequence of values θ̂(l), l ≥ 1, which progressively refine the MLE. The algorithm consists of two
primary steps: An expectation step (E-step) followed by a maximization step (M-step). At the outset
of the i-th iteration, parameters are estimated from the preceding iteration, (̂θ(l−1)). The E-step involves
the definition of the E (., .) function, an integral component of the EM algorithm,

E
(
θ, θ̂(l−1)

)
= E

{
log Lθ

(
h, χ

)∣∣∣∣ h, χ, θ̂(l−1)

}
(3.2)

= D −
1
2

((
h0,sN − κ0

)2
+ H0,sN

)
τ−2

0 −
1
2

log τ2
0 −

N
2

s∑
v=1

log γ2 (v)

−
1
2

s∑
v=1

N−1∑
t=0

E
{

exp
(
log X2

st+v − hst+v

)∣∣∣∣ h, χ, θ̂(l−1)

}
+

1
2

s∑
v=1

N−1∑
t=0

(
log X2

st+v − hst+v,sN

)

−
1
2

s∑
v=1

N−1∑
t=0


(
hst+v,Ns − α (v) −

(
β1 (v) I{est+v−1>0} + β2 (v) I{est+v−1<0}

)
hst+v−1,Ns

)2

+Hst+v,Ns +
(
β2

1 (v) I{est+v−1>0} + β2
2 (v) I{est+v−1<0}

)
Hst+v−1,Ns

−2
(
β1 (v) I{est+v−1>0} + β2 (v) I{est+v−1<0}

)
H(Ns)

st+v,st+v−1

 γ−2 (v) ,

where

ht,Ns = E
{
ht| h, χ, θ̂(l−1)

}
,
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Ht,Ns = E
{(

ht − ht,Ns
)2
∣∣∣ h, χ, θ̂(l−1)

}
,

H(Ns)
t,t−1 = E

{(
ht − ht,Ns

) (
ht−1 − ht−1,Ns

)∣∣∣ h, χ, θ̂(l−1)

}
.

Prior to the transition to the M-step, a crucial prerequisite is the evaluation of various quantities,

including E
{

exp
(
log X2

st+v − hst+v

)∣∣∣∣ h, χ, θ̂(l−1)

}
, ht,Ns, Ht,Ns, and H(Ns)

t,t−1. These quantities can be
sequentially approximated over time through the application of particle filtering and smoothing
algorithms—an extension of Kim and Stoffer’s approach [16]. To tackle this task, we employ the
particle filter algorithm, as outlined below:

Particle Filter Algorithm for PTAR-SV:

i. Initialization: Set M as the number of the particles, the initial distribution g(l)
0 ∼ P0(h0) with

u(l)
0 = M−1, l = 1, . . . ,M.

ii. Particle prediction: For t ≥ 1 and l = 1, . . . ,M :

1) Generate η(l)
t ∼ N(0, 1).

2) Calculate P(l)
t = α (t) +

(
β1 (t) I{et−1>0} + β2 (t) I{et−1<0}

)
g(l)

t−1 + γ (t) η(l)
t .

iii. Weight update:

u(l)
t = u(l)

t−1P
(
log X2

t

∣∣∣ P(l)
t

)
∝ u(l)

t−1 exp
(
−X2

t exp
(
−P(l)

t

)
/2

)
× exp

((
log X2

t − P(l)
t

)
/2

)
.

iv. Normalize the importance weights: Compute ũ(l)
t =

(
M∑

l=1
u(l)

t

)−1

× u(l)
t , for l = 1, . . . ,M.

v. Compute the measure of degeneracy: ne f f =

(
M∑

l=1

(̃
u(l)

t

)2
)−1

. If ne f f ≤ nT (typically 2nT =

M), resample with replacement M equally weighted particles
{
g(l)

t , l = 1, . . . ,M
}

from the set{
P(l)

t , l = 1, ....,M
}

according to the normalized weights, or else g(.)
t = P(.)

t .

vi. Assign the particle: Assign the particle set
{
g(l)

t , l = 1, . . . ,M
}

a weight
{̃
u(l)

t , l = 1, . . . ,M
}
.

The subsequent particle smoothing algorithm is devised to incorporate information available after a

time t, providing approximations for the required quantities E
{

exp
(
log X2

st+v − hst+v

)∣∣∣∣ h, χ, θ̂(l−1)

}
, ht,Ns,

Ht,Ns and H(Ns)
t,t−1 essential for the E-step.

Particle Smoothing Algorithm for PTAR-SV:

i. Initialization: For each l = 1, . . . ,M, choose q(l)
t based on the function g(l)

t with a probability ũ(l)
t .

Set Ũ (l)
t = M−1.

ii. Particle Smoothing Iteration: For t ≥ 1 and l = 1, . . . ,M :

1) Calculate the smoothed weights: For m = 1, . . . ,M :

U (m)
t−1|t = ũ(m)

t−1 exp
(
−

(
q(l)

t − α (t) −
(
β1 (t) I{et−1>0} + β2 (t) I{et−1<0}

)
g(m)

t−1

)2
/

2γ2 (t)
)
.
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2) Normalize the modified weights: For m = 1, . . . ,M :

Ũ (m)
t−1|t =

 M∑
l=1

U (l)
t−1|t

−1

× U (m)
t−1|t .

3) Choose q(l)
t−1 = g(m)

t−1, with a probability Ũ (m)
t−1|t .

iii. Final Computation: Compute

E
{

exp
(
log X2̂

t − ht

)∣∣∣∣∣ h, χ, θ̂(l−1)

}
= M−1

M∑
l=1

exp
(
log X2

t − q(l)
t

)
,

ĥt,Ns = M−1
M∑

l=1

q(l)
t , Ĥt,Ns = (M − 1)−1

M∑
l=1

(
q(l)

t − ĥt,Ns

)2
,

and

Ĥ(Ns)
t,t−1 = M−1

M∑
l=1

(
q(l)

t − ĥt,Ns

) (
q(l)

t−1 − ĥt−1,Ns

)
.

After substituting the approximations for ht,Ns, Ht,Ns, and H(Ns)
t,t−1, we proceed to the M-step, where

the updated parameter θ̂(l) can be obtained by maximizing the E (., .)-function with respect to θ given
the previous estimate θ̂(l−1). This is expressed as:

θ̂(l) = arg max
θ

E
(
θ, θ̂(l−1)

)
.

The first-order derivatives of Eq (3.2), with respect to the unknown parameters α (v) , β1 (v), β2 (v) , and
γ (v) for v = 1, ...., s, are provided below:

∂

∂β1 (v)
E

(
θ, θ̂(l−1)

)
=

N−1∑
t=0

( (
hst+v,Ns − α (v) − β1 (v) I{est+v−1>0}hst+v−1,Ns

)
I{est+v−1>0}hst+v−1,Ns

−β1 (v) I{est+v−1>0}Hst+v−1,Ns + I{est+v−1>0}H
(Ns)
st+v,st+v−1

)
γ−2 (v) ,

∂

∂β2 (v)
E

(
θ, θ̂(l−1)

)
=

N−1∑
t=0

( (
hst+v,Ns − α (v) − β2 (v) I{est+v−1<0}hst+v−1,Ns

)
I{est+v−1<0}hst+v−1,Ns

−β2 (v) I{est+v−1<0}Hst+v−1,Ns + I{est+v−1<0}H
(Ns)
st+v,st+v−1

)
γ−2 (v) ,

∂

∂α (v)
E

(
θ, θ̂(l−1)

)
=

N−1∑
t=0

(
hst+v,Ns − α (v) −

(
β1 (v) I{est+v−1>0} + β2 (v) I{est+v−1<0}

)
hst+v−1,Ns

)
γ−2 (v) ,

∂

∂γ (v)
E

(
θ, θ̂(l−1)

)
= −Nγ−1 (v) + γ−3 (v)

N−1∑
t=0

(
hst+v,Ns − α (v)
−

(
β1 (v) I{est+v−1>0} + β2 (v) I{est+v−1<0}

)
hst+v−1,Ns

)2

+ γ−3 (v)
N−1∑
t=0

 Hst+v,Ns +
(
β2

1 (v) I{est+v−1>0} + β2
2 (v) I{est+v−1<0}

)
Hst+v−1,Ns

−2
(
β1 (v) I{est+v−1>0} + β2 (v) I{est+v−1<0}

)
H(Ns)

st+v,st+v−1

 .
Therefore, at the l-th iteration, the parameter estimates for α (v) , β1 (v), β2 (v) , and γ (v) can be

obtained by solving the following equations:
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∂

∂α (v)
E

(
θ, θ̂(l−1)

)
= 0,

∂

∂β1 (v)
E

(
θ, θ̂(l−1)

)
= 0,

∂

∂β2 (v)
E

(
θ, θ̂(l−1)

)
= 0,

∂

∂γ (v)
E

(
θ, θ̂(l−1)

)
= 0.

The closed-form solutions for the above equations provide the updated parameter estimates at the m-th
iteration

β̂(m)
1 (v) =

4∑
j=1

L j (v)
/ 7∑

j=5

L j (v) , β̂(m)
2 (v) =

4∑
j=1

L̃ j (v)
/ 7∑

j=5

L̃ j (v) ,

α̂(m) (v) = N−1
N−1∑
t=0

hst+v,Ns − N−1
N−1∑
t=0

(̂
β(m)

1 (v) I{est+v−1>0} + β̂(m)
2 (v) I{est+v−1<0}

)
hst+v−1,Ns,

γ̂(m) (v) =

N−1
N−1∑
t=0

(
hst+v,Ns − α̂

(m) (v) −
(̂
β(m)

1 (v) I{est+v−1>0} + β̂(m)
2 (v) I{est+v−1<0}

)
hst+v−1,Ns

)2

+ N−1
N−1∑
t=0

Hst+v,Ns + N−1
N−1∑
t=0

((̂
β(m)

1 (v)
)2
I{est+v−1>0} +

(̂
β(m)

2 (v)
)2
I{est+v−1<0}

)
Hst+v−1,Ns

−2
N−1∑
t=0

(̂
β(m)

1 (v) I{est+v−1>0} + β̂(m)
2 (v) I{est+v−1<0}

)
H(Ns)

st+v,st+v−1

1/2

,

where

L1 (v) = N−1

N−1∑
t=0

hst+v,Nshst+v−1,NsI{est+v−1<0} +

N−1∑
t=0

H(Ns)
st+v,st+v−1I{est+v−1<0}


×

N−1∑
t=0

hst+v−1,NsI{est+v−1<0}

 N−1∑
t=0

hst+v−1,NsI{est+v−1>0}

 ,
L2 (v) =

N−1∑
t=0

H(Ns)
st+v,st+v−1I{est+v−1>0} +

N−1∑
t=0

hst+v,Nshst+v−1,NsI{est+v−1>0}


×

N−1∑
t=0

Hst+v−1,NsI{est+v−1<0} +

N−1∑
t=0

h2
st+v−1,NsI{est+v−1<0}

 ,
L3 (v) = −N−1

N−1∑
t=0

H(Ns)
st+v,st+v−1I{est+v−1>0} +

N−1∑
t=0

hst+v,Nshst+v−1,NsI{est+v−1>0}


×

N−1∑
t=0

hst+v−1,NsI{est+v−1<0}

2

,

L4 (v) = −N−1

N−1∑
t=0

hst+v,Ns

 N−1∑
t=0

hst+v−1,NsI{est+v−1>0}


×

N−1∑
t=0

Hst+v−1,NsI{est+v−1<0} +

N−1∑
t=0

h2
st+v−1,NsI{est+v−1<0}

 ,
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L5 (v) =

N−1∑
t=0

Hst+v−1,NsI{est+v−1>0} +

N−1∑
t=0

h2
st+v−1,NsI{est+v−1>0}


×

N−1∑
t=0

Hst+v−1,NsI{est+v−1<0} +

N−1∑
t=0

h2
st+v−1,NsI{est+v−1<0}

 ,
L6 (v) = −N−1

N−1∑
t=0

hst+v−1,NsI{est+v−1>0}

2 N−1∑
t=0

Hst+v−1,NsI{est+v−1<0} +

N−1∑
t=0

h2
st+v−1,NsI{est+v−1<0}

 ,
L7 (v) = −N−1

N−1∑
t=0

Hst+v−1,NsI{est+v−1>0} +

N−1∑
t=0

h2
st+v−1,NsI{est+v−1>0}

 N−1∑
t=0

hst+v−1,NsI{est+v−1<0}

2

,

and

L̃1 (v) = N−1

N−1∑
t=0

hst+v,Nshst+v−1,NsI{est+v−1>0} +

N−1∑
t=0

H(Ns)
st+v,st+v−1I{est+v−1>0}


×

N−1∑
t=0

hst+v−1,NsI{est+v−1<0}

 N−1∑
t=0

hst+v−1,NsI{est+v−1>0}

 ,
L̃2 (v) =

N−1∑
t=0

hst+v,Nshst+v−1,NsI{est+v−1<0} +

N−1∑
t=0

H(Ns)
st+v,st+v−1I{est+v−1<0}


×

N−1∑
t=0

Hst+v−1,NsI{est+v−1>0} +

N−1∑
t=0

h2
st+v−1,NsI{est+v−1>0}

 ,
L̃3 (v) = −N−1

N−1∑
t=0

hst+v,Nshst+v−1,NsI{est+v−1<0} +

N−1∑
t=0

H(Ns)
st+v,st+v−1I{est+v−1<0}


×

N−1∑
t=0

hst+v−1,NsI{est+v−1>0}

2

,

L̃4 (v) = −N−1

N−1∑
t=0

hst+v−1,NsI{est+v−1<0}

 N−1∑
t=0

hst+v,Ns


×

N−1∑
t=0

Hst+v−1,NsI{est+v−1>0} +

N−1∑
t=0

h2
st+v−1,NsI{est+v−1>0}

 ,
L̃5 (v) =

N−1∑
t=0

Hst+v−1,NsI{est+v−1<0} +

N−1∑
t=0

h2
st+v−1,NsI{est+v−1<0}


×

N−1∑
t=0

Hst+v−1,NsI{est+v−1>0} +

N−1∑
t=0

h2
st+v−1,NsI{est+v−1>0}

 ,
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L̃6 (v) = −N−1

N−1∑
t=0

Hst+v−1,NsI{est+v−1<0} +

N−1∑
t=0

h2
st+v−1,NsI{est+v−1<0}

 N−1∑
t=0

hst+v−1,NsI{est+v−1>0}

2

,

L̃7 (v) = −N−1

N−1∑
t=0

hst+v−1,NsI{est+v−1<0}

2 N−1∑
t=0

Hst+v−1,NsI{est+v−1>0} +

N−1∑
t=0

h2
st+v−1,NsI{est+v−1>0}

 .
Remark 1. The asymptotic properties of periodic volatility models are examined under general
regularity conditions by several authors, particularly by Aknouche et al. [40, 41], so the consistency
and asymptotic normality of the QMLE can be determined by employing the standard theory of models
with time-invariant parameters (see Dunsmuir, [32]). This is evident when examining the (2.1) model.
To achieve this, we refer to the corresponding multivariate time-invariant model presented in (2.1),
which we transform into a linear form, as follows: Zn = hn + Υn

hn = Γ
(1)
n hn−1 + Λn + Γ

(2)
n η

n

, (3.3)

where Z′n :=
(
log

(
X2

sn+1

)
, ..., log

(
X2

sn+s

))
and Υ′n :=

(
log

(
e2

sn+1

)
, ..., log

(
e2

sn+s

))
. Utilizing (3.3), we can

apply the theory presented by Dunsmuir [32] to determine the QMLE’s asymptotic variance under the

condition of finite moments E
{(

log
(
X2

sn+1

))4
}

(see also Ruiz et al., [13, 33]).

4. Bayesian MCMC estimation

In the Bayesian MCMC estimation, we consider the parameter θ, and the unobserved volatilities
h′ = (h1, h2, ..., hsN) in the model described by Eqs (1.1)–(1.4) are treated as random variables with
a prior distribution, denoted by g(h, θ). The objective is to infer the joint posterior distribution,
g(h, θ

∣∣∣X ), given a series X generated from the Eqs. (1.1)-(1.4) with Gaussian innovations. Assuming
independence among the parameters h, ϕ′ :=

(
ϕ′

1
, ϕ′

2
, ..., ϕ′

s

)
, ξ′ :=

(
γ2

1, γ
2
2, ..., γ

2
s

)
, due to the periodic

structure of the PT AR − S V model, Gibbs sampling can be employed to estimate the joint posterior
distribution. The Gibbs sampler involves drawing samples from conditional posterior distributions,
such as g(ϕ

∣∣∣∣ξ, X, h ), g(γ2
v

∣∣∣∣ϕ, γ2
−{v}
, X, h ) for v = 1, ..., s), and g(h

∣∣∣∣ϕ, ξ, X ), where h
−{t} comprises all

elements of the vector h except for the t-th element, ht. Sampling directly from g(ht

∣∣∣∣ϕ, ξ, X, h−{t} ) is
complex, but we here adopt the Griddy-Gibbs procedure, a simpler implementation in the periodic
context compared to the Metropolis-Hastings chain (for further discussion on this topic, readers can
refer to [34, 35]).

4.1. Gibbs sampler: Analyzing the prior and posterior distributions

In the analysis of the prior and posterior distributions within the Gibbs sampler framework,
the first step of sampling, we focus on the sampling process of the parameter ϕ. Before delving

into the conditional posterior distribution, denoted by g(ϕ
∣∣∣∣ξ, X, h ), derived from conjugate prior

distributions and linear regression theory, we express the PT AR equation as a standard linear
regression. Specifically, by defining

S st+v :=
(
O(1,3(v−1)), 1, hst+v−1I{est+v−1>0}, hst+v−1I{est+v−1<0},O(1,3(s−v))

)
,
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the model (1.1)–(1.4) can be reformulated into the following periodically linear regression:

hst+v = S st+vϕ + γ (v) ηst+v, v = 1, ..., s, t = 0, ...,N − 1.

Alternatively, it can also be represented as a standard regression:

γ−1 (v) hst+v = γ−1 (v) S st+vϕ + ηst+v, v = 1, ..., s, t = 0, ...,N − 1, (4.1)

where the errors follow i.i.d. Gaussian distributions. Assuming knowledge of the γ (v) , v = 1, ..., s and
the initial observation h0, the least squares estimate ϕ̂

WLS E
of ϕ, based on (4.1), takes the form:

ϕ̂
WLS E

=

 ∑
0≤t≤N−1

∑
1≤v≤s

γ−2 (v) S ′st+vS st+v

−1 ∑
0≤t≤N−1

∑
1≤v≤s

γ−2 (v) S ′st+vhst+v.

This estimate follows a normal distribution
(
ϕ,Cov

)
, where

Cov−1 =
∑

0≤t≤N−1

∑
1≤v≤s

γ−2 (v) S ′st+vS st+v.

Under (4.1), the data’s information about ϕ is encapsulated in the weighted least squares estimate

ϕ̂
WLS E

. To derive a closed-form expression for the conditional posterior g(ϕ
∣∣∣∣ξ, X, h ), we employ a

Gaussian conjugate prior for ϕ. Specifically, the prior distribution is Gaussian, denoted ϕ ∼ N(ϕ◦,Ψ◦),
where ϕ◦ and Ψ◦ are known hyperparameters tailored to yield a suitably diffuse yet informative

prior. Thus, utilizing standard regression theory, the conditional posterior distribution of ϕ
∣∣∣∣ξ, X, h

is Gaussian, and denoted as
ϕ
∣∣∣∣ξ, X, h ∼ N(ϕ,Ψ), (4.2)

where

Ψ
−1

=
∑

0≤t≤N−1

∑
1≤v≤s

γ−2 (v) S ′st+vS st+v + (Ψ◦)−1 , Ψ
−1
ϕ =

∑
0≤t≤N−1

∑
1≤v≤s

γ−2 (v) S ′st+vhst+v + (Ψ◦)−1 ϕ◦. (4.3)

A couple of observations are warranted:

a. The block diagonal form of the matrix Cov is mirrored in Ψ◦, assuming it is also block diagonal.
This implies that assuming the seasonal parameters ϕ

1
, ϕ

2
, . . . , ϕ

s
are independent of each other,

each has a conjugate prior with appropriate hyperparameters, facilitating the same result.
b. Enhanced computational efficiency and stability in deriving ϕ and Ψ can be achieved by setting

ϕ = ϕ
sN

, Ψ = ΨsN , and iteratively computing these quantities using the recursive least squares
algorithm

ϕ
st+v

= ϕ
st+v−1

+ Ψst+v−1S ′st+v

(
hst+v − S st+v−1ϕst+v−1

) (
γ2 (v) + S st+v−1Ψ

−1
st+v−1S ′st+v

)−1
, (4.4)

Ψ
−1
st+v = Ψ

−1
st+v−1 + Ψst+v−1S ′st+vS st+v−1Ψ

−1
st+v−1

(
γ2 (v) + S st+v−1Ψ

−1
st+v−1S ′st+v

)−1
,

with starting values ϕ
0

= ϕ
0

and Ψ
−1
0 = Ψ0.

AIMS Mathematics Volume 9, Issue 5, 11805–11832.



11820

This approach may enhance numerical stability and reduce computation time, particularly for large
periods s. In the second step of the Gibbs sampler, we sample the parameters γ2 (v) , v = 1, . . . , s.
Conjugate priors for γ2 (v) , v = 1, . . . , s are utilized to derive a closed-form expression for the
conditional posterior distribution of γ2 (v), given the data and the other parameters γ2

−{v}
. These priors

are modeled using the inverted Chi-squared distribution:

πvτvγ
−2 (v) ∼ χ2

πv
,

where πv = τ−1
v , v = 1, ..., s. When the parameters ϕ and h are defined, specifically as

ηst+v = hst+v − α (v) −
(
β1 (v) I{Xst+v−1>0} + β2 (v) I{Xst+v−1≤0}

)
hst+v−1, v = 1, ..., s, t = 0, ...,N − 1, (4.5)

then the errors ηv, ηs+v, ..., ηs(N−1)+v follow a normal distribution i.i.d.
(
0, γ2 (v)

)
, for v = 1, ..., s.

Utilizing standard Bayesian linear regression theory, the conditional posterior distribution of γ2 (v)
for v = 1, ..., s, given the data and the remaining parameters, conforms to an inverted Chi-squared
distribution, represented as:

πvτv +
∑

0≤t≤N−1

γ−2 (v) η2
st+v ∼ χ

2
N+πv−1, v = 1, ..., s. (4.6)

In the third step of sampling, we address the augmented volatility parameters, h. We seek to sample
from the conditional posterior distribution g(ht

∣∣∣θ, X, h
−{t} ), t = 1, 2, ..., sN. To begin, we present

the expression for this distribution and, subsequently, we demonstrate the method to indirectly draw
samples using the Griddy Gibbs technique. Due to the Markovian nature of the volatility process
{ht; t ∈ Z} and the conditional independence of Xt and ht−h (h , 0), given ht for any t = 2, ..., sN − 1,
we have:

g(ht

∣∣∣θ, X, h
−{t} ) = g(ht

∣∣∣ht−1, θ )g(ht+1

∣∣∣ht, θ )g(Xt

∣∣∣ht, θ )
/
g(ht+1

∣∣∣ht−1, θ )g(Xt

∣∣∣ht−1, ht+1, θ ) (4.7)

∝ g(ht

∣∣∣ht−1, θ )g(ht+1

∣∣∣ht, θ )g(Xt

∣∣∣ht, θ ).

By leveraging the known fact that Xt

∣∣∣θ , ht ≡ Xt |ht ∼ N(0, ht), and ht

∣∣∣ht−1, θ ∼ N
(
ht − γ (t) ηt, γ

2 (t)
)
,

the formula (4.7) can thus be transformed to:

g(ht

∣∣∣θ, X, h
−{t} ) ∝ h−3/2

t exp
(
−

1
2

h−1
t X2

t −
1
2
ς−1

t (ht − ωt)2
)
, t = 2, ..., sN − 1, (4.8)

where
ς−1

t =
(
γ−2 (t) + γ−2 (t + 1) (δβ1 (t + 1) + (1 − δ) β2 (t + 1))

)
, (4.9)

ωt = ςt

(
γ−2 (t) (ht − γ (t) ηt) + γ−2 (t + 1) (δβ1 (t + 1) + (1 − δ) β2 (t + 1)) (ht+1 − α (t + 1))

)
. (4.10)

In (4.8), we employ the well-known formula

a(y − α)2 + b(y − β)2 = (y − γ)2(a + b) + ab(α − β)2(a + b)−1,

where (a + b)γ = aα+ bβ, provided that a + b , 0. For h1 and hsN , a simple approach is adopted where
h1 is assumed to be fixed, enabling the sampling process to commence with t = 2. It may be noted
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that hsN

∣∣∣hsN−1, θ ∼ N
(
hsN − γ (sN) ηsN , γ

2 (sN)
)
. Alternatively, a forecast of hsN+1 and a backward

prediction of h0 can be utilized by applying the formula (4.8) for t = 1, ..., sN + 1. In this scenario,
hsN+1 is forecast based on a two-step-ahead forecast, ĥsN−1(2), computed at the origin sN − 1 using:

ĥsN−1(2) = α (sN + 1) +
(
β1 (sN + 1) I{esN>0} + β2 (sN + 1) I{esN<0}

)
×

(
α (sN) +

(
β1 (sN) I{esN−1>0} + β2 (sN) I{esN−1<0}

)
hsN−1

)
.

The backward forecast of h0 is derived using a two-step-ahead backward forecast based on the
backward periodic autoregression (as discussed in [36]). After determining the conditional posterior
g(ht

∣∣∣θ, X, h
−{t} ), except for a scale factor, indirect sampling algorithms can be employed to draw the

volatility ht. Research from [34] utilized the rejection Metropolis-Hasting algorithm, while [18,35,39]
suggested the Griddy-Gibbs technique, which involves:

a. Selecting a grid of l points from a specified interval [ht,1, ht,l] of ht :
(
ht,k, 1 ≤ k ≤ l

)
is decreasing,

then evaluating the conditional posterior g(ht

∣∣∣θ, X, h
−{t} ) via (4.8) at each of these points, yielding

gt,k = g(ht,k

∣∣∣θ, X, h
−{t} ), k = 1, . . . , l.

b. Constructing the discrete distribution P(.) from the values gt,1, gt,2, . . . , gt,l defined at ht,k, k =

1, . . . , l, where P(ht,k) = gt,k

/
l∑

k=1
gt,k . This serves as an approximation to the inverse cumulative

distribution of g(ht

∣∣∣θ, X, h
−{t} ).

c. Generating a number from the uniform distribution on (0, 1) and transforming it using the discrete
distribution, P(.), obtained in b. to obtain a random draw for ht.

It is noteworthy that the choice of the grid, [ht,1, ht,l], significantly impacts the efficiency of the Griddy
algorithm. Following a similar strategy to that in [18], the range of ht at the m−th Gibbs iteration is set
to [h

l
t, h

L
t ], where h

l
t = 3

5

(
h(0)

t ∨ h(m−1)
t

)
, h

L
t = 7

5

(
h(0)

t ∨ h(m−1)
t

)
, and h(m−1)

t and h(0)
t are, respectively, the

estimates of ht for the (m − 1)−th iteration and the initial value.

4.2. MCMC algorithm

The algorithm outlines the Gibbs sampler for sampling from the conditional posterior
distribution, g(h, θ

∣∣∣X ) given
∣∣∣X . For m = 0, 1, ..., L, where h(m) =

(
h(m)

1 , ..., h(m)
s

)′
, ϕ(m) =(

α(m) (1) , β(m)
1 (1) , β(m)

2 (1) , ..., α(m) (s) , β(m)
1 (s) , β(m)

2 (s)
)′

and ξ(m) =

((
γ2

)(m)
(1) , ...,

(
γ2

)(m)
(s)

)′
, the

algorithm is as follows:
Algorithm a:

S1. Specify starting values h(0), ϕ(0) and ξ(0).
S2. Repeat for m = 0, 1, . . . , L − 1,

– Draw ϕ(m+1) from g(ϕ
∣∣∣∣X, ξ(m), h(m) ) using (4.2)–(4.4) with starting values ϕ

0
= ϕ

0
and Ψ

−1
0 =

Ψ0.
– Draw ξ(m+1) from g(γ2

∣∣∣∣X, ϕ(m+1), h(m) ) using (4.5) and (4.6).
– Repeat for t = 1, . . . , sN

* Griddy Gibbs:
· Select a grid of l points:

(
h(m+1)

t,k , k = 1, . . . , l
)

is decreasing.
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· For k = 1, . . . , l, calculate g(m+1)
t,k = g(h(m)

t;k

∣∣∣θ(m), X, h(m)
−{t} ) from (4.8)–(4.10).

· Define the inverse distribution, P
(
h(m+1)

t,k

)
= g(m+1)

t,k

/
l∑

k=1
g(m+1)

t,k ,k = 1, . . . , l.

· Generate a number u from the uniform (0,1) distribution.
· Transform w using the inverse distribution, P(.), to get h(m+1)

t , considered to be a draw
from g(ht

∣∣∣θ(m+1), X, h(m)
−{t}

)
.

S3. Return the values h(m), ϕ(m), and ξ(m), m = 1, . . . , L.

Upon sampling from the posterior distribution g(h, θ
∣∣∣X ), statistical inference for the PTAR-SV model

becomes straightforward. The Bayesian Griddy-Gibbs parameter estimate θ̂BGG of θ is defined as
the posterior mean θ̃ = E

{
θ
∣∣∣X }

, which, according to the Markov chain ergodic theorem, can be

reasonably approximated by: θ̂BGG = L−1 ∑
m0≤m≤L+m0

θ(m), where θ(m) represents the m-th draw from

g(h, θ
∣∣∣X ), as provided by Algorithm a. m0 denotes the burn-in size (the initial draws discarded),

and L is the number of draws. Smoothing and forecasting volatility are intrinsic outcomes of the
Bayesian Griddy-Gibbs method. The smoothed value h̃t = E

{
ht

∣∣∣X }
, for t = 1, ..., sN is obtained during

sampling from the distribution g(ht

∣∣∣∣∣∣X ), a marginal of the posterior distribution g(h, θ
∣∣∣X ). Thus, h̃t

can be accurately approximated by: L−1 ∑
m0≤m≤L+m0

h(m)
t , where h(m)

t represents the m−th draw of ht from

g(ht, θ
∣∣∣X ). Forecasting future values, hsN+ j, j = 1, ..., k, can be accomplished either by employing the

volatility equation with the Bayesian parameter estimates or directly by sampling from the predictive
distribution g(hsN+1, hsN+2, ..., hsN+k

∣∣∣X ) (for further discussion, the reader is referred to [18, 34]).

4.3. MCMC diagnostics

It is crucial to assess the numerical properties of the proposed Bayes Griddy-Gibbs (BGG) method,
in particular because the volatilities are sampled element by element. Despite its simplicity in
implementation, it is well established that the single-move approach, as employed in the BGG method,
often leads to highly correlated posterior draws, a correlation that can result in slow mixing and
convergence properties. Among various MCMC diagnostic measures, we focus here on two key
metrics.

1. Relative Numerical Inefficiency (RNI): The RNI provides insight into the inefficiency caused
by the serial correlation of the BGG parameter draws. This can be calculated as:

RNI − 1 = 2
∑

1≤ j≤500

D
(
2 j × 10−3

)
ρ̂1, j.

Here, 500 denotes the bandwidth, D(.) represents the Parzen kernel, and ρ̂1, j is the sample
autocorrelation at lag j of the BGG parameter draws. The RNI value indicates the extent of
inefficiency attributed to serial correlation.

2. Numerical Standard Error (NSE): The NSE quantifies the uncertainty associated with the
MCMC estimator and is calculated as the square root of the estimated asymptotic variance of
the estimator. Mathematically, this can be expressed as:

NS E = L−1

̂ρ2,0 + 2
∑

1≤ j≤500

D
(
2 j × 10−3

)
ρ̂2, j

 .
AIMS Mathematics Volume 9, Issue 5, 11805–11832.



11823

Here, ρ̂2, j represents the sample autocovariance at lag j of the BGG parameter draws, and L is the
total number of draws.

These diagnostic measures, particularly the RNI and NSE, offer valuable insights into the efficiency and
reliability of the MCMC sampling process, aiding in the assessment of convergence and the accuracy
of parameter estimates.

Remark 2. The deviance information criterion (DIC) is a crucial tool in the selection of the period,
(s), in PT AR−S V modeling. Unlike traditional criteria such as akaike information criterion (AIC) and
bayesian information criterion (BIC), DIC strikes a balance between model adequacy and complexity.
Its computation involves assessing the conditional likelihood of the PT AR − S V model and the
posterior mean of its parameters, which are derived from MCMC draws. By comparing DIC values
across different period lengths, researchers can identify the most suitable model. Despite the inherent
challenge in estimating the standard error associated with the DIC due to its randomness, researchers
can obtain a rough estimate of its variability by replicating calculations. It is important to note that the
choice of DIC variant (e.g., observed or conditional) influences its interpretation, with the conditional
version being particularly relevant to latent variable models such as PT AR − S V (for further details,
the reader is referred to [18]).

Remark 3. In this paper, we delve into a class of nonlinear models designed for the analysis of periodic
time series, referred to as PTAR-SV models. These models not only capture the feature of asymmetric
volatility, which is already well-known in the deterministic volatility framework, but also uncover the
periodicity hidden in the autocovariance structure, characteristics frequently observed in financial
and economic time series. It is worth noting that another class of models, namely, Markov-switching
TSV (MS-TSV) models, has recently been explored by Ghezal et al. [37]. These models aim to tackle
the asymmetry and leverage effects observed in financial time series’ volatility. They extend classical
TSV models by representing the parameters governing log-volatility as functions of a homogeneous
Markov chain. Both our paper and the work by Ghezal et al. [37] concentrate on establishing various
probabilistic properties, including strict stationarity, causality, and ergodicity. Additionally, both delve
into computing higher-order moments and the derivation of the autocovariance function of squared
processes. However, our paper adopts a periodic perspective in these analyses because the PTAR-SV
models demonstrate global non-stationarity whilst exhibiting stationarity within each period, unlike
the MS-TSV models. Moreover, while Ghezal et al. [37] primarily concentrates on the autocovariance
function of the squared process and second-order stationary solutions, our paper expands the analysis
to encompass the autocovariance function of the powers of the squared process. Additionally, we
explore concepts such as periodic geometric ergodicity and strong mixing. Finally, both papers propose
the QML method for parameter estimation. However, our paper introduces an additional approach—
the EM algorithm with particle filters and smoothers. Moreover, we extend our analysis to include a
Bayesian MCMC method based on Griddy-Gibbs sampling.

5. Simulation

We conducted a simulation study to evaluate the performance of the QML and BGG methods
for parameter estimation in the context of the PTAR-SVs model with s ∈ {2, 3}. A total of 500
datasets of varying sizes were generated. Specifically, we considered sample sizes, sN, from the
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set {750, 1500, 3000}. The values of the parameters were chosen to satisfy the periodic stationarity

condition
s∏

j=1
(δ |β1 ( j)| + (1 − δ) |β2 ( j)|) < 1. For each generated dataset, we estimated the parameter

vector of interest, θ, using the QMLE (resp., BGG estimation), denoted θ̂QMLE (resp., θ̂BGGE).
The QMLE (resp., BGGE) algorithm was executed via the “fminsearch.m” minimizer function in
MATLAB8. The root mean square errors (RMSE) of the estimated parameters θ̂ are presented in
parentheses in the tables below. The actual values (TV) of the parameters for each of the considered
data-generating processes are also presented.

This study primarily focuses on analyzing RMSEs, providing initial insights into the finite sample
properties of the QMLE and BGGE within the framework of the PTAR-SVs model. The results so
obtained suggest that both the QMLE and BGGE methods effectively provide parameter estimates.
Upon examining Table 2, it is evident that the strong consistency of the QMLE and BGGE for the
PTAR-SV2 model is satisfactory. Furthermore, the corresponding RMSEs demonstrate a significant
reduction as the sample size increases. Turning to the outcomes presented in Table 3 for the PTAR-
SV3 model, the strong consistency is consistently confirmed. Importantly, the estimation procedure
yields favorable results even with a relatively small sample size. The comparison between the two
methods demonstrates that both perform adequately with regard to parameter estimation. However, the
BGGE consistently outperforms the QMLE, exhibiting significantly lower RMSEs across all instances.
This finding is consistent with previous results obtained in the symmetric case [18].

Table 2. Average and RMSE of QMLE and BGG for PT AR − S V2 models with varying
sample sizes.

Tv\2N 750 1500 3000
QML Bayesian QML Bayesian QML Bayesian

α (1) 0.50 0.5241 0.4861 0.5155 0.4952 0.5080 0.4980
(0.0941) (0.0245) (0.0648) (0.0115) (0.0342) (0.0060)

α (2) −1.00 −0.9903 −1.0053 −0.9907 −1.0045 −0.9930 −1.0033
(0.0770) (0.0164) (0.0459) (0.0073) (0.0193) (0.0035)

β1 (1) 0.75 0.7601 0.7457 0.7564 0.7487 0.7534 0.7499
(0.0785) (0.0024) (0.0499) (0.0012) (0.0110) (0.0006)

β1 (2) 0.25 0.2477 0.2484 0.2543 0.2497 0.2534 0.2498
(0.0661) (0.0017) (0.0537) (0.0008) (0.0360) (0.0004)

β2 (1) −0.35 −0.3638 −0.3509 −0.3609 −0.3503 −0.3584 −0.3501
(0.0774) (0.0026) (0.0682) (0.0014) (0.0496) (0.0006)

β2 (2) −0.55 −0.5597 −0.5521 −0.5583 −0.5492 −0.5554 −0.5497
(0.0971) (0.0020) (0.0873) (0.0008) (0.0649) (0.0005)

γ (1) 0.65 0.6616 0.6541 0.6592 0.6523 0.6513 0.6491
(0.0638) (0.0074) (0.0591) (0.0029) (0.0256) (0.0014)

γ (2) −0.05 −0.0433 −0.0473 −0.0473 −0.0476 −0.0475 −0.0483
(0.0516) (0.0023) (0.0439) (0.0011) (0.0375) (0.0005)
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Table 3. Average and RMSE of QMLE and BGG for PT AR − S V3 models with varying
sample sizes.

Tv\3N 750 1500 3000
QML Bayesian QML Bayesian QML Bayesian

α (1) 0.50 0.4904 0.4940 0.5097 0.4961 0.5054 0.4979
(0.1064) (0.0495) (0.0864) (0.0231) (0.0789) (0.0097)

α (2) 1.00 1.0065 1.0062 0.9979 0.9991 1.0020 1.0008
(0.0768) (0.0386) (0.0703) (0.0186) (0.0207) (0.0083)

α (3) 1.50 1.4706 1.4709 1.5163 1.4914 1.4928 1.4966
(0.0755) (0.0588) (0.0584) (0.0285) (0.0264) (0.0128)

β1 (1) 0.15 0.1462 0.1487 0.1524 0.1489 0.1515 0.1496
(0.0819) (0.0038) (0.0594) (0.0017) (0.0566) (0.0008)

β1 (2) −0.15 −0.1426 −0.1444 −0.1465 −0.1482 −0.1490 −0.1496
(0.0921) (0.0040) (0.0810) (0.0021) (0.0552) (0.0009)

β1 (3) 0.45 0.4544 0.4459 0.4575 0.4476 0.4546 0.4491
(0.0946) (0.0054) (0.0680) (0.0026) (0.0529) (0.0012)

β2 (1) −0.55 −0.5626 −0.5477 −0.5598 −0.5479 −0.5516 −0.5496
(0.0982) (0.0046) (0.0301) (0.0026) (0.0079) (0.0010)

β2 (2) 0.25 0.2367 0.2538 0.2405 0.2513 0.2437 0.2502
(0.1054) (0.0042) (0.0899) (0.0023) (0.0303) (0.0011)

β2 (3) −0.35 −0.3580 −0.3481 −0.3570 −0.3525 −0.3568 −0.3513
(0.0741) (0.0046) (0.0670) (0.0025) (0.0226) (0.0010)

γ (1) 0.00 0.0133 0.0061 -0.0044 0.0016 0.0016 0.0008
(0.0607) (0.0124) (0.0288) (0.0053) (0.0153) (0.0023)

γ (2) 0.65 0.6676 0.6465 0.6617 0.6573 0.6598 0.6522
(0.1020) (0.0250) (0.0955) (0.0118) (0.0582) (0.0050)

γ (3) 0.05 0.0603 0.0582 0.0437 0.0474 0.0561 0.0521
(0.0887) (0.0234) (0.0228) (0.0104) (0.0161) (0.0048)

6. Real application

This section focuses on modeling the Gaussian PT AR − S V3 model using the daily time series
datasets, (Xt)t≥1, representing the Euro/Algerian dinar (EUR/DZD) exchange rate. Leveraging the
QMLE method for its favorable finite-sample properties, we began by filtering out all non-trading
days, including holidays and weekends. The observations span from January 3, 2000, to September
29, 2011. The corresponding log-return series can be calculated as $t = 102 log (Xt) − 102 log (Xt−1).
Plots of the prices (Xt), the daily return series of prices ($t), squared returns

(
$2

t

)
, absolute returns

(|$t|), and log-absolute returns are illustrated in Figure 2.
Additionally, upon reviewing the sample autocorrelation functions depicted in Figure 3, it is evident

that the series ($t) ,
(
$2

t

)
, (|$t|) and

(
log |$t|

)
exhibit distinct characteristics. Specifically, the series

($t) displays a Taylor effect, as indicated by ρ̂$2
t
(h) < ρ̂|$t |(h) for some h > 0. Consequently, the

modeling of the series ($t) using standard SV models is rejected in favor of certain asymmetric models.
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Table 4 reports several basic descriptive statistics for the given series.
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Figure 2. Illustration of the price series (Xt) ,($t) ,
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Figure 3. Illustration of the sample autocorrelation functions of the series ($t) ,
(
$2

t

)
, (|$t|),

and
(
log |$t|

)
.

AIMS Mathematics Volume 9, Issue 5, 11805–11832.



11827

Table 4. Summary of the statistics for the daily exchange rate series, (Xt), corresponding
returns ($t) ,

(
$2

t

)
, (|$t|), and

(
log |$t|

)
.

Series (Xt) × 103 ($t) × 103
(
$2

t

)
× 107 (|$t|) × 104 (

log |$t|
)
× 103

mean 0.0886 0.0001 0.0000 0.0004 0.0004
Std. Dev 0.0116 0.0050 0.0000 0.0004 0.0006
Median 0.0911 0.0001 0.0000 0.0003 0.0005
Skewness −0.0005 0.0004 0.0000 0.0003 −0.0013
Kurtosis 0.0021 0.0090 0.0000 0.0018 0.0065
Min 0.0672 −0.0233 0.0000 0.0000 −0.0040
Max 0.1091 0.0497 0.0002 0.0050 0.0019
J. Bera 0.2325 4.5971 2.7228 3.4009 2.4880
Arch(300) 100% 100% 00% 100% 100%
LBtest 100% 24.20% 98.23% 100% 100%

Table 4 reports descriptive statistics for the EUR/DZD returns over the entire study period. It
includes statistics for the returns, absolute returns, squared returns, and log-absolute returns. The
lowest return observed is −23.300, while the highest return is 49.700. The data exhibits positive
skewness and high kurtosis, with kurtosis values for all three log-return series being much greater
than 3. In this study, we propose a 5-periodic PTAR-SV model to capture intra-week effects in the daily
exchange rate. The model allows parameters to vary with the day of the week, where v = 1 corresponds
to Monday, v = 2 to Tuesday, and so on. Table 5 reports the estimated parameters pertaining to the
5-PTAR-SV model.

Table 5. The parameter estimates for the PTAR-SV model along with estimates for some
specific models.

v = 1 v = 2 v = 3 v = 4 v = 5
α (1) −0.0248 - - - -

Standard β1 (1) 0.9991 - - - -
T AR − S V β2 (1) 0.3165 - - - -

γ (1) 0.0482 - - - -
Periodic α (v) −1.9725 0.8948 6.9167 −4.9851 −0.1852
symmetric β1 (v) 0.8763 1.0578 1.3264 0.4517 0.8676
AR − S V γ (v) 0.1089 0.2001 0.3886 0.2456 0.1998

α (v) −2.2061 0.9558 7.9368 −5.3924 −0.2762
Periodic β1 (v) 0.9927 1.0621 1.6264 0.6321 0.9734
T AR − S V β2 (v) 0.6034 0.7168 0.3540 0.4112 0.3985

γ (v) 0.2734 0.3244 0.5275 0.4712 0.5219

In Table 5, we present the results of the QML parameter estimation for the PTAR-SV and certain
other specific models. It is evident from these results that the periodic and standard estimated models
are periodically stationary and stationary, respectively. Notably, the persistence measure estimates of
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the PTAR-SV model and the PAR-SV model fitted by Aknouche (2017, [18]) are notably smaller than
those obtained from the standard TAR-SV model. Additionally, the empirical coverages of the PTAR-
SV-based prediction intervals are closer to the nominal coverages than those of the PAR-SV-based
prediction intervals. Furthermore, when comparing the empirical coverages of the fitted TAR-SV
models, there is a slight superiority observed in the periodic modeling. These findings suggest that
the PTAR-SV model, fitted to the time series of daily EUR/DZD log-returns, demonstrates greater
accuracy and improved forecasting performance than the standard AR-SV and PAR-SV models.

7. Conclusions

In this paper, we have conducted a study on a specific category of nonlinear models tailored to
capture the characteristics of periodic asymmetric time series, known as PTAR-SV models. These
models exhibit the ability to capture volatility clustering and reveal the inherent periodicity present
in the autocovariance structure, both of which are common stylized facts in financial and economic
time series. Additionally, PTAR-SV models are adept at encapsulating various stylized facts, notably
leverage effects that denote asymmetry within the volatility process. Importantly, these models
have demonstrated enhanced accuracy and superior forecasting performance compared to PTGARCH
models.

This paper explores several aspects, including periodic stationarity conditions, moment calculations,
and analysis of the autocovariance function of squared process powers. Additionally, we propose
the QML method for parameter estimation, employing the EM algorithm with particle filters and
smoothers. Furthermore, we introduce the BGGE as an alternative approach to parameter estimation.

Building upon the findings of Kim et al. [42] and Chib et al. [43], our research underscores
the significance of employing a multi-move approach in the MCMC method for model estimation.
These seminal works demonstrate that traditional single-move estimation methods may be inefficient,
particularly when dealing with complex models and heavy-tailed distributions. By incorporating
insights from these studies, our paper advocates for the adoption of a multi-move approach to enhance
estimation efficiency and accuracy in nonlinear modeling. Moving forward, our research aims to
expand in multiple directions. One proposed extension involves exploring heavier-tailed distributions,
which can be easily accommodated using the t-distribution. Additionally, we plan to investigate
a periodic multivariate version of the PTAR-SV model, where multiple variables are considered
simultaneously. This multivariate approach promises to provide deeper insights into the interconnected
dynamics of multiple time series variables and their periodic behaviors.

Appendix

Proof of Theorem 1. The presence of a causal, strictly periodic, stationary solution for Eq (1.4) is
directly linked to the existence of a causal, strictly periodically stationary solution for the PTAR model
proposed by Bentarzi and Djeddou [38]. This PTAR model is described by the equation:

hst+v = α (v) +
(
β1 (v) I{Xst+v−1>0} + β2 (v) I{Xst+v−1≤0}

)
hst+v−1 + γ (v) ηst+v, for all v ∈ {1, ..., s} ,
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where
s∏

j=1
(δ |β1 ( j)| + (1 − δ) |β2 ( j)|) < 1. When this condition is satisfied, the log-volatility ht can be

represented causally as:

hst+v =
∑
m≥0

m−1∏
l=0

ζst+v−l

 (α (v − m) + γ (v − m) ηst+v−m) .

Proof of Theorem 2. The periodic geometric ergodicity of
(
Xt, t ∈ Z

)
is a consequence of the

geometric ergodicity of the vector
(
ht, t ∈ Z

)
, as demonstrated by Meyn and Tweedie’s [27] results.

Proof of Theorem 3. For every t ∈ Z and 1 ≤ v ≤ s, the following holds:

E
{
X2m

st+v

}
= E


est+v exp

1
2

∑
k≥0

 k−1∏
j=0

ζst+v− j

 (α (v − k) + γ (v − k) ηst+v−k)




2m
= E

{
e2m

st+v

}∏
k≥0

E

exp

m
 k−1∏

j=0

ζst+v− j

 (α (v − k) + γ (v − k) ηst+v−k)


 .

Consequently, a sufficient condition for the existence of E
{
X2m

st+v

}
is:∏

l≥0

E
{
exp

(
m

{∏k−1

j=0
ζst+v− j

}
(α (v − k) + γ (v − k) ηst+v−k)

)}
< ∞ for v = 1, . . . , s.

Proof of Theorem 4. For every t ∈ Z, n > 0, and 1 ≤ v ≤ s, the following holds:

Ξ(2m)
v (n) = E

{
e2m

st+v

}
E

{
e2m

st+v−n

}
E

{
exp (m (hst+v + hst+v−n))

}
= Ξ(2m)

v,e (n)

× E

exp

m  ∑
k≥0

{∏k−1
j=0 ζst+v− j

}
(α (v − k) + γ (v − k) ηst+v−k)

+
∑

k≥0

{∏k−1
j=0 ζst+v−n− j

}
(α (v − n − k) + γ (v − n − k) ηst+v−n−k)




= Ξ(2m)
v,e (n) × E

exp

m  ∑
k≥0

{∏k−1
j=0 ζst+v− j

}
(α (v − k) + γ (v − k) ηst+v−k)

+
∑

k≥n

{∏k−1
j=n ζst+v− j

}
(α (v − k) + γ (v − k) ηst+v−k)




= Ξ(2m)
v,e (n)

× E

exp

m  ∑n−1
k=0

{∏k−1
j=0 ζst+v− j

}
(α (v − k) + γ (v − k) ηst+v−k)

+
(
1 +

{∏n−1
j=0 ζ

−1
st+v− j

})∑
k≥n

{∏k−1
j=0 ζst+v− j

}
(α (v − k) + γ (v − k) ηst+v−k)




= Ξ(2m)
v,e (n) ×

n−1∏
k=0

E

exp

m
 k−1∏

j=n

ζst+v− j

 (α (v − k) + γ (v − k) ηst+v−k)




×
∏
k≥n

E

exp

m

1 +

 n−1∏
j=0

ζ−1
st+v− j



 k−1∏

j=0

ζst+v− j

 (α (v − k) + γ (v − k) ηst+v−k)



 .
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