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Abstract: In this study, we introduce a novel framework for exploring the dynamics of tumor growth
and an evolution model for two-stage carcinogenic mutations in two-dimensions based on a system of
reaction-diffusion equations. It is shown theoretically that the system is globally stable in the absence
of both delay and diffusion. The inclusion of diffusion does not destabilize the system, while including
delay does capture the key elements of how normal cells convert into cancer cells. To further validate
these results, several numerical experiments are performed for different parameter values involved in
the model equation. These parameter values are chosen in the sense that they have some biological
meanings using the steady states of the equilibrium points. For the purpose of simulation, a stable
Euler scheme is used for temporal discretization, while a Fourier spectral method is used for space
variables, which is a natural choice due to the periodic boundary conditions in the model equation.
The numerical simulation results further confirm our theoretical justification.
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1. Introduction

Partial differential equations (PDEs) play a crucial role in mathematical modeling across various
scientific and engineering disciplines. For example, Maxwell’s equations are used to govern how
electric and magnetic fields evolve. The Navier-Stokes equations describe the motion of fluid
substances and are essential in aerodynamics, weather modeling, and oceanography. The heat
equation models the distribution and evolution of temperature in a given region over time. PDEs help
in understanding stress and strain distribution within materials, crucial for building bridges, buildings,
and various structures. Reaction-diffusion equations model the spread of a species in an environment
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and interactions between different species. Further, these PDEs are highly effective in simulating the
dynamics of tumor progression. A prevalent method involves utilizing a reaction-diffusion equation,
which delineates the alteration in the concentration of certain substances due to local reactions (like
chemical reactions, growth, and decay) coupled with diffusion (the dispersion stemming from random
movement). Within modeling tumor growth, the focus is often on the cell density of tumor cells as the
substance of interest. Here, the reaction component accounts for the proliferation rate of tumor cells
(such as through mitosis), while the diffusion component reflects the movement and invasion of tumor
cells into surrounding tissues [1, 2].

The mechanism behind carcinogenic mutations remains intricate and to date is not yet fully
understood, despite the extensive focus of many researchers on specific signaling pathways associated
with it. For instance, there is a wealth of studies examining the role of genetic mutations.
Furthermore, compared to other processes related to tumor growth, the mathematical modeling of this
particular process is not as developed. Recent times have witnessed significant research interest in the
mathematical modeling of brain tumor growth, especially concerning reaction-diffusion models. The
utilization of these models has proven crucial in gaining a more profound understanding of brain
tumor growth patterns, which has furthered the advancement of tailored treatment approaches [3–10].

The ongoing quest to find an effective and lasting treatment for tumors remains a significant
challenge for scientists. However, considerable advancements have been made in developing new
methodologies that have proven successful in reducing or even eliminating tumors. Among these,
mathematical modeling stands out as a crucial tool for enhancing cancer therapy. Carcinogenesis is a
highly complex process that requires extensive study for a comprehensive understanding. Tumors
originate from one or more normal cells that have experienced malignant transformation. The
immune system’s response to tumors varies based on the tumor’s antigenicity. A cell with substantial
mutations forms a tumor more easily recognized as foreign (or more antigenic) compared to one that
only slightly deviates from a healthy cell [11]. For various cancer types, the carcinogenic process can
be divided into different stages, typically ranging from 4 to 7, depending on the tumor type [12].
In [13], the author examines a system of Lotka-Volterra type delay differential equations (DDEs) with
diffusion that models the mutation of cells from normal to malignant. This model is primarily based
on mutations in three different environmental conditions: favorable, competitive, and unfavorable.
They concentrated on identifying running wave solutions. Subsequently, a broader analysis was
conducted on models with two and an arbitrary number of mutation steps in [14]. The case of
unfavorable conditions often seen as a consequence of treatments like chemotherapy. Instead of
detailing each mutation stage, the analysis simplifies the process by incorporating a suitable time
delay, effectively transforming the system of n + 1 ordinary differential equations with diffusion into a
pair of equations with time delay. A comparative study is undertaken between the dynamics of the
ODE system, the system with delay, and the system with both delay and diffusion. Analytically, it is
demonstrated that the stability of the positive steady state (when present) is highly dependent on the
delay’s magnitude. Furthermore, researchers have explored the potential for stability switches in
steady states and have demonstrated that a change in the stability of the positive steady state is
improbable in the absence of delay in the model.

In [15], the authors introduced spatial heterogeneity into their diffusion model by assigning different
diffusion rates, utilizing a reaction-diffusion equation to depict the tumor cell density. While the exact
ratio of diffusion coefficients between these brain regions can vary, they specifically postulated a five
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fold difference in diffusion rates. A detailed representation of white and gray matter within a synthetic
brain for MR simulations was constructed, allowing the observation and analysis of unique growth
patterns arising from the varied diffusion rates in the brain.

Subsequent progress was reported in [16], where the model was enhanced to include the
anisotropic expansion of gliomas, inspired by the tendency of glial cells to migrate along fiber tracts.
Comparing their simulation results with two clinical cases, it was demonstrated that the anisotropic
diffusion model more accurately represented the shape and growth kinetics of low-grade gliomas near
the insula compared to isotropic diffusion models. This suggests the importance of considering cell
diffusion tensor anisotropy in simulating glioma growth and spread. Additionally, the study in [17]
developed a mathematical model based on diffusion tensor imaging to identify major white matter
tracts in the brain. The anisotropic model presented slight superiority over other reaction-diffusion
models, particularly for tumors exhibiting strong anisotropy. A new approach for estimating
parameters in reaction-diffusion tumor growth models using medical images taken at different times
was introduced in [18]. This technique computes patient-specific parameters of the model, enabling
the adjustment of the general model to fit individual patient data. The research indicated that, when
the tumor cell proliferation rate was held constant, several other parameters could be uniquely
determined. This methodological advancement offers a more personalized and accurate representation
of tumor growth, enhancing the potential for tailored patient treatment strategies.

Numerical solutions of the reaction-diffusion equation model for tumor growth are essential for
developing novel cancer therapies, strengthening patient-specific treatment plans, and expanding our
knowledge of tumor dynamics. This strategy offers a potent tool for addressing the difficulties
associated with cancer research and treatment by fusing theoretical understanding with real-world
applications. The interrelationship of multiple biological processes, such as cell migration,
proliferation, and interaction with their surroundings, characterizes tumors as extremely complex
systems. These dynamics are modeled by the reaction-diffusion equation, which simulates the
development of cancer cells (reaction) and their movement through the tissue (diffusion) along with
other chemicals and nutrients. This makes it possible to analyze tumor growth patterns and how the
environment affects the tumor’s development in great detail. The reaction-diffusion model’s
numerical solutions allow for the prediction of a tumor’s growth and possible spread of the tumor to
other sections of the body. Recognizing these trends can aid in forecasting the course of the illness
and in creating more potent treatment plans to stop the spread of cancer cells. Treatment scenarios,
including as chemotherapy, radiation therapy, and innovative therapeutic techniques, can be simulated
using numerical models. Before implementing these treatments in clinical settings, researchers can
find possibly viable medications and optimize treatment regimens by evaluating how these treatments
affect tumor growth inside the model.

The primary objective of this work is to investigate theoretically as well as numerically a two-stage
tumour growth model in a two-dimensional based on system of reaction-diffusion equations by
employing the Euler method in time and the Fourier spectral method in space with appropriate initial
and boundary conditions. Detailed stability analysis conditions are derived using the fixed points of
the system. The choice of using the Fourier spectral method is driven by their high accuracy and
minimal phase error in solving the specified problem. A significant advantage of spectral methods is
their exponentially decaying error, implying an infinite convergence rate in space even with a minimal
number of collocation points using the fast Fourier transform. These methods offer flexibility in
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choosing basis functions, which can be selected based on the problem at hand. However, their
implementation can be challenging, mainly because they use global functions as basis functions. This
characteristic makes them less suitable for handling local features and sharp gradients, as seen in
phenomena, like Gibbs phenomenon [19–38]. Due to their ability to describe the intricate dynamics
of tumor growth and dissemination, differential equations and their fractional form are essential tools
in the understanding and treatment of fatal diseases such as cancer. They support the modeling of
interactions between cancer cells and their surroundings, the forecasting of disease development, and
the assessment of the efficacy of different approaches to treatment. To improve patient outcomes,
targeted medicines and personalized medicine approaches are designed with the support of this
mathematical framework, which offers crucial insights into the mechanisms underlying the
development of cancer [39–49].

The structure of this paper is as follows: Section 2 introduces the governing equations of the
reaction-diffusion system with detailed implementation of the Fourier method in space and the Euler
method in time. Section 3 evaluates the stability of the model equation using the equilibrium points,
followed by numerical discussions in Section 4. Finally, Section 5 provides a concise conclusion of
the findings.

2. Formulation of the mathematical model and description of the numerical method

Mathematical models, especially those utilizing PDEs, are highly beneficial for simulating tumor
progression. A prevalent technique involves reaction-diffusion equations that depict the variation in the
concentration of one or several substances due to local reactions (such as chemical reactions, growth,
and decay) coupled with diffusion (the distribution caused by random motion). Specifically, in tumor
growth modeling, the focus is often on the cell density of tumor cells as the substance of interest.
The reaction component in this context indicates the proliferation rate of tumor cells (like through cell
division), while the diffusion component illustrates the dispersion of tumor cells within the tissue.

Let Y j denotes the density of cells which is mutant at j-th stage at some position, where
j = 0, 1, 2, ..., n. To develop a multi-stage model having mutant cell densities Y j at stage
j = 0, 1, 1, ..., n, with j = 0 represent the first stage. The intermediate stage is occurring for
j = 1, ..., n − 1 and j = n gives us the final stage. The density function can be described by the system
of equations [50]:

∂

∂t
Y j = a jY j

(
1 −

Y j

K j

)
− µ j+1Y jY j+1 + η jY jY j−1 + D j∆Y j , j = 0, 1, 2, . . . , n, (2.1)

where a j rate of logistic growth, K j corresponds to carrying capacity, ∆ is the Laplacian operator,
µ j and η j represent the interaction coefficients for the corresponding stages and D j is the co-efficient
of diffusion. To simplify the model equation (2.1), we can rescale the model such that K j ↔ 1 for
j = 1, . . . , n − 1, while for the last mutation stage we assume Kn → ∞. After rescaling, we get:

∂

∂t
Y j = α jY j(1 − Y j) − ψ j+1Y jY j+1 + φ jY jY j−1 + d j∆Y j , j = 0, 1, 2, . . . , n. (2.2)

In model equation (2.1), we denote the initial (normal) stage j = 0 by u0 = Y0 and the final stage
Yn = un and assuming that the j-th stage is not the initial (normal) or final stage and call it the
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intermediate or benign stage. Then, the tumor growth model which describes a process of
carcinogenesis mutations involving n different stages of mutations (transitioning from normal to
malignant cells) is given by:

∂

∂t
u0 = u0

(
a0

(
1 −

u0

K0

)
− µ1Y1

)
+ D0∆u0 ,

∂

∂t
Y j = Y j

(
a j

(
1 −

Y j

K j

)
− µ j+1Y jY j+1

)
+ η jY jY j−1 + D j∆Y j , j = 1, 2, 3 . . . , n − 1,

∂

∂t
un = F((Yn−1, un) + Dn∆un .

(2.3)

F is a particular function which is contingent on the environmental conditions surrounding tumor
growth and development and whose value depends on three different environments corresponding to
the the final stage j = n:

• In favourable conditions:
F(u, v) = anv(1 −

v
Kn

) + ηnu v, (2.4)

• In a competitive environment:

F(u, v) = anv(1 −
v

Kn
) − ηnu v, (2.5)

• In unfavourable conditions:
F(u, v) = ηnuv − anv . (2.6)

In model equation (2.3), the natural choice for the contingent function F is the unfavourable
conditions.

Consider the two-stage model in unfavourable conditions with included delay and diffusion
corresponds to initial, intermediate and malignant stages. The primary contribution we make is
expanding the model from [51, 52] to two-dimensional space. After rescaling, we get:

∂

∂t
u0(t, x, y) = u0(t, x, y)

(
α0

(
1 − u0(t, x, y)

)
− ψ1u1(t, x, y)

)
+ d0

(∂2u0

∂x2 +
∂2u0

∂y2

)
,

∂

∂t
u1(t, x, y) = u1(t, x, y)

(
α1

(
1 − u1(t, x, y)

)
− ψ2u2(t, x, y)

)
+ φ1u0(t − τ1, x, y)u1(t − τ1, x, y) + d1

(∂2u1

∂x2 +
∂2u1

∂y2

)
,

∂

∂t
u2(t, x, y) = −u2(t, x, y) + φ2u1(t − τ2, x, y)u2(t − τ2, x, y) + d2

(∂2u2

∂x2 +
∂2u2

∂y2

)
,

(2.7)

where u0 represents the density of normal cells at time t and position (x, y), u1 and u2 stand for benign
and malignant cells, respectively, all constants are positive, delays τi, i = 1, 2 are non-negative, and
(x, y) ∈ [0, π]. We consider the zero flux boundary conditions:

∂

∂x
u j(t, x, y)|x=0,π = 0, j = 0, 1, 2.

∂

∂y
u j(t, x, y)|y=0,π = 0, j = 0, 1, 2. (2.8)
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and initial condition:

u j(t, x, y) = Φ j(t, x, y) > 0 for t ∈
[
−max{τ1, τ2}, 0

]
, (x, y) ∈ [0, π], j = 0, 1, 2.

For time discretization of model equation (2.7), we use the Euler method, while for the spacial
discretization, we use the Fourier spectral method.

The Fourier spectral method is a technique for solving PDE, that is particularly useful when the
problem is defined on a periodic domain. It is a type of spectral method, where solutions are
approximated using a sum of functions from a certain function space. In the case of the Fourier
spectral method, this space is composed of trigonometric functions (sines and cosines), which are the
eigenfunctions of linear operators with periodic boundary conditions. It uses sine and cosine
functions as the basis for the spectral expansion. The solution to the PDE is represented as a sum of
these basis functions, each multiplied by a coefficient. Unlike finite difference or finite element
methods, which are local methods, the Fourier spectral method considers the global information of
the problem, offering very accurate solutions with fewer basis functions for smooth problems. For
smooth problems, the method has spectral accuracy, meaning the error decreases exponentially with
the number of basis functions used. It is particularly powerful for problems with periodic boundary
conditions and in situations where high accuracy is needed over the entire domain. Its efficiency
diminishes for problems with non-periodic boundary conditions or with sharp gradients or
discontinuities.

Suppose u(x) is a function defined on a periodic domain x ∈ [0, L]. u(x) can be represented as a
Fourier series in the form:

u(x) ≈
N∑

n=−N

ûnei2πnx/L.

Here, ûn are the Fourier coefficients, and ei2πnx/L are the complex exponential that form the basis of
the function space. For real functions, one uses sines and cosines, but the complex exponential form is
more convenient for mathematical manipulations. The Fourier coefficients ûn capture the amplitude of
the function at different frequencies and are given by:

ûn =
1
L

∫ L

0
u(x)e−i2πnx/L dx.

The resultant PDE is then transformed into a set of algebraic equations for the coefficients ûn.
Solving these equations gives the Fourier coefficients, which you can then use to reconstruct the
solution. A Discrete Fourier Transform (DFT) is used for this purpose. For a set of discrete points
u j = u(x j) where j = 0, 1, ...,N − 1 and x j = jL/N, the DFT is defined as:

Ûk =

N−1∑
j=0

u je−i2π jk/N for k = 0, 1, ...,N − 1

where, Ûk are the discrete Fourier coefficients, which approximate ûn. For reconstructing the original
function from its Fourier coefficients, one can use the inverse DFT:
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u j =
1
N

N−1∑
k=0

Ûkei2π jk/N .

The Fast Fourier Transform (FFT) is an efficient way to compute the DFT and its inverse. The
most common FFT algorithm is the Cooley-Tukey algorithm, which recursively breaks down the DFT
of any composite size N = N1N2 into many smaller DFTs, exploiting symmetries and reducing the
computational cost from O(N2) to O(N log N). Then the spacial domain [0, π] × [0, π] is discretized
into a grid of N × N points, where N is a power of 2 for efficient FFT computation. For each function
ui(t, x, y), we compute the DFT to obtain the Fourier coefficients ûi(t, kx, ky). This is done using the
FFT. The derivative of a function in Fourier space is obtained by multiplying its Fourier coefficients by
ik, where k is the wave number. For the two-dimensional case:

∂2u
∂x2 → −k2

xû,
∂2u
∂y2 → −k2

y û.

The wave numbers kx and ky are related to the grid points and the size of the spatial domain. For
time discretization, let tn = n∆t where ∆t is the time step size. The Euler method updates the solution
from tn to tn+1 as:

ûn+1
i,n,m = ûn

i,n,m + ∆t · F(ûn
i,n,m, tn),

where F(ûn
i,n,m, tn) represents the right-hand side of the discretized PDEs.

The final discretization form of model equation (2.7) using the Euler scheme in time and the Fourier
spectral method in space is given by:

ûn+1
0,n,m = ûn

0,n,m + ∆t
(
ûn

0,n,m(α0(1 − ûn
0,n,m) − ψ1ûn

1,n,m) − d0(k2
n + k2

m)ûn
0,n,m

)
,

ûn+1
1,n,m = ûn

1,n,m + ∆t
(
ûn

1,n,m(α1(1 − ûn
1,n,m) − ψ2ûn

2,n,m) + φ1ûn−τ1
0,n,mûn−τ1

1,n,m − d1(k2
n + k2

m)ûn
1,n,m

)
,

ûn+1
2,n,m = ûn

2,n,m + ∆t
(
−ûn

2,n,m + φ2ûn−τ2
1,n,mûn−τ2

2,n,m − d2(k2
n + k2

m)ûn
2,n,m

)
.

(2.9)

The non-linear terms in the model equation (2.7) are handled in real space before being transformed
back into Fourier space. The system includes terms that depend on the solution at earlier times (t − τ1

and t − τ2), a buffer initialization for each ui to store the necessary past states.
This discretization turns the continuous PDEs into a system of algebraic equations, which is then

solved using traditional techniques for solving linear systems of equations.

3. Stability analysis

In this section, we will outline the stability analysis for the proposed model, Eq (2.7), employing
certain numerically defined parameter values that hold biological relevance, in conjunction with the
determined equilibrium states. These critical points play an essential role in assessing the population
dynamics of normal, benign, and tumor cells. The stability of these equilibrium points is ascertained
by numerically calculating the eigenvalues of the Jacobian matrix associated with the model. An
equilibrium point is deemed stable if all the eigenvalues are negative, indicating a scenario where
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normal, benign, and tumor cells maintain a balanced coexistence without significant growth or decline.
Conversely, an equilibrium point is considered unstable if any eigenvalue is positive, suggesting a
potential for tumor cells to rapidly overtake normal cells following minor fluctuations in cell densities,
potentially leading to malignancy. Our numerical simulations incorporate diffusion factors, and we
demonstrate that these do not affect the stability of the cell densities. A stable equilibrium ensures that
any minor deviations in cell densities due to delays eventually returns to their initial steady states. In
contrast, an unstable equilibrium may result in significant deviations from steady states upon slight
perturbations, raising the possibility of malignancy development.

This stability analysis is confined to cases without diffusion and delay in the model, as detailed
in Eq (2.7). However, the subsequent section will extend the analysis to include these factors in our
numerical simulations. For a comprehensive understanding of the model’s behavior with both delay
and diffusion in a one-dimensional setting, we direct the reader to [51, 52]. These findings are also
applicable to our two-dimensional case.

In the absence of both delay and diffusion, Eq (2.7) gives a system of ordinary differential equations
of the form:

∂

∂t
u0(t, x, y) = u0(t, x, y)

(
α0

(
1 − u0(t, x, y)

)
− ψ1u1(t, x, y)

)
,

∂

∂t
u1(t, x, y) = u1(t, x, y)

(
α1

(
1 − u1(t, x, y)

)
− ψ2u2(t, x, y)

)
+ φ1u0(t, x, y)u1(t, x, y),

∂

∂t
u2(t, x, y) = −u2(t, x, y) + φ2u1(t, x, y)u2(t, x, y).

(3.1)

The Jacobian matrix for system (3.1) is given by:

J =


−α0u0 + α0(1 − u0) − ψ1u1 −ψ1u0 0

φ1u1 −α1u1 + α1(1 − u1) + φ1u0 − ψ2u2 −ψ2u1

0 φ2u2 φ2u1 − 1

 .
The characteristic equation p(λ) of the Jacobian matrix is:

p(λ) =λ3 +
(
2α0u0 − α0 + 2α1u1 − α1 − φ1u0 − φ2u1 + ψ1u1 + ψ2u2 + 1

)
λ2

+
(
4α0α1u0u1 − 2α0α1u0 − 2α0α1u1 + α0α1 − 2α0φ1u2

0 + α0φ1u0 − 2α0φ2u0u1 + α0φ2u1

+ 2α0ψ2u0u2 − α0ψ2u2 + 2α0u0 − α0

− 2α1φ2u2
1 + α1φ2u1 + 2α1ψ1u2

1 − α1ψ1u1 + 2α1u1 − α1

+ φ1φ2u0u1 − φ1u0 − φ2ψ1u2
1 + ψ1ψ2u1u2 + ψ1u1 + ψ2u2

)
λ

−
(
4α0α1φ2u0u2

1 + 2α0α1φ2u0u1 + 2α0α1φ2u2
1 − α0α1φ2u1 + 4α0α1u0u1

− 2α0α1u0 − 2α0α1u1 + α0α1 + 2α0φ1φ2u2
0u1 − α0φ1φ2u0u1 − 2α0φ1u2

0 + α0φ1u0

+ 2α0ψ2u0u2 − α0ψ2u2 − 2α1φ2ψ1u3
1 + α1φ2ψ1u2

1 + 2α1ψ1u2
1 − α1ψ1u1 + ψ1ψ2u1u2

)
.

The system of model equation (2.7) has the following six equilibrium points:

(i) A1(0, 0, 0) - Trivial equilibrium where all populations are extinct.
(ii) A2(0, 1, 0) - Only the benign cells (u1) are present at their carrying capacity.
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(iii) A3

(
0, 1

φ2
, α1φ2−α1

φ2ψ2

)
- Only the benign and malignant cells are present, and their populations depend

on the interaction parameters φ2, α1, and ψ2.

(iv) A4(1, 0, 0) - Only the normal cells (u0) are present at their carrying capacity.

(v) A5

(
α0φ2−ψ1
α0φ2

, 1
φ2
, α0α1φ2−α0α1+α0φ1φ2−φ1ψ1

α0φ2ψ2

)
- A mixed equilibrium where all three populations are

present. The populations depend on multiple parameters of the system.

(vi) A6

(
α1(α0−ψ1)
α0α1+φ1ψ1

, α0α1+α0φ1
α0α1+φ1ψ1

, 0
)
- An equilibrium where normal and benign cells are present, and their

populations depend on the interaction parameters.

These equilibrium points represent different possible steady states of the system of model equation
(2.7), where the rate of change of each cell type is zero. The actual stability and feasibility (whether
the populations are non-negative and make sense biologically) of these points would depend on the
specific values of the model parameters α0, α1, ψ1, ψ2, φ1, and φ2, which we discuss in the subsequent
section. After finding the Jaocobain using these equilibrium points and using some parameter values
involved in the model equations, the following observations are made:

� A1(0, 0, 0)-the trivial steady states exist and do not depends on the parameters involved in the
model equation.
� A2(0, 1, 0)-it reflect that benign cells are present and a half-trivial steady exists and again is

independent of the parameters.

� A3

(
0, 1

φ2
, α1φ2−α1

φ2ψ2

)
- a positive steady state exists for α1 = 0.5, ψ2 = 5, φ2 = 3.5, but there is one

stability switch for τ2 = 1.253670632, τ1 = 0.
� A4(1, 0, 0) - a half-trivial steady state exists in the presence of normal cells (u0).

� A5

(
α0φ2−ψ1
α0φ2

, 1
φ2
, α0α1φ2−α0α1+α0φ1φ2−φ1ψ1

α0φ2ψ2

)
- a positive steady state exists for α0 = 0.5;α1 = 0.3;ψ1 =

2;ψ2 = 5; φ1 = 3; φ2 = 5; and one stability switch for τ2 = 1.253670632; τ1 = 0.

� A6

(
α1(α0−ψ1)
α0α1+φ1ψ1

, α0α1+α0φ1
α0α1+φ1ψ1

, 0
)
- a half-trivial steady state exists for α0 = 2;α1 = 0.3;ψ1 = 1.2;ψ2 =

5; φ1 = 3; φ2 = 0.5; and stability switch with respect to τ1 for τ1 = 2.726991542; τ2 = 0.

4. Numerical discussions

In this section, numerical simulations using different parameter values for the suggested model
proposed in Eq (2.7) are presented [52]. These parameter values are chosen based on the stability
analysis results. In numerical simulation, we include both delay and diffusion to see their effects. These
simulations further enhance our theoretical justifications. The set of parameters without diffusion and
with diffusion are given in Tables 1 and 2, respectively. We start our simulations using parameters
set 1, that is, there is no diffusion and delay as shown in Figure 1, and all the cells are stable. In the
absence of diffusion, it has been shown that the stability changes due to one of the delay terms using
parameters sets 1, 2, and 3. This effect can be seen in Figures 2–5. The positive steady state A6 exists
and it does not change at all when both delays are equal to zero. It has been further observed that
changing the value of a parameter may switch the steady states, especially if we change the parameter
φ2 as shown in Table 1, parameter set 2, and set 3. In this case, the positive steady case disappears and
is replaced by the half-steady case A5. These states can be observed in Figures 3 and 4. In addition to
these parameter values, we use the following initial conditions for parameter sets 1–6, in addition to
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the zero-flux boundary conditions given in Eq (2.8):

u0(t, x, y) = 0.2 + 0.1 cos(4x) cos(4y),

u1(t, x, y) = 0.2,

u2(t, x, y) = 0.2.

We then switch our simulations by including diffusion in our simulations using parameter set 6 and
8. As shown in Figures 6 and 8, diffusion does not destabilize the steady states and the cause of switch
of stability is again due to one of the delay. We use the following initial conditions for simulation using
set 7 for Figure 7 and set 8 for Figure 8:

u0(t, x, y) = 1,

u1(t, x, y) = sin2(2x)sin2(2y),

u1(t, x, y) = sin2(2x)sin2(2y).

Similarly, we use the below initial conditions for parameter set 9:

u0(t, x, y) = 0.2 + 0.1 cos(4x) cos(4y),

u1(t, x, y) = (0.1sin(10x))2(0.1sin(10y))2,

u2(t, x, y) = (0.1sin(10x))2(0.1sin(10y))2,

and
u0(t, x, y) = 0.2 + 0.1 cos(4x) cos(4y),

u1(t, x, y) = (0.1sin(10x))2(0.1sin(10y))2,

u2(t, x, y) = (0.1sin(10x))2(0.1sin(10y))2.

The purpose of choosing these initial conditions is to make sure that the initial cells are healthy
and to see how normal cells are absorbed in the mutant and the cancer cells by a small perturbation in
some parameters involved in the model equation. These effects can be seen in Figure 9. Increasing the
magnitude of the delay terms may cause some small oscillation as shown in Figure 10.

Table 1. Different sets of parameters involved in model equation (2.7) without diffusion.

Parameters Set 1 Set 2 Set 3 Set 4 Set 5
α0 0.5 0.5 0.5 0.5 0.5
α1 0.3 0.3 0.3 0.3 0.3
ψ1 2 2 2 2 2
ψ2 5 5 5 5 5
φ1 3 3 3 3 3
φ2 5 5 3.5 0.9 0.5
d0 0 0 0 0 0
d1 0 0 0 0 0
d2 0 0 0 0 0
τ1 0 0 0 0 2.726991542
τ2 0 0.1185225646 1.253670632 1.253670632 0
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Table 2. Different sets of parameters involved in model equation (2.7) with and without
diffusion.

Parameters Set 6 Set 7 Set 8 Set 9 Set 10
α0 0.5 0.5 0.5 0.5 0.5
α1 0.3 0.3 0.3 0.3 0.3
ψ1 2 2 2 2 2
ψ2 5 5 5 5 5
φ1 3 3 3 3 3
φ2 5 5 3.5 0.9 0.5
d0 10−6 0 10−6 0 0
d1 4 × 10−6 0 4 × 10−6 0 0
d2 4 × 10−6 0 4 × 10−6 0 0
τ1 0 0 0 0 3
τ2 0.1185225646 0.1185225646 1.253670632 1.253670632 3

Figure 1. Simulation of model equation (2.7) using equation (2.9) for parameters set 1.

AIMS Mathematics Volume 9, Issue 5, 11560–11579.



11571

Figure 2. Simulation of model equation (2.7) using equation (2.9) for parameters set 2.

Figure 3. Simulation of model equation (2.7) using equation (2.9) for parameters set 3.
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Figure 4. Simulation of model equation (2.7) using equation (2.9) for parameters set 4.

Figure 5. Simulation of model equation (2.7) using equation (2.9) for parameters set 5.
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Figure 6. Simulation of model equation (2.7) using equation (2.9) for parameters set 6.

Figure 7. Simulation of model equation (2.7) using equation (2.9) for parameters set 7.
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Figure 8. Simulation of model equation (2.7) using equation (2.9) for parameters set 8.

Figure 9. Simulation of model equation (2.7) using equation (2.9) for parameters set 9.
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Figure 10. Simulation of model equation (2.7) using equation (2.9) for parameters set 10.

5. Conclusions

It is the aim of this work to use a robust and efficient numerical scheme for the approximate solution
of tumor growth model for the justifications of theoretical claims. We studied a the model without and
with delay and diffusion. It was found that the inclusion of diffusion does not effect the global steady
states. Including diffusion with large coefficients may cause some oscillating behavior of the solution,
but the dynamics are changed as one or both of the delay terms increases. Consequently, the intrinsic
kinetic dynamics shift to an oscillatory state due to a Hopf bifurcation when the delay reaches certain
values. Spatially non-homogeneous periodic solutions is obtained in the system when both delay and
diffusion are present. It has been observed that adding diffusion to the model equation corresponds
to global steady states, and the other parameters, particularly the delay terms are responsible for the
transition in the steady states. In the future, we want to extend this methodology to the fractional
version of the tumor growth model based on the reaction-diffusion system.
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13. M. J. Piotrowska, U. Foryś, M. Bodnar, J. Poleszczuk, A simple model of carcinogenic
mutations with time delay and diffusion, Math. Biosci. Eng., 10 (2013), 861–872.
http://doi.org/10.3934/mbe.2013.10.861

AIMS Mathematics Volume 9, Issue 5, 11560–11579.

http://dx.doi.org/http://doi.org/10.1007/b98869
http://dx.doi.org/http://doi.org/10.1007/b98868
http://dx.doi.org/http://doi.org/10.1093/emboj/cdg417
http://dx.doi.org/http://doi.org/10.1016/S0360-3016(02)03449-1
http://dx.doi.org/http://doi.org/10.1038/nature03918
http://dx.doi.org/http://doi.org/10.1038/sj.onc.1207116
http://dx.doi.org/http://doi.org/10.1007/978-1-4612-4342-7
http://dx.doi.org/http://doi.org/10.1049/iet-syb.2008.0156
http://dx.doi.org/http://doi.org/10.1016/j.bbrc.2005.03.183
http://dx.doi.org/http://doi.org/10.3934/dcdsb.2004.4.39
http://dx.doi.org/http://doi.org/10.3934/mbe.2013.10.861


11577
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