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Abstract: In this work, we are concerned with the order preservation problem for multidimensional
neutral type stochastic differential equations of infinite delay with jumps under non-Lipschitz
conditions. By using a truncated Euler-Maruyama scheme and adopting an approximation argument,
we have developed the well-posedness of solutions for a class of stochastic functional differential
equations which allow the length of memory to be infinite, and the coeflicients to be non-Lipschitz and
even unbounded. Moreover, we have extended some existing conclusions on order preservation for
stochastic systems to a more general case. A pair of examples have been constructed to demonstrate
that the order preservation need not hold whenever the diffusion term contains a delay term, although
the jump-diffusion coefficient could contain a delay term.
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1. Introduction

In [1], Asker studied well-posedness for a class of neutral type stochastic differential equations
driven by Brownian motions with infinite delay; Bao et al. [2] also investigated the exponential
ergodicity, weak convergence, and asymptotic Log-Harnack inequality for several kinds of models with
infinite memory. So far, there is no order preservation available for stochastic differential equations
with infinite memory. Moreover, the order preservation theorems play an essential role in the theory of
stochastic systems and their applications because, in many fields of analysis, they constitute an effective
way to control a complicated stochastic system by using a simpler one. These types of theorems
are used in a wide range of practical problems in fields such as finance, economics, biology, and
mathematics; see also [3—8]. Consequently, we focus on establishing order preservation for neutral-
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type stochastic differential equations of infinite memory with jumps and obtaining the well-posedness
for these stochastic systems under non-Lipschitz conditions.

The pioneering work on order preservation for stochastic differential equations is detailed in [9], and
was later generalized in [10]. Since their works, the order preservation for two stochastic differential
equations driven by continuous noise processes has been investigated extensively. With regard to
the order preservation under various settings, we can refer to, for example, [11] for one-dimensional
stochastic differential equations, [12] for one-dimensional stochastic hybrid delay systems, and [13]
for multidimensional stochastic functional differential equations.

Meanwhile, the order preservation for two stochastic differential equations subject to the
discontinuous case has also garnered much attention. For example, applying criteria of a “viability
condition”, the authors of [14] showed a comparison theorem of stochastic differential equations
with jumps under Lipschitz and linear growth conditions; using a Tanaka-type formula, [15] further
established a comparison theorem for one-dimensional stochastic differential delay equations with
jumps, where the coefficients satisfy local Lipschitz and linear growth conditions; adopting an
approximation argument, the work in [16] extends the results on one-dimensional equations to
multidimensional stochastic functional differential equations with jumps, where the coefficients satisfy
a non-Lipschitz condition.

It is worth pointing out that [13, 15, 17, 18] focus on order preservation for stochastic functional
differential equations with Lipschitz coefficients, which rules out the case of non-Lipschitz conditions.
On the other hand, few studies have focused on stochastic functional differential equations with
non-Lipschitz coefficients, and, in the existing literature, most have focused on stochastic functional
differential equations of finite delay. Yet, the corresponding issue for stochastic functional differential
equations with infinite memory is rarely addressed in the literature. Moreover, the multidimensional
order preservation theorem affords a further widening of the field of application, especially for those
processes whose dynamics are influenced by each other. Based on the above motivations, in this work,
we aimed to develop an approximation method to investigate order preservation for multidimensional
neutral type stochastic functional differential equations, which allow the coefficients to be non-
Lipschitz and depend on the whole history of the system. Compared to the existing results on order
preservation, the innovations of our work can be described as follows:

(i) We introduce the truncated Euler-Maruyama scheme method into the analysis of the well-
posedness problem of neutral-type stochastic differential equations of infinite delay with jumps, and
we establish the existence of the solutions;

(i1) Our model is more applicable and practical, as we deal with neutral-type stochastic differential
equations under non-Lipschitz conditions.

The rest of the paper is arranged as follows. In Section 2, we introduce some notations and present
the framework of our paper; Section 3 is devoted to the existence and uniqueness of solutions for a
class of neutral stochastic functional differential equations of infinite delay for pure jumps; Section 4
focuses on the order preservation for this system.

2. Preliminaries

For d,m € N, i.e., the set of all positive integers, let (R?,(-,-),| - |) be the d-dimensional Euclidean
space with the inner product (-, -) inducing the norm | - | and R¢ ® R™ denote the collection of all d x m
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matrixes with real entries, which is endowed with the Hilbert-Schmidt norm || - ||. Z := D([—c0, 0]; RY)
denotes the family of all cadlag functions f : [—co0,0] — R?. For a cadlag map f : [—c0, c0) — R? and
t>0,let fio € & be such that f,_(0) = f((t + 0)—) = limg. f(s) for 6 € [—o0,0], and (f;),»o is called
the segment process of (f(#))s—co-

For a fixed number r > 0, set

Zri={oe7: 1l = sup @9(O)) < o}
Then, (Z,,|| - ||,) is a Banach space. Under the uniform norm || - ||,, the space &, is complete but
not separable. Let (W(¢));»o be an m-dimensional Brownian motion and N(d, du) a Poisson counting
process with characteristic measure 4 on a measurable subset Y defined on the probability space
(Q, 7 ,P) with the filtration (%) satisfying the usual condition (i.e., %, contains all P-null sets
and Z, = =\ Fs). We assume that W(¢) and N(dt, du) are independent.
Consider the following neutral-type stochastic differential equations of infinite delay on (R, (-, -), |-

):

{d{X(t) - G(Xy)} = b(t, X)dt + o(t, X,)dW (1) + fyy(t, X, u)N(dt,du), t>0,

2.1)
XO = é: € gr,
{q{)‘((t)_— G(X)} = b(t, X)dt + 5(t, X)dW() + [, 7(t, X, )N(dt,du), >0, 02
XO = ‘f € gr,

where G : 2, - R4 bbb :RXx P, 5 R4, 0,6 :Rx %, - R{xRY, andy,y7 : RX Z, x Y — R? are
progressively measurable.

Set A(7) := X(t) — G(X)), A(t) := X(t) - G(X,), Z(¢) := X(t) — X(¢), and Z(¢) := A(¢) — A(?). In order
to derive the well-posedness of solutions, we assume the following

(A1) G(0) = 0 and there exists a constant « € (0, %) such that |G(¢) — G(n)| < all€ — nl|, for &, € D,.
(A2) There exist some functions K € ([0, o]) and u € % such that P-a.s.

b4, €) = bt + 15, &) = Bt P + o1, ) = e, + 15,8 — 6,
([ s = yteml+ 5600 = 36 n. 0D A0

+ f (y(t, &, u) — y(t,m, W) + 192, & u) — ¥(t, 7, w)|*)A(du)
Y
<KOWE - nlPullé —=nlD), &ne D, 120,

where % is a class of control functions and

U ds

o su(s)

U = {u € C'((0, 00): [1,00)) :

= oo, 5 > su(s) is increasing and concave}.

(A3) For any T > 0, there exists a constant C(T) such that P-a.s.

sup (Ib(z, 0)F” + [b(z, O)F + llor(z, O)II” + llo7(z, O)II*)

t€[0,T]

T
+ f f (1y(2, 0, w)* + [¥(£, 0, w)*)dzA(du) < C(T).
0 Y
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(A4) G(¢) < G(n) for & < n and there exists a constant a € (0, %) such that
G ~ Gl < emax|lg’ =1l &n € D

Under (A1)-(A3), (2.1) admits a unique strong solution (X(#));»0; see Theorem 3.1 below for more
details. For the existence and uniqueness of strong solutions to stochastic functional differential
equations with infinite delay, we refer the reader to [1, 19,20] and the references therein. In particular,
using the Picard approximation, Ren and Chen [19] studied the existence and uniqueness for a class
of neutral-type stochastic differential equations of infinite delay with Poisson jumps in an abstract
space under non-Lipschitz. We remark that we provide an alternative method to establishing the well-
posedness of neutral type stochastic differential equations of infinite delay with jumps. The Lipschitz

coeflicient a in (A1) is set to less than one-half rather than 41—0, as detailed in [19]. So, in some sense,

our result is more general. Assumption (A4) is just imposed for the sake of the monotonicity principle
of the solution process; see Theorem 4.1 below for more details.

Meanwhile, to establish the order preservation for multidimensional neutral-type stochastic
differential equations of infinite delay, in view of [21], we introduce the partial orders on R¢ and
€, as follows: for x = (x1,- - ,%,),y = (1, -+, yn) € RY,

x<yoex <y, i=12,---,d,

x<yex<yand x Yy,
x<yoex <y, i=12,---,d,
and,foréf:('fl,"' aé:n)an:(nb”' ann)e‘@}ﬂ

&<n e &0) <n@), 0¢(-00,0],

E<neé<nand £#7,
§<ne &0) <n@), 0¢€(—c0,0],
§<pn & <n and £0)-GE) < n0) - G,
E<pneé<pnand £#1.

EAnn =G AL 6 Aa).

In this section, we finally recall the definition of D-order preservation (see, e.g., [21, Definition 4.1]).

Definition 2.1. Equations (2.1) and (2.2) represent D-order preservation, if. for any &,& € 9, with
P(¢& <p &) = 1, one has

PXE <p X =1, t>0.
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3. Existence and uniqueness of solutions

In the case that G = 0 and N = 0, the existence and uniqueness of solutions to (2.1) with weak
one-sided local Lipschitz conditions has been studied in [2]. On the other hand, under the same
conditions the authors of [1] has extended the result to neutral-type stochastic differential equations
of infinite delay. Compared with these, we point out that the following result is included in [1, 2].
In contrast to the assumptions put forward in [1, 2], the assumptions (A1)—(A3) are more general.
Moreover, in [16], where order preservation of a stochastic functional differential equation with
non-Lipschitz coefficients is given, a tried-and-true method shows that we can approximate the non-
Lipschitz stochastic functional differential equations by using those with Lipschitz coeflicients to prove
the existence of solutions. It is worth pointing out that the Bismut formula for stochastic functional
differential equations of finite delay plays a crucial role in the analysis of the existence of those
with non-Lipschitz coefficients. Alternatively, for the neutral-type stochastic differential equations
of infinite delay, this method is no longer valid. To prove the well-posedness of solutions, we adopt a
truncated Euler-Maruyama approximation argument (see, e.g., [1,2]), where the essential ingredient is
to construct the associated segment process and introduce an approximate function in a good way.

Forany k > 1, let Y : R — [0, 00) such that ¢ (s) = lﬁ}((s) =0 for s € (—o0,0] and

1
” 4Kk>s, S [O, ﬂ]’
GO cae(s- ). selgal
0, otherwise.
Then, one has
0< ‘ﬁ;c < o) and O < Yy (s) T 57, sw;(s) <o (9) 10, as kT co. 3.1

Theorem 3.1. Let (A1)-(A3) hold with 5 = 0, & = 0, and ¥ = 0. Then, forany r > 0 and & € Z,, (2.1)
has a unique solution such that

EIIX{|? < C < oo, £2>0.

Proof. In what follows, we write X, in lieu of Xf for brevity.
(a) First, we shall show that E||X;|> < Ce " < oo, t > 0. Let X(¢) be a solution to (2.1). Define

7, = inf{t 2 0,1, > igll, + n), n > 1.

Then, by (A1), one infers that

1
e™|IX|I7 <

;< sup (€| A(s)). 3.2)
l1-a

(1- @)? 0<s<t

2
€1l +
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Combining the It6 formula with the assumption (A1), one has, forany 0 <t < T,

! !
e |A@)F <2(1 + a)|IE|F +2 f re?|A(s)|*ds + 2 f e?S(A(s), b(s, X,))ds
0 0

+2 f e S(A(s), o (s, X,))dW(s)
0

" f >0 (s, X,)|Pds + f f e (JA(s) + y(s, X, W — |A()P)N(ds, du)
0 0 JY

6
= Z 1)

i=1

By taking the Young inequality into consideration, one gets
t 1 !
L(t) <8T f e (2lb(s, X,) = b(s, 0)* + 2lb(s, 0))ds + o7 f e |A(s)Pds
0 0

t
1
<16T f (e KOIXIZu(IX,I2) + € |b(s, 0)F)ds + g Sup (e IA(s)P)
0

0<s<t

!
1
<C(T) f e (1 + [IX,IPudIX,|2))ds + g( sup e|A(s)P).
0

0<s<t

The Burkholder-Davis-Gundy inequality, together with the assumptions (A2) and (A3), implies that

B( sup Ii(s)) <E( sup f A, o, X, )AW (W)

0<s<tAT, 0<s<tAT, JO

1 INT),
<2E( sup eIAGF)+ C(TE f e llor(s, X,)IPds
8 Yosszing, 0
1 AT,
<gB( sup @IA(P) + C(TIE f (1 + IXIFuCIXI))ds.
0

0<s<tAT,

It follows from the assumptions (A2) and (A3) that

INT),
E( sup 15(5)) SC(T)Ef 62”(1 + ||Xs||fu(||Xs||3))d5-
0

0<s<tAT,

The Young inequality implies that

E( sup Ig(s)) <E f ’ f e 2ly(s, X, wIIAS)] + y(s, X, w)P)* N(ds, dur)
0 Y

0<s<tAT,

1 A
<<B( sup e|A(s)P)+CE f f e (y(s, X-, u) — (s, 0, u)|*
4 0 Y

0<s<tAT,

+ y(s, 0, w)[»)A(du)ds

1 AT,
<7E( sup € IAWF)+ C(TE f e (1 + |IX,Iu(IX,]12))ds.
0

0<s<tAT,
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Therefore, from the above inequalities, we obtain

!
E( sup eA()I) <8lill} + C(T) f (1 + BlIX e, 7| X gu, 1)) ds
0<s<tAT, 0

, (3.3)
+mJHq sup  e”|A(w)P)ds.
0

0<u<sAt,

Applying the Gronwall inequality leads to

!
E( sup e A)IP) <C(T)(IIEl} + f &1 + Bl Xonr, 211X gn, I17))ds),
0

0<s<tAT,
which, together with (3.2), implies that

1
E( sup eIXI17) <——II€ll} + E( sup e*|A(s)]
(,sup e IXR) <72 eIl + B sup ™ IAGP)

C(T) ' r(SAT,

e f (1 4 BX g, (1K, [2) )
- 0

c(T)

-0y

<C(T)|IéI? +

<C(T)|IéIP? +

C(T) ! ry rv
LINIE( sup  e||X,|7)u( sup e"IX,|2)ds.
0

2
(1 - a’) 0<v<sAT, 0<v<sAT,

Let G(s) = f]s #(r)dr, s > 0. Then, by the Bihari inequality, we have P-a.s.

Cc(T) ) C(T)

E( sup e™lIX.IP) < GHG(CDll? + 1-ap

tp <oo, te[0,T],

0<S<IAT, 1- a’)z }

where G~! is the inverse function of G. Let n T oo; then, 7, T oo. Therefore, we obtain
EIX|?<C <o, t20

due to the arbitrariness of 7.
(b) Second, we aim to derive the uniqueness of the solution. Let X(#) and Y(¢) be two solutions
to (2.1) with the same initial value X,. Set

o) = sup e |X(s) = Y(s)P* = " ||X,pr, = Yine, |12 < sup (A% (s)P),

0<s<IAT, T (1- 0’)2 0<s<tAT,
where A*Y (1) = X(£) - Y(¢) — (G(X,) — G(Y;)), and, in the last step we apply the assumption (A1). Then,

carrying out the same technique to deduce (3.3), one has

t
steWMRkafmswe%M%Mw
0

0<s<tAT, 0<ussAtT,

AT,
+C(T)E f e”|1X, = YylZu(l|X; — Yil[})ds.
0
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Due to the fact that the function su(s) is increasing, and by the Gronwall inequality, we have

AT,
E(wpe“m”mmsanpf e IX, - YI2u(IX, - Y|2)ds.
0

0<s<tAT,

Furthermore, using Jensen’s inequality, we get

B, () s—E sup e*|AXY (s)]?
4 ( _a,)Z (OSSSS\Tn )
C(T) r(sAT, r(sAT,
= B f e2 (s n)”Xs/\Tn - Ys/\T,,”%u(e2 (s n)”Xs/\‘r,l - Ys/\‘rnllz)ds
(1 - @)
C(T)

S(l — f(EgDn(s))u(Egon(s))ds te[0,T], n>1.

Since fol m](r)dr = oo, s > 0. By the Bihari inequality, we have that P-a.s. E¢,(T) =0, € [0,T], n > 1.

Let n 1 oo; then, E( supy.,.; €7*[X(s) — ¥(s)*) = 0, which implies that X(s) = ¥(s) for any ¢ > 0 P-a.s.
(c) Finally, we shall divide two cases to show the existence of the solution to (2.1). We shall adopt

the truncated Euler-Maruyama scheme approach (see, e.g., [1,2]), where the essential ingredient is to

construct an approximation of the segment process in a good way.

Case 1. In this part, we shall show existence of the solution for bounded b, o and 8 := fy(b’(" S+

ly(-, -, u)|)A(du). Define

Pu(x) = yi(lxl), xeR4
By the definition of i, it is easy to see that ¥, € C?(RY; R,). Let

0", (x)

d
(9xl-8xj )dXd, x e R

0¥ (x) 0¥ (x) )

(P0x(0) = (5= 5—) and (P = (

A straightforward calculation leads to the following for x e R? andi = 1,2, -- , d:

OY,(x) 82‘I’k(x)

ax, =y (|x |)n (9x,-6xj

= ()@l = xixp)lxl ™ + g ()il 2,

where 6;; = 1 if i = j, or 0 otherwise. Then, it follows from (3.1) that, for x € R,

0 <o)l < 1, and 0 < We(x)® < 2P, [x] - (¥l < 210, 15(1x]) L O, as k T co. (3.4)

Set Ny :={ > 1ng} and | s] := sup{k € Z; k < s}, i.e., the integer part of s > 0. For any n € N,
consider a stochastlc differential equation:

d{X"(r) — G()A(f)} b(t, X”)dt + o(t, X")dW(t) + f y(t, X "L u)N(dt, du), (3.5)
Xi=Xl=X,=¢€ 9, '
where X”(H) =X"((t+6)ANt,),0 € (—00,0], ¢t L’”J . In view of a similar technique as in the proof

of the uniqueness in (b), (3.5) has a unique solutlon by piecewise solving piece-wisely using the time
step length % And, beyond that, we can find an n € N, satisfying that e’/" < 2; then,

X711 < IX7Il VX ()] < UK, < 201X (3.6)
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Let

Tp =1inf{t > 0: [X"(H)] = R} = inf{r > 0 : [|[X]||, = R}, €]l <R, n € Ny,
Zmm(t) = X"(1)-X"(t), Z"" = X'=X", A'(t) = X"(t)-G(X"), A""(1) = A"(f)—A"(t), and H" = X"~ X"
Using (3.5) and the assumption (A1), the Young inequality leads to the following for any & > 0:

IZ"II = sup e"|Z"" (¢ + Q) = sup e CT|Z"" ()

—00<0<0 0<s<t
< sup |A"™"(s)]> + a sup ||X" — X"
l-a 0<s<t 0<s<t
1
< sup [A""(s)[* + a(1 + &) sup ||H" — H"||> + a(1 + =) sup [|IZ""]|%.

0<s<t 0<s<t € 0<s<t

Set e > ﬁ; then, 0 := a(l + é) < 1. It is easy to see that

sup [IZ2"|I? < Ky sup |A™"(s)]* + ko sup ||H? — H”|IZ, 3.7
0<s<t 0<s<t 0<s<t
where
1 and ad
KK=—— K= ——————.
T -a)1-9) 2T (0 -a)1-9)

Moreover, since b and o are bounded on bounded subsets of [0, o0) X &,, then

Ib(t, X})| < C(R) := ||S|FPR Ib(t, )| < 0o, R € (||E]l;,00), t€ [0, 1] (3.8)
Zll-<
and
lo(t, X;)| < C(R) := IIS|FpR lo(t, ) < o0, R € (||¢ll;,00), t€[0,7R]. (3.9
Zll<

It follows from the definition of 7% and (3.6) that, for # < 7%,
IH = 1X; = X1l < 161+ 171 < 311X < 3R
In addition, it is easy to see from (3.5) and (A1) that

IH |l = sup (e"“™"1X"(s) = X"(s A 1,)])

st
sft Ib(s, X")|ds + sup fs o (r, X’f)dW(r)‘
es<t | i
csup | [ [yt onndo 4o sup 197 - 83,0, (3.10)
f Ib(s, XM)Ids + sup f o(r, XAW ()
nes<t|
+ sup f f y(r, X
1 <s<t Iy

where, in the last step, we have used the fact that

IX; = X, ll- = sup (€“IX"(s +6) = X"(s + O)]) < sup (" "|X"(w) - X"(z,)]) =

—00<6<0 th<u<s
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In view of (3.8) and (3.9), besides the Burkholder-Davis-Gundy inequality, we get

n—oo

t/\T;‘e . ) 1
lim E(f [b(s, XD)lds)” < lim —C(R) =0
t n—oo N

) s R 2 ) t/\TR CR
lim E(  sup f o(r, Xf)dW(r)‘ ) <C lim E( f jo(s, XD)Pds) < lim = =0
noe s Ay cssine | J, noe tn noe n
and
imE( sup y(r " WN(dr, du)‘
N <s<SIATy
AT . 2 AT .
< lim | f f (s,xg_,um(du)ds| + limE f f Iy(s, X", w)PA(du)ds
n—0o0 n—0oo tn Y
. B B
S,}LI&(;+;)—0-

Combining these inequalities with (3.10), one has

sup lim E(|H]|2 <)) = (3.11)

t€[0,7] 17

In what follows, we shall prove that X"(-) is a Cauchy sequence. Fix T > 0 and set

= {(v(t))te(_oo,T] is a adapted process on & with vy = & and E( sup (e*" Iv(t)lz)) < oo}.

te(—00,T]

Then, 2? is a complete metric space with

p(u,v) = e =il 2= (B( sup @ ut)) ~v(P)))’.

t€[0,T]

By the It formula, one has the following for any m, n € Ny:
Pi(A™"(1)?

=2 f {Fs - (POHA™(s)), b(t, XT) = b(s, X™))ds
0

+ f trace{(a(s, X}) — o7 (s, X)) {(F)7 + Pa(Pi) (A" (5))
0

R . (3.12)
X (o(s,X;) —o(s,X}"))}ds

+2 f (PLPDIA™(5)), (0 (s, K7 = o5, X{))AW(5))
f f WA (5) + v (s, X2 1) = y(5. X0, 1)) = (A" () )N (ds, du).
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By applying the elementary inequality, the assumption (A2) and (3.4) yield that
TATRATR R R
2 f AWk - () H A (1), b(2, X7) — b(t, X["))dt
0

TATRATR A R
<2 f(; (l{‘Pk (W) JA™" @) - b2, X7) = b1, X;”)|)dt

(3.13)
1 nm 2 TATZAT% on ny2 n ny2
<gswp  WATER e [ (187 = X wi - X1P)
0<I<T ATHATE 0
+ 17 = X - uIXT = X2 + X = R - wX) = X1 )de
and
TATZAT% . .
f trace{(c(s, X7) — o°(s, X1 (W2 + (Wi A" (1))
0
X (0 (s, X") — (s, X™))}ds
TAT;AT% . R
<o) [ (1 - Xy - )
0
17 = XU - X = XN + 1K = X wdIX) - X)) de
TATRATR . . . .
+ K(T) f 20,1, (IN"ODIXY = XN - u(Xy - X'I[7)dr
0
(3.14)

TATRATY . .
<o) [ (1 - X - )
0

+ 17 = XU - wdIX] = XU + 10X = X707 - wlX = X7I))de

TATRATY
+C(T) f Lo (IX"(1) = X"(D)])2 sup e |X"(s) — X"(s)]
0

K1-2a) 0<s<t
- u(2 sup e*”|X"(s) — X"(s)[*)dt
0<s<t
TATRATE . .
<o) [0 (1 X w7 - )
0
+ 11X = X7 - wIX) = XD + 1X = X0 - ud1X) - f(;"llf))dt + e(k),

where, in the penultimate inequality, we have used the fact that, forany O <7 < T A 7} A T,

X7 — X712 < sup e”?|X"(t+ 60) — X"(t + O Lyr0sr,)

—00<6<0

+ sup e¥IX"(t,) — X" (t)* Lirsos1,)

—00<6<0

<2 sup e**|X"(s) — X" (s)]*

0<s<t

and

IX"(s) = X" ()| < IN""()| + aIXY = XTIl < IA™"(5)] + 2@ sup |X"(w) = X"(w)l, 0 <s<t,

0<u<s
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by aid of the definition of )A(,” and (Al). Here,
262rT
e€lk) :=C(T) sup su(s) L 0 as kT o0, 59 := —————,
dasmn "7 (I 2a)?

because u € %/ . By the Burkholder-Davis-Gundy inequality, (A2), and (3.4), one gets

E( sup 2 f (FLCPOHA™(9)), (05, XY) = o(5, X)W (9))

0<t<T AT)ATH
1 TATRATR . . 315
<B( s AP +CT) f (1% = X0 - wir - xy G1)
O<t<T ATRATR 0
FUX7 = XU - wdIX] = XU + 07" = X0E - wIX = X))
By virtue of (3.4) and a Taylor expansion, one infers that, for ¢ € [0, T'],
(A1) + (s, K] u) — y(s, X, w)? — WA (1))
<6, X u) — y(t, X, w) f 2PLPOHA™(s) + 00y (1, X u) — y(1, X", w)))do
<21, X u) — y(1, X w) f (A" (5) + 0y (t, XL u) — (1, X", u)))do
<2y, X ) — (6, X7 )P+ 29 (N (), X w) — (1, X7 ).
This and (A2) imply that
sup f f (PLA™(5) +y(s, K0, uw) — (s, X1, w))* = Wi(A™"(5))*)N(ds, du))
0<l‘<T/\T RATR
1 TATRATR
s—E( sup WA (D)) + 3E f f (e, X, u) — y(t, X", ) A(du)de
4 Nosi<Tarine (3.16)

1 TATRATR . R
<3B(swp o)+ emE [ (187 - X uI - X1P)
0

4 1 m
O0<t<TATRATR

17 = X1 Xy = XD + 11X = R - (X - X)) )de
Substituting (3.13)—(3.16) into (3.12), we infer that, for any k > 1 and m, n € Ny,

E( sup W(A™())

n
0<t<TATRATR

T
<C(T) | (BIHM - u(IH D <y + E( sup  NZ2707 - uIZ2™N17)
R
0

n m
O<SSIATRATY

+ EJ|H'|I? - u(llH{"IIf)I{tsTg;)dt + C(T)e(k).
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Let k T oo; using Jensen’s inequality and noting (3.7), we get the following for any n, m € Ny:

B( sup 1Z"0IF)

n m
O0<I<TATRATY

T
<C(T) f (BIEIR - wCBIH I ey +E( sup  1Z0717) - u(B  sup  [1Z"I1)
0 O<S<IATRATR O<SSIATRATR
+ 2BIH} - uBIH D <o )de + B sup  (IH" @I + IH"OI))

m
0<t<T ATRATR

T
<C(T,n,m) + C(T) f B sup NZ™IF)-u(E  sup ZyiE)dr
0

O<S<IATLATY O<S<IATLATE
where
C(Tmm) =205 sup & (IH' O iy + IH" Ol i)
+C(T) fo (BIEIE - uCBIE NP ey
+ BIH} - wEBH" D <em)dt > 0, as n,m — oo.
Let G(s) = fl e dr, s> 0. Since fo —dr = oo, by the Bihari inequality, we have

lim B( sup 2" (0)I}) < G (=) =0, (3.17)

n,m—0co 0<t<TATRATR

because of (3.11). Thus, to prove that X" converges in probability to a solution of (2.1), it is sufficient
to show that
lim limsupP(7%; < T) = 0. (3.18)

R—o0 n—oco

Indeed, this and (3.17) yield that, for any € > 0,

lim p(X",X™) = hm ( ( sup (e*|X"(t) — X"(2)| )))% =

n,m— oo m— oo 1e[0,T]

This implies that X"(¢) is a Cauchy sequence in Z? with the norm p and has a unique limit X(r) on 2>
due to the completeness of (22, p). Then, by using a standard argument, we can show that (X(¢))c(0.7]
is the unique solution to (2.1). So, to achieve the desired assertion, it is sufficient to show that (3.18)
holds true. By a simple calculation, and using the assumption (A1), we have

e IX7II? < ||§||2 sup (" |A"(s)P). (3.19)

(1 a) 0<s<t

By Itd’s formula, the Burkholder-Davis-Gundy inequality, and Gronwall’s inequality, together with
(A2), (3.8), and (3.9), one has

!
E( sup e™|A"(s)) < CIEIZ + C(R) + C f e E||H!| 2 jy<ryds, 1> 0. (3.20)
0

n
O<s<tnty
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Noting that for the definition 7%, one has {7} < T, sup,.,.r At IX"(1)| < %} = (), it follows from (3.11),
(3.19), and (3.20) that

R
lim lim P(7% < T) :I%im lim P(T;é <T, sup |X"(1)|> Z)

R—00 n—o0 —00 1—00 OSZST/\TZ

. " R
< lim lim P( sup | X"(1)| = Z)

Rocon—eo % ogicrary

16
< lim lim —]E( sup ez”|X”(t)|2) =0,

2
R—co n—oo 0<r<T ATy

where, in the second step, we have used the Chebyshev inequality. Therefore, (3.18) holds.
Case 2. Next, we present the existence of the solution for unbounded b, o and 5. For any n > 1, let
ii=(m,n,- - ,n) R Set

pa() = (E ANV (-i1), n>1, £€ T,

bu(1,8) := b(t A n, pp(8)),  0(t,6) := o (1 A, py(£)),

and
Yu(t, & u) :=y(t A n, p,u(€), u).

Then, b,,0,, and 5, := fY(l)/n(-, ) + [ya(-, -, w)))A(du) are locally bounded. Therefore, according to
(a), (b), and Case 1,
d{X"(t) — G(X1)} = b,(t, X)dt + 0, (2, X])dAW () + fyn(t, X", u)N(dt, du), 1> 0,
Y
Xg = XO = f € @r»

has a unique solution X"(¢), t > 0. Forany m > n > 1 and ¢ € &, with ||€||, < n, one has

bu(1,8) = bp(1,8), 0(1,6) = Tn(t,6), Ya(t, &, u) = yu(t, &, ). 1 € [0, 1],

Then it follows that X"(f) = X"(¢) for t < 7,, where T, := n A inf{t > 0 : ||X"||, > n}. Letn 7T co; then,
T, T . So, for t < 7,,, X(¥) := X"(¢) is a solution of (2.1). O

4. Order preservation for neutral-type stochastic differential equations of infinite delay with
jumps

In this section, we first show the D-order preservation problems for a class of neutral-type stochastic
differential equations of infinite delay with pure jump processes.

Theorem 4.1. Let (A1)-(A4) hold. The solutions of (2.1) and (2.2) are D-order-preserving if the
following conditions are satisfied:

(i) The drift b = (b, by, - ,by) and b = (b1, by, - - - , by) satisfy that bi(t,&) < bi(t,&) forany 1 <i <d
if £,€ € 2, with £ <) £ and £,(0) — Gi(¢) = &(0) — G(é).
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(ii) The diffusion o = (o), and & = (7;) satisfy that o = o forany 1 <i < d, 1 < j < m and
£ & € 9,. Moreover,

D 036, &) = it P + 162, €) = 5t )P)

=1

<K®)IE(0) — Gi(€) — &) + GAEPu(I&(0) — Gi(€) — E0) + GAOP), 120, £,E€ P,

In other words, o;(t, &) only depends on ¢ and &;(0) — G;(£).
(iii) The jump diffusion term y = (yy,¥2, -+ , ) satisfies that £(0) — G;(€) +y,(t, €, -) < &(0) — Gi(€) +
yi(t,&, ) forany 1 <i<dif & & € 9, with & <p €.

Proof. For any T > 0 and the initial values &, & € 9, with & <p, &, we first seek to prove that

E sup (A'() = A1) =0, 1<i<d, 4.1)

0<1<T
where Al(f) = X'(f) — G'(X,) and Ai(f) = X'(t) — G'(X,). Define a stopping time
T, =inf{t > 0: JA(t) = A(D) AA@)| = k). k> 1.
By the definition of ¢, and & <, &, it follows that
Ya(A'(0) = A'(0) = Y(£'(0) - G'(€) - E(0) = G'()) = 0.
Then, it follows from the It6 formula and the condition (ii) that
e MWy (At A ) = At AT)?

<2r f ! e? Y, (A(s) — Al(s))ds
0

+2 f ' e (b'(s, X,) = b'(s, X))t (N (5) = A'(s))ds
0

+y fo (0, X) — s, X)), + 02N Gs) - K)ds “42)
1

j=

+2 Z f Tk eerV(O'ij(s, X) — O'ij(s, Xs)){l//nlﬁ;,}(/\l(s) _ /_\i(S))dBj(s)
0

=1

+ f ' f e {Ya(N'(s=) = A'(s=) + 7/ (s, X, u)
0 Y

— 7' (5, X5, 0))* = Yu(A'(s—) = N'(s-))*}N(ds, du).

Set Al(r) A Al(f) = (Xi(t) — G'(X) A (Xi(t) — Gi(X,)) =: Yi(t) = D(Y,), i = 1,---,d. Then, it is
easy to see that ¥, <, X, because Yi(r) — D'(Y,) < X(t) - G‘(X,), i = 1,--- ,d. Due to the fact that
0 < ¥, (Ai(s) = Ai(s)) < Linis)-Aics)» and when Al(s) > Al(s), one has that A'(s) A A'(s) = Al(s), that is,
Yi(s) — Di(Y,) = X'(s) — G'(X,). It follows from the condition (ii) that

(b'(s, Y) = B'(s, X)Wtk J(A'(5) = A'(5)) <0, n 2 1, s€[0,T].
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This and the assumption (A2), for ¢t € [0,T], n,k > 1, imply that

2 j; e (b (s, Xy) = B'(s, X)W, J(A'(s) — Al(s5))ds
= 2f T e (b'(s, X;) — bi(s, Yy) + bi(s, Yy) — bi(s, Xs)){',l/nw;}(/\i(s) _ Ri(s))ds
0
=2 f "5, X,) — Bi(s, ENULIA(s) — Ri(s))ds
o 1 ws)
= f P (8TIB' (5, X,) = b'(s, YOI + o A'(s) = A'(s))7)ds
0 8T

ATk
< C(T)f e |IX; = YilI2 - u(lIX; - Yil[})ds
0

1 2 [ Al 2
sup e, (A'(s) — A'(s))7,
S —a) o€ YA (S) = ALs)

where, in the third step, we have used the fact that 0 < l//;(Ai(S) — Al(s)) < Lipics)>Ai(s)- Meanwhile,
the condition (ii) implies that o"/(s, X;) = o/(s, X,) depends only on X'(s) — G'(X,). Then, it follows
from (A2) and (3.1) that, for some constant C(T") > 0,

D0 (s, X,) = s, R, + U 2HA(s) — Ki(s)

j=1
= D, &0 (s, X)) = (s, X))V, (A (5) = A(5))
j=1
+ €05, X)) = (s, X)VY (A (s) = Ki(s)

J=1

N rs( ij ij v (44)
< Z eZ (O’j(s, XS) — 0'](5', Xs))ZI{Ai(s)—j_\"(s)e(O,%)}

J=1

m
5 .. . .. .. _
+ § € rS(O_l](S’ Xs) - O-U(S’ Ys) + O-U(S, Ys) - O-U(Sa Xs)) I{Ai(s)>/_\i(s)}
=1

SC(D) iy a0, 1€ IN () = A(s)P - u(A'(s) = Al(9)P)
+ C(T)e™(1X, — Y| - u(IX, - YiIIP)
<e(n) + C(T)e™||1X; = YilI? - u(lX, - Yi|?),

where

leT

€(n):=C(T) sup s-u(s) |0, as nT oo, §1:= "

5€(0,51)

because u € U. Moreover, the assumption (A2), (3.1), and the condition (ii) imply that, for any n > 1
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and0<s<T,
2e4rS<aif<s, X,) = o (s, X))V gt (N (5) = N(s5))
=
< i e (0(5, X,) = (s, X)) (A'(s) = Al(s))?
s&lne“”nxs = YII7 - u1X; = YlDwn(A'(s) = A'())?,

which, together with the Burkholder-Davis-Gundy inequality, leads to

Esup2 ) f " (o5, X,) = s DI (s) = Ri(s)ABI(s)
1 Y0

0<s<t

ATk 1
<C(T)E( f e IX, = Y2 - ulllX, = Y,IP)e? v, (A'(s) - Al(5))’ds)’
?/\Tk
<C(T)E f e?|1X, — Y|P - u(|X, — Y,|P)ds
0

+ lE sup  €”" Y, (A'(s) — N(s))%.

8 0<s<tATk

At last, the condition (iii) implies that
Yi(s) = G'(Yy) +¥'(s, Yy, ) < A(s) +9'(s, X,, 1), AxP-ae.
If Ai(s) < Ai(s), then (4.6) becomes
AN(s)+Y' (1Y) <N (s) +9(1, X,,)), AXP-ae.
This, by the notion of i, and (3.1) leads to

Un(A'(5) = N () +7'(5, X, ) = (5, Xy, ) = (A (5) = N(5))
= Y (A'(s) = Al(s) +¥'(s, X, ) = ¥'(s, X, ))?
=YY (5, X0, ) = V(5. Y, ) + (A (8) +¥(5, Yy, ) — (N (s) + 7'(5, Xy, )
<Y (Y (5, X, ) — Y (5, Y, )
<Wi(s, X, ) = ¥'(s, Y, )P, AxP-ae.

If Ai(s) > Al(s), then (4.6) becomes

')’i(S, YS7 ) < ’}’i(S, Xs, '), /l X P-a.e.

4.5)

(4.6)
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This, by the notion of i, and (3.1) leads to
Un(A'(s) = N(s) +7'(8, X5, ) = 7'(5, Xy, ) = (A’ (5) = A'(s))?
=Ya(N'(5) +7'(5, X5, ) = N(8) = ¥'(5, Y5, ) +7'(5, ¥y, ) = 7' (5, Xy, )
— Un(A'(s) = N(5))?
=Yn(A'(8) +7'(5, X5, ) = N(5) =¥/ (5, Y5, )’ = n(A'(5) = Al(s))?
S, (A'(s) = N(s) + 00/ (5, Xy, ) = ¥'(8, Yo, DY (5, X, ) = ¥'(5, Y, )
<S2n(A'(s) = Ai(s) + 60/ (5, X5, ) = V' (8, Yo MY (8, X, ) = ¥'(5, Y, )]
<2y (5, X, ) = Y5 Ve (YA (5) = Al(9)) + (5. X, ) = ¥'(5, Yo, )
<2y (8, X ) = ¥ (5, Yoo )P + 20(A'(8) = A (DD (5, Xor ) = ¥'(5, Vo ).

Therefore, it is easy to see that

Un(A'(8) = A(8) +7'(5, X, ) = 7'(5, K, ) = Ya(A'(5) = A'(9))?
S2’|’yi(sa XS7 ) - 7i(3, Ysa )|2 + zwn(Al(S) - [_\i(s))lyi(s’ XS’ ) - yi(sa YS’ )l

This, together with (A2) and (3.1), implies that

E sup f o f e Y (A'(v=) = Al(v=) + Y (v, X, u) — 7' (v, Xy, u))?
0<s<t JO Y
— Yu(A'(v=) = Al(v=))*}* N(dv, du)
:Ef f e YA (s—) = Nl(s=) + ¥/ (s, Xy, ) — ¥ (5, Xy ) — YA (s—) = Al(s—))*} " N(ds, du)
0 Y
=E f k f ¥ (Wu(Al(s=) — Al(s=) + y'(s, X;, u) — ¥'(s, X, u)*
0 Y
— (A=) = A(s—))*} A(du)ds

<OE fo fY & (1Y/(5. X0 ) = ¥ (5, Yoo I + 20 (N () = AUDY (5. Xo ) = ¥'(5, Yo, )] Alduds

ATk
SC(T)Ef e |IX; = Y2 - u(lIX; - Yil[Hds + E sup ey, (A'(s) — Al(s))”.
0

4(1 - CZ) 0<s<tATy

4.7)
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Substituting (4.3)—(4.5) and (4.7) into (4.2), one has the following for 1 <i < d:
E sup ey, (N(s) = A($)’ =E sup ey, (A'(s) = A(5))’

—00<SSIAT 0<s<tATk

<2rE f A e2rsw,,(Af(s)—z‘\f(s))2ds+%E sup  e* Y, (A(s) — Al(s))
0

0<s<tATk

AT
+e(n) + C(T)Ef e?[IX; = Y,II? - u(lIX; — Y,|)ds
0

<2r f E sup ezrvx//n(Ai(v)—/_\i(v))zds+%E sup  e¥ Y, (A(s) — Al(s))?
0

O<v<sATy 0<s<tAT

+e(n)+C(T)L f E sup ezrle(v)—A(v)/\/_\(v)lz-u(l1 sup ezrle(v)—A(v)/\/_\(v)Iz)ds
0

l-a 0<v<sATk —  O<v<sATy

<2r f E sup ezrvgl/n(Ai(v)—/_\i(v))zds+%E sup  e¥ Y, (A(s) — Al(s))?
0

O<v<sATk 0<s<tATk
+ e(n) + C(T) f E(¢i(s) - u(gel5)))ds,
0

where ¢(s) = = sup_ e?|A(v) — A(v) A AW)]?, s > 0. This further implies that, for any

nk>1land0<t<T,

COVSSATE

E sup e y,(A'(s) — Al(s))* < 4r f E sup ey (A'(v) — Al(v))ds

—00<S<IATY 0 O<v<sATy
+2C(T) fo E(¢i(s) - u(@e()))ds + 2€(n).

It now follows by Gronwall’s inequality that

E sup e yn(Al(s) - Al(s)’ <2C(T) fo E(¢i(s) - u(ge(5)))ds + 2C(T)e(n),

—00<S<INTE

which leads to

d t
ZE sup e2rswn(Ai(s) - /_\"(s))2 < 2dC(T)f ]E(¢k(s) . u(¢k(s)))ds + 2dC(T)e(n).
i=1 0

—0o<S<IATE

Let n T oo, and, by Jensen’s inequality, one has
!
(1 — @)Edy(s) < 2dC(T) f (Bu(s)) - u(Bepu(s))ds, 0<t<T, k>1.
0

Let G(s) = fls #(r)dr, s > 0. Since fol #(r)dr = oo, by the Bihari inequality, we have
Ei(t) < G(G(0) +2dC(T)) = G (=0) =0, k> 1.
Let k T oo; then, (4.1) holds. Thus,

X - G(X) < X(t) - G(X)).
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Moreover, under condition (A4) and Proposition 4.3 in [21], one has
PX, <X)=1, t>0,
which yields the desired assertion. O

Next, we aim to study the order preservation for neutral-type stochastic differential equations with
compensatory jump processes. Consider two multidimensional neutral-type stochastic differential
equations of infinite delay with jumps for any ¢ € [0, T']:

{d{X(t) - GX)} = b(t, Xp)dt + o (¢, X )dW(1) + fY y(t, X,_, u)N(dt, du), 4.8)
X(1) = &), t € (=00,0],
and ~ .
{c}{f((t) - G(X)} = b(t, X)dt + 5(1, X)dW (1) + [, ¥(t, X,-, w)N(dz, du), 4.9)
X(@t) = &1), t € (~-,0].

Then, (4.8) and (4.9) are respectively equivalent to

dX() - GX)) = {b(t. X)) — [, y(t. Xie,w)A(dw)|dt + o(t, X,)dW (D) + [, (¢, X, )N(dt, du),
X(1) = &(1), t € (=0,0],

and

dX() - GX)} = {b(t. X)) — [, 7(t. X wpA(du)}dt + &1, X)AW(r) + [, 7(t. X, u)N(dt, du),
X(t) = &@1), t € (~0,0].

According to Theorem 4.1, and together with the method of [15, Theorem 3.1], we can infer
the following D-order preservation result for multidimensional neutral-type stochastic differential
equations of infinite delay with compensatory jump processes.

Theorem 4.2. Let (A1)-(A4) hold. The solutions of (4.8) and (4.9) are D-order-preserving if the
following conditions are satisfied:

(i)Forany 1 <i<dandt>0,if & & € 9, with & <p & and &(0) — G;(&) = &(0) — G;(£), it holds that
bit, &) — [, vi(t.€,w)A(du) < bi(1,) ~ [, 7i(t, & u)A(du).

(ii) The diffusion o = (0;) and & = (d7;) satisfy that c = G forany 1 <i < d, 1 < j < m, and
£, € 9,. Moreover,

Z(|0'ij(f»§) — ot ml* + |oij(2, &) — 7(t, mli%)
i=1

<K@IE(0) — Gi(€) — &(0) + GiOPu(I€0) — Gi(é) — &) + G, 120, £E€ D,
(iii) The jump diffusion term y = (yy,¥», - -+ , ¥q) satisfies that &(0) — G(€) +y,(t, €, -) < &(0) — Gi(€) +
yi(t,E,)forany 1 <i<d,t>0if £, € 9, with &€ <p &.
Remark 4.1. In Theorems 4.1 and 4.2, it is easy to find that D-order preservation theorems hold in
when the diffusion term does not contain a segment process. However, the jump-diffusion coefficient

can contain a delay term. It is consistent with the result for one-dimensional stochastic differential
delay equations in [15].
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In the following part inspired by [15, Examples 2.2 and 2.3], we will also establish two examples
to support the above two opinions respectively.

Example 4.3. Consider the following two one-dimensional neutral-type stochastic differential
equations only as a matter of convenience:

d{X(®) - G(X)} = X dW(@) - X,_N(r),  t€[0,T],

X(Q) =, 0€ (—OO, O)’
and

d{Y() -G(Y)} =Y dW({) - Y,_N(d), r€][0,T],

Y(6) =0, 8 € (=0,0),

where ¢ < 0 is a constant, N is a Poisson process and there is independence of Brownian motion W.
Due to the infiniteness of the length of memory, for any t € [0,T A (=0)], Y(¢) = 0 while X(t) =
c(1 + W(t) — N(t)). On the other side, the following relation is obvious:

lweQ: Wi <-1}C{weQ: 1+ W) —-N@) <0}

Then,
0<PlweQ: Wi <-1}<PlwoeQ: 1+ Wk -N(@) <0}.

This implies that
P{w e Q: X(r) > 0} > 0.

Therefore, it holds that D-order preservation need not hold if the diffusion coefficient includes a
delay term. However, the following example shows that the jump diffusion can conclude a delay
function.

Example 4.4. Consider a pair of neutral stochastic functional differential equations of infinite delay
with jumps described by the following for fixed T > 0:

d{X(0) - GX)) = [ X y(N(dt,du),  t€[0,T],
X(®) = c, 0 € (—c0,0),

and
d{Y@) - G(Y,)} = f Y,_y(u)N(dt, du), te[0,T],
Y(6) =0, 6 € (—0,0),

where ¢ < 0 is a constant and N is a compensated Poisson random measure on [0, 0] with parameter
A(dw)dr such that T fooo y(u)A(du) < 1 for y(u) > 0,u € (0,0) . Assume, moreover, that y(u) > 0,u €
(0, 00). Then, for any t € [0, T A (-0)],

X() =c f f y(u)N(dt, du)+c 1— f f 7(u)/l(du)ds
<c l—ff y(u)/l(du)ds
0 Jo
<0

while Y(1) =0
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5. Conclusions

In this work, we established the well-posedness of neutral-type stochastic differential equations of
infinite delay with jumps under non-Lipschitz conditions. We presented the order preservation for this
system. We also gave some examples to support our results. It would be interesting to continue the
study of neutral-type stochastic differential equations of infinite delay with jumps. For instance, [1]
studied the stability in distribution of numerical solutions of neutral stochastic functional differential
equations with infinite delay. A natural question is to ask whether it is possible to extend these results
in [1] to the model established in our work.
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