
AIMS Mathematics, 9(5): 11212–11227.

DOI: 10.3934/math.2024550

Received: 29 January 2024

Revised: 10 March 2024

Accepted: 13 March 2024

Published: 21 March 2024

https://www.aimspress.com/journal/Math

Research article

Optimized RNA structure alignment algorithm based on longest arc-

preserving common subsequence

Hazem M. Bahig1,*, Mohamed A.G. Hazber1 and Tarek G. Kenawy2

1 Department of Information and Computer Science, College of Computer Science and Engineering,

University of Ha’il, Hail 81481, KSA
2 Department of Mathematics, Faculty of Science, Ain Shams University, Cairo, Egypt

* Correspondence: Email: h.bahig@uoh.edu.sa.

Abstract: Ribonucleic acid (RNA) structure alignment is an important problem in computational

biology to identify structural similarity of RNAs. Obtaining an efficient method for this problem is

challenging due to the high computational time for the optimal solution and the low accuracy of a

heuristic solution. In this paper, an efficient algorithm is proposed based on a mathematical model

called longest arc-preserving common subsequence. The proposed algorithm uses a heuristic technique

and high-performance computing to optimize the solution of RNA structure alignment, both in terms

of the running time and the accuracy of the output. Extensive experimental studies on a multicore

system are conducted to show the effectiveness of the proposed algorithm on two types of data. The

first is simulated data that consists of 450 comparisons of RNA structures, while the second is real

biological data that consists of 357 comparisons of RNA structures. The results show that the proposed

algorithm outperforms the best-known heuristic algorithm in terms of execution time, with a

percentage improvement of 71% and increasing the length of the output, i.e., accuracy, by

approximately 45% in all studied cases. Finally, future approaches are discussed.

Keywords: optimization; RNA alignment; longest common subsequence; parallel algorithm;

multicore system

Mathematics Subject Classification: 68W10, 90C27, 92B05, 92C15

11213

AIMS Mathematics Volume 9, Issue 5, 11212–11227.

1. Introduction

The field of optimization plays an important role in formulating many daily life problems in

different fields of science, engineering, medicine, and biology. The main goal of optimization is to find

the best possible or optimal solution by taking the maximization or minimization from all possible

solutions under certain constraints.

Many techniques have been developed to solve optimization problems such as dynamic

programming, greedy technique, integer programming, and metaheuristics. The major challenges for

solving many optimization problems are (1) the high computation time that is required to find an

optimal solution, and (2) the low accuracy of the approximate solution when manipulating large-size

problems. Bioinformatics is a research field that has many problems that can be formulated as

optimization tasks. Examples of optimization problems in bioinformatics are molecular docking [1],

deoxyribonucleic acid (DNA) motifs [2–4], ribonucleic acid (RNA) structure comparisons [5,6], and

RNA structure prediction [7].

We focus on the RNA structure comparison problem. The study of molecular similarity permits

the classification of molecules into groups, estimation of their evolutionary history, identification of

functional motifs, and thus prediction of their biological function [8].

RNA is a single-stranded polymer that consists of four different nucleotides—adenine (A),

guanine (G), cytosine (C), and uracil (U). These nucleotides are connected by phosphodiester bonds.

The shape of the RNA structure is determined when the RNA folds back on itself [1]. In this case, a

hydrogen bond exists between two interacting nucleotides and forms Watson-Crick (G-C and A-U)

and wobble (G-U) base pairs [9].

In general, various computational models have been used to formulate the problem of RNA structure

comparison, such as the tree [10–12], arc-annotated sequence (AAS) [13], and alignment-free [12,14].

The research in this paper is interested in the algorithms that solve the RNA structure comparison based

on AAS. In this case, the RNA structure comparison problem is defined as follows [13]: Given two

RNAs as AASs, the goal is to determine the maximum common subsequence between two AASs under

the condition that all arcs connecting the subsequence’s nucleotides of RNA are preserved. This goal

is named the longest arc-preserving common subsequence (LAPCS).

There are two special cases of LAPCS [15]: c-fragment LAPCS, and c-diagonal LAPCS. In c-

fragment LAPCS, is a LAPCS such that the fragment bases in the first sequence are only permitted to

match fragment bases at the same location in the second sequence, where each sequence is divided

into fragments, each of size c, except the last one, where 𝑐 ≥ 1. In c-diagonal LAPCS, is a LAPCS,

such that the base 𝑎𝑖 is only permitted to match a base in the range 𝑏𝑖−𝑐 , … , 𝑏𝑖+𝑐, where 𝑐 ≥ 0.

In AAS, many algorithms have been proposed based on different approaches [4,5,13,16–19]: (1)

Type of proposed algorithm: exact or approximation. (2) Type or level of RNA structure: Crossing,

nested, chain, and plain (see Figure 1). (3) Type of platform used: Sequential or high-performance

systems. Table 1 illustrates the different proposed algorithms to solve RNA structure alignment based

on the LAPCS model. From Table 1, the following points are observed: (1) The running time for exact

algorithms is non-polynomial in the general case of RNA structure level, crossing type. (2) No

experimental studies for finding the optimal solution in the general case. (3) The running time for a

heuristic solution requires high computational time in the general case. (4) The best-known heuristic

algorithm for RNA structure comparison in the general case is the algorithm proposed by Blum and

Blesa [5], named the BB algorithm. (5) All proposed algorithms are designed and implemented on a

11214

AIMS Mathematics Volume 9, Issue 5, 11212–11227.

computer with a single processor and no parallel implementation for any algorithm based on LAPCS.

Figure 1. RNA structure levels. (a) Plain: No arc in the sequence. (b) Chain: Any two arcs

are not nested and not crossed. (c) Nested: At least two arcs are nested; and no two arcs

are crossed. (d) Crossing: At least two arcs are crossed.

Table 1. RNA structure comparison algorithms based on LAPCS*.

Ref Level of RNA

Structure

Exact/Approximation Time Technique Experimental

Study

[13] (Crossing, T) Exact NP-hard MIS No

[16] (Nested, Nested) Exact NP-hard MIS No

[17] (Nested, Chain) Exact 𝑂(𝑙𝐴𝑙𝐵
 3) DP No

[18] (Plain, Plain) Exact 𝑂(𝑙𝐴𝑙𝐵) DP No

[17] (Crossing,

Crossing)

Heuristic 𝑂(𝑙𝐴𝑙𝐵) DP and MIS Yes

[5] (Crossing,Crossing) Heuristic 𝑙𝐴 seconds Generate a set of

common subsequences

and MIS

Yes

[19] (Crossing,Crossing) Heuristic 𝑙𝐴 seconds Generate a set of

common subsequences

and Maximum Clique

Yes

[4] (Crossing, Plain) Heuristic 𝑂(𝑙𝐴𝑙𝐵) DP and Lookup table Yes

Note: *: T{Crossing, Nested, Chain, Plain}, DP: Dynamic programming, MIS: Maximal independent set, NP: non-
deterministic polynomial.

The novelty of this research paper focuses on designing a new parallel heuristic algorithm for

three goals. The first is reducing the running time of the best-known heuristic algorithm, BB. The

second is increasing the accuracy of the output of the best-known heuristic algorithm, BB. The third is

to the best of our knowledge, no previous parallel algorithms have been proposed based on LAPCS.

To verify these goals, we used the high-performance computing methodology to design a parallel

algorithm for solving RNA structure alignment problem. The developed algorithm is based on two

levels of parallelism and implemented on a multicore system of 16 threads. The results show that the

parallel proposed algorithm outperforms the BB algorithm from running time and accuracy

perspectives.

The organization of the paper includes an introduction, four sections, and a conclusion. The

mathematical and computer background of the RNA comparison structure problem is given in Section 2.

The details of the proposed parallel algorithm are introduced in Section 3. In Section 4, the

experimental configurations used in the experiments including simulated and real data are given. The

11215

AIMS Mathematics Volume 9, Issue 5, 11212–11227.

results of the experiments are discussed and analyzed in Section 5. Finally, the conclusion of using the

high-performance system in RNA comparison is given.

2. Mathematical background

In this section, a set of definitions and mathematical formula related to the LAPCS are given as

follows.

Assume that the set of nucleotides of RNA is Σ = {A, C, G, U} and the set RNA structure type is

𝑇 = {Crossing, Nested, Chain, Plain}.

A subsequence 𝐴′ = 𝑎′1𝑎′2 … 𝑎′𝑙 of a string 𝐴 = 𝑎1𝑎2 … 𝑎𝑙𝐴
 is generated by deleting 𝑙𝐴 − 𝑙

symbols from 𝐴. A common subsequence 𝐶 of two strings A and B is a subsequence that appears in

both strings and is formally represented as:

𝐶 = {𝑐𝑖,j = (𝑖, 𝑗), s.t. 𝑎𝑖 = 𝑏𝑗, 1 ≤ 𝑖 ≤ 𝑙𝐴, 1 ≤ 𝑗 ≤ 𝑙𝐵}. (1)

A longest common subsequence (LCS) C of two strings A and B is a common subsequence

between A and B and has a maximal length. Formally,

𝐶 = {𝑐𝑖,𝑗 = (𝑖, 𝑗), s.t.𝑎𝑖 = 𝑏𝑗, 1 ≤ 𝑖 ≤ 𝑙𝐴, 1 ≤ 𝑗 ≤ 𝑙𝐵} and |𝐶| ≥ |𝐶′|,

∀ common subsequence 𝐶′. (2)

The LCS for two substrings 𝑎1𝑎2 … 𝑎𝑖 and 𝑏1𝑏2 … 𝑏𝑗 is computed by the dynamic

programming (DP) technique using the following equation.

𝐿𝐶𝑆[𝑖, 𝑗] = {

0 𝑖 = 0 or 𝑗 = 0

𝐿𝐶𝑆[𝑖 − 1, 𝑗 − 1] + 1 𝑎𝑖 = 𝑏𝑗 and 𝑖, 𝑗 ≥ 1

Max{𝐿𝐶𝑆[𝑖 − 1, 𝑗], 𝐿𝐶𝑆[𝑖, 𝑗 − 1]} 𝑎𝑖 ≠ 𝑏𝑗 and 𝑖, 𝑗 ≥ 1
 (3)

An arc-annotated sequence (AAS) is a pair (𝐴, 𝑃𝐴), where (1) A is a string (sequence) of length

𝑙𝐴 over Σ, 𝐴 = 𝑎1𝑎2 … 𝑎𝑙𝐴
. (2) 𝑃𝐴 is the set of arcs, where each arc represents an unordered pair of

any two complementary nucleotides. Formally, the set 𝑃𝐴 is defined as follows:

𝑃𝐴 = {(𝑖, 𝑗): 1 ≤ 𝑖 < 𝑗 ≤ 𝑙𝐴, and 𝑎𝑖 and 𝑎𝑗 are complementary}. (4)

∀ (𝑖1, 𝑗1), (𝑖2, 𝑗2) ∈ 𝑃𝐴: (𝑖1 = 𝑖2 ⇔ 𝑗1 = 𝑗2) and 𝑖1 ≠ 𝑗2. (5)

A common subsequence 𝐶 of two arc-annotated sequences, (𝐴, 𝑃𝐴) and (𝐵, 𝑃𝐵), is named an

arc-preserving common subsequence (APCS) if C is a subsequence for 𝐴 and 𝐵 and preserves all

the arcs that link subsequence nucleotides. Formally,

Eq (2) and ∀ 𝑐𝑖1,𝑗1
, 𝑐𝑖2,𝑗2

∈ 𝐶, (𝑖1, 𝑖2) ∈ 𝑃𝐴 ⇔ (𝑗1, 𝑗2) ∈ 𝑃𝐵. (6)

The APCS with maximal length is named the longest arc-preserving common subsequence,

LAPCS. Formally,

C is APCS and |𝐶| ≥ |𝐶′|, for every APCS 𝐶′. (7)

The relation between two arcs is as follows [20].

11216

AIMS Mathematics Volume 9, Issue 5, 11212–11227.

• Two arcs (𝑖1, 𝑗1) and (𝑖2, 𝑗2) are crossing iff 𝑖1<𝑖2<𝑗1 < 𝑗2 or 𝑖2<𝑖1<𝑗2 < 𝑗1.

• Two arcs (𝑖1, 𝑗1) and (𝑖2, 𝑗2) are nested iff 𝑖2 < 𝑖1 < 𝑗2 ⇔ 𝑖2 < 𝑗1 < 𝑗2, for 𝑖1 <

𝑗1 and 𝑖2 < 𝑗2.

• Two arcs (𝑖1, 𝑗1) and (𝑖2, 𝑗2) are chain iff 𝑖1 < 𝑖2 ⇔ 𝑗1 < 𝑖2, for 𝑖2 < 𝑗2.

3. The proposed method

The main purpose of this section is to describe in detail how to use the parallel concept to develop

an efficient parallel algorithm based on the best-known algorithm for RNA comparison, the BB

algorithm. The proposed algorithm named PBB.

The BB algorithm consists of many steps, where the main two steps are as follows. The first step

is generating a number, nsol, of common subsequences, S, from the two strings A and B. The second

step uses the Cplex tool [21] to find the APCS for the output of the first step based on the concept of

the maximum independent set (MIS). The MIS can be determined by construct a graph G=(V,E), where

(1) V is the set of matched pairs that are built from the common subsequences, 𝑉 =

{𝑣𝑖,𝑗 = (𝑖, 𝑗): (𝑖, 𝑗) ∈ 𝑆} , and (2) 𝐸 = {(𝑣𝑖,𝑗 , 𝑣𝑖′,𝑗′): (𝑖, 𝑗) and (𝑖′, 𝑗′)are breaking arc −

preserving conditions, (𝑖, 𝑗) and (𝑖′, 𝑗′) ∈ 𝑆 }. Then, using integer linear program model, the problem

can be formulated as a selection of a maximal number of non-conflicting binary variables [6]. The two

main steps are repeated many times which is based on the length of the input string A, 𝑙𝐴 seconds. In

each iteration, the algorithm updates the set of solutions and determines the best value of the solution

by comparing the best old solution with the current values of the solution. Figure 2 illustrates the

execution of BB algorithm on two RNAs of length 15 each.

Figure 2. An example for executing BB algorithm.

11217

AIMS Mathematics Volume 9, Issue 5, 11212–11227.

The BB algorithm uses four parameters [5]: (1) 𝑛𝑠𝑜𝑙 is the number of APCS constructions per

iteration. (2) 𝑡𝑚𝑎𝑥 is the maximum time allowed to find MIS using Cplex tool when the number of

common subsequences is greater than or equal to nsol. (3) 𝑑𝑟𝑎𝑡𝑒 and 𝑙𝑠𝑖𝑧𝑒 are two parameters used in

the process of generation of a random common subsequence.

The proposed algorithm is based on using two levels of parallelism as follows. Assume that the

number of threads is k, and k=k1*k2. The reason for writing k as a product of integer numbers is to

make the parallelism in two levels. The first level is based on parallelizing the generation of common

subsequences from A and B. This means that when generating nsol common subsequences only as in

the BB algorithm, the proposed algorithm generates k1*nsol common subsequences such that each

thread generates nsol common subsequences. The second level is how to use parallelization to find

APCS using the MIS method.

Additionally, in the BB algorithm, the two main steps are repeated many times based on the length

of string A. Therefore, the proposed parallel algorithm reduces this repetition time to approximately

𝑙𝐴/𝑘1seconds. Also, the proposed PBB algorithm uses some parallel subroutines such as parallel

maximal independent set, PMIS, algorithm [21], parallel binary tree technique [22,23], and parallel

LCS, PLCS, algorithm [24,25].

The complete steps for the proposed PBB algorithm, PBB, are as follows.

Algorithm: PBB

Input: Two AASs (𝐴, 𝑃𝐴) and (𝐵, 𝑃𝐵), and three integers k, k1 and k2 such that k=k1*k2 and k1, k22.

Step 1: Set the values of parameters in a constant time, 𝑛𝑠𝑜𝑙, 𝑡𝑚𝑎𝑥, 𝑑𝑟𝑎𝑡𝑒 and 𝑙𝑠𝑖𝑧𝑒, based on the

length of A as suggested in [5], where A  B, see [5, Table 4].

Step 2: Generate the set of matched pairs between A and B using k threads. This step can be performed

by dividing B into k substrings, 𝐵𝑖, of approximately equal size, |𝐵|/𝑘. Then each thread finds the set

of matched pairs, Ri, between A and 𝐵𝑖. Finally, R is the union set of all matched pairs, 𝑅 = ⋃ 𝑅𝑖
𝑘

𝑖=1 ,

generated by k threads that can be computed by the parallel binary tree (PBT) paradigm.

Step 3: Find the LCS of A and B by applying the parallel LCS (PLCS) algorithm using k threads. The

list L represents the set of match pairs of LCS of A and B.

Step 4: Apply the parallel MIS, PMIS, algorithm on list L using the Cplex tool and set the results to

the current solution Sbest.

Step 5: Each thread 𝑡𝑖, 1 ≤ 𝑖 ≤ 𝑘1, performs the following:

Step 5.1: Initialization: 𝑡𝑖𝑚𝑒𝑟 = 0, 𝑆𝑖_𝑏𝑒𝑠𝑡 = 𝑆𝑏𝑒𝑠𝑡, 𝑆𝑖 = 𝑆𝑏𝑒𝑠𝑡.

 Step 5.2: Repeat the following steps until 𝑡𝑖𝑚𝑒𝑟 is greater than or equal to |𝐴|/𝑘1 seconds:

 Step 5.2.1.: Repeat the following 𝑛𝑠𝑜𝑙 iterations:

 Step 5.2.1.1: Generate a random common subsequence, say 𝐶𝑖, from the list R as in [5].

 Step 5.2.1.2: Apply the PMIS algorithm on 𝐶𝑖 using 𝑘2 threads and obtain the list 𝐿𝐶𝑖
.

 Step 5.2.1.3: Update 𝑆𝑖 = 𝑆𝑖 ∪ 𝐿𝐶𝑖
.

 Step 5.2.2: Apply the PMIS algorithm on 𝑆𝑖 using 𝑘2 threads within time limit 𝑡𝑚𝑎𝑥 and

 obtain the list 𝐿𝑆𝑖
.

 Step 5.2.3: Update 𝑆𝑖_𝑏𝑒𝑠𝑡 with 𝐿𝑆𝑖
 if |𝐿𝑆𝑖

| > |𝑆𝑖_𝑏𝑒𝑠𝑡|.

Step 6: Calculate 𝑆𝑏𝑒𝑠𝑡 = ⋃ 𝑆𝑖_𝑏𝑒𝑠𝑡
𝑘1
𝑖=1 using 𝑘 threads and the PBT paradigm.

Step 7: Apply the PMIS algorithm on 𝑆𝑏𝑒𝑠𝑡 using k threads within time limit 𝑡𝑚𝑎𝑥 and obtain the list

𝐿𝐴𝑃𝐶𝑆.

Output: LAPCS

11218

AIMS Mathematics Volume 9, Issue 5, 11212–11227.

Note that in the case of using the PBT paradigm using k threads, see Steps 2 and 6. If the value

of k1 is small, then the proposed algorithm will perform these steps sequentially. Also, Figure 3 shows

the flow chart of the proposed parallel algorithm.

Figure 3. Flow chart for PBB algorithm.

11219

AIMS Mathematics Volume 9, Issue 5, 11212–11227.

4. Experimental configuration

In this section, we describe the experimental setup used to implement the proposed parallel

algorithm on a multicore system. The experimental setup includes the platform used in the

implementation, data generation used in the comparison, and the number of threads used in each level

of parallelism.

For the platform used in the implementation, the experimental studies are based on a multicore

system that can execute 16 threads in parallel using a processor with a speed of 2.4 GHz and a memory

capacity of 24 GB. The system works under the Linux operating system. All algorithms were

programmed using the Java programming language. The Java thread features were used to implement

the parallel region. Additionally, all compared algorithms used IBM ILOG CPLEX v12.8 [21] as a

tool to find a good heuristic solution for the MIS problem in sequential and parallel cases

For data generation, experimental comparisons between the algorithms are performed using two

different datasets. The first dataset is generated as artificial data that is used for two purposes: (1)

Evaluating the proposed algorithm compared to the best-known algorithm for RNA structure

comparison, the BB algorithm; and (2) determining the best approach to assign 16 threads for the

parallel case as two levels of parallelism. The second dataset is a real biological data for RNA

structures that is used to ensure that the proposed parallel algorithm is also efficient for real data in

terms of time and accuracy.

For artificial data, two parameters affect the generation of the RNA sequence: The sequence

length, n, and the number of arcs, m. For fixed values of n and m, the system will generate an RNA

sequence of length n containing m arcs such that the type of RNA structure is crossing. The set of

values of n is {100, 200, 300, 400, 500}, while the set of values of m depends on n and is equal to n/2,

n/5, and n/10. The sequence will be generated randomly and the appearance of each letter in the

sequence is 1/4.

For fixed values of n and m, the running time of the compared algorithms is measured by taking

the average value for 30 instances. Therefore, for a fixed value of n, the running time of the algorithm

is the average of 90 instances because there are three values of m. Therefore, there are 5  90 = 450

comparisons of RNA structures. Additionally, the length of APCS is computed for each m to study the

effect of the number of arcs on the performance of each algorithm.

To implement the parallel proposed algorithm, PBB, on a multicore system consisting of 16

threads, the number of threads, k = k1*k2, can be represented in different ways as follows: (1) 16 = 2  8,

(2) 16 = 4  4, and (3) 16 = 8  2. In general, 𝑘1 and 𝑘2 are used for the first and second levels of

parallelism, respectively. Therefore, the parallel algorithm can be represented as three parallel versions,

PBB1, PBB2, and PBB3 for 16 = 2  8, 16 = 4  4, and 16 = 8  2, respectively. Thus, the PBB1

algorithm uses 2 threads in the first level of parallelism and 8 threads in the second level of parallelism.

For real data of RNA structures, experimental studies focus on different real data as, shown in

Table 2. The Ribonuclease P RNA database contains a large number of RNAs; therefore, we selected

12 RNAs only. For Group I introns (Group A, B, and E), we selected all RNAs in the dataset. The

details of each selected RNA, such as name, length, and number of arcs, are provided in Appendix A.

For each RNA group that consists of  RNAs, the total number of possible comparisons between

each pair is given by:

(
β
2

) = β(β − 1)/2. (8)

11220

AIMS Mathematics Volume 9, Issue 5, 11212–11227.

Table 2. Real dataset used in the experiments.

RNA Database Number of Selected

RNAs

Total Number of

Comparisons

Location Ref

Ribonuclease P RNA 12 (out of 470) 66 http://www.rnasoft.ca/strand/ [26]

Group i introns (A) 12 66 https://crw2-comparative-rna-

web.org/group-i-introns/

[27]

Group i introns (B) 21 210

Group i introns (E) 6 15

Therefore, the methodology used in the experimental study applies the two algorithms, sequential

and parallel, to all pairs of RNAs. For example, the RNA database named “Group I introns (Group E)”

contains 6 RNAs: M.anisopliae.4, C.hypophloia, E.nigra, H.rubra, M.anisopliae.2, and C.parasitica.

Therefore, the total number of comparisons is 15 as follows. (1) Five comparisons between

M.anisopliae.4 and every RNA in {C.hypophloia, E.nigra, H.rubra, M.anisopliae.2, C.parasitica}. (2)

Four comparisons between C.hypophloia and every RNA in {E.nigra, H.rubra, M.anisopliae.2,

C.parasitica}. (3) Three comparisons between E.nigra and every RNA in {H.rubra, M.anisopliae.2,

C.parasitica}. (4) Two comparisons between H.rubra and every RNA in {M.anisopliae.2,

C.parasitica}. (5) One comparison between M.anisopliae.2 and C.parasitica.

In general, the experimental studies on real datasets include 357 comparisons to find the LAPCS.

For each pair of RNAs in real dataset, two measurements are calculated. The first measure is the length

of the APCS, while the second measure is the running time of executing the algorithm.

5. Results and discussion

In this section, the results and analysis of the experimental studies on artificial data and real data

are discussed in the next two subsections.

5.1. Results of comparison on artificial data

The results of comparing four algorithms, one sequential and three parallel, are shown in Figure 4

and Table 3. The analysis of data results in the figure and table indicates the following.

Figure 4. Running time for compared algorithms on simulated data.

http://www.rnasoft.ca/strand/
https://crw2-comparative-rna-web.org/group-i-introns/
https://crw2-comparative-rna-web.org/group-i-introns/

11221

AIMS Mathematics Volume 9, Issue 5, 11212–11227.

Table 3. Length of APCS, average value, for the compared algorithms using different n and m.

n m BB PBB1 PBB2 PBB3

100 𝑛/10 59.3 59.3 59.3 59.3

 𝑛/5 56.3 56.6 56.5 56.5

 𝑛/2 46.2 46.5 46.6 46.8

200 𝑛/10 121.4 121.3 121.5 121.6

 𝑛/5 112.4 112.3 113.0 113.1

 𝑛/2 89.4 89.4 89.9 89.1

300 𝑛/10 180.5 181.2 181.5 181.1

 𝑛/5 168.9 169.4 169.0 169.4

 𝑛/2 134.7 135.0 135.3 135.4

400 𝑛/10 236.5 238.2 237.5 237.6

 𝑛/5 218.9 220.6 219.3 218.6

 𝑛/2 166.9 170.9 169.6 168.2

500 𝑛/10 291.4 294.7 296.2 293.8

 𝑛/5 264.9 271.1 273.5 270.1

 𝑛/2 199.3 207.5 203.3 203.5

From the running time perspective, the results, in Figure 4, illustrate the following observations.

First, the running time of all parallel algorithms is less than the running time of the sequential algorithm.

For example, the running time for the BB algorithm is 335.6 second when n = 300, whereas the running

times for the three parallel algorithms, PBB1, PBB2, and PBB3, are 186.3, 111.5, and 82.0, seconds,

respectively. Second, the PBB3 algorithm is faster than the PBB2 algorithm, and the PBB2 algorithm

is faster than the PBB1 algorithm. For example, the running time for PBB3 algorithm is 127.4 seconds

when n = 500, while the running times for the two other algorithms, PBB2, and PBB1, are 184.2 and

308.3 seconds, respectively. Third, the percentage of improvements, on average, for the three parallel

algorithms, PBB1, PBB2, and PBB3, are 44.78%, 66.97%, and 77.60%, respectively, where the

percentage of improvement is measured by 1-Tpar/Tseq. Fourth, the average values of speed up for the

parallel algorithms, PBB1, PBB2, and PBB3, are 1.8, 3, and 4.5, respectively, where the speed up is

equal to Tseq/Tpar.

From the length of output viewpoint, the results in Table 3 illustrate the following observations.

First, the length of the APCS generated by parallel algorithms is approximately equal to the length of

the APCS generated by the sequential algorithm when n ≤ 200. For example, the average length of

APCS, for 30 instances, generated by the four algorithms, BB, PBB1, PBB2, and PBB3, are 46.20,

46.53, 46.60, and 46.77, respectively, when n = 100, m = n/2. Second, the length of the APCS generated

by parallel algorithms is greater than the length of the APCS generated by sequential algorithm when

n > 200. For example, the average length of APCS, for 30 instances, generated by the four algorithms,

BB, PBB1, PBB2, and PBB3, are 166.9, 170.9, 169.6, and 168.2, respectively, when n = 400, m = n/2.

Third, the difference between the length of the APCS generated by parallel algorithms and the BB

algorithm increases with increasing values of n. For example, the average difference between the

length of the APCS generated by BB algorithm and PBB1 algorithm is 2.5 when n = 400, whereas the

difference equal to 5.9 when n = 500. Fourth, the length of the APCS generated by the PBB1 and PBB2

algorithms is almost greater than that generated by the PBB3 algorithm.

11222

AIMS Mathematics Volume 9, Issue 5, 11212–11227.

A non-parametric statistical test known as the Wilcoxon signed-rank test [27] was employed to

ascertain whether there exist statistically significant variations in the length of the output for the four

algorithms, BB, PBB1, PBB2, and PBB3. The significant level used in the test is equal to 0.05. The

results of implementing the test on each pair of algorithms, six pairs of algorithms, show the following

observations (see additional file “math-09-05-550-supplementary”). (1) There was a significant

difference between all parallel algorithms, PBB1, PBB2, and PBB3, and the sequential algorithm, BB;

except in one case, there is no significant difference between BB and PBB1 when n = 200. (2) In the

case of the two algorithms, PBB1 and PBB2, the PBB2 algorithm is better than the PBB1 algorithm

when n = 200 and 300, while the PBB1 algorithm is better than the PBB2 algorithm when n = 400.

Otherwise, there is no significant difference between the two algorithms. (3) In the case of the two

algorithms, PBB1 and PBB3, the PBB3 algorithm is better than the PBB1 algorithm when n = 200,

while the PBB1 algorithm is better than the PBB3 algorithm when n = 400 and 500. Otherwise, there

is no significant difference between the two algorithms. (4) In the case of the two algorithms, PBB2

and PBB3, the PBB3 algorithm is better than the PBB2 algorithm when n = 200, while the PBB2

algorithm is better than the PBB3 algorithm when n = 400 and 500. Otherwise, there is no significant

difference between the two algorithms.

From the memory required by each algorithm viewpoint, Table 4 illustrates the values of the

memories in GB. The results show the following observations: First, the memory required by the BB

algorithm is less than all parallel algorithms, PBB1, PBB2, and PBB3. Second, the memory required

by the PBB1 algorithm is less than that required by the PBB2 algorithm, and the memory required by

the PBB2 algorithm is less than that required by the PBB3 algorithm. The memory required for the

PBB3 algorithm is high compared to other parallel algorithms due to the manipulation of 8 APCS

simultaneously using the Cplex tool, while the two other algorithms manipulate 4 and 2 APCS.

Table 4. Comparison between different algorithms based on memory requirements in GB.

n BB PBB1 PBB2 PBB3

100 0.14 0.16 0.23 0.31

200 0.14 0.15 0.24 0.36

300 0.15 0.19 0.34 0.55

400 0.17 0.18 0.53 0.72

500 0.26 0.28 0.53 0.73

As a result, from the analysis of previous data, the parallel algorithms PBB1 and PBB2 have good

performance from the length of output measurement compared to the other algorithm. Additionally,

the PBB2 algorithm has better performance than the PBB1 algorithm from a running time perspective,

which is more important than memory because the amount of storage is not high for all parallel

algorithms. Therefore, the parallel algorithm PBB2 was selected to evaluate the parallelization of the

BB algorithm for the real dataset as in the next subsection.

5.2. Results of comparison on real data

In this subsection, a comparison between the sequential algorithm and the selected parallel

algorithm, PBB2, is performed to verify that the parallelism enhances the sequential algorithm from

the points of view of the length of the output and running time. Table 5 shows the results of two

11223

AIMS Mathematics Volume 9, Issue 5, 11212–11227.

measurements, time and length of LAPCS, for two algorithms, BB and PBB2, on four datasets of real

RNAs.

Table 5. Comparison between the BB and PBB2 algorithms for a real dataset.

RNA Database Running Time in Seconds Length of LAPCS

BB PBB2 % of

Improvement

Difference

(PBB2-BB)

Diff = 0 Diff > 0 CV

BB PBB2

Ribonuclease P RNA 398.1 107.5 73% [0,7] 50% 50% 0.179 0.175

Group i introns (Group A) 1003.2 259.7 74% [0,7] 45.4% 54.6% 0.362 0.362

Group i introns (Group B) 1263 343.7 71.4% [0,10] 68.1% 31.9% 0.633 0.632

Group i introns (Group E) 551.1 183.7 66.6% [0,5] 53.3% 46.7% 0.163 0.161

For the running time measurement, Table 5 shows the running time of both algorithms and the

percentage of improvement in the running for the proposed parallel algorithm PBB2 compared to BB

algorithm. For example, the two algorithms, BB and PBB2, were run on the Ribonuclease P RNA

dataset and obtained the following results. (1) For 66 cases, the average running times of the BB and

PBB2 algorithms are 398.1 and 107.5 seconds, respectively. (2) The PBB2 algorithm outperforms the

BB algorithm with a percentage of improvement of 73%. Additionally, the running times for BB

algorithm on the two dataset, Group A and B, are higher than the other dataset because the two datasets

contain RNA with length greater than 1000 (see Appendix A).

For the length of APCS measurement, Table 5 displays the range of variation between the PBB2

and BB algorithms' outputs for the length of APCS measurement, as well as the percentage of cases

where the PBB2 algorithm's generated LAPCS is longer (or equal to) the BB algorithm's generated

LAPCS. For example, the two algorithms, BB and PBB2, were run on the Group i introns (Group A)

dataset and obtained the following results: (1) The length of LAPCS generated by the PBB2 algorithm

is greater than or equal to the output of the BB algorithm, with a difference from 0 to 7. (2) In 45.4%

of the comparison cases, both algorithms generate the LAPCS with the same lengths. On the other

hand, the PBB2 algorithm generates LAPCS with a length greater than that generated from the BB

algorithm, with a percentage of 54.6%. Additionally, the difference between PBB2 and BB algorithms

is sometimes large, such as in the Group i introns (Group B) dataset, where the maximum difference

is 10. (3) The results of measuring the coefficient of variation (CV) of both algorithms for the length

of LAPCS is almost equal. (4) The PBB2 algorithm has a significant difference compared to BB

algorithm when we use Wilcoxon signed-rank test for all cases, except one case when the dataset is

Group i introns (Group E).

On average, in all cases, the PBB2 algorithm outperforms the BB algorithm in terms of running

time, with an improvement of approximately 71%. Additionally, the PBB2 algorithm generates

LAPCS with a length greater than that generated by the BB algorithm, with at least 1 in 45.8% of the

cases.

6. Conclusions

Identifying the similarity structure between two RNA structures is challenging in bioinformatics

due to the high computational time required to find an optimal solution. In this paper, the RNA

structure is represented as the longest arc-preserving common subsequence model. Then high-

11224

AIMS Mathematics Volume 9, Issue 5, 11212–11227.

performance computing paradigms and metaheuristic techniques are utilized to develop an efficient

parallel algorithm on a multicore system. The developed parallel algorithm outperforms the best-

known sequential algorithm in terms of the running time and length of output.

Additionally, the developed algorithm was tested on artificial and real data to measure the

percentage of improvement in the running 71% on average and increasing the length of output by

approximately 45% of all cases. On the other side, the proposed algorithm required a little bit more

space.

There are many open research questions based on the contributions of this paper: How can we

replace the MIS method with another heuristic algorithm to increase the efficiency of the proposed

algorithm? (2) How can we use the graphic processing units (GPUs) to implement the parallel proposed

algorithm?

Use of AI tools declaration

The authors declare that they have not used Artificial Intelligence (AI) tools in the creation of this

article.

Acknowledgments

The authors are grateful to the referees for their valuable comments that helped to improve the

paper. The authors would like to acknowledge the support provided by Deputy for Research &

Innovation, Ministry of Education through Initiative of Institutional Funding at University of Ha’il–

Saudi Arabia through project number IFP-22 187.

Funding

This work was supported by Deputy for Research & Innovation, Ministry of Education through

Initiative of Institutional Funding at University of Ha’il–Saudi Arabia through project number IFP-22

187.

Conflict of interest

The authors declare that they have no conflicts of interest.

References

1. D. Jereva, P. Alov, I. Tsakovska, M. Angelova, V. Atanassova, P. Vassilev, et al., Application of

intercriteria analysis to assess the performance of scoring functions in molecular docking software

packages, Mathematics, 10 (2022), 2549. https://doi.org/10.3390/math10152549

2. M. M. Abbas, M. Abouelhoda, H. M. Bahig, A hybrid method for the exact planted (l, d) motif

finding problem and its parallelization, BMC Bioinformatics, 13 (2012), S10.

https://doi.org/10.1186/1471-2105-13-S17-S10

3. M. M. Abbass, H. M. Bahig, An efficient algorithm to identify DNA motifs, Math. Comput. Sci.,

7 (2013), 387–399. https://doi.org/10.1007/s11786-013-0165-6

https://doi.org/10.3390/math10152549
https://doi.org/10.1186/1471-2105-13-S17-S10
https://doi.org/10.1007/s11786-013-0165-6

11225

AIMS Mathematics Volume 9, Issue 5, 11212–11227.

4. T. G. Kenawy, M. H. Abdel-Rahman, H. M. Bahig, A fast longest crossing-plain preserving

common subsequence algorithm, Int. J. Inf. Technol., 14 (2022), 3019–3029.

https://doi.org/10.1007/s41870-022-01038-0

5. M. M. Abbas, H. M. Bahig, M. Abouelhoda, M. M. Mohie-Eldin, Parallelizing exact motif finding

algorithms on multi-core, J. Supercomput., 69 (2014), 814–826. https://doi.org/10.1007/s11227-

014-1180-3

6. C. Blum, M. J. Blesa, Hybrid techniques based on solving reduced problem instances for a longest

common subsequence problem, Appl. Soft Comput., 62 (2018), 15–28.

https://doi.org/10.1016/j.asoc.2017.10.005

7. M. S. Islam, M. R. Islam, A hybrid framework based on genetic algorithm and simulated annealing

for RNA structure prediction with pseudoknots, J. King Saud Univ. Comput. Inform. Sci., 34

(2022), 912–922. https://doi.org/10.1016/j.jksuci.2020.03.005

8. T. J. X. Li, C. M. Reidys, On the loop homology of a certain complex of RNA structures,

Mathematics, 9 (2021), 1749. https://doi.org/10.3390/math9151749

9. J. Fallmann, S. Will, J. Engelhardt, B. Grüning, R. Backofen, P. F. Stadler, Recent advances in

RNA folding, J. Biotechnol., 261 (2017), 97–104. https://doi.org/10.1016/j.jbiotec.2017.07.007

10. K. Zhang, D. Shasha, Simple fast algorithms for the editing distance between trees and related

problems, SIAM J. Comput., 18 (1989), 1245–1262. https://doi.org/10.1137/0218082

11. M. Quadrini, L. Tesei, E. Merelli, An algebraic language for RNA pseudoknots comparison, BMC

Bioinformatics, 20 (2019), 16. https://doi.org/10.1186/s12859-019-2689-5.

12. F. Wang, T. Akutsu, T. Mori, Comparison of pseudoknotted RNA secondary structures by

topological centroid identification and tree edit distance. J. Comput. Biol., 27 (2020),1443–1451.

https://doi.org/10.1089/cmb.2019.0512

13. P. A. Evans, Algorithms and complexity for annotated sequence analysis, Ph. D Thesis, Canada:

University of Victoria, 1999.

14. L. Yang, Y. Liu, X. Hu, P. Wang, X. Li, J. Wu, Graph-based analysis of RNA secondary structure

similarity comparison, Complexity, 2021 (2021), 8841822. https://doi.org/10.1155/2021/8841822

15. J. Guo, Exact algorithms for the longest common subsequence problem for arc annotated

sequences, Master’s Thesis, Universitat Tubingen, 2002

16. G. Lin, Z. Z. Chen, T. Jiang, J. Wen, The longest common subsequence problem for sequences

with nested arc annotations, J. Comput. Syst. Sci., 65 (2002), 465–480.

https://doi.org/10.1016/S0022-0000(02)00004-1

17. T. Jiang, G. Lin, B. Ma, K. Zhang, The longest common subsequence problem for arc-annotated

sequences, J. Discrete Algorithms, 2 (2004), 257–270. https://doi.org/10.1016/S1570-

8667(03)00080-7

18. T. F. Smith, M. S. Waterman, Identification of common molecular subsequences, J. Mol. Biol.,

147 (1981), 195–197. https://doi.org/10.1016/0022-2836(81)90087-5

19. C. Blum, M. Djukanovic, A. Santini, H. Jiang, C. M. Li, F. Manyà, et al., Solving longest common

subsequence problems via a transformation to the maximum clique problem, Comput. Oper. Res.,

125 (2021), 105089. https://doi.org/10.1016/j.cor.2020.105089

20. J. Gramm, J. Guo, R. Niedermeier, Pattern matching for arc-annotated sequences, In: Foundations

of software technology and theoretical computer science, Berlin, Heidelberg: Springer, 2002.

https://doi.org/10.1007/3-540-36206-1_17

https://doi.org/10.1007/s41870-022-01038-0
https://doi.org/10.1007/s11227-014-1180-3
https://doi.org/10.1007/s11227-014-1180-3
https://doi.org/10.1016/j.asoc.2017.10.005
https://doi.org/10.1016/j.jksuci.2020.03.005
https://doi.org/10.3390/math9151749
https://doi.org/10.1016/j.jbiotec.2017.07.007
https://doi.org/10.1137/0218082
https://doi.org/10.1186/s12859-019-2689-5.
https://doi.org/10.1089/cmb.2019.0512
https://doi.org/10.1155/2021/8841822
https://doi.org/10.1016/S0022-0000(02)00004-1
https://doi.org/10.1016/S1570-8667(03)00080-7
https://doi.org/10.1016/S1570-8667(03)00080-7
https://doi.org/10.1016/0022-2836(81)90087-5
https://doi.org/10.1016/j.cor.2020.105089
https://doi.org/10.1007/3-540-36206-1_17

11226

AIMS Mathematics Volume 9, Issue 5, 11212–11227.

21. IBM, CPLEX Optimization Studio V12.8.0, Available from:

https://www.ibm.com/support/pages/cplex-optimization-studio-v128.

22. G. Blelloch. Prefix sums and their applications. In: Synthesis of parallel algorithms, 1990.

Available from: http://shelf2.library.cmu.edu/Tech/23445461.

23. H. Bahig, K. A. Fathy, An improved parallel prefix sums algorithm, Parallel Processing Lett., 32

(2022), 2250008. https://doi.org/10.1142/S0129626422500086

24. R. Shikder, P. Thulasiraman, P. Irani, P. Hu, An OpenMP-based tool for finding longest common

subsequence in bioinformatics, BMC Res. Notes, 12 (2019), 220. https://doi.org/10.1186/s13104-

019-4256-6

25. M. Crochemore, C. S. Iliopoulos, Y. J. Pinzon, J. F. Reid, A fast and practical bit-vector algorithm

for the longest common subsequence problem, Inform. Processing Lett., 80 (2001), 279–285.

https://doi.org/10.1016/S0020-0190(01)00182-X

26. M. Andronescu, V. Bereg, H. H. Hoos, A. Condon, RNA STRAND: The RNA secondary structure

and statistical analysis database, BMC Bioinformatics, 9 (2008), 340.

https://doi.org/10.1186/1471-2105-9-340

27. CRW2: Comparative RNA Web-2. Available from: https://crw2-comparative-rna-web.org/.

28. R. F. Woolson, Wilcoxon signed‐rank test, Wiley encyclopedia of clinical trials, 2008.

https://doi.org/10.1002/9780471462422.eoct979

Appendix A

RNA Database Name of RNA length #arcs

Ribonuclease P RNA Allochromatium_vinosum 369 119

Bacteroides_thetaiotaomicron 361 121

Porphyromonas_gingivalis 398 131

Haemophilus_influenza 377 124

Halococcus_morrhuae 475 154

Haloferax_volcanii 433 142

Mycoplasma_genitalium 384 119

Mycoplasma_pneumoniae 369 112

Serratia_marcescens 378 225

Shewanella_putrefaciens 354 115

Streptomyces_bikiniensis 397 135

Streptomyces_lividans 405 138

Group I intron (Group A) m.S.cerevisiae 1210 101

b.Bacteriophage.RB3 1115 69

b.coliphage.T4.A2.NRDD 1058 92

c.C.eugametos 1053 82

b.coliphage.T4.A2.TD 1036 77

C.reinhardii 953 97

S.luteus 2449 611 107

coliphage 607 70

Bacteriophage.SP0 908 81

Continued on next page

https://www.ibm.com/support/pages/cplex-optimization-studio-v128
http://shelf2.library.cmu.edu/Tech/23445461
https://doi.org/10.1142/S0129626422500086
https://doi.org/10.1186/s13104-019-4256-6
https://doi.org/10.1186/s13104-019-4256-6
https://doi.org/10.1016/S0020-0190(01)00182-X
https://doi.org/10.1186/1471-2105-9-340
https://crw2-comparative-rna-web.org/
https://doi.org/10.1002/9780471462422.eoct979

11227

AIMS Mathematics Volume 9, Issue 5, 11212–11227.

RNA Database Name of RNA length #arcs

Group I intron (Group A) m.S.cerevisiae 803 100

S.luteus 2504 373 104

Bacteriophage.beta 403 87

Group I intron (Group B) m.P.anserina 2630 66

c.C.moewusii 1844 110

m.T.papilionaceus 1780 74

m.M.senile 1710 86

m.N.crassa 1180 59

m.E.nidulans 1105 57

m.S.cerevisiae 1075 82

C.albicans 459 127

S.negevensis 736 93

S.luteus.1974 623 89

N.aquatica 416 116

S.luteus.1923 555 148

C.pallidostigmatica 924 64

C.saccharophila 427 101

A.castellanii 846 75

C.dubliniensis 621 114

S.pombe 343 68

M.senile 880 94

S.luteus.2500 617 191

M.grisea 285 66

W.mrakii 409 72

Group I intron (Group E) M.anisopliae.4 430 91

C.hypophloia 526 138

E.nigra 523 145

H.rubra 557 136

M.anisopliae.2 429 86

C.parasitica 640 124

© 2024 the Author(s), licensee AIMS Press. This is an open access

article distributed under the terms of the Creative Commons

Attribution License (https://creativecommons.org/licenses/by/4.0)

