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to obtain the point estimates of the various parameters. The Bayes and highest posterior density
credible intervals were additionally determined. For the complex form of the posterior distribution,
Bayes estimates and credible intervals were computed by sampling from the posterior distribution
through the Markov chain Monte Carlo procedure. For assessing the performance of all of these
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usefulness of the supplied approaches.
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1. Introduction

Birnbaum and Saunders [1] proposed a two-parameter fatigue life distribution for simulating the
fatigue life of metals subjected to periodic stress. They also established a natural physical rationale
for the Birnbaum-Saunders (BS) model through fatigue failure produced by cyclic stress. It is also one
of these distributions that was created by performing a monotone transformation on a typical normal
random variable. Despite the Weibull model being the most commonly used failure time distribution,
the BS population has lately attracted a lot of interest, owing to the varied forms of its density and
the non-monotonicity of the nature of its failure rates. Since the work of Birnbaum and Saunders [1],
extensive work has been done on this model, providing different interpretations, generalizations and
inferential methods. See, for example, Ng et al. [2], Lemonte et al. [3], Pradhan and Kundu [4] and
Xiuyun et al. [S]. Recently, Balakrishnan and Kundu [6] reviewed the same model in the context
of various inferential approaches. Suppose Y is a random variable that follows the BS distribution,
symbolized by ¥ ~ BS(X), where X = (y, u)". Define the following quantities:

1 3
w(y; p) = \/z— \/Eand wy, ) = — \/E+ ‘/(E)
H y 2/.1 y y

The probability density function (PDF) (say, f(-)) and cumulative distribution function (CDF) (say,
F(-)) of the BS distribution can be given, respectively, as follows:

. (1.1)

W(y; 1) wz(y;u)]
¥ = _ Cy>0, 12
fim) = 52 exp[ > (12)
and
F(y;z>=<b[w ;“)], y>0, (13)

where @(-) is the CDF of the standard normal distribution, y > 0 is the shape parameter, and ¢ > 0
is the scale parameter. From (1.2) and (1.3), the BS distribution’s reliability function (RF) and hazard
rate function (HRF) (at a mission time ¢ > 0), symbolized by R(-) and A(-), are given, respectively, by

RG:T) = @[—W(y;“)}, y>0, (1.4)
and
B(y: 1) exp | — 20
h(y;):):wy'u Pl ],y>0. (1.5)

Figure 1 depicts the density and failure rate shapes of the BS distribution. It exhibits that the BS
density is always unimodal for all values of y and u. It also indicates that the shape of the HRF of the
BS is an upside-down shape for all values of y, as proved by Kundu et al. [7].
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Figure 1. Density (left) and HRF (right) shapes of the BS model.

Experimenters frequently gather Type-II progressively censored (T2-PC) data in life-testing and
reliability studies to decrease testing time and expenses. Balakrishnan and Aggarwala [8] presented
the definition, mathematical features, and applications of the T2-PC sample. Kundu and Joarder [9]
proposed a more broad censorship technique known as progressive Type-I hybrid censoring scheme.
The problem with this technique is that the usable sample size is random and may turn out to be very
few or zero for dependable goods. The statistical inference methods will be inefficient as a result. To
deal with this shortcoming, Ng et al. [10] offered an adaptive Type-II progressive hybrid censoring
(AT2-PHC) technique to improve statistical investigation efficiency. Let k, T, and Ry, R», . . ., R, refer
to the set amount of failures, the ideal duration on the test, and the progressive censoring plan,
respectively, which are specified before beginning the examination, with the realization that the values
for a particular of the R; can vary as needed throughout the experiment. The AT2-PHC scheme can be
distilled in the following manner: Consider that n components are subjected to a life test with k < n
then, at the time of i" failure, denoted by Y;..,, R; of the remaining components are randomly removed
from the test. Following this approach, we have two distinct possibilities. The first is the standard
T2-PC scheme, which occurs when the time of the k" failure, indicated by Y;..,, comes before time
T,ie., Yirn < T. The other scenario occurs when Y., < T < Yji14:0, Where (j + 1 < k) and Y.,
is the j™ failure time. In this case, we are not going to eliminate any living objects from the test by
includingRj;; =Rj;, = =Ry =0and R* =n—k - Z{Zl R;. This schematic makes certain that we
finalize the test when we meet the required amount of failures &, and that the overall test duration does
not deviate significantly from 7. Let yin < -+ < Yjuen < T < Yjstsen <+ < Yk b€ an AT2-PHC
sample from a continuous population with PDF f(y) and CDF F(y), with a progressive censoring plan
R =(Ry,...,R;,0,...,0,R"), then, without the constant term, the likelihood function of the observed
data can be presented as
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L) = ]‘[f(y,m]_[[l—m,kn) [1 - FQea)® (1.6)

Many studies considered the AT2-PHC scheme; see, for example, Nassar and Abo-Kasem [11],
Alotaibi et al. [12], Ahmad et al. [13], Dutta et al. [14], and Elshahhat and Nassar [15], among others.

According to Balakrishnan and Kundu [6], around 200 studies explored various aspects of the BS
distribution. Scarce work has been done to estimate the parameters or reliability indices of this model
utilizing newly proposed censoring strategies. This may be justified due to the intricate structure of the
new censoring techniques as well as the intractable formulas of the BS distribution’s PDF and CDF.
Therefore, we are motivated in this study to study the estimation problems of the BS distribution using
the AT2-PHC scheme. This scheme is chosen because of its flexibility in ending the experiment and its
ability to generalize some censoring schemes like Type-II censoring and T2-PC schemes. Moreover,
the available studies consider only the estimation of the model parameters without saying anything
about the estimation of the reliability indices. In order to get point and interval estimates of the
shape, scale, RF, and HRF of the BS distribution, we explored two estimating approaches: maximum
likelihood and Bayesian methods. First, the maximum likelihood estimates (MLEs) are obtained,
followed by two approximate confidence intervals (ACIs) acquired using the normal approximation
and log-transformed MLEs. For acquiring Bayesian point estimates, we address the usage of the
squared error loss function and the implementation of the Markov chain Monte Carlo (MCMC) process.
The Bayes credible intervals (BClIs) and highest posterior density (HPD) credible intervals are also
computed. Following that, we undertake a simulation study to compare the various estimates using
some statistical criteria to determine which method offers superior estimates. Two applications are
addressed from a practical standpoint to demonstrate the usefulness of the proposed methodologies.

The remaining sections of the paper are formatted as follows: Section 2 discusses the MLEs and
AClIs. The Bayesian estimation of the BS distribution is presented in Section 3. The discoveries of
the simulation investigation are presented in Section 4. In Section 5, we present two applications to
real-world data. Finally, some final thoughts are presented in Section 6.

2. Classical estimation

In this section, we will delve into the estimation of the BS distribution through the AT2-PHC scheme
using the maximum likelihood approach. Employing this approach, we aim to derive both point and
interval estimates of the unknown parameters as well as reliability indices. Suppose we have an AT2-
PHC sample y, drawn from a population that acts as the BS distribution, with progressive censoring
design R. Upon omitting the constant term, the likelihood function can then be stated by combining
(1.2), (1.3), and (1.6) as follows:

! 1 . is
LX) = vy exp {—2—7/2 Z; w? (i i) + Z; log[W(yi; )] } l—[ { [ o ,u)]}

i=1

x {cp [—M]} , @.1)
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where w(y;; 1) and w(y;; w) are as defined in (1.1). It is possible to express the log-likelihood function
of (2.1) as

1 j i
() = —tont = 3 i+ XL oatitin+ 3, o o] 22

+ R'log {@ [—My#“)]} . 2.2)

By differentiating the log-likelihood function in (1.2) with respect to parameters y and p and
equating them to zero and one, we can get the MLEs of the parameters. The normal equations in
this case are given by

At(X) ko1 _ 1< . :
W = —;/ + )7 ; w(yis ) + 77 ;Riw()’i,ﬂ)H[W()’i,ﬂ)/ﬂ
1
+ ;R*W(ym;ﬂ)H WQm;)/y1 =0, (2.3)
and
St(T) 1 <& k 1 <
o - o Z V(i ) + Z uyis ) + Z Rip(yis ;) H W (s )7
/.l '}’ i=1 i=1 7 i=1
R*
+ 7w(ym;u)H Wm0 /vl =0, (2.4)

where H[y] = ¢(y)/®(—y) and ¢(.) is the PDF of the standard normal distribution,

1 i ? i 3 — i
Vi p) = — [1 - ()ﬂi) }, u(yis 1) = \/(Z'/u);zv(y;/;l/y , and

L[] [yi
Yy, p) = " [ s y—]-
M Vi H

The simultaneous solution of (2.3) and (2.4) is the MLEs of y and u, denoted by ¥ and £,
respectively. To find the required MLEs, one must employ a numerical method because (2.3) and (2.4)
are nonlinear equations. After obtaining the MLEs ¥ and 1, we can employ the invariance property of
the MLEs to acquire the MLEs of the RF and HRF of the BS distribution as

Ry;L)= [—M]

and L
e (v 1) exp | -2 |

IERRAC

where £ = (%, 1)".
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Along with obtaining the point estimates of the different parameters, it would be useful to get
the interval estimates of these parameters. It is established that the MLEs’ asymptotic distribution
approaches normality, such that

3oz 2 )
Jii p )\ covly,)  var(u)

Here, we use the observed Fisher information matrix to estimate the variance-covariance matrix as
follows:
2z P\ — — A
ve - "F _( @) @vG.p

I (0> N 40> - cov(fr,y)  var(fr)
Oudy ou?

(2.5)

:)=(F .0

with the following elements

OPL(Z) k3, 1 <
= —S+—= ) wOsw+—= ) RwQiswH w1/l
3y> Y Z‘ v Z‘

3k

R
_ ?W(ym; WH* W /71,

82T 1 <
a( ) _ _2_2 V(yi; 1 )+Zu(y,,u)+ ZRH[W(ym,u)/V]
i=1 i=1

*

R *
+ —H W w/yl,
Y
and

PLE) e 1 A Tl
o )7;1/();,-,/,{)+;;Rilﬁ()’i,ﬂ)l‘[ W3 1)/7]

R*
+ 7l//(ym;u)H"[w(ym;u)/V] =
where w; = w(y;; p),

WiH[Wi/V] 2H[w;/v]
S

9

H*[Wi/?’] =

2uy; +yF— 2

(. ) 2y; i( )
VYis ) = —, UYyis 1) = >
Y 3 Y 20 (1 + y;)?

i i H i
H'lwi/y] = H[w/y]{w@,,m[m,m—V(y W _ ik [W/ﬂ]},

Y
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F]D;] = y[-[(y) _ HZ(y)’ t&(y,-;,u) = _ﬁ(\/yz_k 3 %)’ and HO[Wi/Y] - WiHSi;/i/V] _ 2H[yw2',-/7]'

Thus, the ACIs of y and i can be computed, respectively, as y + z, /zﬁ (%) and 1 + ZQ/ZSTE (1), where
Zas2 18 the percentile 100(1 — a/2)% of the standard normal distribution and SE (.) is the standard error
of estimate obtained by taking the square root of the estimated variance acquired from (2.5). Building
the ACIs for RF and HR is a further important topic. The present issue is to find the variances of R(r)
and fz(t) given the variances of ¥ and 1. To address this issue, a particular approach is the delta method,
which can be applied to approximate the required variances.

Assume that D, = (R,,R,) and D, = (hy, h,) are two vectors that are obtained at the MLEs ¥ and fi
and comprise the first partial derivatives of RF and HRF for y and p, respectively, with the following
elements
Y

_ w(y;zu) SIw(: /Y], R, = dlw(v:/71.
¥ Y

Ry

W(y;zﬂ)ﬁ [w(y;)/y] and h, = -
Y

hy =

Hiw(; /y] {V(y;ﬂ) + Yy, ﬂ)H[w(y;u)/V]} :

Y 2y
The approximate estimated variances of R(.) and fz(.) can be obtained as
var(R) = (D,VDY) and var(h) = (D,VD)).
As a result, one can get the ACIs of RF and HRF as
R+ z,pSER) and h + z,,S E(h),
with SER) = \var(R) and SE(h) = +Jvar(h). Tt is noteworthy to note at the end of this section
that negative lower bounds may result from obtaining the ACIs using the normal approximation (ACI-
NA) of the individual parameters. In such cases, one can use the normal approximation of the log-

transformed (NL) MLE technique to circumvent this issue. For any parameter, say «, the ACI using
NL (ACI-NL) can be obtained as follows:

. [ 575(@}
K X eXp |£Zq/2 z .

3. Bayesian estimation

We have covered point and interval parameter estimation using the frequentist approach in the
last section. This section examines the Bayesian methodology under the squared error loss function.
Achcar [16] started by thinking about the Bayesian inference of a BS distribution’s parameters. He
took into account Jeffreys prior to y and u to create the Bayesian inference using the complete sample.
Xu and Tang [17] have taken into account the non-informative prior for the Bayesian inference of
the parameters and have employed the Lindley approximation to get Bayes estimates of the unknown
parameters of the BS distribution using the entire sample data. Because of the intricate formulations
of the Fisher information matrix, it is difficult to establish the Jeffreys prior for the BS distribution in
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the case of AT2-PHC data. Therefore, we consider the same Jeffreys prior to y and u as suggested by
Achcar [16] as follows:

(X)) o«

2
{iz;),y,,u >0, 3.1)

05
where /(y?) = (Yl—z + %) . It is to be noted that when (y?) = 1, the Jeffreys prior is reduced to the
non-informative prior case. Combining the likelihood function in (2.1) with (3.1), one can write the

joint posterior distribution over proportionality as

2 1 k k i
g(Zly) o 5%3 exp {—2—72 D W) + ) loghi(y; u)]} [ { [ w(y,,ﬂ)]}
=1 i=1

i=1

. R*
{(D [_ W(ym,,u)]} ’ 32)
Y

where y is the observed data. Let w(X) be any function of the parameters to be estimated, then under
the squared error loss function, the Bayes estimate, denoted by @(X), is the posterior mean acquired
as follows:

w(X) = fo fo @(X)g(Ely)dydp. (3.3)

The integral provided in (3.3) lacks an explicit expression. To overcome this challenge, we consider
the use of the MCMC technique to create the Bayes point, BCI, and HPD estimates. The MCMC
approach is used to get samples from (3.2) in order to obtain the necessary estimations. The posterior
distribution is sampled using the MCMC technique, and the Bayes estimates, BCIs, and HPD intervals
are then obtained using these samples. We must first obtain the full conditional distributions of the
unknown parameters y and u in order to employ the MCMC approach. The necessary full conditional
distributions of y and u can be obtained, respectively, from (3.2), as

) oL S : s |\
&Yl y) o« {ykyﬂ exp{—z—yzZWZ(yi;ﬂ)}n{(D [_w yyu }}

< )

and

1 j P
ululy,y) o ﬁeXp{ Zw(yz,u)Jerog w(yz,u)]}n{ [ e u)]}

i=1

x {CD [_M]} . (3.5)
y

Due to the complexity of the conditional distributions in (3.4) and (3.5), which cannot be reduced
to any well-known distributions, we employ the Metropolis-Hastings (M-H) algorithm. For sampling
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from complicated probability distributions, particularly in Bayesian estimation, the M-H algorithm
is a popular MCMC technique. It is essential to Bayesian statistics because it helps approximate
the posterior distribution by combining observed data and past knowledge; for more detail about the
MCMC technique, see Contreras-Reyes et al. [18]. To acquire the Bayes estimates, BCIs, and HPD
intervals of y and u, as well as the life parameters, the following processes must be followed with a
normal proposal distribution (NPD) in order to obtain the necessary samples as:

Step 1. Set [ = 1 and start with initial values (', u®) = (7. f0).

Step 2. Simulate Y from g, (ylu, y) using NPD and follow the M-H steps.
Step 3. Generate . from g, (uly, y) using NPD and follow the M-H steps.
Step 4. Use (¥, u?) to compute R® and h®, respectively.

Step 5. Put/ =1+ 1.

Step 6. Repeat the process M times to generate a sequence of

[),<z>”u<z>,R<z), h(z)] d=1,....M

After discarding the first M acquired samples as a burn-in period, the Bayes estimate of any
parameter, say 7, can be computed as

1 M
= 0]
n_M_MZZ:MHn ’

In/order to compute the BCI and HPD interval for n, sort the acquired sample of n(l), =M+ 1,....M
as pM*D M. Therefore, the 100(1 — @)% BCI of 1 can be obtained as

[,7<a<M—M)/2> ((1—a/2)<M—M>>].

n
Moreover, the 100(1 — @)% HPD interval of 7 is given by
[n(l*)’ n(l*+(l—a)(M—M)/2))] ,

where I* = M + 1,..., M is determined such that

" +[(1-a)(M-M)]) _ n(l*) — min {U(H[(l—a)(M—M)]) _ n(l)} ,
I<I<a(M—-M)

n

where [¢] refers to the largest integer less than or equal to g.
4. Monte Carlo comparisons

Monte Carlo simulations are performed in this part to test the performance of the proposed
estimators of y, u, R(¢), and h(¢) developed in this study. From BS(y, u) = (0.5, 1.5), based on various
options of n (total experimental units), k (effective sample size), and T (threshold time), we simulate
1,000 AT2-PHC samples. At ¢ = 0.1, the plausible values of R(¢) and A(t) are 0.98954 and 0.12939,
respectively. When 7T'(= 1,2) and n(40, 80), the number of failed subjects k is specified as a failure
percentage f X 100% = 50% and 75%. Briefly, the next procedure reports the generation steps of the
AT2-PHC strategy:

AIMS Mathematics Volume 9, Issue 5, 11092—-11121.
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Step 1: Simulate a T2-PC sample as:

(a) Create ¥ independent observations of size k as ¥y, t, ..., .

(b) Setg; = 9 Fm R o0k,
(C) Set u; = 1 — OkOk—-1 " * " Ok—i+1 fori = 1,2, e ,k.
(d) SetY; = F Y (ui;y,p), i = 1,2,...,k, as the acquired T2-PC sample from BS(y, u).

Step 2: Find j (at Y; < T < Y;,) and remove the staying items Yj.,, ..., ¥;.
-1
Step 3: From f (y;y,u) [1 - F (y 15 Ys /1)] , obtain the first k — j — 1 order statistics with sample size
n—j—ZiHRd—las Yj+2,...,Yk.

Once 1,000 AT2-PHC samples are acquired, using R programming software version 4.2.2, we
utilize the following recommended packages:

e A ‘maxLik’ package with ‘maxNR’ function (by Henningsen and Toomet [19]) to implement the
Newton-Raphson method in turn to evaluate the MLEs and AClIs of vy, u, R(t), and A().

e A ‘coda’ package with ‘run_metropolis MCMC’ function (by Plummer et al. [20]) in turn to
calculate the Bayes’ and credible estimates.

Following Achcar [16], we have evaluated the Bayes estimators based on both Jeffreys and non-
informative priors, denoted by Pr[A] and Pr[B], respectively. Using the M-H algorithm, for vy, u, R(%),
or h(t), we ignore the first 2,000 of the 12,000 simulated Markovian variates as burn-in.

To examine the performance of the removal design R, we consider the following censoring schemes
(CSs):

CS-1: Riy=n—-k, R; =0 for i#1;

k
CS-2:R§:n—k, R, =0 for iii;
CS-3: Rh=n—-k, R, =0 for i+#k

Practically, the average estimates (Av.Es) y, u, R(f), or h(t) (say ¢) derived from the maximum
likelihood (or MCMC) approach are computed by

1000
A E V“) =1,2,3.4
v 10002 24

where ¢ is an estimate of ¢ at ith sample, ¢, = v, ¢» = i, ¢3 = R(2), and ¢4 = h(?).
The performance of the point estimations of ¢ is evaluated based on the following two metrics:

1) Root mean squared-error (RMSE):

o 1 1000 ;. . 2
RMSE(¢,) = \/m Zi:l (¢(‘) - ¢) , £=1,2,3,4.

ii) Average relative absolute bias (ARAB):

1000 1 (i
ARAB($;) = 10002 ;) b, £=1,2,3,4.
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The performance of the 100(1 — g)% interval estimations of ¢ is evaluated based on the following
two metrics:

1) Average confidence length (ACL):

1 1000
ACL(I_q)%(¢) = m Zi:l (7/{(52) - .ngg))a f = la 29 3, 4.

ii) Coverage percentage (CP):

1 1000
CP—g%(¢) = — :
(1-9)% (¢) 1000 Zi:l (1;&(,-);'11
3

()
e

)(¢), §=1,2,3,4,

respectively, where I(-) is the indicator operator and (£(-), U(-)) refers to the (lower-bound, upper-
bound) of an interval estimate.

In Tables 1-8, the simulated RMSE, ARAB, ACL, and CP values of y, u, R(#), and h(t) are
displayed. From Tables 1-8, in regard to the smallest RMSE, ARAB, and ACL values as well as
the highest CP values, we report the following comments:

o All offered estimations for the parameters and/or reliability characteristics of the BS model
behaved well.

e As n(or k/n) grows, the accuracy of all estimates becomes satisfactory. The same note is also
reached when the sum of removal items (Zle R)) decreases.

e As T;, i = 1,2 increase, all simulated results of y, u, R(t), and h(t) decrease. Also, when T}, i =
1,2 increase, the simulated CPs grow and close to the prespecified nominal level. It is to be noted
that when 7 increases, no additional failures are observed because the number of observed failures
k is predetermined. The little improvement observed in the various criteria, like the reduction in
RMSEs and ACLs when T increases, may be due to random error.

e All Bayes point estimates as well as the associated interval estimates behave better than those
acquired from the likelihood approach.

e Due to the non-informative knowledge on the BS model parameters, the point and interval
estimations of vy, u, R(t), or h(t) developed by Pr[A] and Pr[B] are close to each other. In general,
the Bayes estimates using Pr[B] perform better than those using Pr[A] in terms of minimum
RMSEs, ARABs, and ACLs.

e Comparing the interval estimation methods of vy, i, R(f), or h(?), it is clear that:

— The BCI and HPD interval estimates of y, i, R(f), or h(t) are quite similar to each other.

— The ACI-NL estimates of y and R(¢) are superior to those acquired from ACI-NA estimates.

— The ACI-NA estimates of i and h(¢) are superior to those acquired from ACI-NL estimates.

— The interval estimates of y, u, R(t), or h(t) offered using both BCI and HPD approaches are
better than those acquired from ACI-NA or ACI-NL methods.

e Comparing the proposed CSs 1, 2, and 3, it is clear that:

— The collected estimates of v and R(¢) perform better via CS-3 ‘right-censoring’ than others.
— The collected estimates of i and h(f) perform better via CS-1 ‘left-censoring’ than others.

e In conclusion, the Bayes’ using the M-H framework is recommended for estimating the model
parameters or the reliability features of the BS lifespan model.
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Table 1. The Av.Es (1% column), RMSEs (2" column), and ARABs (3" column) of .

T  n[FP%]  Scheme MLE MCMC-Pr{A] MCMC-Pr[B]
1 40[50%] 1 0497 0471 0.659 0411 0466 0.620 0515 0444 0615
2 0477 0435 0.623 0421 0423 0587 0517 0414  0.549
3 0487 0414 0.603 0431 0404 0.550 0.523 0387 0.535
40[75%] 1 0497 0331 0593 0422 0311 0518 0518 0302 0485
2 0495 0313 0539 0516 0301 0496 0.507 0283  0.474
3 0480 0289 0487 0526 0289 0458 0.617 0255 0438
80[50%] 1 0498 0.179 0328 0525 0.165 0301 0502 0.154  0.287
2 0497 0.169 0306 0534 0.153 0287 0461 0.143 0273
3 0504 0.162 0288 0545 0.131 0265 0.48  0.127  0.257
80[75%] 1 0495 0.126 0250 0454 0.113 0216 0487 0.109  0.190
2 0498 0.116 0228 0452 0.105 0.198 048  0.101  0.188
3 0456  0.105 0207 0457 0.099 0.175 0472 0093  0.168
2 40[50%] 1 0501 0443  0.625 0427 0426 0.582 0.522 0411  0.558
2 0510 0409 0599 0434 0396 0552 0.529 0385  0.521
3 0581 038 0564 0431 0378 0518 0523 0366 0.507
40[75%] 1 0501 0317 0542 0403 0303 0.486 0.506 0295  0.448
2 0518 0291 0477 0427 0282 0456 0515 0269  0.426
3 0.548 0270 0436 0446 0258 0414 0536 0230  0.395
80[50%] 1 0503 0.171 0320 0509 0.153 0279 0.486  0.146  0.262
2 0520 0.166 0300 0517 0.142 0259 0516 0.132  0.243
3 0528 0.149 0277 0514 0.122 0247 0529 0.114 0.232
80[75%] 1 0497  0.115 0231 0494 0.109 0.192 0516 0.101  0.188
2 0550 0.105 0212 0473 0.099 0.174 0528 0.091  0.179
3 0582  0.099 0.197 0528 0.090 0.162 0.546 0.086 0.154
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Table 2. The Av.Es (1% column), RMSEs (2" column), and ARABs (3¢ column) of y.

T  n[FP%]  Scheme MLE MCMC-Pr{A] MCMC-Pr[B]
1 40[50%] 1 1520 0.617 0489 1599 0.559 0452 1.670 0532 0422
2 1526  0.644 0520 1519 0576 0468 1567 0542 0435
3 1,520  0.692 0534 1537 0.627 0484 1571 0.587  0.452
40[75%] 1 1766 0543 0456 1579 0478 0401 1582 0436  0.367
2 1575 0586 0478 1569 0517 0417 1672 0492  0.391
3 1514  0.609 0508 1502 0.539 0430 1.598 0507 0.414
80[50%] 1 1.599 0454 0354 1720 0429 0341 1728  0.382  0.340
2 1529  0.483 0385 1.522 0454 0365 1574 0419  0.354
3 1510 0503 0411 1510 0464 0386 1.554 0425  0.360
80[75%] 1 1.685 0385 0264 1576 0349 0255 1.634 0336  0.251
2 1514  0.408 0298 1455 0378 0286 1491 0367 0277
3 1510 0428 0328 1451 0402 0308 1485 0376  0.293
2 40[50%] 1 1.614 0558 0.483 1599 0.529 0417 1.627 0505  0.388
2 1.561  0.620 0.503 1533 0.547 0438 1598 0.517  0.408
3 1522 0.653 0515 1540 0597 0468 1572 0531 0428
40[75%] 1 1.677 0492 0415 1573 0442 0326 1.649 0421 0316
2 1.568  0.542  0.446  1.485 0483 0357 1577 0453  0.332
3 1518  0.601 0474 1493 0514 0389 1597 0486  0.377
80[50%] 1 1.636 0420 0313  1.641 0358 0270 1677 0344  0.257
2 1545 0437 0345 1487 0377 0292 1565 0361  0.284
3 1.516 0466 0387 1498 0.420 0310 1.540 0398  0.291
80[75%] 1 1.680 0329 0259 1592 0294 0201 1497 0282  0.193
2 1.599 0367 0283 1493 0320 0227 1546 0314 0210
3 1512 0398 0292 1475 0348 0246 1509 0339  0.222
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Table 3. The Av.Es (1* column), RMSEs (2 column), and ARABs (3" column) of R(?).

T  n[FP%]  Scheme MLE MCMC-Pr{A] MCMC-Pr[B]
1 40[50%] 1 0987 0826 0752 0996 0.782 0.689 0.985 0.739  0.636
2 0988 0.779 0.715 0995 0.723  0.652 0983 0712 0.613
3 0982 0728 0.685 0986 0.699 0.625 0.992 0.709  0.594
40[75%] 1 0988  0.697 0.626 0996 0.621 0.592 0991  0.609  0.568
2 0974 0.653 0595 0978 0594 0.568 0987 0.585  0.528
3 0967 0613 0573 0984 0541 0.546 0982 0522  0.517
80[50%] 1 0988 0580 0559 0985 0531 0525 0976 0.522  0.481
2 0989 0533 0525 0978 0513 0491 0972 0496  0.469
3 0980 0493 0483 0959 0.487 0472 0981 0465 0435
80[75%] 1 0989 0448 0428 0993 0.415 0387 0989 0408  0.365
2 0979 0414 0405 0989 0387 0366 0985 0365 0.343
3 0976 0382 038 0976 0361 0348 0978 0344  0.328
2 40[50%] 1 098 0788 0.716 0.992 0.726  0.637 0989 0709  0.611
2 0987 0749 0.688  0.995 0.687 0.605 0985 0.683  0.588
3 0992  0.684 0.660 0996 0.647 0584 0992 0.680  0.569
40[75%] 1 0987 0.658 0.602 0995 0.610 0.577 0992 0.585  0.545
2 0984 0629 0572 0997 0572 0537 0990 0.549  0.506
3 0988 0.600 0551 0995 0522 0525 0989 0.509 0.496
80[50%] 1 098 0546 0537 0987 0512 0498 0983 0500 0.461
2 0988 0524 0505 0983 0494 0475 0979 0476  0.449
3 0992 0472 0465 0992 0467 0.449 0.986  0.446  0.424
80[75%] 1 0989 0427 0412 0989 0398 0359 0985 0392  0.345
2 0987 0395 038 0991 0371 0338 0988 0351  0.329
3 0989 0364 0371 0989 0346 0322 0987 0331 0315
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Table 4. The Av.Es (1% column), RMSEs (2" column), and ARABs (3" column) of h(%).

T  n[FP%]  Scheme MLE MCMC-Pr{A] MCMC-Pr[B]
1 40[50%] 1 0.1290 0528 0767 0.135 0447 0742 0.129 0428 0.713
2 0.127 0575 0797 0.126 0497 0.769  0.122 0469  0.728
3 0.134 0597 0820 0.122 0539 0.797 0.120 0.503  0.749
40[75%] 1 0223 0440 0.649 0.135 0368 0.619 0.117 0354  0.603
2 0228 0467 0675 0.122 0393 0.648 0.123 0383  0.626
3 0.133 0495 0714 0.126 0420 0.681 0.112 0396  0.653
80[50%] 1 0.141 0340 0549 0.134 0291 0518 0.132 0277  0.482
2 0.127 0366 0587 0.135 0329 0535 0.123 0309 0.522
3 0.131 038 0617 0.130 0351 0585 0.120 0329  0.566
80[75%] 1 0.139 0308 0445 0.136 0254 0.423  0.137 0.187  0.409
2 0.1290 0312 0477 0.127 0268 0447 0.142 0233 0421
3 0.127 0326 0492 0.132 0276 0472 0.123 0242  0.459
2 40[50%] 1 0.128 0502 0728 0.127 0436 0.709 0.129 0391  0.686
2 0.133 0526 0756 0.124 0477 0735 0.131 0450  0.694
3 0.139 0570 0795 0.126 0512 0.768 0.126  0.483  0.722
40[75%] 1 0.126 0420 0610 0.123 0357 0.597 0.121 0345 0.585
2 0.135 0438 0.627 0.132 0389 0.610 0.131 0371  0.603
3 0.138 0483 0.691 0.125 0413 0.666 0.132 0383  0.638
80[50%] 1 0.129 0325 0528 0.129 0287 0499 0.125 0254  0.466
2 0.131 0345 0559 0.125 0323 0.528 0.128 0286  0.495
3 0.136 0366 0574 0.132 0347 0550 0.132 0317  0.552
80[75%] 1 0.124 0267 0439 0.132 0227 0418 0.133  0.181  0.402
2 0.128 0280 0469 0.128 0245 0440 0.137 0214 0413
3 0.130 0311 0488 0.129 0263 0465 0.126 0224 0435
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Table 5. The ACLs (1* column) and CPs (2"¢ column) of 95% interval estimates of y.

n[FP%] Scheme  ACI-NA BCI-Pr[A] BCI-Pr[B] ACI-NA BCI-Pr[A] BCI-Pr[B]
T=1 T=2
40[50%] 1 0437 0926 0415 0928 0399  0.930 0428 0929 0402 0931 0396  0.933
2 0373 0929 0357 0931 0338 0934 0365 0932 0332 0934 0332 0937
3 0338 0932 0314 0934 0295  0.937 0326 0935 0302 0937 0290  0.940
40075%] 1 0310 0935 0287 0937 0276  0.940 0301 0938 0281 0940 0273  0.943
2 0278 0938 0265 0940 0257  0.942 0273 0941 0255 0943 0251  0.946
3 0256 0940 0246 0942 0236  0.945 0252 0943 0242 0945 0231  0.948
80[50%] 1 0236 0942 0224 0945 0219  0.948 0.234 0945 0216 0948 0211  0.951
2 0224 0945 0218 0947 0205  0.949 0219 0948 0213 0949 0200  0.953
3 0212 0946 0201 0948  0.188  0.951 0206 0949 0196 0951  0.181  0.954
80[75%] 1 0203 0948 0192 0950  0.178  0.953 0201 0951 0186 0953  0.173  0.956
2 0.187 0951 0178 0953  0.166  0.956 0.182 0953 0173 0955  0.161  0.957
3 0.172 0952 0169 0954  0.160  0.957 0.170 0955 0165 0957  0.157  0.959
ACI-NL HPD-Pr[A] HPD-Pr[B] ACI-NL HPD-Pr[A] HPD-Pr{B]
40[50%] 1 0426 0928 0409 0929 0393  0.932 0422 0930 0397 0932 038 0934
2 0365 0931 0349 0932 0331 0936 0361 0933 0329 0936 0325  0.938
3 0327 0934 0309 0935 0280  0.939 0323 0936 0299 0939 0281  0.941
40[75%] 1 0303 0936 0284 0938 0272  0.941 0296 0939 0276 0941 0264  0.944
2 0273 0940 0261 0941 0250  0.944 0258 0942 0253 0945 0239  0.947
3 0216 0941 0240 0943 0231  0.946 0.209 0944 0235 0947 0224  0.949
80[50%] 1 0232 0943 0221 0946 0214  0.949 0225 0946 0213 0949 0205  0.952
2 0220 0946 0212 0948 0201  0.950 0214 0949 0197 0950  0.183  0.954
3 0208 0947  0.198 0949  0.183  0.952 0.196 0950  0.188 0952  0.173  0.955
80[75%] 1 0200 0949 0188 0951  0.173  0.954 0.186 0952 0182 0954  0.169  0.958
2 0.184 0952 0172 0954  0.162  0.957 0.178 0954  0.168 0956  0.157  0.958
3 0.169 0953 0163 0955  0.155  0.958 0.164 0956 0159 0959  0.152  0.960

Table 6. The ACLs (1* column) and CPs (2"¢ column) of 95% interval estimates of y.

n[FP%] Scheme  ACLI-NA BCI-Pr{A] BCI-Pr{B] ACI-NA BCI-Pr{A] BCI-Pr{B]
T=1 T=2
40[50%] 1 0.608 0935 0585 0936 0573  0.938 0.584 0935 0574 0937 0566  0.940
2 0785 0928 0769 0928  0.756  0.930 0765 0929 0760 0930 0740  0.932
3 0.830 0919 0814 0921 0798  0.923 0816 0922 0793 0924 0787  0.926
40175%] 1 0531 0942 0529 0943 0520  0.946 0520 0945 0512 0946 0502  0.948
2 0574 0939 0558 0941 0541 0943 0.556 0941 0544 0942 0536 0945
3 0.588 0936 0579 0938 0569  0.940 0572 0938 0561 0941 0559  0.942
80[50%] 1 0418 0954 0410 0955 0389  0.957 0415 0954 0402 0957 0381  0.958
2 0469 0951 0458 0952 0451  0.954 0458 0953 0447 0955 0432  0.956
3 0501 0946 0470 0948 0466  0.950 0483 0948 0467 0951 0452  0.952
80[75%] 1 0341 0960 0325 0962 0317  0.964 0331 0962 0315 0965 0311  0.965
2 0363 0958 0357 0960 0343  0.962 0356 0961 0342 0962 0335  0.964
3 0408 0956 0385 0958 0374  0.959 0404 0957 0373 0960 0368  0.961
ACL-NL HPD-Pr{A] HPD-Pr[B] ACL-NL HPD-Pr{A] HPD-Pr[B]
40[50%] 1 0.613 0933 0595 0935 0582  0.937 0.604 0934 0580 0936 0571  0.939
2 0790 0926 0774 0927 0754  0.929 0775 0928 0765 0929 0746  0.931
3 0.834 0918 0819 0920 0809 0921 0.822 0920 0806 0922 0793  0.925
40[75%] 1 0.546 0941 0540 0942 0529 0944 0.537 0943 0525 0945 0512 0947
2 0.580 0937 0572 0939 0566  0.941 0572 0939 0565 0941 0547  0.943
3 0.594 0935 0583 0937 0574 0938 0590 0936 0578 0939 0562 0941
80[50%] 1 0429 0952 0416 0953 0409  0.955 0419 0953 0408 0956 0394  0.958
2 0478 0949 0467 0951 0458  0.952 0469 0951 0453 0953 0449  0.955
3 0.506 0945 0486 0947 0476  0.948 0489 0947 0475 0949 0464 0951
80[75%] 1 0346 0959 0335 0961 0324  0.962 0338 0961 0321 0963 0314 0964
2 0376 0957 0366 0959 0356  0.960 0364 0959 0348 0961 0341  0.963
3 0412 0954 0392 0956 0385  0.958 0409 0956 0385 0958 0379  0.960
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Table 7. The ACLs (1% column) and CPs (2" column) of 95% interval estimates of R(f).

n[FP%] Scheme  ACI-NA BCI-Pr[A] BCI-Pr[B] ACI-NA BCI-Pr[A] BCI-Pr[B]
T=1 T=2
40[50%] 1 0628 0922 0598 0925 0585  0.928 0614 0924 058 0926 0578  0.929
2 0613 0926 0587 0929 0576 0931 0597 0928 0574 0930 0566  0.932
3 0582 0930 0562 0932 0553  0.936 0576 0932 0556 0934 0549  0.937
40075%] 1 0543 0934 0525 0935 0518  0.939 0537 0936 0516 0937 0507 0941
2 0514 0937 0502 0940 0492  0.943 0508 0939 0489 0941 0482  0.945
3 0497 0939 0483 0942 0476  0.944 0486 0941 0478 0943 0460  0.945
80[50%] 1 0457 0943 0449 0944 0425  0.947 0437 0945 0427 0946 0416  0.949
2 0416 0946 0402 0948 0387  0.950 0407 0948 0385 0950 0376  0.952
3 0379 0950 0362 0953 0353  0.955 0372 0952 0352 0955 0346  0.957
80[75%] 1 0325 0953 0315 0956 0305  0.958 0318 0955 0309 0958 0293  0.959
2 0303 0956 0292 0958 0284  0.961 0292 0958 0286 0960 0275  0.963
3 0285 0958 0276 0960 0259  0.963 0280 0960 0269 0962 0251  0.964
ACI-NL HPD-Pr[A] HPD-Pr[B] ACI-NL HPD-Pr[A] HPD-Pr{B]
40[50%] 1 0.616 0924 0590 0926 0579  0.930 0.604 0925 0577 0928 0566  0.931
2 0600 0927 0579 0930  0.568  0.932 0590 0929 0567 0932 0559  0.934
3 0571 0931 0558 0934 0545  0.937 0563 0933 0545 0936 0539  0.939
40[75%] 1 0539 0936 0515 0937 0508  0.941 0527 0937 0508 0938 0502  0.943
2 0501 0939 0487 0941 0477  0.943 0492 0940 0473 0943 0467  0.946
3 0487 0941 0476 0943 0465  0.945 0482 0942 0469 0945 0453  0.947
80[50%] 1 0437 0945 0425 0945 0412 0.949 0423 0946 0413 0947 0409  0.950
2 0409 0948 038 0949 0374  0.952 0397 0949 0378 0951 0369  0.954
3 0363 0951 0345 0954 0339  0.957 0356 0953 0342 0956 0332  0.959
80[75%] 1 0316 0955 0306 0958 0297  0.960 0311 0956 0302 0959 0285  0.961
2 0296 0957 0280 0959 0277  0.963 0283 0959 0280 0962 0271  0.964
3 0276 0959 0270 0961 0250  0.964 0270 0961 0266 0963 0244  0.965

Table 8. The ACLs (1* column) and CPs (2"¢ column) of 95% interval estimates of A(f).

n[FP%)] Scheme  ACI-NA BCI-Pr{A] BCI-Pr[B] ACI-NA BCI-Pr{A] BCI-Pr[B]
T= T=2

40[50%] 1 0.315 0.948 0.299 0.951 0.282 0.953 0.308 0.950 0.288 0.953 0.279 0.955
2 0.329 0.946 0.314 0.949 0.289 0.952 0.327 0.948 0.311 0.951 0.283 0.953
3 0.369 0.942 0.332 0.946 0.309 0.948 0.359 0.944 0.320 0.947 0.298 0.949
40[75%] 1 0.287 0.953 0.270 0.956 0.258 0.958 0.276 0.955 0.263 0.957 0.251 0.959
2 0.295 0.952 0.287 0.955 0.263 0.957 0.281 0.953 0.272 0.956 0.259 0.958
3 0.305 0.950 0.291 0.953 0.278 0.955 0.302 0.951 0.281 0.955 0.272 0.957
80[50%] 1 0.234 0.961 0.227 0.964 0.219 0.965 0.228 0.963 0.218 0.965 0.214 0.966
2 0254 0958 0245  0.961 0234  0.963 0252 0960  0.241 0963 0239  0.964
3 0.277 0.955 0.262 0.958 0.247 0.960 0.263 0.956 0.256 0.960 0.244 0.961
80[75%] 1 0207 0967  0.201 0970  0.191 0.971 0202 0969  0.194 0971 0.186  0.972
2 0.213 0.965 0.208 0.968 0.204 0.969 0.210 0.967 0.200 0.968 0.195 0.970
3 0227 0963 0216 0966 0210  0.968 0218 0965 0207 0967 0202  0.969

ACI-NL HPD-Pr[A] HPD-Pr[B] ACI-NL HPD-Pr[A] HPD-Pr[B]
40[50%] 1 0.367 0.931 0.349 0.933 0.339 0.936 0.359 0.933 0.326 0.935 0.331 0.937
2 0.389 0.927 0.365 0.931 0.346 0.934 0.380 0.929 0.357 0.932 0.340 0.935
3 0.417 0.923 0.382 0.926 0.376 0.929 0.408 0.925 0.370 0.928 0.361 0.931
40[75%] 1 0.327 0.942 0.315 0.945 0.310 0.947 0.316 0.944 0.309 0.946 0.303 0.948
2 0.338 0.938 0.327 0.941 0.320 0.942 0.325 0.939 0.319 0.942 0.313 0.943
3 0.354 0.934 0.341 0.935 0.331 0.938 0.348 0.936 0.329 0.937 0.324 0.940
80[50%] 1 0.274 0.948 0.258 0.951 0.246 0.953 0.261 0.949 0.246 0.952 0.238 0.955
2 0.282 0.946 0.270 0.949 0.261 0.951 0.276 0.947 0.263 0.950 0.252 0.952
3 0310 0944 0304 0947 0296  0.949 0303 0946 0295 0948 0282  0.951
80[75%] 1 0.248 0.955 0.229 0.958 0.222 0.960 0.238 0.957 0.221 0.959 0.213 0.961
2 0258 0953 0238 0956 0229  0.957 0244 0954 0232 0958 0219  0.958
3 0.261 0.950 0.246 0.953 0.237 0.955 0.255 0.952 0.241 0.954 0.229 0.956
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5. Data applications

In this section, we will utilize two real datasets from the clinical and chemical sectors to demonstrate
the relevance and application of the suggested approaches to real-world occurrences.

5.1. Clinical data

In this application, we shall use a clinical dataset of 56 blood samples from organ transplant
recipients and assay an aliquot of each sample using a standard-recognized method of high-
performance liquid chromatography. This dataset was originally given by Hawkins [21] and later
rediscussed by Nassar et al. [22]. In Table 9, for computational convenience, all points of blood
samples are divided by ten.

Table 9. Newly transformed blood samples.

3.50 7.10 7.70 8.70 9.30 9.90 10.4 10.9 10.9 11.2
11.8 11.8 12.5 12.7 12.9 13.0 14.8 15.1 15.3 15.6
15.9 15.9 16.2 16.6 18.5 19.8 20.3 20.6 22.1 22.7
24.1 244 24.5 254 26.6 27.1 27.5 28.0 28.5 31.8
32.7 33.6 33.9 34.0 34.6 35.0 37.0 40.2 42.8 44.0
49.8 52.1 55.6 57.8 65.3 98.0
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(a) Contour. (b) Density. (c) Reliability.
Figure 2. Fitting plots from blood dataset.

At first, we must determine whether the BS distribution is an acceptable model for blood data.
The MLEs of y and u are used to estimate the Kolmogorov-Smirnov (K-S) distance and its associated
P-value. The MLEs vy and u with associated standard-errors (SEs) are 0.6678 (0.0631) and 20.839
(1.7563), respectively. At the same time, the K-S distance is 0.062 with a P-value of 0.982. This
means that the BS distribution matches the blood data quite well. Also, based on the full blood dataset,
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the adaptability of the BS model is highlighted via various graphical tools, namely: (a) Contour; (b)
estimated density; and (c) estimated/empirical reliability; see Figure 2. Figure 2(a) shows that the
MLEs ¥y = 0.6678 and 1 = 20.839 existed and are unique; Figure 2(b) shows that the fitted BS density
line reasonably fits the histogram; and Figure 2(c) shows that the fitted BS reliability line captures the
empirical reliability line adequately.

Briefly, to show the effectiveness of the BS model based on the blood dataset, the BS(y,u)
distribution is compared with three popular models, namely: lognormal(y, «), Weibull(y, i), and
gamma(y, ) distributions.

To establish this goal, the K-S distance (with its P-value) is obtained for each model; see Table 10.
The MLEs (with their SEs) of y and u are also calculated and reported in Table 10. It indicates that
the BS distribution is the best model compared to its competitors. It also indicates that the lognormal
distribution is the next best choice among others. Figure 3 displays the histogram of the blood data
and the fitted density lines, the empirical and fitted reliability functions, and the probability-probability
(PP) lines. Additionally, Figure 3 supports the same fit findings.

Table 10. Summary fit of the BS, lognormal, Weibull, and gamma distributions using blood

data.
Model MLE(SE) K-S(P-value)
Y H
BS 0.6678(0.0631) 20.841(1.7567) 0.0622(0.982)
lognormal 3.0413(0.0848) 0.6347(0.0600) 0.0711(0.939)
Weibull 1.6266(0.1578) 28.689(2.4986) 0.0918(0.733)
Gamma 2.6885(0.4798) 0.1054(0.0207) 0.1007(0.621)
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Figure 3. The density lines (left), reliability lines (center), and PP (right) of BS and its
competitive models using blood data.

Using various choices of 7 and R, we highlight the suggested estimates based on three AT2-PHC
samples (with k = 26) created from the blood data; see Table 11. Using the proposed M-H steps,
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we simulate 40,000 MCMC iterations and discard the first 10,000 samples as burn-in. For each S[i]
for i = 1,2,3, in Table 11, the maximum likelihood and Bayes MCMC estimates (along with their
SEs) as well as 95% asymptotic (ACI-NA and ACI-NL methods) intervals and 95% credible (BCI and
HPD) intervals (along with their widths) of y, u, R(¢), and A(¢) (at ¢ = 10) are obtained; see Table 12.
Both Pr[A] and Pr[B] are also utilized to obtain the MCMC estimates and associated credible interval
estimates. The results in Table 12 show that the Bayes point and interval estimates of y, u, R(t), and
h(t) obtained using Pr[B] perform better than other estimates in terms of minimum SEs and interval
widths.

Table 11. Three AT2-PHC samples from blood data.

Sample  T(}j) R R* Data

S[1] 9.5(4) (5%,0%) 10 3.50,7.10, 8.70, 9.30, 10.4, 10.9, 10.9, 11.2, 11.8, 12.7, 12.9, 13.0, 14.8,
15.1, 15.3, 15.6, 15.9, 15.9, 16.2, 16.6, 18.5, 19.8, 20.3, 20.6, 22.1, 22.7

S[2] 19.2(16)  (0'9,5%,0%) 5 3.50,7.10, 7.70, 8.70, 9.30, 9.90, 10.4, 10.9, 10.9, 11.2, 11.8, 11.8, 12.9,
15.3,15.6, 15.9, 16.6, 18.5, 19.8, 20.6, 22.1, 22.7, 27.1, 27.5, 28.0, 32.7

S[3] 40.5(26)  (0%,5%) 0 3.50, 7.10, 7.70, 8.70, 9.30, 9.90, 10.4, 10.9, 10.9, 11.2, 11.8, 11.8, 12.5,

12.7,12.9,13.0, 14.8, 15.1, 15.3, 15.6, 15.9, 27.1, 27.5, 31.8, 32.7, 40.2

Table 12. Estimates of y, u, R(t), and h(¢) from blood data.

Sample  Par. MLE ACI-NA MCMC-Pr[A] BCI HPD
ACI-NL MCMC-Pr[B] BCI HPD
Est. SE lower upper width Est. SE lower upper width lower upper width
S[1] v 0.5286  0.0739  0.3837 0.6735 0.2898  0.5284 0.0193 04911 0.5666  0.0755 0.4906 0.5659  0.0754
0.4019  0.6953  0.2934  0.5285 0.0099 0.5094  0.5480 0.0386  0.5093  0.5478  0.0385
u 17.400 1.5672 14329 20472 6.1433 17401 0.0200 17.361 17.440 0.0786 17.361 17.439  0.0785

14.585  20.760  6.1753  17.400 0.0100  17.381  17.420 0.0392 17.381 17.420  0.0392
R(10)  0.8557 0.0421 0.7733  0.9382 0.1648 0.8560  0.0088  0.8389  0.8734 0.0345 0.8384  0.8729  0.0344
0.7772 09423  0.1651  0.8558  0.0045 0.8470 0.8647 0.0176  0.8471  0.8647 0.0176
h(10)  0.0522  0.0109  0.0308  0.0735 0.0427  0.0521  0.0008  0.0503  0.0534  0.0031  0.0505 0.0536  0.0031
0.0346  0.0785  0.0439  0.0521  0.0004 0.0513  0.0529 0.0016  0.0513  0.0529  0.0016

S[2] Y 0.6502  0.0933 04673 0.8331  0.3659  0.6502  0.0194 0.6123 0.6887 0.0764 0.6117  0.6880  0.0763
0.4907 0.8615 03707 0.6502  0.0099 0.6308 0.6696  0.0388  0.6310 0.6697  0.0387
7 20.815  2.1698  16.562  25.067 8.5054  20.814  0.0202 20.775 20.854 0.0792  20.774  20.853  0.0791

16968 25533  8.5647 20.815 0.0100 20.795 20.834 0.0393 20.795 20.835  0.0392
R(10)  0.8755 0.0359 0.8052 0.9458 0.1406 0.8756  0.0071  0.8618  0.8896  0.0279  0.8614  0.8892  0.0278
0.8080  0.9487  0.1407 0.8755 0.0036 0.8685 0.8826 0.0141 0.8685 0.8826  0.0141
h(10)  0.0385  0.0075  0.0238  0.0532  0.0294  0.0385  0.0007  0.0370  0.0397  0.0028 0.0371  0.0398  0.0027
0.0263  0.0564  0.0302 0.0385 0.0004 0.0378 0.0392 0.0014 0.0378 0.0392  0.0014

S[3] v 1.0767  0.1935  0.6975 1.4559 0.7584 1.0767 0.0197  1.0381 1.1158  0.0778 1.0385 1.1161  0.0776
0.7571 1.5312  0.7742  1.0767 0.0100  1.0572  1.0962  0.0390 1.0575 1.0964  0.0389
i 32257 64477  19.620 44895 25274 32257 0.0202 32218 32297 0.0792 32217 32296  0.0792

21.802 47728 25926 32257 0.0100 32.238 32277 0.0393 32238 32277 0.0392
R(10)  0.8751 0.0361 0.8043 0.9459 0.1416 0.8752 0.0043 0.8666  0.8837 0.0171  0.8666  0.8837  0.0171
0.8071 09489  0.1418 0.8751  0.0022  0.8709 0.8794 0.0086  0.8709  0.8794  0.0086
h(10)  0.0257  0.0050  0.0158  0.0356  0.0198  0.0257  0.0003  0.0251  0.0262  0.0011  0.0251  0.0262  0.0011
0.0175 0.0378  0.0203  0.0257  0.0001  0.0254  0.0259  0.0006  0.0254  0.0260  0.0006

Figure 4 shows the log-likelihood functions of y and u for all samples S[i] for i = 1,2, 3, which
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demonstrates that all offered frequentist estimates of y and u, respectively, existed and are unique. To
do any more calculations based on the industrial device data in the future, we recommend using these
numbers as starting points. In Table 13, using the staying 30,000 draws (from S[1] as an instance) of
Y, 4, R(t), and h(t), several properties including mean, mode, (1%, 21 and 3') quartiles denoted by
Q;, i = 1,2,3, standard deviation (SD) and skewness (Skew.) are reported. It supports the same facts
reported in Table 12. From S[1] (as an example), to evaluate the convergence status of the staying
30,0000 MCMC iterations, trace (with Gaussian kernel) and MCMC frequencies plots y, u, R(f), and
h(t) are shown in Figure 5. Other MCMC properties and plots based on S[2] and S[3] are reported in
the Supplementary File.
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Figure 4. The log-likelihoods of y and ¢ from blood data.
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Table 13. Properties of y, u, R(t), and A(t) using S[1] from blood data.

Par. MCMC-Pr[A]
MCMC-Pr([B]
Mean Mode 0O (0)3 [05) SD Skew.
y 0.5284 0.5327 0.5152 0.5283 0.5415 0.0193 0.0208
0.5285 0.5278 0.5219 0.5285 0.5353 0.0099 0.0191
U 17.401 17.405 17.387 17.401 17.414 0.0200 0.0069
17.400 17.384 17.394 17.400 17.407 0.0100 0.0125
R(10) 0.8560 0.8540 0.8499 0.8559 0.8619 0.0088 0.0682
0.8558 0.8557 0.8527 0.8558 0.8588 0.0045 0.0290
h(10) 0.0521 0.0523 0.0516 0.0521 0.0526 0.0008 -0.5693
0.0521 0.0522 0.0519 0.0521 0.0524 0.0004 -0.2933

data.

terations

(a) MCMC-Pr[A].
Figure 5. Density (left) and Trace (right) plots of y, u, R(¢), and h(¢) using S[1] from blood

nnnnn

Mterations

(b) MCMC-Pr[B].

The sample mean and HPD interval boundaries are displayed as solid and dotted lines in each panel,
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respectively. Figure 5 indicates that the MCMC procedure converges very well and that the generated
posterior estimates of y, u, and R(¢) are fairly symmetric, while those near to are being negatively
skewed.

5.2. Chemical data

This application analyzes a chemical dataset that represents 101 observations of the fatigue life
of 6061-T6 aluminum coupons cut parallel to the direction of rolling and oscillated at 18 cycles per
second (with a maximum stress per cycle of 31 000 psi); see Ng et al. [23]. Table 14 lists the new
converted fatigue lifetimes of the given aluminum coupons after dividing each time point by ten, for
1stance.

Table 14. Newly fatigued lifetimes of 6061-T6 aluminum coupons.

7.00 9.00 9.60 9.70 9.90 10.0 10.3 10.4 10.4 10.5 10.7 10.8 10.8
10.8 10.9 10.9 11.2 11.2 11.3 11.4 11.4 11.4 11.6 11.9 12.0 12.0
12.0 12.1 12.1 12.3 12.4 12.4 12.4 12.4 12.4 12.8 12.8 12.9 12.9
13.0 13.0 13.0 13.1 13.1 13.1 13.1 13.1 13.2 13.2 13.2 13.3 13.4
13.4 13.4 13.4 13.4 13.6 13.6 13.7 13.8 13.8 13.8 13.9 13.9 14.1
14.1 14.2 14.2 14.2 14.2 14.2 14.2 14.4 14.4 14.5 14.6 14.8 14.8
14.9 15.1 15.1 15.2 15.5 15.6 15.7 15.7 15.7 15.7 15.8 15.9 16.2
16.3 16.3 16.4 16.6 16.6 16.8 17.0 17.4 19.6 21.2

From Table 14, the MLEs (SEs) of ¥ and { are 0.1704 (0.0120) and 13.182 (0.2226), respectively,
as well as a K-S (P-value) becomes 0.0849 (0.459). Thus, the BS distribution is a reasonable model
for fitting aluminum data. Again, using the complete aluminum dataset, Figure 6(a) indicates that the
MLEs ¥ = 0.1704 and & = 13.182 existed and are unique; Figure 6(b)—(c) indicates that the fitted BS’s
density and reliability lines capture the most in the data histogram and the empirical reliability line,
respectively. This fact is also supported by Figure 7.

S
8 - — Bimbaum - Saunders 2 4
S

m
1318 1320 1322
08
I

Bimbaum-Saunders Density

13.16
Bimbaum-Saunders Reliability

13.14

T T 1 T T T
0.168  0.169 0170 0471 0472 0173 8 10 12 14 16 18 20 8 10 12 14 16 18 20

(a) Contour. (b) Density. (c) Reliability.

Figure 6. Fitting plots from aluminum dataset.
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Figure 7. The density lines (left), reliability lines (center), and PP (right) of BS and its
competitive models using aluminum data.

Again, based on the aluminum dataset, the BS distribution is compared to lognormal, Weibull, and
gamma distributions; see Table 15. It shows that the gamma distribution is the best choice, and the BS
distribution is the third-best choice among others.

Table 15. Summary fit of the BS, lognormal, Weibull, and gamma distributions using

aluminum data.

Model MLE(SE) K-S(P-value)
Y M

BS 0.1704(0.0120) 13.182(0.2227) 0.0850(0.459)

lognormal 2.5792(0.0169) 0.1695(0.0119) 0.0838(0.477)

Weibull 6.0649(0.4226) 14.317(0.2488) 0.0990(0.275)

Gamma 35.692(4.9993) 2.6689(0.3765) 0.0727(0.660)

Using the complete aluminum data, three AT2-PHC samples (with k = 31) are created; see Table 16.
Point and 95% interval estimates developed by maximum likelihood and Bayes’ approaches of v,
U, R(t), and h(t) (at t = 10) are obtained; see Table 17. It demonstrates that Bayes (point/interval)
estimates operate similarly to frequentist estimates. The profile log-likelihood functions in Figures 8
showed that the MLEs of y and u existed and are unique. Based on 40,000 MCMC iterations (when the
first 10,000 iterations are ignored as ‘burn-in’), the acquired Bayes point and 95% BCI/HPD interval
estimates are carried out using Pr[A] and Pr[B]. From Table 17, one can see that the Bayes point and
interval estimates of the various parameters based on Pr[B] perform better than other estimates in terms
of minimum SEs and interval widths.

AIMS Mathematics Volume 9, Issue 5, 11092-11121.



11116

Table 16. Three AT2-PHC samples from aluminum data.

Sample 7'(j) R R* Data

S[1]  9.95(4) (7°,0?!) 427.00, 9.60, 9.70, 9.90, 10.4, 10.4, 10.5, 10.7, 10.8, 11.2, 11.3, 11.4, 11.6, 11.9, 12.0, 12.1,
124,124,128, 129, 13.0, 13.1, 13.2, 13.2, 13.2, 13.3, 13.4, 13.4, 13.4, 13.4, 13.4

S[2]  12.5(17)(0',7'°,0')287.00, 9.00, 9.60, 9.70, 9.90, 10.0, 10.3, 10.4, 10.4, 10.5, 10.7, 10.8, 10.9, 11.3, 11.4, 11.9,
12.4,129,13.0, 13.4,13.4, 13.4, 13.6, 13.6, 13.7, 13.8, 13.8, 13.9, 14.1, 14.4, 14.4

S[3]  13.9(28)(0%,7!9) 147.00, 9.00, 9.60, 9.70, 9.90, 10.0, 10.3, 10.4, 10.4, 10.5, 10.7, 10.8, 10.8, 10.8, 10.9, 10.9,
11.2,11.2,11.3,11.4,11.4,11.4,11.9, 12.0, 12.1, 12.3, 12.9, 13.7, 13.8, 14.1, 14.6

Table 17. Estimates of y, u, R(t), and h(¢) from aluminum data.

Sample  Par. MLE ACI-NA MCMC-Pr[A] BCI HPD
ACI-NL MCMC-Pr[B] BCI HPD
Est. SE lower upper width Est. SE lower upper width lower upper width
S[1] y 0.2063  0.0278  0.1519 0.2606  0.1088  0.2038 0.0152  0.1755 0.2341  0.0586 0.1755 0.2341  0.0586
0.1584  0.2685 0.1100 0.2062  0.0091  0.1885 0.2244  0.0358 0.1883  0.2241  0.0357
u 14.149 04714 13225 15073 1.8477 14.149 0.0201 14.110 14.189 0.0791 14.109 14.188  0.0789

13255 15.104  1.8490 14.149 0.0100 14.130 14.169 0.0392  14.130  14.169  0.0391
R(10) 09546 0.0178 09197 09895 0.0698 09561 0.0116 0.9318 0.9766 0.0448 0.9329 09774  0.0445
0.9203 09902 0.0698 0.9545 0.0071  0.9400 0.9679 0.0278 0.9406  0.9683  0.0277
h(10)  0.0492 0.0126  0.0245 0.0739  0.0495 0.0476  0.0075 0.0327 0.0612  0.0285 0.0336  0.0619  0.0283
0.0298  0.0814 0.0516 0.0490 0.0044  0.0400 0.0573 0.0173 0.0403 0.0575 0.0172

S[2] b 0.2489  0.0338  0.1826  0.3152 0.1326  0.2477 0.0159  0.2175 0.2793  0.0618 0.2178  0.2795  0.0617
0.1907 03249  0.1342  0.2489  0.0093  0.2308 0.2673  0.0365 02310 0.2674  0.0364
u 14950 0.6137 13.747 16.153 24056 14950 0.0201 14910 14989 0.0791 14909 14988  0.0789

13794 16203 24082 14.950 0.0100 14931 14970 0.0392 14931 14970 0.0391
R(10) 09481 0.0181 09126 09835 0.0709 0.9487 0.0109 0.9264 0.9687 0.0423 0.9270 0.9691  0.0421
09132 09842 0.0709 0.9480 0.0064 0.9351 0.9603 0.0252 0.9357 0.9608  0.0251
h(10)  0.0460  0.0105 0.0254 0.0665 0.0411  0.0452  0.0054 0.0342 0.0551 0.0209 0.0349  0.0557  0.0208
0.0294  0.0719  0.0425 0.0458 0.0031  0.0394 0.0517 0.0123 0.0396 0.0519 0.0122

S[3] b 0.2620  0.0378  0.1879  0.3362  0.1483  0.2609 0.0164 02295 0.2935 0.0639  0.2289  0.2926  0.0637
0.1975 03478  0.1503  0.2620  0.0094  0.2436  0.2805 0.0369  0.2435 0.2804  0.0369
u 14.601  0.6420 13343 15859 2517 14.601  0.0201 14561  14.640 0.0791 14560 14.639  0.0790

13395 15915 25198  14.601  0.0100 14.581  14.621 0.0393 14582 14.621  0.0392
R(10) 09269 0.0223 0.8832 09706  0.0875 0.9277 0.0125 0.9026  0.9513  0.0487 0.9033 0.9518  0.0486
0.8842 09717 0.0875 0.9269 0.0072 0.9126  0.9409 0.0283 09128 0.9410  0.0282
h(10)  0.0582 0.0118  0.0350  0.0813  0.0463  0.0574  0.0050 0.0470  0.0661 0.0191  0.0477  0.0667  0.0190
0.0391  0.0866 0.0475 0.0580 0.0028 0.0522  0.0632 0.0109 0.0525 0.0634  0.0109
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Figure 8. The log-likelihoods of y and u from aluminum data.

Using the remaining 30,000 MCMC variates of y, u, R(t), and h(¢) for S[1] (as an example), their
trace and posterior histograms are shown in Figure 9. It indicates that the simulated MCMC draws
of y, u, R(t), or h(t) are mixed appropriately and behave fairly symmetrically. Again, using S[1], the
same properties reported in Table 13 are recomputed and provided in Table 18. All findings reported
in Table 18 support the same facts listed in Table 17. As supplementary materials, the same plots
(in Figure 9) and the same properties (in Table 18) of y, u, R(¢), and h(t) based on S[2] and S[3] are
presented.

Finally, the findings of the study based on two real-world datasets from the clinical or chemical
fields revealed that the suggested BS model is useful in highlighting the relevance of the supplied
estimating approaches to real-world occurrences. In a similar way, one can easily perform our
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computational design for any other dataset from other sectors, such as physics, environment, business

and fishery.

Densi
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Figure 9. Density (left) and Trace (right) plots of y, u, R(f), and h(¢) using S[1] from
aluminum data.
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Table 18. Properties of y, u, R(¢), and h(t) using S[1] from aluminum data.

Par. MCMC-Pr[A]
MCMC-Pr[B]
Mean Mode O 0> 03 SD Skew.
y 0.2038 0.1930 0.1935 0.2033 0.2139 0.0150 0.1452
0.2062 0.2131 0.2000 0.2061 0.2124 0.0091 0.0406
u 14.149 14.110 14.135 14.149 14.163 0.0201 0.0207
14.149 14.136 14.143 14.149 14.156 0.0100 0.0156
R(10) 0.9561 0.9617 0.9486 0.9569 0.9643 0.0115 -0.3400
0.9545 0.9487 0.9498 0.9547 0.9594 0.0071 -0.1534
h(10) 0.0476 0.0436 0.0427 0.0478 0.0528 0.0073 -0.1625
0.0490 0.0528 0.0461 0.0492 0.0521 0.0044 -0.1625
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6. Concluding remarks

We checked the estimations of the BS distribution, including its unknown parameters, RF, and HRF,
in the context of adaptive progressively Type-II hybrid censored data. To obtain the MLEs, numerical
techniques must be used to solve the normal equations. Two approximate confidence intervals are
considered using the asymptotic properties of MLEs. The delta approach is used to approximate the
variances of the estimators of the RF and HRF. The MCMC approach has been applied to determine the
Bayes estimates for the BS distribution based on the squared error loss function. In addition, the Bayes
and highest posterior density credible intervals are considered. We undertake a simulation analysis
that takes into account different sample sizes and censoring schemes to evaluate both point estimation
approaches and four interval estimations. A lot of conclusions can be drawn from the simulation
study’s findings, which support the superiority of Bayes estimates over conventional estimates. At last,
two real-world datasets were explored to highlight how various suggested approaches could potentially
be used in daily life. As a future work, using the proposed censored sample, one can easily expand the
proposed maximum likelihood calculations by performing the expectation-maximization algorithm of
the BS distribution.
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