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1. Introduction

Birnbaum and Saunders [1] proposed a two-parameter fatigue life distribution for simulating the
fatigue life of metals subjected to periodic stress. They also established a natural physical rationale
for the Birnbaum-Saunders (BS) model through fatigue failure produced by cyclic stress. It is also one
of these distributions that was created by performing a monotone transformation on a typical normal
random variable. Despite the Weibull model being the most commonly used failure time distribution,
the BS population has lately attracted a lot of interest, owing to the varied forms of its density and
the non-monotonicity of the nature of its failure rates. Since the work of Birnbaum and Saunders [1],
extensive work has been done on this model, providing different interpretations, generalizations and
inferential methods. See, for example, Ng et al. [2], Lemonte et al. [3], Pradhan and Kundu [4] and
Xiuyun et al. [5]. Recently, Balakrishnan and Kundu [6] reviewed the same model in the context
of various inferential approaches. Suppose Y is a random variable that follows the BS distribution,
symbolized by Y ∼ BS(Σ), where Σ = (γ, µ)⊤. Define the following quantities:

w(y; µ) =
√

y
µ
−

√
µ

y
and ẃ(y; µ) =

1
2µ


√
µ

y
+

√(
µ

y

)3
 . (1.1)

The probability density function (PDF) (say, f (·)) and cumulative distribution function (CDF) (say,
F(·)) of the BS distribution can be given, respectively, as follows:

f (y;Σ) =
ẃ(y; µ)

γ
√

2π
exp

[
−

w2(y; µ)
2γ2

]
, y > 0, (1.2)

and

F(y;Σ) = Φ
[
w(y; µ)
γ

]
, y > 0, (1.3)

where Φ(·) is the CDF of the standard normal distribution, γ > 0 is the shape parameter, and µ > 0
is the scale parameter. From (1.2) and (1.3), the BS distribution’s reliability function (RF) and hazard
rate function (HRF) (at a mission time t > 0), symbolized by R(·) and h(·), are given, respectively, by

R(y;Σ) = Φ
[
−

w(y; µ)
γ

]
, y > 0, (1.4)

and

h(y;Σ) =
ẃ(y; µ) exp

[
−

w2(y;µ)
2γ2

]
γ
√

2πΦ
[
−

w(y;µ)
γ

] , y > 0. (1.5)

Figure 1 depicts the density and failure rate shapes of the BS distribution. It exhibits that the BS
density is always unimodal for all values of γ and µ. It also indicates that the shape of the HRF of the
BS is an upside-down shape for all values of γ, as proved by Kundu et al. [7].
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Figure 1. Density (left) and HRF (right) shapes of the BS model.

Experimenters frequently gather Type-II progressively censored (T2-PC) data in life-testing and
reliability studies to decrease testing time and expenses. Balakrishnan and Aggarwala [8] presented
the definition, mathematical features, and applications of the T2-PC sample. Kundu and Joarder [9]
proposed a more broad censorship technique known as progressive Type-I hybrid censoring scheme.
The problem with this technique is that the usable sample size is random and may turn out to be very
few or zero for dependable goods. The statistical inference methods will be inefficient as a result. To
deal with this shortcoming, Ng et al. [10] offered an adaptive Type-II progressive hybrid censoring
(AT2-PHC) technique to improve statistical investigation efficiency. Let k, T , and R1,R2, . . . ,Rk refer
to the set amount of failures, the ideal duration on the test, and the progressive censoring plan,
respectively, which are specified before beginning the examination, with the realization that the values
for a particular of the Ri can vary as needed throughout the experiment. The AT2-PHC scheme can be
distilled in the following manner: Consider that n components are subjected to a life test with k < n
then, at the time of ith failure, denoted by Yi:k:n, Ri of the remaining components are randomly removed
from the test. Following this approach, we have two distinct possibilities. The first is the standard
T2-PC scheme, which occurs when the time of the kth failure, indicated by Yk:k:n, comes before time
T , i.e., Yk:k:n < T . The other scenario occurs when Y j:k:n < T < Y j+1:k:n, where ( j + 1 < k) and Y j:k:n

is the jth failure time. In this case, we are not going to eliminate any living objects from the test by
including R j+1 = R j+2 = · · · = Rk−1 = 0 and R∗ = n− k −

∑ j
i=1 Ri. This schematic makes certain that we

finalize the test when we meet the required amount of failures k, and that the overall test duration does
not deviate significantly from T . Let y1:k:n < · · · < y j:k:n < T < y j+1:k:n < · · · < yk:k:n be an AT2-PHC
sample from a continuous population with PDF f (y) and CDF F(y), with a progressive censoring plan
R = (R1, . . . ,R j, 0, . . . , 0,R∗), then, without the constant term, the likelihood function of the observed
data can be presented as
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L(Σ) =
k∏

i=1

f (yi:k:n)
j∏

i=1

[1 − F(yi:k:n)]Ri [1 − F(yk:k:n)]R∗ . (1.6)

Many studies considered the AT2-PHC scheme; see, for example, Nassar and Abo-Kasem [11],
Alotaibi et al. [12], Ahmad et al. [13], Dutta et al. [14], and Elshahhat and Nassar [15], among others.

According to Balakrishnan and Kundu [6], around 200 studies explored various aspects of the BS
distribution. Scarce work has been done to estimate the parameters or reliability indices of this model
utilizing newly proposed censoring strategies. This may be justified due to the intricate structure of the
new censoring techniques as well as the intractable formulas of the BS distribution’s PDF and CDF.
Therefore, we are motivated in this study to study the estimation problems of the BS distribution using
the AT2-PHC scheme. This scheme is chosen because of its flexibility in ending the experiment and its
ability to generalize some censoring schemes like Type-II censoring and T2-PC schemes. Moreover,
the available studies consider only the estimation of the model parameters without saying anything
about the estimation of the reliability indices. In order to get point and interval estimates of the
shape, scale, RF, and HRF of the BS distribution, we explored two estimating approaches: maximum
likelihood and Bayesian methods. First, the maximum likelihood estimates (MLEs) are obtained,
followed by two approximate confidence intervals (ACIs) acquired using the normal approximation
and log-transformed MLEs. For acquiring Bayesian point estimates, we address the usage of the
squared error loss function and the implementation of the Markov chain Monte Carlo (MCMC) process.
The Bayes credible intervals (BCIs) and highest posterior density (HPD) credible intervals are also
computed. Following that, we undertake a simulation study to compare the various estimates using
some statistical criteria to determine which method offers superior estimates. Two applications are
addressed from a practical standpoint to demonstrate the usefulness of the proposed methodologies.

The remaining sections of the paper are formatted as follows: Section 2 discusses the MLEs and
ACIs. The Bayesian estimation of the BS distribution is presented in Section 3. The discoveries of
the simulation investigation are presented in Section 4. In Section 5, we present two applications to
real-world data. Finally, some final thoughts are presented in Section 6.

2. Classical estimation

In this section, we will delve into the estimation of the BS distribution through the AT2-PHC scheme
using the maximum likelihood approach. Employing this approach, we aim to derive both point and
interval estimates of the unknown parameters as well as reliability indices. Suppose we have an AT2-
PHC sample y, drawn from a population that acts as the BS distribution, with progressive censoring
design R. Upon omitting the constant term, the likelihood function can then be stated by combining
(1.2), (1.3), and (1.6) as follows:

L(Σ) =
1
γk exp

{
−

1
2γ2

∑k

i=1
w2(yi; µ) +

∑k

i=1
log[ẃ(yi; µ)]

} j∏
i=1

{
Φ

[
−

w(yi; µ)
γ

]}Ri

×

{
Φ

[
−

w(ym; µ)
γ

]}R∗

, (2.1)
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where w(yi; µ) and ẃ(yi; µ) are as defined in (1.1). It is possible to express the log-likelihood function
of (2.1) as

ℓ(Σ) = −k log(γ) −
1

2γ2

∑k

i=1
w2(yi; µ) +

∑k

i=1
log[ẃ(yi; µ)] +

∑ j

i=1
Ri log

{
Φ

[
−

w(yi; µ)
γ

]}
+ R∗ log

{
Φ

[
−

w(ym; µ)
γ

]}
. (2.2)

By differentiating the log-likelihood function in (1.2) with respect to parameters γ and µ and
equating them to zero and one, we can get the MLEs of the parameters. The normal equations in
this case are given by

∂ℓ(Σ)
∂γ

= −
k
γ
+

1
γ3

k∑
i=1

w2(yi; µ) +
1
γ2

j∑
i=1

Riw(yi; µ)H[w(yi; µ)/γ]

+
1
γ2 R∗w(ym; µ)H[w(ym; µ)/γ] = 0, (2.3)

and

∂ℓ(Σ)
∂µ

= −
1

2γ2

k∑
i=1

v(yi; µ) +
k∑

i=1

u(yi; µ) +
1
γ

j∑
i=1

Riψ(yi; µ)H[w(ym; µ)/γ]

+
R∗

γ
ψ(ym; µ)H[w(ym; µ)/γ] = 0, (2.4)

where H[y] = ϕ(y)/Φ(−y) and ϕ(.) is the PDF of the standard normal distribution,

v(yi; µ) =
1
yi

1 − (
yi

µ

)2 , u(yi; µ) =

√
(µ/yi)3 −

√
µ/yi

4µ2ẃ(yi; µ)
, and

ψ(y; µ) =
1

2µ

[√
µ

yi
+

√
yi

µ

]
.

The simultaneous solution of (2.3) and (2.4) is the MLEs of γ and µ, denoted by γ̂ and µ̂,
respectively. To find the required MLEs, one must employ a numerical method because (2.3) and (2.4)
are nonlinear equations. After obtaining the MLEs γ̂ and µ̂, we can employ the invariance property of
the MLEs to acquire the MLEs of the RF and HRF of the BS distribution as

R̂(y; Σ̂) = Φ
[
−

w(y; µ̂)
γ̂

]
,

and

ĥ(y; Σ̂) =
ẃ(y; µ̂) exp

[
−

w2(y;µ̂)
2γ̂2

]
γ̂
√

2πΦ
[
−

w(y;µ̂)
γ̂

] ,

where Σ̂ = (γ̂, µ̂)⊤.
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Along with obtaining the point estimates of the different parameters, it would be useful to get
the interval estimates of these parameters. It is established that the MLEs’ asymptotic distribution
approaches normality, such that(

γ̂

µ̂

)
≈ N

[(
γ

µ

)
,

(
var(γ) cov(γ, µ)

cov(γ, µ) var(µ)

)]
.

Here, we use the observed Fisher information matrix to estimate the variance-covariance matrix as
follows:

V̂(Σ̂) =

 −∂2ℓ(Σ)
∂γ2 −

∂2ℓ(Σ)
∂γ∂µ

−
∂2ℓ(Σ)
∂µ∂γ

−
∂2ℓ(Σ)
∂µ2

−1

(γ,µ)=(γ̂,µ̂)

=

(
v̂ar(γ̂) ĉov(γ̂, µ̂)

ĉov(µ̂, γ̂) v̂ar(µ̂)

)
, (2.5)

with the following elements

∂2ℓ(Σ)
∂γ2 =

k
γ2 +

3
γ4

k∑
i=1

w2(yi; µ) +
1
γ2

j∑
i=1

Riw(yi; µ)H⋆[w(yi; µ)/γ]

−
R∗

γ2 w(ym; µ)H⋆[w(ym; µ)/γ],

∂2ℓ(Σ)
∂µ2 = −

1
2γ2

k∑
i=1

v́(yi; µ) +
k∑

i=1

ú(yi; µ) +
1
γ

j∑
i=1

RiH∗[w(ym; µ)/γ]

+
R∗

γ
H∗[w(ym; µ)/γ],

and

∂2ℓ(Σ)
∂γ∂µ

=
1
γ3

k∑
i=1

v(yi; µ) +
1
γ

j∑
i=1

Riψ(yi; µ)H◦[w(ym; µ)/γ]

+
R∗

γ
ψ(ym; µ)H◦[w(ym; µ)/γ] = 0,

where wi ≡ w(yi; µ),

H⋆[wi/γ] =
wiH́[wi/γ]

γ4 −
2H[wi/γ]

γ3 ,

v́(yi; µ) =
2yi

µ3 , ú(yi; µ) =
2µyi + y2

i − µ
2

2µ2(µ + yi)2 ,

H∗[wi/γ] = H[wi/γ]
{
ψ(yi; µ)

[
ψ́(yi; µ) −

v(yi; µ)
2γ2 −

ψ(yi; µ)H[wi/γ]
γ

]}
,
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H́[y] = yH(y) − H2(y), ψ́(yi; µ) = − 1
4µ2

(√
µ

yi
+ 3

√
yi
µ

)
, and H◦[wi/γ] = wiH́[wi/γ]

γ3 −
2H[wi/γ]

γ2 .

Thus, the ACIs of γ and µ can be computed, respectively, as γ̂± zα/2Ŝ E(γ̂) and µ̂± zα/2Ŝ E(µ̂), where
zα/2 is the percentile 100(1 − α/2)% of the standard normal distribution and Ŝ E(.) is the standard error
of estimate obtained by taking the square root of the estimated variance acquired from (2.5). Building
the ACIs for RF and HR is a further important topic. The present issue is to find the variances of R̂(t)
and ĥ(t) given the variances of γ̂ and µ̂. To address this issue, a particular approach is the delta method,
which can be applied to approximate the required variances.

Assume that D̂1 = (Rγ,Rµ) and D̂2 = (hγ, hµ) are two vectors that are obtained at the MLEs γ̂ and µ̂
and comprise the first partial derivatives of RF and HRF for γ and µ, respectively, with the following
elements

Rγ =
w(y; µ)
γ2 ϕ[w(y; µ)/γ], Rµ =

ψ(y; µ)
γ

ϕ[w(y; µ)/γ].

hγ =
w(y; µ)
γ2 H́[w(y; µ)/γ] and hµ = −

H[w(y; µ)/γ]
γ

{
v(y; µ)

2γ
+ ψ(y; µ)H[w(y; µ)/γ]

}
.

The approximate estimated variances of R̂(.) and ĥ(.) can be obtained as

v̂ar(R̂) = (D̂1V̂D̂⊤1 ) and v̂ar(ĥ) = (D̂2V̂D̂⊤2 ).

As a result, one can get the ACIs of RF and HRF as

R̂ ± zα/2Ŝ E(R̂) and ĥ ± zα/2Ŝ E(ĥ),

with Ŝ E(R̂) =
√

v̂ar(R̂) and Ŝ E(ĥ) =
√

v̂ar(ĥ). It is noteworthy to note at the end of this section
that negative lower bounds may result from obtaining the ACIs using the normal approximation (ACI-
NA) of the individual parameters. In such cases, one can use the normal approximation of the log-
transformed (NL) MLE technique to circumvent this issue. For any parameter, say κ, the ACI using
NL (ACI-NL) can be obtained as follows:

κ̂ × exp
±zα/2

Ŝ E(κ̂)
κ̂

 .
3. Bayesian estimation

We have covered point and interval parameter estimation using the frequentist approach in the
last section. This section examines the Bayesian methodology under the squared error loss function.
Achcar [16] started by thinking about the Bayesian inference of a BS distribution’s parameters. He
took into account Jeffreys prior to γ and µ to create the Bayesian inference using the complete sample.
Xu and Tang [17] have taken into account the non-informative prior for the Bayesian inference of
the parameters and have employed the Lindley approximation to get Bayes estimates of the unknown
parameters of the BS distribution using the entire sample data. Because of the intricate formulations
of the Fisher information matrix, it is difficult to establish the Jeffreys prior for the BS distribution in
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the case of AT2-PHC data. Therefore, we consider the same Jeffreys prior to γ and µ as suggested by
Achcar [16] as follows:

π(Σ) ∝
ζ(γ2)
γµ

, γ, µ > 0, (3.1)

where ζ(γ2) =
(

1
γ2 +

1
4

)0.5
. It is to be noted that when ζ(γ2) = 1, the Jeffreys prior is reduced to the

non-informative prior case. Combining the likelihood function in (2.1) with (3.1), one can write the
joint posterior distribution over proportionality as

g(Σ|y) ∝
ζ(γ2)
µγk+1 exp

− 1
2γ2

k∑
i=1

w2(yi; µ) +
k∑

i=1

log[ẃ(yi; µ)]

 j∏
i=1

{
Φ

[
−

w(yi; µ)
γ

]}Ri

×

{
Φ

[
−

w(ym; µ)
γ

]}R∗

, (3.2)

where y is the observed data. Let ϖ(Σ) be any function of the parameters to be estimated, then under
the squared error loss function, the Bayes estimate, denoted by ϖ̃(Σ), is the posterior mean acquired
as follows:

ϖ̃(Σ) =
∫ ∞

0

∫ ∞

0
ϖ(Σ)g(Σ|y)dγdµ. (3.3)

The integral provided in (3.3) lacks an explicit expression. To overcome this challenge, we consider
the use of the MCMC technique to create the Bayes point, BCI, and HPD estimates. The MCMC
approach is used to get samples from (3.2) in order to obtain the necessary estimations. The posterior
distribution is sampled using the MCMC technique, and the Bayes estimates, BCIs, and HPD intervals
are then obtained using these samples. We must first obtain the full conditional distributions of the
unknown parameters γ and µ in order to employ the MCMC approach. The necessary full conditional
distributions of γ and µ can be obtained, respectively, from (3.2), as

gγ(γ|µ, y) ∝
ζ(γ2)
γk+1 exp

− 1
2γ2

k∑
i=1

w2(yi; µ)

 j∏
i=1

{
Φ

[
−

w(yi; µ)
γ

]}Ri

×

{
Φ

[
−

w(ym; µ)
γ

]}R∗

, (3.4)

and

gµ(µ|γ, y) ∝
1
µ

exp

− 1
2γ2

k∑
i=1

w2(yi; µ) +
k∑

i=1

log[ẃ(yi; µ)]

 j∏
i=1

{
Φ

[
−

w(yi; µ)
γ

]}Ri

×

{
Φ

[
−

w(ym; µ)
γ

]}R∗

. (3.5)

Due to the complexity of the conditional distributions in (3.4) and (3.5), which cannot be reduced
to any well-known distributions, we employ the Metropolis-Hastings (M-H) algorithm. For sampling
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from complicated probability distributions, particularly in Bayesian estimation, the M-H algorithm
is a popular MCMC technique. It is essential to Bayesian statistics because it helps approximate
the posterior distribution by combining observed data and past knowledge; for more detail about the
MCMC technique, see Contreras-Reyes et al. [18]. To acquire the Bayes estimates, BCIs, and HPD
intervals of γ and µ, as well as the life parameters, the following processes must be followed with a
normal proposal distribution (NPD) in order to obtain the necessary samples as:

Step 1. Set l = 1 and start with initial values
(
γ(0), µ(0)

)
= (γ̂, µ̂).

Step 2. Simulate γ(l) from gγ(γ|µ, y) using NPD and follow the M-H steps.

Step 3. Generate µ(l) from gµ(µ|γ, y) using NPD and follow the M-H steps.

Step 4. Use (γ(l), µ(l)) to compute R(k) and h(k), respectively.

Step 5. Put l = l + 1.

Step 6. Repeat the process M times to generate a sequence of[
γ(l), µ(l),R(l), h(l)

]
, l = 1, . . . ,M.

After discarding the first Ḿ acquired samples as a burn-in period, the Bayes estimate of any
parameter, say η, can be computed as

η̃ =
1

M − Ḿ

∑M

l=Ḿ+1
η(l).

In order to compute the BCI and HPD interval for η, sort the acquired sample of η(l), l = Ḿ+1, . . . ,M
as η(Ḿ+1), . . . , ηM. Therefore, the 100(1 − α)% BCI of η can be obtained as[

η(α(M−Ḿ)/2), η((1−α/2)(M−Ḿ))
]
.

Moreover, the 100(1 − α)% HPD interval of η is given by[
η(l∗), η(l∗+(1−α)(M−Ḿ)/2))] ,

where l∗ = Ḿ + 1, . . . ,M is determined such that

η(l∗+[(1−α)(M−Ḿ)]) − η(l∗) = min
1⩽l⩽α(M−Ḿ)

{
η(l+[(1−α)(M−Ḿ)]) − η(l)

}
,

where [ς] refers to the largest integer less than or equal to ς.

4. Monte Carlo comparisons

Monte Carlo simulations are performed in this part to test the performance of the proposed
estimators of γ, µ, R(t), and h(t) developed in this study. From BS(γ, µ) = (0.5, 1.5), based on various
options of n (total experimental units), k (effective sample size), and T (threshold time), we simulate
1,000 AT2-PHC samples. At t = 0.1, the plausible values of R(t) and h(t) are 0.98954 and 0.12939,
respectively. When T (= 1, 2) and n(40, 80), the number of failed subjects k is specified as a failure
percentage k

n × 100% = 50% and 75%. Briefly, the next procedure reports the generation steps of the
AT2-PHC strategy:
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Step 1: Simulate a T2-PC sample as:

(a) Create ϑ independent observations of size k as ϑ1, ϑ2, . . . , ϑk.

(b) Set ϱi = ϑ
(i+

∑k
d=k−i+1 Rd)−1

i , i = 1, 2, . . . , k.
(c) Set ui = 1 − ϱkϱk−1 · · · ϱk−i+1 for i = 1, 2, . . . , k.
(d) Set Yi = F−1(ui; γ, µ), i = 1, 2, . . . , k, as the acquired T2-PC sample from BS(γ, µ).

Step 2: Find j (at Y j < T < Y j+1) and remove the staying items Y j+2, . . . ,Yk.

Step 3: From f (y; γ, µ)
[
1 − F

(
y j+1; γ, µ

)]−1
, obtain the first k − j − 1 order statistics with sample size

n − j −
∑ j

d=1 Rd − 1 as Y j+2, . . . ,Yk.

Once 1,000 AT2-PHC samples are acquired, using R programming software version 4.2.2, we
utilize the following recommended packages:

• A ‘maxLik’ package with ‘maxNR’ function (by Henningsen and Toomet [19]) to implement the
Newton-Raphson method in turn to evaluate the MLEs and ACIs of γ, µ, R(t), and h(t).
• A ‘coda’ package with ‘run metropolis MCMC’ function (by Plummer et al. [20]) in turn to

calculate the Bayes’ and credible estimates.

Following Achcar [16], we have evaluated the Bayes estimators based on both Jeffreys and non-
informative priors, denoted by Pr[A] and Pr[B], respectively. Using the M-H algorithm, for γ, µ, R(t),
or h(t), we ignore the first 2,000 of the 12,000 simulated Markovian variates as burn-in.

To examine the performance of the removal design R, we consider the following censoring schemes
(CSs):

CS-1 : R1 = n − k, Ri = 0 for i , 1;

CS-2 : R k
2
= n − k, Ri = 0 for i ,

k
2

;

CS-3 : Rk = n − k, Ri = 0 for i , k.

Practically, the average estimates (Av.Es) γ, µ, R(t), or h(t) (say ϕ) derived from the maximum
likelihood (or MCMC) approach are computed by

Av.E
(
ϕ̌
)
=

1
1000

∑1000

i=1
ϕ̌(i)
ξ , ξ = 1, 2, 3, 4,

where ϕ̌(i) is an estimate of ϕ at ith sample, ϕ1 = γ, ϕ2 = µ, ϕ3 = R(t), and ϕ4 = h(t).
The performance of the point estimations of ϕ is evaluated based on the following two metrics:

i) Root mean squared-error (RMSE):

RMSE(ϕ̌ξ) =

√
1

1000

∑1000

i=1

(
ϕ̌(i) − ϕ

)2
, ξ = 1, 2, 3, 4.

ii) Average relative absolute bias (ARAB):

ARAB(ϕ̌ξ) =
1

1000

∑1000

i=1

1
ϕξ

∣∣∣∣ϕ̌(i)
ξ − ϕξ

∣∣∣∣, ξ = 1, 2, 3, 4.

AIMS Mathematics Volume 9, Issue 5, 11092–11121.



11102

The performance of the 100(1 − q)% interval estimations of ϕ is evaluated based on the following
two metrics:

i) Average confidence length (ACL):

ACL(1−q)%(ϕ) =
1

1000

∑1000

i=1

(
Uϕ̌(i)

ξ
− Lϕ̌(i)

ξ

)
, ξ = 1, 2, 3, 4.

ii) Coverage percentage (CP):

CP(1−q)%(ϕ) =
1

1000

∑1000

i=1
IL

ϕ̌
(i)
ξ

;U
ϕ̌

(i)
ξ

 (ϕ), ξ = 1, 2, 3, 4,

respectively, where I(·) is the indicator operator and (L(·),U(·)) refers to the (lower-bound, upper-
bound) of an interval estimate.

In Tables 1–8, the simulated RMSE, ARAB, ACL, and CP values of γ, µ, R(t), and h(t) are
displayed. From Tables 1–8, in regard to the smallest RMSE, ARAB, and ACL values as well as
the highest CP values, we report the following comments:

• All offered estimations for the parameters and/or reliability characteristics of the BS model
behaved well.
• As n(or k/n) grows, the accuracy of all estimates becomes satisfactory. The same note is also

reached when the sum of removal items (
∑k

i=1 Ri) decreases.
• As Ti, i = 1, 2 increase, all simulated results of γ, µ, R(t), and h(t) decrease. Also, when Ti, i =

1, 2 increase, the simulated CPs grow and close to the prespecified nominal level. It is to be noted
that when T increases, no additional failures are observed because the number of observed failures
k is predetermined. The little improvement observed in the various criteria, like the reduction in
RMSEs and ACLs when T increases, may be due to random error.
• All Bayes point estimates as well as the associated interval estimates behave better than those

acquired from the likelihood approach.
• Due to the non-informative knowledge on the BS model parameters, the point and interval

estimations of γ, µ, R(t), or h(t) developed by Pr[A] and Pr[B] are close to each other. In general,
the Bayes estimates using Pr[B] perform better than those using Pr[A] in terms of minimum
RMSEs, ARABs, and ACLs.
• Comparing the interval estimation methods of γ, µ, R(t), or h(t), it is clear that:

– The BCI and HPD interval estimates of γ, µ, R(t), or h(t) are quite similar to each other.
– The ACI-NL estimates of γ and R(t) are superior to those acquired from ACI-NA estimates.
– The ACI-NA estimates of µ and h(t) are superior to those acquired from ACI-NL estimates.
– The interval estimates of γ, µ, R(t), or h(t) offered using both BCI and HPD approaches are

better than those acquired from ACI-NA or ACI-NL methods.

• Comparing the proposed CSs 1, 2, and 3, it is clear that:

– The collected estimates of γ and R(t) perform better via CS-3 ‘right-censoring’ than others.
– The collected estimates of µ and h(t) perform better via CS-1 ‘left-censoring’ than others.

• In conclusion, the Bayes’ using the M-H framework is recommended for estimating the model
parameters or the reliability features of the BS lifespan model.
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Table 1. The Av.Es (1st column), RMSEs (2nd column), and ARABs (3rd column) of γ.

T n[FP%] Scheme MLE MCMC-Pr[A] MCMC-Pr[B]

1 40[50%] 1 0.497 0.471 0.659 0.411 0.466 0.620 0.515 0.444 0.615
2 0.477 0.435 0.623 0.421 0.423 0.587 0.517 0.414 0.549
3 0.487 0.414 0.603 0.431 0.404 0.550 0.523 0.387 0.535

40[75%] 1 0.497 0.331 0.593 0.422 0.311 0.518 0.518 0.302 0.485
2 0.495 0.313 0.539 0.516 0.301 0.496 0.507 0.283 0.474
3 0.480 0.289 0.487 0.526 0.289 0.458 0.617 0.255 0.438

80[50%] 1 0.498 0.179 0.328 0.525 0.165 0.301 0.502 0.154 0.287
2 0.497 0.169 0.306 0.534 0.153 0.287 0.461 0.143 0.273
3 0.504 0.162 0.288 0.545 0.131 0.265 0.486 0.127 0.257

80[75%] 1 0.495 0.126 0.250 0.454 0.113 0.216 0.487 0.109 0.190
2 0.498 0.116 0.228 0.452 0.105 0.198 0.489 0.101 0.188
3 0.456 0.105 0.207 0.457 0.099 0.175 0.472 0.093 0.168

2 40[50%] 1 0.501 0.443 0.625 0.427 0.426 0.582 0.522 0.411 0.558
2 0.510 0.409 0.599 0.434 0.396 0.552 0.529 0.385 0.521
3 0.581 0.386 0.564 0.431 0.378 0.518 0.523 0.366 0.507

40[75%] 1 0.501 0.317 0.542 0.403 0.303 0.486 0.506 0.295 0.448
2 0.518 0.291 0.477 0.427 0.282 0.456 0.515 0.269 0.426
3 0.548 0.270 0.436 0.446 0.258 0.414 0.536 0.230 0.395

80[50%] 1 0.503 0.171 0.320 0.509 0.153 0.279 0.486 0.146 0.262
2 0.520 0.166 0.300 0.517 0.142 0.259 0.516 0.132 0.243
3 0.528 0.149 0.277 0.514 0.122 0.247 0.529 0.114 0.232

80[75%] 1 0.497 0.115 0.231 0.494 0.109 0.192 0.516 0.101 0.188
2 0.550 0.105 0.212 0.473 0.099 0.174 0.528 0.091 0.179
3 0.582 0.099 0.197 0.528 0.090 0.162 0.546 0.086 0.154
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Table 2. The Av.Es (1st column), RMSEs (2nd column), and ARABs (3rd column) of µ.

T n[FP%] Scheme MLE MCMC-Pr[A] MCMC-Pr[B]

1 40[50%] 1 1.520 0.617 0.489 1.599 0.559 0.452 1.670 0.532 0.422
2 1.526 0.644 0.520 1.519 0.576 0.468 1.567 0.542 0.435
3 1.520 0.692 0.534 1.537 0.627 0.484 1.571 0.587 0.452

40[75%] 1 1.766 0.543 0.456 1.579 0.478 0.401 1.582 0.436 0.367
2 1.575 0.586 0.478 1.569 0.517 0.417 1.672 0.492 0.391
3 1.514 0.609 0.508 1.502 0.539 0.430 1.598 0.507 0.414

80[50%] 1 1.599 0.454 0.354 1.720 0.429 0.341 1.728 0.382 0.340
2 1.529 0.483 0.385 1.522 0.454 0.365 1.574 0.419 0.354
3 1.510 0.503 0.411 1.510 0.464 0.386 1.554 0.425 0.360

80[75%] 1 1.685 0.385 0.264 1.576 0.349 0.255 1.634 0.336 0.251
2 1.514 0.408 0.298 1.455 0.378 0.286 1.491 0.367 0.277
3 1.510 0.428 0.328 1.451 0.402 0.308 1.485 0.376 0.293

2 40[50%] 1 1.614 0.558 0.483 1.599 0.529 0.417 1.627 0.505 0.388
2 1.561 0.620 0.503 1.533 0.547 0.438 1.598 0.517 0.408
3 1.522 0.653 0.515 1.540 0.597 0.468 1.572 0.531 0.428

40[75%] 1 1.677 0.492 0.415 1.573 0.442 0.326 1.649 0.421 0.316
2 1.568 0.542 0.446 1.485 0.483 0.357 1.577 0.453 0.332
3 1.518 0.601 0.474 1.493 0.514 0.389 1.597 0.486 0.377

80[50%] 1 1.636 0.420 0.313 1.641 0.358 0.270 1.677 0.344 0.257
2 1.545 0.437 0.345 1.487 0.377 0.292 1.565 0.361 0.284
3 1.516 0.466 0.387 1.498 0.420 0.310 1.540 0.398 0.291

80[75%] 1 1.680 0.329 0.259 1.592 0.294 0.201 1.497 0.282 0.193
2 1.599 0.367 0.283 1.493 0.320 0.227 1.546 0.314 0.210
3 1.512 0.398 0.292 1.475 0.348 0.246 1.509 0.339 0.222
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Table 3. The Av.Es (1st column), RMSEs (2nd column), and ARABs (3rd column) of R(t).

T n[FP%] Scheme MLE MCMC-Pr[A] MCMC-Pr[B]

1 40[50%] 1 0.987 0.826 0.752 0.996 0.782 0.689 0.985 0.739 0.636
2 0.988 0.779 0.715 0.995 0.723 0.652 0.983 0.712 0.613
3 0.982 0.728 0.685 0.986 0.699 0.625 0.992 0.709 0.594

40[75%] 1 0.988 0.697 0.626 0.996 0.621 0.592 0.991 0.609 0.568
2 0.974 0.653 0.595 0.978 0.594 0.568 0.987 0.585 0.528
3 0.967 0.613 0.573 0.984 0.541 0.546 0.982 0.522 0.517

80[50%] 1 0.988 0.580 0.559 0.985 0.531 0.525 0.976 0.522 0.481
2 0.989 0.533 0.525 0.978 0.513 0.491 0.972 0.496 0.469
3 0.980 0.493 0.483 0.959 0.487 0.472 0.981 0.465 0.435

80[75%] 1 0.989 0.448 0.428 0.993 0.415 0.387 0.989 0.408 0.365
2 0.979 0.414 0.405 0.989 0.387 0.366 0.985 0.365 0.343
3 0.976 0.382 0.389 0.976 0.361 0.348 0.978 0.344 0.328

2 40[50%] 1 0.986 0.788 0.716 0.992 0.726 0.637 0.989 0.709 0.611
2 0.987 0.749 0.688 0.995 0.687 0.605 0.985 0.683 0.588
3 0.992 0.684 0.660 0.996 0.647 0.584 0.992 0.680 0.569

40[75%] 1 0.987 0.658 0.602 0.995 0.610 0.577 0.992 0.585 0.545
2 0.984 0.629 0.572 0.997 0.572 0.537 0.990 0.549 0.506
3 0.988 0.600 0.551 0.995 0.522 0.525 0.989 0.509 0.496

80[50%] 1 0.986 0.546 0.537 0.987 0.512 0.498 0.983 0.500 0.461
2 0.988 0.524 0.505 0.983 0.494 0.475 0.979 0.476 0.449
3 0.992 0.472 0.465 0.992 0.467 0.449 0.986 0.446 0.424

80[75%] 1 0.989 0.427 0.412 0.989 0.398 0.359 0.985 0.392 0.345
2 0.987 0.395 0.389 0.991 0.371 0.338 0.988 0.351 0.329
3 0.989 0.364 0.371 0.989 0.346 0.322 0.987 0.331 0.315
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Table 4. The Av.Es (1st column), RMSEs (2nd column), and ARABs (3rd column) of h(t).

T n[FP%] Scheme MLE MCMC-Pr[A] MCMC-Pr[B]

1 40[50%] 1 0.129 0.528 0.767 0.135 0.447 0.742 0.129 0.428 0.713
2 0.127 0.575 0.797 0.126 0.497 0.769 0.122 0.469 0.728
3 0.134 0.597 0.820 0.122 0.539 0.797 0.120 0.503 0.749

40[75%] 1 0.223 0.440 0.649 0.135 0.368 0.619 0.117 0.354 0.603
2 0.228 0.467 0.675 0.122 0.393 0.648 0.123 0.383 0.626
3 0.133 0.495 0.714 0.126 0.420 0.681 0.112 0.396 0.653

80[50%] 1 0.141 0.340 0.549 0.134 0.291 0.518 0.132 0.277 0.482
2 0.127 0.366 0.587 0.135 0.329 0.535 0.123 0.309 0.522
3 0.131 0.386 0.617 0.130 0.351 0.585 0.120 0.329 0.566

80[75%] 1 0.139 0.308 0.445 0.136 0.254 0.423 0.137 0.187 0.409
2 0.129 0.312 0.477 0.127 0.268 0.447 0.142 0.233 0.421
3 0.127 0.326 0.492 0.132 0.276 0.472 0.123 0.242 0.459

2 40[50%] 1 0.128 0.502 0.728 0.127 0.436 0.709 0.129 0.391 0.686
2 0.133 0.526 0.756 0.124 0.477 0.735 0.131 0.450 0.694
3 0.139 0.570 0.795 0.126 0.512 0.768 0.126 0.483 0.722

40[75%] 1 0.126 0.420 0.610 0.123 0.357 0.597 0.121 0.345 0.585
2 0.135 0.438 0.627 0.132 0.389 0.610 0.131 0.371 0.603
3 0.138 0.483 0.691 0.125 0.413 0.666 0.132 0.383 0.638

80[50%] 1 0.129 0.325 0.528 0.129 0.287 0.499 0.125 0.254 0.466
2 0.131 0.345 0.559 0.125 0.323 0.528 0.128 0.286 0.495
3 0.136 0.366 0.574 0.132 0.347 0.550 0.132 0.317 0.552

80[75%] 1 0.124 0.267 0.439 0.132 0.227 0.418 0.133 0.181 0.402
2 0.128 0.280 0.469 0.128 0.245 0.440 0.137 0.214 0.413
3 0.130 0.311 0.488 0.129 0.263 0.465 0.126 0.224 0.435
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Table 5. The ACLs (1st column) and CPs (2nd column) of 95% interval estimates of γ.

n[FP%] Scheme ACI-NA BCI-Pr[A] BCI-Pr[B] ACI-NA BCI-Pr[A] BCI-Pr[B]

T = 1 T = 2

40[50%] 1 0.437 0.926 0.415 0.928 0.399 0.930 0.428 0.929 0.402 0.931 0.396 0.933
2 0.373 0.929 0.357 0.931 0.338 0.934 0.365 0.932 0.332 0.934 0.332 0.937
3 0.338 0.932 0.314 0.934 0.295 0.937 0.326 0.935 0.302 0.937 0.290 0.940

40[75%] 1 0.310 0.935 0.287 0.937 0.276 0.940 0.301 0.938 0.281 0.940 0.273 0.943
2 0.278 0.938 0.265 0.940 0.257 0.942 0.273 0.941 0.255 0.943 0.251 0.946
3 0.256 0.940 0.246 0.942 0.236 0.945 0.252 0.943 0.242 0.945 0.231 0.948

80[50%] 1 0.236 0.942 0.224 0.945 0.219 0.948 0.234 0.945 0.216 0.948 0.211 0.951
2 0.224 0.945 0.218 0.947 0.205 0.949 0.219 0.948 0.213 0.949 0.200 0.953
3 0.212 0.946 0.201 0.948 0.188 0.951 0.206 0.949 0.196 0.951 0.181 0.954

80[75%] 1 0.203 0.948 0.192 0.950 0.178 0.953 0.201 0.951 0.186 0.953 0.173 0.956
2 0.187 0.951 0.178 0.953 0.166 0.956 0.182 0.953 0.173 0.955 0.161 0.957
3 0.172 0.952 0.169 0.954 0.160 0.957 0.170 0.955 0.165 0.957 0.157 0.959

ACI-NL HPD-Pr[A] HPD-Pr[B] ACI-NL HPD-Pr[A] HPD-Pr[B]

40[50%] 1 0.426 0.928 0.409 0.929 0.393 0.932 0.422 0.930 0.397 0.932 0.389 0.934
2 0.365 0.931 0.349 0.932 0.331 0.936 0.361 0.933 0.329 0.936 0.325 0.938
3 0.327 0.934 0.309 0.935 0.289 0.939 0.323 0.936 0.299 0.939 0.281 0.941

40[75%] 1 0.303 0.936 0.284 0.938 0.272 0.941 0.296 0.939 0.276 0.941 0.264 0.944
2 0.273 0.940 0.261 0.941 0.250 0.944 0.258 0.942 0.253 0.945 0.239 0.947
3 0.216 0.941 0.240 0.943 0.231 0.946 0.209 0.944 0.235 0.947 0.224 0.949

80[50%] 1 0.232 0.943 0.221 0.946 0.214 0.949 0.225 0.946 0.213 0.949 0.205 0.952
2 0.220 0.946 0.212 0.948 0.201 0.950 0.214 0.949 0.197 0.950 0.183 0.954
3 0.208 0.947 0.198 0.949 0.183 0.952 0.196 0.950 0.188 0.952 0.173 0.955

80[75%] 1 0.200 0.949 0.188 0.951 0.173 0.954 0.186 0.952 0.182 0.954 0.169 0.958
2 0.184 0.952 0.172 0.954 0.162 0.957 0.178 0.954 0.168 0.956 0.157 0.958
3 0.169 0.953 0.163 0.955 0.155 0.958 0.164 0.956 0.159 0.959 0.152 0.960

Table 6. The ACLs (1st column) and CPs (2nd column) of 95% interval estimates of µ.

n[FP%] Scheme ACI-NA BCI-Pr[A] BCI-Pr[B] ACI-NA BCI-Pr[A] BCI-Pr[B]

T = 1 T = 2

40[50%] 1 0.608 0.935 0.585 0.936 0.573 0.938 0.584 0.935 0.574 0.937 0.566 0.940
2 0.785 0.928 0.769 0.928 0.756 0.930 0.765 0.929 0.760 0.930 0.740 0.932
3 0.830 0.919 0.814 0.921 0.798 0.923 0.816 0.922 0.793 0.924 0.787 0.926

40[75%] 1 0.531 0.942 0.529 0.943 0.520 0.946 0.520 0.945 0.512 0.946 0.502 0.948
2 0.574 0.939 0.558 0.941 0.541 0.943 0.556 0.941 0.544 0.942 0.536 0.945
3 0.588 0.936 0.579 0.938 0.569 0.940 0.572 0.938 0.561 0.941 0.559 0.942

80[50%] 1 0.418 0.954 0.410 0.955 0.389 0.957 0.415 0.954 0.402 0.957 0.381 0.958
2 0.469 0.951 0.458 0.952 0.451 0.954 0.458 0.953 0.447 0.955 0.432 0.956
3 0.501 0.946 0.470 0.948 0.466 0.950 0.483 0.948 0.467 0.951 0.452 0.952

80[75%] 1 0.341 0.960 0.325 0.962 0.317 0.964 0.331 0.962 0.315 0.965 0.311 0.965
2 0.363 0.958 0.357 0.960 0.343 0.962 0.356 0.961 0.342 0.962 0.335 0.964
3 0.408 0.956 0.385 0.958 0.374 0.959 0.404 0.957 0.373 0.960 0.368 0.961

ACI-NL HPD-Pr[A] HPD-Pr[B] ACI-NL HPD-Pr[A] HPD-Pr[B]

40[50%] 1 0.613 0.933 0.595 0.935 0.582 0.937 0.604 0.934 0.580 0.936 0.571 0.939
2 0.790 0.926 0.774 0.927 0.754 0.929 0.775 0.928 0.765 0.929 0.746 0.931
3 0.834 0.918 0.819 0.920 0.809 0.921 0.822 0.920 0.806 0.922 0.793 0.925

40[75%] 1 0.546 0.941 0.540 0.942 0.529 0.944 0.537 0.943 0.525 0.945 0.512 0.947
2 0.580 0.937 0.572 0.939 0.566 0.941 0.572 0.939 0.565 0.941 0.547 0.943
3 0.594 0.935 0.583 0.937 0.574 0.938 0.590 0.936 0.578 0.939 0.562 0.941

80[50%] 1 0.429 0.952 0.416 0.953 0.409 0.955 0.419 0.953 0.408 0.956 0.394 0.958
2 0.478 0.949 0.467 0.951 0.458 0.952 0.469 0.951 0.453 0.953 0.449 0.955
3 0.506 0.945 0.486 0.947 0.476 0.948 0.489 0.947 0.475 0.949 0.464 0.951

80[75%] 1 0.346 0.959 0.335 0.961 0.324 0.962 0.338 0.961 0.321 0.963 0.314 0.964
2 0.376 0.957 0.366 0.959 0.356 0.960 0.364 0.959 0.348 0.961 0.341 0.963
3 0.412 0.954 0.392 0.956 0.385 0.958 0.409 0.956 0.385 0.958 0.379 0.960
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Table 7. The ACLs (1st column) and CPs (2nd column) of 95% interval estimates of R(t).

n[FP%] Scheme ACI-NA BCI-Pr[A] BCI-Pr[B] ACI-NA BCI-Pr[A] BCI-Pr[B]

T = 1 T = 2

40[50%] 1 0.628 0.922 0.598 0.925 0.585 0.928 0.614 0.924 0.586 0.926 0.578 0.929
2 0.613 0.926 0.587 0.929 0.576 0.931 0.597 0.928 0.574 0.930 0.566 0.932
3 0.582 0.930 0.562 0.932 0.553 0.936 0.576 0.932 0.556 0.934 0.549 0.937

40[75%] 1 0.543 0.934 0.525 0.935 0.518 0.939 0.537 0.936 0.516 0.937 0.507 0.941
2 0.514 0.937 0.502 0.940 0.492 0.943 0.508 0.939 0.489 0.941 0.482 0.945
3 0.497 0.939 0.483 0.942 0.476 0.944 0.486 0.941 0.478 0.943 0.460 0.945

80[50%] 1 0.457 0.943 0.449 0.944 0.425 0.947 0.437 0.945 0.427 0.946 0.416 0.949
2 0.416 0.946 0.402 0.948 0.387 0.950 0.407 0.948 0.385 0.950 0.376 0.952
3 0.379 0.950 0.362 0.953 0.353 0.955 0.372 0.952 0.352 0.955 0.346 0.957

80[75%] 1 0.325 0.953 0.315 0.956 0.305 0.958 0.318 0.955 0.309 0.958 0.293 0.959
2 0.303 0.956 0.292 0.958 0.284 0.961 0.292 0.958 0.286 0.960 0.275 0.963
3 0.285 0.958 0.276 0.960 0.259 0.963 0.280 0.960 0.269 0.962 0.251 0.964

ACI-NL HPD-Pr[A] HPD-Pr[B] ACI-NL HPD-Pr[A] HPD-Pr[B]

40[50%] 1 0.616 0.924 0.590 0.926 0.579 0.930 0.604 0.925 0.577 0.928 0.566 0.931
2 0.600 0.927 0.579 0.930 0.568 0.932 0.590 0.929 0.567 0.932 0.559 0.934
3 0.571 0.931 0.558 0.934 0.545 0.937 0.563 0.933 0.545 0.936 0.539 0.939

40[75%] 1 0.539 0.936 0.515 0.937 0.508 0.941 0.527 0.937 0.508 0.938 0.502 0.943
2 0.501 0.939 0.487 0.941 0.477 0.943 0.492 0.940 0.473 0.943 0.467 0.946
3 0.487 0.941 0.476 0.943 0.465 0.945 0.482 0.942 0.469 0.945 0.453 0.947

80[50%] 1 0.437 0.945 0.425 0.945 0.412 0.949 0.423 0.946 0.413 0.947 0.409 0.950
2 0.409 0.948 0.386 0.949 0.374 0.952 0.397 0.949 0.378 0.951 0.369 0.954
3 0.363 0.951 0.345 0.954 0.339 0.957 0.356 0.953 0.342 0.956 0.332 0.959

80[75%] 1 0.316 0.955 0.306 0.958 0.297 0.960 0.311 0.956 0.302 0.959 0.285 0.961
2 0.296 0.957 0.289 0.959 0.277 0.963 0.288 0.959 0.280 0.962 0.271 0.964
3 0.276 0.959 0.270 0.961 0.250 0.964 0.270 0.961 0.266 0.963 0.244 0.965

Table 8. The ACLs (1st column) and CPs (2nd column) of 95% interval estimates of h(t).

n[FP%] Scheme ACI-NA BCI-Pr[A] BCI-Pr[B] ACI-NA BCI-Pr[A] BCI-Pr[B]

T = 1 T = 2

40[50%] 1 0.315 0.948 0.299 0.951 0.282 0.953 0.308 0.950 0.288 0.953 0.279 0.955
2 0.329 0.946 0.314 0.949 0.289 0.952 0.327 0.948 0.311 0.951 0.283 0.953
3 0.369 0.942 0.332 0.946 0.309 0.948 0.359 0.944 0.320 0.947 0.298 0.949

40[75%] 1 0.287 0.953 0.270 0.956 0.258 0.958 0.276 0.955 0.263 0.957 0.251 0.959
2 0.295 0.952 0.287 0.955 0.263 0.957 0.281 0.953 0.272 0.956 0.259 0.958
3 0.305 0.950 0.291 0.953 0.278 0.955 0.302 0.951 0.281 0.955 0.272 0.957

80[50%] 1 0.234 0.961 0.227 0.964 0.219 0.965 0.228 0.963 0.218 0.965 0.214 0.966
2 0.254 0.958 0.245 0.961 0.234 0.963 0.252 0.960 0.241 0.963 0.239 0.964
3 0.277 0.955 0.262 0.958 0.247 0.960 0.263 0.956 0.256 0.960 0.244 0.961

80[75%] 1 0.207 0.967 0.201 0.970 0.191 0.971 0.202 0.969 0.194 0.971 0.186 0.972
2 0.213 0.965 0.208 0.968 0.204 0.969 0.210 0.967 0.200 0.968 0.195 0.970
3 0.227 0.963 0.216 0.966 0.210 0.968 0.218 0.965 0.207 0.967 0.202 0.969

ACI-NL HPD-Pr[A] HPD-Pr[B] ACI-NL HPD-Pr[A] HPD-Pr[B]

40[50%] 1 0.367 0.931 0.349 0.933 0.339 0.936 0.359 0.933 0.326 0.935 0.331 0.937
2 0.389 0.927 0.365 0.931 0.346 0.934 0.380 0.929 0.357 0.932 0.340 0.935
3 0.417 0.923 0.382 0.926 0.376 0.929 0.408 0.925 0.370 0.928 0.361 0.931

40[75%] 1 0.327 0.942 0.315 0.945 0.310 0.947 0.316 0.944 0.309 0.946 0.303 0.948
2 0.338 0.938 0.327 0.941 0.320 0.942 0.325 0.939 0.319 0.942 0.313 0.943
3 0.354 0.934 0.341 0.935 0.331 0.938 0.348 0.936 0.329 0.937 0.324 0.940

80[50%] 1 0.274 0.948 0.258 0.951 0.246 0.953 0.261 0.949 0.246 0.952 0.238 0.955
2 0.282 0.946 0.270 0.949 0.261 0.951 0.276 0.947 0.263 0.950 0.252 0.952
3 0.310 0.944 0.304 0.947 0.296 0.949 0.303 0.946 0.295 0.948 0.282 0.951

80[75%] 1 0.248 0.955 0.229 0.958 0.222 0.960 0.238 0.957 0.221 0.959 0.213 0.961
2 0.258 0.953 0.238 0.956 0.229 0.957 0.244 0.954 0.232 0.958 0.219 0.958
3 0.261 0.950 0.246 0.953 0.237 0.955 0.255 0.952 0.241 0.954 0.229 0.956
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5. Data applications

In this section, we will utilize two real datasets from the clinical and chemical sectors to demonstrate
the relevance and application of the suggested approaches to real-world occurrences.

5.1. Clinical data

In this application, we shall use a clinical dataset of 56 blood samples from organ transplant
recipients and assay an aliquot of each sample using a standard-recognized method of high-
performance liquid chromatography. This dataset was originally given by Hawkins [21] and later
rediscussed by Nassar et al. [22]. In Table 9, for computational convenience, all points of blood
samples are divided by ten.

Table 9. Newly transformed blood samples.

3.50 7.10 7.70 8.70 9.30 9.90 10.4 10.9 10.9 11.2
11.8 11.8 12.5 12.7 12.9 13.0 14.8 15.1 15.3 15.6
15.9 15.9 16.2 16.6 18.5 19.8 20.3 20.6 22.1 22.7
24.1 24.4 24.5 25.4 26.6 27.1 27.5 28.0 28.5 31.8
32.7 33.6 33.9 34.0 34.6 35.0 37.0 40.2 42.8 44.0
49.8 52.1 55.6 57.8 65.3 98.0
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(a) Contour. (b) Density. (c) Reliability.

Figure 2. Fitting plots from blood dataset.

At first, we must determine whether the BS distribution is an acceptable model for blood data.
The MLEs of γ and µ are used to estimate the Kolmogorov-Smirnov (K-S) distance and its associated
P-value. The MLEs γ and µ with associated standard-errors (SEs) are 0.6678 (0.0631) and 20.839
(1.7563), respectively. At the same time, the K-S distance is 0.062 with a P-value of 0.982. This
means that the BS distribution matches the blood data quite well. Also, based on the full blood dataset,
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the adaptability of the BS model is highlighted via various graphical tools, namely: (a) Contour; (b)
estimated density; and (c) estimated/empirical reliability; see Figure 2. Figure 2(a) shows that the
MLEs γ̂ � 0.6678 and µ̂ � 20.839 existed and are unique; Figure 2(b) shows that the fitted BS density
line reasonably fits the histogram; and Figure 2(c) shows that the fitted BS reliability line captures the
empirical reliability line adequately.

Briefly, to show the effectiveness of the BS model based on the blood dataset, the BS(γ, µ)
distribution is compared with three popular models, namely: lognormal(γ, µ), Weibull(γ, µ), and
gamma(γ, µ) distributions.

To establish this goal, the K-S distance (with its P-value) is obtained for each model; see Table 10.
The MLEs (with their SEs) of γ and µ are also calculated and reported in Table 10. It indicates that
the BS distribution is the best model compared to its competitors. It also indicates that the lognormal
distribution is the next best choice among others. Figure 3 displays the histogram of the blood data
and the fitted density lines, the empirical and fitted reliability functions, and the probability-probability
(PP) lines. Additionally, Figure 3 supports the same fit findings.

Table 10. Summary fit of the BS, lognormal, Weibull, and gamma distributions using blood
data.

Model MLE(SE) K-S(P-value)

γ µ

BS 0.6678(0.0631) 20.841(1.7567) 0.0622(0.982)
lognormal 3.0413(0.0848) 0.6347(0.0600) 0.0711(0.939)
Weibull 1.6266(0.1578) 28.689(2.4986) 0.0918(0.733)
Gamma 2.6885(0.4798) 0.1054(0.0207) 0.1007(0.621)
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Figure 3. The density lines (left), reliability lines (center), and PP (right) of BS and its
competitive models using blood data.

Using various choices of T and R, we highlight the suggested estimates based on three AT2-PHC
samples (with k = 26) created from the blood data; see Table 11. Using the proposed M-H steps,
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we simulate 40,000 MCMC iterations and discard the first 10,000 samples as burn-in. For each S[i]
for i = 1, 2, 3, in Table 11, the maximum likelihood and Bayes’ MCMC estimates (along with their
SEs) as well as 95% asymptotic (ACI-NA and ACI-NL methods) intervals and 95% credible (BCI and
HPD) intervals (along with their widths) of γ, µ, R(t), and h(t) (at t = 10) are obtained; see Table 12.
Both Pr[A] and Pr[B] are also utilized to obtain the MCMC estimates and associated credible interval
estimates. The results in Table 12 show that the Bayes point and interval estimates of γ, µ, R(t), and
h(t) obtained using Pr[B] perform better than other estimates in terms of minimum SEs and interval
widths.

Table 11. Three AT2-PHC samples from blood data.

Sample T ( j) R R∗ Data

S[1] 9.5(4) (56, 020) 10 3.50, 7.10, 8.70, 9.30, 10.4, 10.9, 10.9, 11.2, 11.8, 12.7, 12.9, 13.0, 14.8,
15.1, 15.3, 15.6, 15.9, 15.9, 16.2, 16.6, 18.5, 19.8, 20.3, 20.6, 22.1, 22.7

S[2] 19.2(16) (010, 56, 010) 5 3.50, 7.10, 7.70, 8.70, 9.30, 9.90, 10.4, 10.9, 10.9, 11.2, 11.8, 11.8, 12.9,
15.3, 15.6, 15.9, 16.6, 18.5, 19.8, 20.6, 22.1, 22.7, 27.1, 27.5, 28.0, 32.7

S[3] 40.5(26) (020, 56) 0 3.50, 7.10, 7.70, 8.70, 9.30, 9.90, 10.4, 10.9, 10.9, 11.2, 11.8, 11.8, 12.5,
12.7, 12.9, 13.0, 14.8, 15.1, 15.3, 15.6, 15.9, 27.1, 27.5, 31.8, 32.7, 40.2

Table 12. Estimates of γ, µ, R(t), and h(t) from blood data.

Sample Par. MLE ACI-NA MCMC-Pr[A] BCI HPD
ACI-NL MCMC-Pr[B] BCI HPD

Est. SE lower upper width Est. SE lower upper width lower upper width

S[1] γ 0.5286 0.0739 0.3837 0.6735 0.2898 0.5284 0.0193 0.4911 0.5666 0.0755 0.4906 0.5659 0.0754
0.4019 0.6953 0.2934 0.5285 0.0099 0.5094 0.5480 0.0386 0.5093 0.5478 0.0385

µ 17.400 1.5672 14.329 20.472 6.1433 17.401 0.0200 17.361 17.440 0.0786 17.361 17.439 0.0785
14.585 20.760 6.1753 17.400 0.0100 17.381 17.420 0.0392 17.381 17.420 0.0392

R(10) 0.8557 0.0421 0.7733 0.9382 0.1648 0.8560 0.0088 0.8389 0.8734 0.0345 0.8384 0.8729 0.0344
0.7772 0.9423 0.1651 0.8558 0.0045 0.8470 0.8647 0.0176 0.8471 0.8647 0.0176

h(10) 0.0522 0.0109 0.0308 0.0735 0.0427 0.0521 0.0008 0.0503 0.0534 0.0031 0.0505 0.0536 0.0031
0.0346 0.0785 0.0439 0.0521 0.0004 0.0513 0.0529 0.0016 0.0513 0.0529 0.0016

S[2] γ 0.6502 0.0933 0.4673 0.8331 0.3659 0.6502 0.0194 0.6123 0.6887 0.0764 0.6117 0.6880 0.0763
0.4907 0.8615 0.3707 0.6502 0.0099 0.6308 0.6696 0.0388 0.6310 0.6697 0.0387

µ 20.815 2.1698 16.562 25.067 8.5054 20.814 0.0202 20.775 20.854 0.0792 20.774 20.853 0.0791
16.968 25.533 8.5647 20.815 0.0100 20.795 20.834 0.0393 20.795 20.835 0.0392

R(10) 0.8755 0.0359 0.8052 0.9458 0.1406 0.8756 0.0071 0.8618 0.8896 0.0279 0.8614 0.8892 0.0278
0.8080 0.9487 0.1407 0.8755 0.0036 0.8685 0.8826 0.0141 0.8685 0.8826 0.0141

h(10) 0.0385 0.0075 0.0238 0.0532 0.0294 0.0385 0.0007 0.0370 0.0397 0.0028 0.0371 0.0398 0.0027
0.0263 0.0564 0.0302 0.0385 0.0004 0.0378 0.0392 0.0014 0.0378 0.0392 0.0014

S[3] γ 1.0767 0.1935 0.6975 1.4559 0.7584 1.0767 0.0197 1.0381 1.1158 0.0778 1.0385 1.1161 0.0776
0.7571 1.5312 0.7742 1.0767 0.0100 1.0572 1.0962 0.0390 1.0575 1.0964 0.0389

µ 32.257 6.4477 19.620 44.895 25.274 32.257 0.0202 32.218 32.297 0.0792 32.217 32.296 0.0792
21.802 47.728 25.926 32.257 0.0100 32.238 32.277 0.0393 32.238 32.277 0.0392

R(10) 0.8751 0.0361 0.8043 0.9459 0.1416 0.8752 0.0043 0.8666 0.8837 0.0171 0.8666 0.8837 0.0171
0.8071 0.9489 0.1418 0.8751 0.0022 0.8709 0.8794 0.0086 0.8709 0.8794 0.0086

h(10) 0.0257 0.0050 0.0158 0.0356 0.0198 0.0257 0.0003 0.0251 0.0262 0.0011 0.0251 0.0262 0.0011
0.0175 0.0378 0.0203 0.0257 0.0001 0.0254 0.0259 0.0006 0.0254 0.0260 0.0006

Figure 4 shows the log-likelihood functions of γ and µ for all samples S[i] for i = 1, 2, 3, which
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demonstrates that all offered frequentist estimates of γ and µ, respectively, existed and are unique. To
do any more calculations based on the industrial device data in the future, we recommend using these
numbers as starting points. In Table 13, using the staying 30,000 draws (from S[1] as an instance) of
γ, µ, R(t), and h(t), several properties including mean, mode, (1st, 2nd, and 3rd) quartiles denoted by
Qi, i = 1, 2, 3, standard deviation (SD) and skewness (Skew.) are reported. It supports the same facts
reported in Table 12. From S[1] (as an example), to evaluate the convergence status of the staying
30,0000 MCMC iterations, trace (with Gaussian kernel) and MCMC frequencies plots γ, µ, R(t), and
h(t) are shown in Figure 5. Other MCMC properties and plots based on S[2] and S[3] are reported in
the Supplementary File.
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Figure 4. The log-likelihoods of γ and µ from blood data.
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Table 13. Properties of γ, µ, R(t), and h(t) using S[1] from blood data.

Par. MCMC-Pr[A]
MCMC-Pr[B]

Mean Mode Q1 Q2 Q3 SD Skew.

γ 0.5284 0.5327 0.5152 0.5283 0.5415 0.0193 0.0208
0.5285 0.5278 0.5219 0.5285 0.5353 0.0099 0.0191

µ 17.401 17.405 17.387 17.401 17.414 0.0200 0.0069
17.400 17.384 17.394 17.400 17.407 0.0100 0.0125

R(10) 0.8560 0.8540 0.8499 0.8559 0.8619 0.0088 0.0682
0.8558 0.8557 0.8527 0.8558 0.8588 0.0045 0.0290

h(10) 0.0521 0.0523 0.0516 0.0521 0.0526 0.0008 -0.5693
0.0521 0.0522 0.0519 0.0521 0.0524 0.0004 -0.2933

(a) MCMC-Pr[A]. (b) MCMC-Pr[B].

Figure 5. Density (left) and Trace (right) plots of γ, µ, R(t), and h(t) using S[1] from blood
data.

The sample mean and HPD interval boundaries are displayed as solid and dotted lines in each panel,
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respectively. Figure 5 indicates that the MCMC procedure converges very well and that the generated
posterior estimates of γ, µ, and R(t) are fairly symmetric, while those near to are being negatively
skewed.

5.2. Chemical data

This application analyzes a chemical dataset that represents 101 observations of the fatigue life
of 6061-T6 aluminum coupons cut parallel to the direction of rolling and oscillated at 18 cycles per
second (with a maximum stress per cycle of 31 000 psi); see Ng et al. [23]. Table 14 lists the new
converted fatigue lifetimes of the given aluminum coupons after dividing each time point by ten, for
instance.

Table 14. Newly fatigued lifetimes of 6061-T6 aluminum coupons.

7.00 9.00 9.60 9.70 9.90 10.0 10.3 10.4 10.4 10.5 10.7 10.8 10.8
10.8 10.9 10.9 11.2 11.2 11.3 11.4 11.4 11.4 11.6 11.9 12.0 12.0
12.0 12.1 12.1 12.3 12.4 12.4 12.4 12.4 12.4 12.8 12.8 12.9 12.9
13.0 13.0 13.0 13.1 13.1 13.1 13.1 13.1 13.2 13.2 13.2 13.3 13.4
13.4 13.4 13.4 13.4 13.6 13.6 13.7 13.8 13.8 13.8 13.9 13.9 14.1
14.1 14.2 14.2 14.2 14.2 14.2 14.2 14.4 14.4 14.5 14.6 14.8 14.8
14.9 15.1 15.1 15.2 15.5 15.6 15.7 15.7 15.7 15.7 15.8 15.9 16.2
16.3 16.3 16.4 16.6 16.6 16.8 17.0 17.4 19.6 21.2

From Table 14, the MLEs (SEs) of γ̂ and µ̂ are 0.1704 (0.0120) and 13.182 (0.2226), respectively,
as well as a K-S (P-value) becomes 0.0849 (0.459). Thus, the BS distribution is a reasonable model
for fitting aluminum data. Again, using the complete aluminum dataset, Figure 6(a) indicates that the
MLEs γ̂ � 0.1704 and µ̂ � 13.182 existed and are unique; Figure 6(b)–(c) indicates that the fitted BS’s
density and reliability lines capture the most in the data histogram and the empirical reliability line,
respectively. This fact is also supported by Figure 7.
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Figure 6. Fitting plots from aluminum dataset.
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Figure 7. The density lines (left), reliability lines (center), and PP (right) of BS and its
competitive models using aluminum data.

Again, based on the aluminum dataset, the BS distribution is compared to lognormal, Weibull, and
gamma distributions; see Table 15. It shows that the gamma distribution is the best choice, and the BS
distribution is the third-best choice among others.

Table 15. Summary fit of the BS, lognormal, Weibull, and gamma distributions using
aluminum data.

Model MLE(SE) K-S(P-value)

γ µ

BS 0.1704(0.0120) 13.182(0.2227) 0.0850(0.459)
lognormal 2.5792(0.0169) 0.1695(0.0119) 0.0838(0.477)
Weibull 6.0649(0.4226) 14.317(0.2488) 0.0990(0.275)
Gamma 35.692(4.9993) 2.6689(0.3765) 0.0727(0.660)

Using the complete aluminum data, three AT2-PHC samples (with k = 31) are created; see Table 16.
Point and 95% interval estimates developed by maximum likelihood and Bayes’ approaches of γ,
µ, R(t), and h(t) (at t = 10) are obtained; see Table 17. It demonstrates that Bayes (point/interval)
estimates operate similarly to frequentist estimates. The profile log-likelihood functions in Figures 8
showed that the MLEs of γ and µ existed and are unique. Based on 40,000 MCMC iterations (when the
first 10,000 iterations are ignored as ‘burn-in’), the acquired Bayes point and 95% BCI/HPD interval
estimates are carried out using Pr[A] and Pr[B]. From Table 17, one can see that the Bayes point and
interval estimates of the various parameters based on Pr[B] perform better than other estimates in terms
of minimum SEs and interval widths.
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Table 16. Three AT2-PHC samples from aluminum data.

Sample T ( j) R R∗Data

S[1] 9.95(4) (710, 021) 42 7.00, 9.60, 9.70, 9.90, 10.4, 10.4, 10.5, 10.7, 10.8, 11.2, 11.3, 11.4, 11.6, 11.9, 12.0, 12.1,
12.4, 12.4, 12.8, 12.9, 13.0, 13.1, 13.2, 13.2, 13.2, 13.3, 13.4, 13.4, 13.4, 13.4, 13.4

S[2] 12.5(17) (011, 710, 010) 28 7.00, 9.00, 9.60, 9.70, 9.90, 10.0, 10.3, 10.4, 10.4, 10.5, 10.7, 10.8, 10.9, 11.3, 11.4, 11.9,
12.4, 12.9, 13.0, 13.4, 13.4, 13.4, 13.6, 13.6, 13.7, 13.8, 13.8, 13.9, 14.1, 14.4, 14.4

S[3] 13.9(28) (021, 710) 14 7.00, 9.00, 9.60, 9.70, 9.90, 10.0, 10.3, 10.4, 10.4, 10.5, 10.7, 10.8, 10.8, 10.8, 10.9, 10.9,
11.2, 11.2, 11.3, 11.4, 11.4, 11.4, 11.9, 12.0, 12.1, 12.3, 12.9, 13.7, 13.8, 14.1, 14.6

Table 17. Estimates of γ, µ, R(t), and h(t) from aluminum data.

Sample Par. MLE ACI-NA MCMC-Pr[A] BCI HPD
ACI-NL MCMC-Pr[B] BCI HPD

Est. SE lower upper width Est. SE lower upper width lower upper width

S[1] γ 0.2063 0.0278 0.1519 0.2606 0.1088 0.2038 0.0152 0.1755 0.2341 0.0586 0.1755 0.2341 0.0586
0.1584 0.2685 0.1100 0.2062 0.0091 0.1885 0.2244 0.0358 0.1883 0.2241 0.0357

µ 14.149 0.4714 13.225 15.073 1.8477 14.149 0.0201 14.110 14.189 0.0791 14.109 14.188 0.0789
13.255 15.104 1.8490 14.149 0.0100 14.130 14.169 0.0392 14.130 14.169 0.0391

R(10) 0.9546 0.0178 0.9197 0.9895 0.0698 0.9561 0.0116 0.9318 0.9766 0.0448 0.9329 0.9774 0.0445
0.9203 0.9902 0.0698 0.9545 0.0071 0.9400 0.9679 0.0278 0.9406 0.9683 0.0277

h(10) 0.0492 0.0126 0.0245 0.0739 0.0495 0.0476 0.0075 0.0327 0.0612 0.0285 0.0336 0.0619 0.0283
0.0298 0.0814 0.0516 0.0490 0.0044 0.0400 0.0573 0.0173 0.0403 0.0575 0.0172

S[2] γ 0.2489 0.0338 0.1826 0.3152 0.1326 0.2477 0.0159 0.2175 0.2793 0.0618 0.2178 0.2795 0.0617
0.1907 0.3249 0.1342 0.2489 0.0093 0.2308 0.2673 0.0365 0.2310 0.2674 0.0364

µ 14.950 0.6137 13.747 16.153 2.4056 14.950 0.0201 14.910 14.989 0.0791 14.909 14.988 0.0789
13.794 16.203 2.4082 14.950 0.0100 14.931 14.970 0.0392 14.931 14.970 0.0391

R(10) 0.9481 0.0181 0.9126 0.9835 0.0709 0.9487 0.0109 0.9264 0.9687 0.0423 0.9270 0.9691 0.0421
0.9132 0.9842 0.0709 0.9480 0.0064 0.9351 0.9603 0.0252 0.9357 0.9608 0.0251

h(10) 0.0460 0.0105 0.0254 0.0665 0.0411 0.0452 0.0054 0.0342 0.0551 0.0209 0.0349 0.0557 0.0208
0.0294 0.0719 0.0425 0.0458 0.0031 0.0394 0.0517 0.0123 0.0396 0.0519 0.0122

S[3] γ 0.2620 0.0378 0.1879 0.3362 0.1483 0.2609 0.0164 0.2295 0.2935 0.0639 0.2289 0.2926 0.0637
0.1975 0.3478 0.1503 0.2620 0.0094 0.2436 0.2805 0.0369 0.2435 0.2804 0.0369

µ 14.601 0.6420 13.343 15.859 2.517 14.601 0.0201 14.561 14.640 0.0791 14.560 14.639 0.0790
13.395 15.915 2.5198 14.601 0.0100 14.581 14.621 0.0393 14.582 14.621 0.0392

R(10) 0.9269 0.0223 0.8832 0.9706 0.0875 0.9277 0.0125 0.9026 0.9513 0.0487 0.9033 0.9518 0.0486
0.8842 0.9717 0.0875 0.9269 0.0072 0.9126 0.9409 0.0283 0.9128 0.9410 0.0282

h(10) 0.0582 0.0118 0.0350 0.0813 0.0463 0.0574 0.0050 0.0470 0.0661 0.0191 0.0477 0.0667 0.0190
0.0391 0.0866 0.0475 0.0580 0.0028 0.0522 0.0632 0.0109 0.0525 0.0634 0.0109
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Figure 8. The log-likelihoods of γ and µ from aluminum data.

Using the remaining 30,000 MCMC variates of γ, µ, R(t), and h(t) for S[1] (as an example), their
trace and posterior histograms are shown in Figure 9. It indicates that the simulated MCMC draws
of γ, µ, R(t), or h(t) are mixed appropriately and behave fairly symmetrically. Again, using S[1], the
same properties reported in Table 13 are recomputed and provided in Table 18. All findings reported
in Table 18 support the same facts listed in Table 17. As supplementary materials, the same plots
(in Figure 9) and the same properties (in Table 18) of γ, µ, R(t), and h(t) based on S[2] and S[3] are
presented.

Finally, the findings of the study based on two real-world datasets from the clinical or chemical
fields revealed that the suggested BS model is useful in highlighting the relevance of the supplied
estimating approaches to real-world occurrences. In a similar way, one can easily perform our
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computational design for any other dataset from other sectors, such as physics, environment, business
and fishery.

(a) MCMC-Pr[A]. (b) MCMC-Pr[B].

Figure 9. Density (left) and Trace (right) plots of γ, µ, R(t), and h(t) using S[1] from
aluminum data.

Table 18. Properties of γ, µ, R(t), and h(t) using S[1] from aluminum data.

Par. MCMC-Pr[A]
MCMC-Pr[B]

Mean Mode Q1 Q2 Q3 SD Skew.

γ 0.2038 0.1930 0.1935 0.2033 0.2139 0.0150 0.1452
0.2062 0.2131 0.2000 0.2061 0.2124 0.0091 0.0406

µ 14.149 14.110 14.135 14.149 14.163 0.0201 0.0207
14.149 14.136 14.143 14.149 14.156 0.0100 0.0156

R(10) 0.9561 0.9617 0.9486 0.9569 0.9643 0.0115 -0.3400
0.9545 0.9487 0.9498 0.9547 0.9594 0.0071 -0.1534

h(10) 0.0476 0.0436 0.0427 0.0478 0.0528 0.0073 -0.1625
0.0490 0.0528 0.0461 0.0492 0.0521 0.0044 -0.1625
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6. Concluding remarks

We checked the estimations of the BS distribution, including its unknown parameters, RF, and HRF,
in the context of adaptive progressively Type-II hybrid censored data. To obtain the MLEs, numerical
techniques must be used to solve the normal equations. Two approximate confidence intervals are
considered using the asymptotic properties of MLEs. The delta approach is used to approximate the
variances of the estimators of the RF and HRF. The MCMC approach has been applied to determine the
Bayes estimates for the BS distribution based on the squared error loss function. In addition, the Bayes
and highest posterior density credible intervals are considered. We undertake a simulation analysis
that takes into account different sample sizes and censoring schemes to evaluate both point estimation
approaches and four interval estimations. A lot of conclusions can be drawn from the simulation
study’s findings, which support the superiority of Bayes estimates over conventional estimates. At last,
two real-world datasets were explored to highlight how various suggested approaches could potentially
be used in daily life. As a future work, using the proposed censored sample, one can easily expand the
proposed maximum likelihood calculations by performing the expectation-maximization algorithm of
the BS distribution.
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