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Abstract: In this article, we use the modified extended direct algebraic method (mEDAM) to explore
and analyze the traveling wave phenomena embedded in the quintic conformable Benney-Lin equation
(CBLE) that regulates liquid film dynamics. The proposed transformation-based approach developed
for nonlinear partial differential equations (PDEs) and fractional PDEs (FPDEs), efficiently produces a
plethora of traveling wave solutions for the targeted CBLE, capturing the system’s nuanced dynamics.
The methodically determined traveling wave solutions are in the form of rational, exponential,
hyperbolic and trigonometric functions which include periodic waves, bell-shaped kink waves and
signal and double shock waves. To accurately depict the wave phenomena linked to these solutions,
we generate 2D, 3D, and contour graphs. These visualizations not only improve understanding of
the CBLE model’s dynamics, but also provide a detailed way to examine its behavior. Moreover,
the use of the proposed techniques contributes to a better understanding of the other FPDEs’ distinct
characteristics, enhancing our comprehension of their underpinning dynamics.
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1. Introduction

Using mathematical tools to solve real-world problems requires understanding of concepts such
as rate of change, which is best achieved through the use of differential calculus. Regardless of its
efficacy in estimating object speed over particular distances and times, numerous complex events
which include singular formation, asymptotic characteristics, solitons, and chaos have frequently been
overlooked or misunderstood. Calculus, which includes integral and differential operators, is essential
for understanding real-world issues and predicting changes in natural phenomena. However, in the
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realm of memory or genetic traits, investigators have discovered limitations in integer-order calculus,
prompting mathematicians and physicists to develop fractional calculus (FC) with new operators.
This has piqued the interest of academics investigating various FC models [1–3]. Academics have
defined and explained FC and its foundational concepts, laying a solid foundation for this mathematical
structure. FC has caught the interest of investigators exploring various ideas related to the rate
of change as an extension of integer-order calculus. Scholars have used FC and its corresponding
ramifications to elucidate resulting behaviors and are expecting applications in the future [4, 5].

The recent advancements in observer design methods for nonlinear generalized systems with
nonlinear algebraic constraints, distributionally robust model predictive control with output feedback,
and the computation of complex standard eigenvalue problem derivatives for laminar-turbulent
transition prediction have significantly contributed to the field of control and automation [6]. In
addition, iterative approximation techniques for fixed point problems and variational inequality
problems on Hadamard manifolds have provided valuable insights into optimization and mathematical
analysis [7]. These research endeavors have led to the development of innovative techniques
and methodologies with broad applications across various domains, including robotics, aerospace
engineering, and industrial automation [8]. This stage for exploring the latest developments in control
theory and optimization strategies, showcasing the interdisciplinary nature and practical significance
of these research endeavors [9].

Moreover, research on the behavior of nonlinear systems defined by differential equations has been
sparked by recent developments in the discipline of FC. Nonlinear differential equations, which present
analytical challenges in explaining various natural processes, have resulted in the development of
several semi-analytical and iterative numerical methods. Mathematicians, engineers, and physicists
have created new algorithms by leveraging advances in technology for computers and symbolic
programming. Researchers can use these methodologies to present findings from simulations and
analyze a wide range of nonlinear systems [10–14]. Notably, in [15, 16], authors investigated
logistical models in the FC framework, yielding intriguing results. In [17], scientists investigated the
most efficient methods for managing co-existing diabetes and tuberculosis using effective numerical
methods; [18] also provided a thorough examination of general fractional derivatives and their possible
uses, especially when understanding viscoelastic processes. These studies delve into topics like
terahertz wavefront control using metasurfaces, fixed-time tracking control of nonlinear systems,
reconfiguration strategies for formation flying, and the analysis of nonlinear wave equations [19, 20].
Each contribution adds a unique perspective to its respective field, offering insights into novel
phenomena, theoretical frameworks, and practical applications [21, 22]. This compilation of research
highlights the interdisciplinary nature of modern scientific inquiry and underscores the importance of
collaboration and knowledge exchange across different domains [23–25].

Benney proposed the Benney-Lin Equation (BLE) [26] for analyzing the effects of long waves on
liquid films in 1986, and Lin refined it later [27]. This paper focuses on the CBLE [28], incorporating
the probability density function v = v(x, t). The CBLE is a fractional generalization of the BLE,
with conformable fractional derivatives replacing the temporal and spatial classical derivatives. The
following is the mathematical illustration of this model:

Dµ
t v + vDλ

xv + D3λ
xxxv + β(D2λ

xxv + D4λ
xxxxv) + ϑ(D5λ

xxxxxv) = 0. (1.1)

By providing particular values to the pertinent real constants β and ϑ, Eq (1) is transformed into
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the succinct Navier-Stokes equation in a solely dissipative form. This equation has been used to
describe a variety of phenomena, including surface tension in liquid films, patterning of space in
the Belousov-Zhabotinsky reaction, and erratic flame fronts. When certain conditions are satisfied,
the equation translates into the fifth-order Korteweg-de Vries equation, referred to as the standard
Kawahara equation, which provides insight into wave propagation with surface tension in its purely
dispersive form (i.e., µ = λ = 1, β = 0) [29]. Furthermore, the CBLE takes the form of the generalized
Kuramoto-Sivashinsky equation when µ = λ = 1 and ϑ = 0. This dissipative-dispersive equation is
used to explain waves in inclined and vertical falling films, uncertain drift waves in plasma, and tension
between surfaces in liquid films caused by neighboring gas flow. In 1997, Biagioni and Linares [30]
proved the universality of the CBLE’s initial value problem in H s(R) for s ≥ 0 when β = 0. Cui et
al. [31] recently proved the local well-posedness of the Kawahara equation in the range −1 < s < 1 to
0 for β = 0. Furthermore, the CBLE has been studied using a variety of strategies, such as the residual
power series method [32], the reduced differential transform method and the homotopy perturbation
method [33], and the variational iteration method [34].

Researchers have developed a variety of analytical techniques to investigate traveling wave
phenomena in nonlinear PDEs and FPDEs. The Bernoulli sub-equation method [35], Khater method
[36], Kudryashov method [37], sine-Gordon method [38], exp-function method [39], (G′

G )-expansion
method [40], mEDAM method [41, 42], and many others [43–49] are notable examples. Among these
techniques, the mEDAM has proven to be a dependable and efficient method for studying traveling
wave phenomena in nonlinear FPDEs. By assuming a series-based solution, the FPDE is transformed
into a nonlinear ordinary differential equation (NODE), which is then converted into a set of algebraic
equations. In this investigation, the traveling wave, which is a self-sustaining disruption or oscillation
that travels through a medium while maintaining its shape and speed over time, takes center stage. The
primary goal is to investigate traveling wave phenomena in the CBLE via mEDAM by constructing
traveling wave solutions for it [50–54].

2. Methodology materials

2.1. Conformable fractional derivative

It is feasible to arrive at explicit solutions for FPDEs by capitalizing on the advantages of
conformable fractional derivatives over alternative fractional derivative operators. It is noteworthy that
the traveling wave solutions of Eq (1.1) are impossible to deduce using alternative fractional derivative
formulations due to chain rule violations [55, 56]. As a result, conformable fractional derivatives were
added to Eq (1.1), [57] defines the conformable fractional derivative operator of order ν as:

Dν
ηv(η) = lim

γ→0

v(γη1−ν + η) − v(η)
γ

, ν ∈ (0, 1]. (2.1)

In this investigation, the following properties of this derivative are utilized:

Dν
ηη

p = pηp−ν, (2.2)

Dν
η(p1ρ(η) ± p2ψ(η)) = p1Dν

η(ρ(η)) ± p2Dν
η(ψ(η)), (2.3)

Dν
ηχ[ζ(η)] = χ′ζ(ζ(η))Dν

ηζ(η), (2.4)

where ρ(η), ψ(η), χ(η) ζ(η) are arbitrary differentiable functions, whereas p, p1, p2 signify constants.

AIMS Mathematics Volume 9, Issue 5, 11051–11075.



11054

2.2. The working procedure of mEDAM

This section’s goal is to present a general description of the mEDAM. Look into the FPDE in the
following form:

E(v,Dα
t v,Dβ

y1
v,Dγ

y2
v, vDβ

y1
v, . . .) = 0, 0 < α, β, γ ≤ 1, (2.5)

where v = v(t, y1, y2, y3, . . . , yn). In order to solve Eq (2.5), the following steps are followed.
Step 1. Eq (2.5) is first subjected to a variable transformation of the form v(t, y1, y2, y3, ,̇yn) = V(η),
where η denotes a function of t, y1, y2, y3, ,̇yn and may be expressed in a variety of ways. This
transformation converts (2.5) into a NODE with its subsequent structure:

F(V,V ′,VV ′, . . . ) = 0. (2.6)

The primes in (2.6) represent derivatives with regard to η. Equation (2.6) can occasionally be
integrated once or more.

Step 2. Next, we suppose the subsequent closed form solution to (2.6):

V(η) =

N∑
l=0

q j(B(η)) j. (2.7)

Here, q js symbolizes parameters which need to be estimated. Furthermore, B(η) satisfies another
NODE of the form:

B′(η) = d + eB(η) + f (B(η))2, (2.8)

where d, e, f are constants.

Step 3. We obtain a positive integer N (shown in Eq (2.7)) when we look for the homogeneous balance
that exists between the prevailing nonlinear element and the greatest order derivative in Eq (2.6).

Step 4. We next put (2.7) into (2.6) or the equation obtained by integrating (2.6), and finally we put all
the terms of B(η) together in the same order, producing a polynomial in B(η). A system of algebraic
equations is produced for q js and other parameters when the coefficients of the derived polynomial are
all set to zero.

Step 5. Then, Maple is utilized to resolve this system of nonlinear algebraic equations.

Step 6. The traveling wave solutions to Eq (2.5) are found by determining the unknown parameters and
plugging them into Eq (2.7) along with the associate solution B(η) from Eq (2.8). Using the general
solution of Eq (2.8), we can generate the families of traveling wave solutions shown below:

Family. 1: For $ < 0 and f , 0:

B1(η) = −
e

2 f
+

√
−$ tan

(
1
2

√
−$η

)
2 f

,

B2(η) = −
e

2 f
−

√
−$ cot

(
1
2

√
−$η

)
2 f

,

B3(η) = −
e

2 f
+

√
−$

(
tan

(√
−$η

)
+ sec

(√
−$η

))
2 f

,
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B4(η) = −
e

2 f
−

√
−$

(
cot

(√
−$η

)
+ csc

(√
−$η

))
2 f

,

and

B5(η) = −
e

2 f
+

√
−$

(
tan

(
1
4

√
−$η

)
− cot

(
1
4

√
−$η

))
4 f

.

Family. 2: For $ > 0 and f , 0:

B6(η) = −
e

2 f
−

√
$ tanh

(
1
2

√
$η

)
2 f

,

B7(η) = −
e

2 f
−

√
$ coth

(
1
2

√
$η

)
2 f

,

B8(η) = −
e

2 f
−

√
$

(
tanh

(√
$η

)
+ isech

(√
$η

))
2 f

,

B9(η) = −
e

2 f
−

√
$

(
coth

(√
$η

)
+ csch

(√
$η

))
2 f

,

and

B10(η) = −
e

2 f
−

√
$

(
tanh

(
1
4

√
$η

)
− coth

(
1
4

√
$η

))
4 f

.

Family. 3: For d f > 0 and e = 0:

B11(η) =

√
d
f

tan
( √

d fη
)
,

B12(η) = −

√
d
f

cot
( √

d fη
)
,

B13(η) =

√
d
f

(
tan

(
2

√
d fη

)
+ sec

(
2

√
d fη

))
,

B14(η) = −

√
d
f

(
cot

(
2

√
d fη

)
+ csc

(
2

√
d fη

))
,

and

B15(η) =
1
2

√
d
f

(
tan

(
1
2

√
d fη

)
− cot

(
1
2

√
d fη

))
.

Family. 4: For d f < 0 and e = 0:

B16(η) = −

√
−

d
f

tanh
( √
−d fη

)
,
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B17(η) = −

√
−

d
f

coth
( √
−d fη

)
,

B18(η) = −

√
−

d
f

(
tanh

(
2

√
−d fη

)
+ isech

(
2

√
−d fη

))
,

B19(η) = −

√
−

a
c

(
coth

(
2

√
−d fη

)
+ csch

(
2

√
−d fη

))
,

and

B20(η) = −
1
2

√
−

d
f

(
tanh

(
1
2

√
−d fη

)
+ coth

(
1
2

√
−d fη

))
.

Family. 5: For f = d and e = 0:
B21(η) = tan (dη) ,

B22(η) = − cot (dη) ,

B23(η) = tan (2 dη) + sec (2 dη) ,

B24(η) = − cot (2 dη) + csc (2 dη) ,

and

B25(η) =
1
2

tan
(
1
2

dη
)
−

1
2

cot
(
1
2

aη
)
.

Family. 6: For f = −d and e = 0:
B26(η) = − tanh (dη) ,

B27(η) = − coth (dη) ,

B28(η) = − tanh (2 dη) + isech (2 dη) ,

B29(η) = − coth (2 dη) + csch (2 dη) ,

and

B30(η) = −
1
2

tanh
(
1
2

dη
)
−

1
2

coth
(
1
2

dη
)
.

Family. 7: For $ = 0:

B31(η) = −2
d (eη + 2)

e2η
.

Family. 8: For f = 0, e = κ and d = sκ (with s , 0).

B32(η) = eκη − s.

Family. 9: For e = f = 0:
B33(η) = dη.

Family. 10: For e = d = 0:

B34(η) = −
1
fη
.
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Family. 11: For e , 0, f , 0 and d = 0:

B35(η) = −
e

f (cosh (eη) − sinh (eη) + 1)
,

and
B36(η) = −

e (cosh (eη) + sinh (eη))
f (cosh (eη) + sinh (eη) + 1)

.

Family. 12: For e = κ, f = sκ (with s , 0), and d = 0:

B37(η) =
eκη

1 − seκη
.

In the above solutions, $ = e2 − 4d f .

3. Traveling wave solutions

In this section we apply our suggested methods to the CBLE in (1.1) to generate traveling wave
solutions for it. We begin with the transformation

v(x, t) = V(η); η =
xλ

λ
− ω

tµ

µ
, (3.1)

which transforms (1.1) into the following NODE:

− ωV ′ + VV ′ + V ′′′ + β(V ′′ + V ′′′′) + ϑV ′′′′′ = 0, (3.2)

where V has derivatives with respect to η that are denoted by prime(s). Integrating (3.2) with respect
to η and setting the constant of integration to zero yields:

− 2ω + V2 + 2V ′′ + 2β(V ′ + V ′′′) + 2ϑV ′′′′ = 0. (3.3)

Establishing the homogenous balance between V2 V ′′′′ in (3.3) gives N + 4 = 2N, which implies
N = 4. Putting N = 4 in (2.7) gives the following solutions for (3.3):

V(η) =

4∑
l=0

ql(B(η)) j = q0 + q1(B(η)) + q2(B(η))2 + q3(B(η))3 + q4(B(η))4. (3.4)

To generate a system of algebraic equations, we substitute (3.4) in (3.3). Solving the resulting
system using Maple, we get the following three cases of solutions:
Case. 1

q0 =
1680
13

f 2d2

$
, q1 =

3360
13

de f 2

$
, q2 =

1680
13

f 2
(
2 f d + e2

)
$

,

q3 =
3360
13

e f 3

$
, q4 =

1680
13

f 4

$
,ω =

36
13

$,ϑ = −
1

13$
, β = 0.

(3.5)

Case. 2

q0 = −12 f d, q1 = −12 e f , q2 = −12 f 2, q3 = 0, q4 = 0, ω = $,ϑ = 0, β = 0. (3.6)
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By taking into consideration case 1 and using (3.1), (3.4), and the corresponding general solution
of (2.8), we construct the subsequent families of traveling wave solutions:
Family. 1.1: When $ < 0, f , 0,

v1,1(x, t) =
105
13

16 f 2d2 − 8 de2 f + e4 + 2$ 2
(

tan
(

1
2

√
−$η

))2

+$2
(

tan
(

1
2

√
−$η

))4

$
,

(3.7)

v1,2(x, t) =
105
13

16 f 2d2 − 8 de2 f + e4 + 2 e2$ 2
(

cot
(

1
2

√
−$η

))2

+$2
(

cot
(

1
2

√
−$η

))4

$
,

(3.8)

v1,3(x, t) =
1680
13

f 2d2

$
+

3360de f 2

13$

(
−

1
2

e
f

+
1
2

√
−$

(
tan

(√
−$η

)
+ sec

(√
−$η

))
f

)

+
1680
13$

f 2
(
2 f d + e2

)(
−

1
2

e
f

+
1
2

√
−$

(
tan

(√
−$η

)
+ sec

(√
−$η

))
f

)2

+
3360
13$

e f 3
(
−

1
2

e
f

+
1
2

√
−$

(
tan

(√
−$η

)
+ sec

(√
−$η

))
f

)3

+
1680
13$

f 4
(
−

1
2

e
f

+
1
2

√
−$

(
tan

(√
−$η

)
+ sec

(√
−$η

))
f

)4

,

(3.9)

v1,4(x, t) =
1680
13

f 2d2

$
+

3360de f 2

13$

(
−

1
2

e
f
−

1
2

√
−$

(
cot

(√
−$η

)
+ csc

(√
−$η

))
f

)

+
1680
13$

f 2
(
2 f d + e2

)(
−

1
2

e
f
−

1
2

√
−$

(
cot

(√
−$η

)
+ csc

(√
−$η

))
f

)2

+
3360
13$

e f 3
(
−

1
2

e
f
−

1
2

√
−$

(
cot

(√
−$η

)
+ csc

(√
−$η

))
f

)3

+
1680
13$

f 4
(
−

1
2

e
f
−

1
2

√
−$

(
cot

(√
−$η

)
+ csc

(√
−$η

))
f

)4

,

(3.10)
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and

v1,5(x, t) =
1680
13

f 2d2

$
+

3360de f 2

13$

(
−

1
2

e
f

+
1
4

√
−$

(
tan

(
1
4

√
−$η

)
− cot

(
1/4
√
−$η

))
f

)

+
1680
13$

f 2
(
2 f d + e2

)(
−

1
2

e
f

+
1
4

√
−$

(
tan

(
1
4

√
−$η

)
− cot

(
1
4

√
−$η

))
f

)2

+
3360
13$

e f 3
(
−

1
2

e
f

+
1
4

√
−$

(
tan

(
1
4

√
−$η

)
− cot

(
1
4

√
−$η

))
f

)3

+
1680
13$

f 4
(
−

1
2

e
f

+
1
4

√
−$

(
tan

(
1
4

√
−$η

)
− cot

(
1
4

√
−$η

))
f

)4

.

(3.11)

Family. 1.2: When $ > 0, f , 0,

v1,6(x, t) =
105
13

16 f 2d2 − 8 de2 f + e4 − 2 e2$ 2
(

tanh
(

1
2

√
$η

))2

+$2
(

tanh
(

1
2

√
$η

))4

$
,

(3.12)

v1,7(x, t) =
105
13

16 f 2d2 − 8 de2 f + e4 − 2 e2$ 2
(

coth
(

1
2

√
$η

))2

+$2
(

coth
(

1
2

√
$η

))4

$
,

(3.13)

v1,8(x, t) =
1680
13

f 2d2

$
+

3360de f 2

13$

(
−

1
2

e
f
−

1
2

√
$

(
tanh

(
√
$η

)
+ isech

(
√
$η

))
f

)

+
1680
13$

f 2
(
2 f d + e2

)(
−

1
2

e
f
−

1
2

√
$

(
tanh

(
√
$η

)
+ isech

(
√
$η

))
f

)2

+
3360
13$

e f 3
(
−

1
2

e
f
−

1
2

√
$

(
tanh

(
√
$η

)
+ isech

(
√
$η

))
f

)3

+
1680
13$

f 4
(
−

1
2

e
f
−

1
2

√
$

(
tanh

(
√
$η

)
+ isech

(
√
$η

))
f

)4

,

(3.14)
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v1,9(x, t) =
1680
13

f 2d2

$
+

3360de f 2

13$

(
−

1
2

e
f
−

1
2

√
$

(
coth

(
√
$η

)
+ csch

(
√
$η

))
f

)

+
1680
13$

f 2
(
2 f d + e2

)(
−

1
2

e
f
−

1
2

√
$

(
coth

(
√
$η

)
+ csch

(
√
$η

))
f

)2

+
3360
13$

e f 3
(
−

1
2

e
f
−

1
2

√
$

(
coth

(
√
$η

)
+ csch

(
√
$η

))
f

)3

+
1680
13$

f 4
(
−

1
2

e
f
−

1
2

√
$

(
coth

(
√
$η

)
+ csch

(
√
$η

))
f

)4

,

(3.15)

and

v1,10(x, t) =
1680
13

f 2d2

$
+

3360de f 2

13$

(
−

1
2

e
f
−

1
4

√
$

(
tanh

(
1
4

√
$η

)
− coth

(
1/4
√
$η

))
f

)

+
1680
13$

f 2
(
2 f d + e2

)(
−

1
2

e
f
−

1
4

√
$

(
tanh

(
1
4

√
$η

)
− coth

(
1/4
√
$η

))
f

)2

+
3360
13$

e f 3
(
−

1
2

e
f
−

1
4

√
$

(
tanh

(
1
4

√
$η

)
− coth

(
1
4

√
$η

))
f

)3

+
1680
13$

f 4
(
−

1
2

e
f
−

1
4

√
$

(
tanh

(
1
4

√
$η

)
− coth

(
1
4

√
$η

))
f

)4

.

(3.16)

Family. 1.3: When d f > 0 and e = 0,

v1,11(x, t) =
1680
13

f 2d2

$
+

3360
13

f 2d2
(

tan
( √

f dη
))2

$
+

1680
13

f 2d2
(

tan
( √

f dη
))4

$
,

(3.17)

v1,12(x, t) =
1680
13

f 2d2

$
+

3360
13

f 2d2
(

cot
( √

f dη
))2

$
+

1680
13

f 2d2
(

cot
( √

f dη
))4

$
,

(3.18)

v1,13(x, t) =
3360
13

f 2d2
(

tan
(
2

√
f dη

)
+ sec

(
2

√
f dη

))2

$

+
1680
13

f 2d2
(

tan
(
2

√
f dη

)
+ sec

(
2

√
f dη

))4

$
+

1680
13

f 2d2

$
,

(3.19)
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v1,14(x, t) =
3360
13

f 2d2
(

cot
(
2

√
f dη

)
+ csc

(
2

√
f dη

))2

$

+
1680
13

f 2d2
(

cot
(
2

√
f dη

)
+ csc

(
2

√
f dη

))4

$
+

1680
13

f 2d2

$
,

(3.20)

and

v1,15(x, t) =
840
13

f 2d2
(

tan
(

1
2

√
f dη

)
− cot

(
1
2

√
f dη

))2

$

+
105
13

f 2d2
(

tan
(

1
2

√
f dη

)
− cot

(
1
2

√
f dη

))4

$
+

1680
13

f 2d2

$
.

(3.21)

Family. 1.4: When d f < 0 and e = 0,

v1,16(x, t) =
1680
13

f 2d2

$
−

3360
13

f 2d2
(

tanh
( √
− f dη

))2

$
+

1680
13

f 2d2
(

tanh
( √
− f dη

))4

$
,

(3.22)

v1,17(x, t) =
1680
13

f 2d2

$
−

3360
13

f 2d2
(

coth
( √
− f dη

))2

$
+

1680
13

f 2d2
(

coth
( √
− f dη

))4

$
,

(3.23)

v1,18(x, t) = −
3360
13

f 2d2
(

tanh
(
2

√
− f dη

)
+ isech

(
2

√
− f dη

))2

$

+
1680
13

f 2d2
(

tanh
(
2

√
− f dη

)
+ isech

(
2

√
− f dη

))4

$
+

1680
13

f 2d2

$
,

(3.24)

v1,19(x, t) = −
3360
13

f 2d2
(

coth
(
2

√
− f dη

)
+ csch

(
2

√
− f dη

))2

$

+
1680
13

f 2d2
(

coth
(
2

√
− f dη

)
+ csch

(
2

√
− f dη

))4

$
+

1680
13

f 2d2

$
,

(3.25)

and

v1,20(x, t) = −
840
13

f 2d2
(

tanh
(

1
2

√
− f dη

)
+ coth

(
1
2

√
− f dη

))2

$

+
105
13

f 2d2
(

tanh
(

1
2

√
− f dη

)
+ coth

(
1
2

√
− f dη

))4

$
+

1680
13

f 2d2

$
.

(3.26)
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Family. 1.5: When f = d and e = 0,

v1,21(x, t) =
1680
13

d4

$
+

3360
13

d4
(

tan
(
dη

))2

$
+

1680
13

d4
(

tan
(
dη

))4

$
,

(3.27)

v1,22(x, t) =
1680
13

d4

$
+

3360
13

d4
(

cot
(
dη

))2

$
+

1680
13

d4
(

cot
(
dη

))4

$
,

(3.28)

v1,23(x, t) =
3360

13

d4
(

tan
(
2 dη

)
+ sec

(
2 dη

))2

$

+
1680

13

d4
(

tan
(
2 dη

)
+ sec

(
2 dη

))4

$
+

1680
13

d4

$
,

(3.29)

v1,24(x, t) =
3360

13

d4
(
− cot

(
2 dη

)
− csc

(
2 dη

))2

$

+
1680

13

d4
(
− cot

(
2 dη

)
− csc

(
2 dη

))4

$
+

1680
13

d4

$
,

(3.30)

and

v1,25(x, t) =
3360
13

d4
(

1
2 tan

(
1
2 dη

)
− 1

2 cot
(

1
2 dη

))2

$

+
1680
13

d4
(

1
2 tan

(
1
2 dη

)
− 1

2 cot
(

1
2 dη

))4

$
+

1680
13

d4

$
.

(3.31)

Family. 1.6: When f = −d and e = 0,

v1,26(x, t) =
1680
13

d4

$
−

3360
13

d4
(

tanh
(
dη

))2

$
+

1680
13

d4
(

tanh
(
dη

))4

$
,

(3.32)

v1,27(x, t) =
1680
13

d4

$
−

3360
13

d4
(

coth
(
dη

))2

$
+

1680
13

d4
(

coth
(
dη

))4

$
,

(3.33)

v1,28(x, t) = −
3360

13

d4
(
− tanh

(
2 dη

)
− isech

(
2 dη

))2

$

+
1680
13

d4
(
− tanh

(
2 dη

)
− isech

(
2 dη

))4

$
+

1680
13

d4

$
,

(3.34)
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v1,29(x, t) = −
3360

13

d4
(
− coth

(
2 dη

)
− csch

(
2 dη

))2

$

+
1680
13

d4
(
− coth

(
2 dη

)
− csch

(
2 dη

))4

$
+

1680
13

d4

$
,

(3.35)

and

v1,30(x, t) = −
3360
13

d4
(
− 1

2 tanh
(

1
2 dη

)
− 1

2 coth
(

1
2 dη

))2

$

+
1680

13

d4
(
− 1

2 tanh
(

1
2 dη

)
− 1/2 coth

(
1
2 dη

))4

$
+

1680
13

d4

$
.

(3.36)

Family. 1.7: When d = 0, e , 0, and e , 0,

v1,31(x, t) =
1680

13

e4
(
2
(

cosh
(
eη

))2

− 2 cosh
(
eη

)
sinh

(
eη

)
− 1

)
$

(
cosh

(
eη

)
− sinh

(
eη

)
+ 1

)4 , (3.37)

and

v1,32(x, t) =
1680
13

e4
(

cosh
(
eη

)
+ sinh

(
eη

))2

$
(

cosh
(
eη

)
+ sinh

(
eη

)
+ 1

)4 . (3.38)

Family. 1.8: When e = κ, f = sκ(s , 0), and d = 0,

v1,33(x, t) =
1680
13

s2κ4e2 κ ηp2

$
(
− p + seκ η

)4 . (3.39)

η = xλ
λ
− ( 36

13 $) tµ
µ

.
By taking into consideration case 2 and using (3.1), (3.4), and the corresponding general solution

of (2.8), we construct the subsequent families of traveling wave solutions:
Family. 2.1: When $ < 0, f , 0,

v2,1(x, t) = −12 e f
(
−

1
2

e
f

+
1
2

√
−$ tan

(
1
2

√
−$η

)
f

)

− 12 f 2
(
−

1
2

e
f

+
1
2

√
−$ tan

(
1
2

√
−$η

)
f

)2

− 12 f d,

(3.40)
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v2,2(x, t) = −12 e f
(
−

1
2

e
f
−

1
2

√
−$ cot

(
1
2

√
−$η

)
f

)

− 12 f 2
(
−

1
2

e
f
−

1
2

√
−$ cot

(
1
2

√
−$η

)
f

)2

− 12 f d,

(3.41)

v2,3(x, t) = −12 e f
(
−

1
2

e
f

+
1
2

√
−$

(
tan

(√
−$η

)
+ sec

(√
−$η

))
f

)

− 12 f 2
(
−

1
2

e
f

+
1
2

√
−$

(
tan

(√
−$η

)
+ sec

(√
−$η

))
f

)2

− 12 f d,

(3.42)

v2,4(x, t) = −12 e f
(
−

1
2

e
f
−

1
2

√
−$

(
cot

(√
−$η

)
+ csc

(√
−$η

))
f

)

− 12 f 2
(
−

1
2

e
f
−

1
2

√
−$

(
cot

(√
−$η

)
+ csc

(√
−$η

))
f

)2

− 12 f d,

(3.43)

and

v2,5(x, t) = −12 e f
(
−

1
2

e
f

+
1
4

√
−$

(
tan

(
1
4

√
−$η

)
− cot

(
1
4

√
−$η

))
f

)

− 12 f 2
(
−

1
2

e
f

+
1
4

√
−$

(
tan

(
1
4

√
−$η

)
− cot

(
1
4

√
−$η

))
f

)2

− 12 f d.

(3.44)

Family. 2.2: When $ > 0, f , 0,

v2,6(x, t) = −12 e f
(
−

1
2

e
f
−

1
2

√
$ tanh

(
1
2

√
$η

)
f

)

− 12 f 2
(
−

1
2

e
f
−

1
2

√
$ tanh

(
1
2

√
$η

)
f

)2

− 12 f d,

(3.45)

v2,7(x, t) = −12 e f
(
−

1
2

e
f
−

1
2

√
$ coth

(
1
2

√
$η

)
f

)

− 12 f 2
(
−

1
2

e
f
−

1
2

√
$ coth

(
1
2

√
$η

)
f

)2

− 12 f d,

(3.46)

AIMS Mathematics Volume 9, Issue 5, 11051–11075.



11065

v2,8(x, t) = −12 e f
(
−

1
2

e
f
−

1
2

√
$

(
tanh

(
√
$η

)
+ isech

(
√
$η

))
f

)

− 12 f 2
(
−

1
2

e
f
−

1
2

√
$

(
tanh

(
√
$η

)
+ isech

(
√
$η

))
f

)2

− 12 f d,

(3.47)

v2,9(x, t) = −12 e f
(
−

1
2

e
f
−

1
2

√
$

(
coth

(
√
$η

)
+ csch

(
√
$η

))
f

)

− 12 f 2
(
−

1
2

e
f
−

1
2

√
$

(
coth

(
√
$η

)
+ csch

(
√
$η

))
f

)2

− 12 f d,

(3.48)

and

v2,10(x, t) = −12 e f
(
−

1
2

e
f
−

1
4

√
$

(
tanh

(
1
4

√
$η

)
− coth

(
1
4

√
$η

))
f

)

− 12 f 2
(
−

1
2

e
f
−

1
4

√
$

(
tanh

(
1
4

√
$η

)
− coth

(
1
4

√
$η

))
f

)2

− 12 f d.

(3.49)

Family. 2.3: When d f > 0 and e = 0,

v2,11(x, t) = −12 f d − 12 f d
(

tan
( √

f dη
))2

, (3.50)

v2,12(x, t) = −12 f d − 12 f d
(

cot
( √

f dη
))2

, (3.51)

v2,13(x, t) = −12 f d − 12 f d
(

tan
(
2

√
f dη

)
+ sec

(
2

√
f dη

))2

, (3.52)

v2,14(x, t) = −12 f d − 12 f d
(

cot
(
2

√
f dη

)
+ csc

(
2

√
f dη

))2

, (3.53)

and

v2,15(x, t) = −12 f d − 3 f d
(

tan
(1
2

√
f dη

)
− cot

(1
2

√
f dη

))2

. (3.54)

Family. 2.4: When d f < 0 and e = 0,

v2,16(x, t) = −12 f d + 12 f d
(

tanh
( √
− f dη

))2

, (3.55)
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v2,17(x, t) = −12 f d + 12 f d
(

coth
( √
− f dη

))2

, (3.56)

v2,18(x, t) = −12 f d + 12 f d
(

tanh
(
2

√
− f dη

)
+ isech

(
2

√
− f dη

))2

, (3.57)

v2,19(x, t) = −12 f d + 12 f d
(

coth
(
2

√
− f dη

)
+ csch

(
2

√
− f dη

))2

, (3.58)

and

v2,20(x, t) = −12 f d + 3 f d
(

tanh
(1
2

√
− f dη

)
+ coth

(1
2

√
− f dη

))2

. (3.59)

Family. 2.5: When f = d and e = 0,

v2,21(x, t) = −12 d2 − 12 d2
(

tan
(
dη

))2

, (3.60)

v2,22(x, t) = −12 d2 − 12 d2
(

cot
(
dη

))2

, (3.61)

v2,23(x, t) = −12 d2 − 12 d2
(

tan
(
2 dη

)
+ sec

(
2 dη

))2

, (3.62)

v2,24(x, t) = −12 d2 − 12 d2
(
− cot

(
2 dη

)
− csc

(
2 dη

))2

, (3.63)

and

v2,25(x, t) = −12 d2 − 12 d2
(1
2

tan
(1
2

dη
)
−

1
2

cot
(1
2

dη
))2

. (3.64)

Family. 2.6: When f = −d and e = 0,

v2,26(x, t) = 12 d2 − 12 d2
(

tanh
(
dη

))2

, (3.65)

v2,27(x, t) = 12 d2 − 12 d2
(

coth
(
dη

))2

, (3.66)

v2,28(x, t) = 12 d2 − 12 d2
(
− tanh

(
2 dη

)
− isech

(
2 dη

))2

, (3.67)

v2,29(x, t) = 12 d2 − 12 d2
(
− coth

(
2 dη

)
− csch

(
2 dη

))2

, (3.68)
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and

v2,30(x, t) = 12 d2 − 12 d2
(
−

1
2

tanh
(1
2

dη
)
−

1
2

coth
(1
2

dη
))2

. (3.69)

Family. 2.7: When $ = 0,

v2,31(x, t) = −12 d f + 24
f d

(
eη + 2

)
eη

− 48
f 2

(
d
(
eη + 2

))2

e4η2 .
(3.70)

Family. 2.8: When e = d = 0,

v2,32(x, t) = −12 η−2. (3.71)

Family. 2.9: When d = 0, e , 0, and e , 0,

v2,33(x, t) = 12
e2

(
cosh

(
eη

)
− sinh

(
eη

))
(

cosh
(
eη

)
− sinh

(
eη

)
+ 1

)2 , (3.72)

and

v2,34(x, t) = 12
e2

(
cosh

(
eη

)
+ sinh

(
eη

))
(

cosh
(
eη

)
+ sinh

(
eη

)
+ 1

)2 . (3.73)

Family. 2.10: When e = κ, f = sκ(s , 0), and d = 0,

v2,35(x, t) = −12
κ2seκ η(
− 1 + seκ η

)2 . (3.74)

η = xλ
λ
−$ tµ

µ
.

4. Discussion and graphs

The various wave patterns found in the examined models are displayed in this section. The used
fractional derivative operator, i.e., conformable derivative, and the proposed mEDAM allowed us to
extract and render these wave structures in three different formats: two dimensions, three dimensions,
and contour representations. These depictions comprise bell-shaped, periodic, kink, and shock
propagating wave solutions. Precise choices of parameters produce displays that are both aesthetically
pleasing and instructive. Interestingly, the study’s results are distinct; to the greatest extent of our
knowing, this technique’s findings have never been used in the published literature to address CBLE.
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Shock waves are fast, high-energy interruptions that signal abrupt, significant shifts in a medium’s
temperature, pressure, and density. They are commonly associated with supersonic flows. Kink waves,
which are characterized by compression or twisting as they travel across a medium, are indicative of
regional deformities or twists in a liquid film. Periodic waves exhibit recurrent oscillations in a steady,
regular pattern over time. Like a curve with a bell, the bell-shaped wave might show lone events or
irregularities that affect the liquid film’s behaviour. Understanding these wave dynamics in liquid
layers is crucial for surface science, material engineering, and fluid mechanics applications. Periodic
waves in a liquid film show regular fluctuations, kink waveforms show localized deformations, and
shock waves might show sudden disruptions or pressure changes. Bell-shaped lone waves might
represent anomalies or isolated incidents that have an impact on the plot of the film.

The proposed mEDAM has the advantage of being simple to use, as it does not require iterative
processes or linearization. Its ability to provide a larger range of families of propagating wave
solutions, particularly soliton solutions in the shapes of four different function types (trigonometric,
hyperbolic, rational, and exponential), makes this a valuable and significant feature that enhances
comprehension of the fundamental structures in mathematical simulations. Furthermore, by giving
specific values to the free variables associated with it, our technique enables the acquisition of
outcomes using other techniques in this niche, including the tanh-coth method, F-expansion approach,
sub-equation technique, and (G’/G)-expansion approach. As a consequence, our study shows
its breadth and comprehensiveness by serving as a generalization of results produced by other
methodologies. It is crucial to remember that the approach encounters difficulties when the highest
derivative terms do not homogeneously balance with the largest nonlinear component. This poses
a challenge to these approaches’ basic technique of creating a homogeneous system of nonlinear
algebraic equations.

Figure 1. The 3D contour plots of periodic traveling wave v1,1 in (3.7) are plotted with
d = 5, e = 1, f = 2, λ = 1, µ = 1. The 2D graph is constructed simultaneously for t = 0. A
periodic waveform is a type of wave which recurs frequently throughout time or space.
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Figure 2. The 3D contour plots of kink traveling wave v1,17 in (3.23) are plotted with d =

3, e = 0, f = −3, λ = 0.3, µ = 0.3. The 2D graph is constructed simultaneously for t = 10. A
kink wave is a localized disruption or interruption in a wave’s structure that exhibits a sudden
shift in amplitude in either direction.

Figure 3. The 3D contour plots of shock traveling wave v1,33 in (3.38) are plotted with
d = 0, e = 10, f = 20, s = 2, κ = 10, λ = 0.9, µ = 1, p = 1. The 2D graph is constructed
simultaneously for t = 0. A shock wave is an abrupt, powerful disruption in a medium that
is typified by a sharp rise in density, temperature, and pressure.
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Figure 4. The 3D contour plots of bell-shaped kink traveling wave v2,16 in (3.55) are plotted
with d = −3, e = 0, f = 12, λ = 1, µ = 1. The 2D graph is constructed simultaneously for
t = 0. A kink waveform with a characteristic bell-shaped pattern that exhibits symmetrical
and smooth curve shifts is known as a bell-shaped kink.

Figure 5. The 3D contour plots of singular kink traveling wave v2,29 in (3.68) are plotted
with d = −6, e = 0, f = 6, λ = 0.9, µ = 0.7. The 2D graph is constructed simultaneously for
t = 1. A singular kink is a special kind of kink wave that shows non-smooth behavior and
extremely high energy concentration at one location.
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Figure 6. The 3D contour plots of double shock traveling wave v2,30 in (3.69) are plotted
with d = −7, e = 0, f = 7, λ = 1, µ = 0.7. The 2D graph is constructed simultaneously for
t = 0. A double shock is a profile of two separate shock waves traveling across a medium in
an intricate wave structure.

Figure 7. The 3D contour plots of kink traveling wave v2,33 in (3.72) are plotted with d =

0, e = 5, f = 8, λ = 0.9, µ = 0.7. The 2D graph is constructed simultaneously for t = 0. A
localized rupture or break in the wave’s structure that shows an abrupt change in amplitude
in either direction is called a kink wave.

5. Conclusions

In the present research, the propagating wave solutions’ families for the CBLE have been developed
using the strategic mEDAM. By producing a greater variety of traveling wave solutions in the form
of rational, exponential, hyperbolic, and trigonometric functions, which offer a more comprehensive
comprehension of the system’s underlying dynamics, the proposed approach proved to be beneficial

AIMS Mathematics Volume 9, Issue 5, 11051–11075.
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for nonlinear FPDEs. The traveling wave solutions, comprising periodic, kink, bell-shaped, and shock
solitary waves, provided us with vital new information regarding the dynamics of the CBLE. We are
able to comprehend these traveling wave solutions and the related wave occurrences more fully due
to contour plots and 2D and 3D graphic representations. Overall, this work highlights the need for
additional research and real-world applications in a variety of domains, particularly fluid media and
plasma physics. It is important to keep in mind that the method becomes problematic if the biggest
nonlinear component does not balance homogeneously with the highest derivative terms. This puts
into question the fundamental method of these techniques, which is to generate a homogeneous set of
nonlinear algebraic equations.
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