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Abstract: Let 𝑁 = {𝑛1, 𝑛2, … , 𝑛𝑘} be a finite set of positive numbers. The problem of finding the 

minimal number of additions required to compute all elements of N starting from 1 (called the addition 

sequence problem) is NP-complete. It is equivalent to finding the minimum number of multiplications 

needed to compute a group exponentiation 𝑔𝑛1 , 𝑔𝑛2 , … , 𝑔𝑛𝑘, where g is an element in a group. This 

paper aims to propose a new metaheuristic algorithm using a simulated annealing strategy to generate 

a short addition sequence. The performance of the proposed algorithm is measured by considering two 

parameters: The size of N and the domain of 𝑛i, 1 ≤ 𝑖 ≤ 𝑘. The proposed algorithm is a new trade-off 

between the length of the generated addition sequence and the average running time of generating 

addition sequences. It sometimes produces longer addition sequences than exact algorithms that are 

slower, and it is slower than suboptimal algorithms that produce longer addition sequences. 
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1. Introduction 

Given a set of numbers 𝑁 = {𝑛1, 𝑛2, … , 𝑛𝑘}  such that 1 < 𝑛1 < 𝑛2 < ⋯ < 𝑛𝑘.  An addition 

sequence [1,2] for the set N, denoted by ASeq(N), is an increasing sequence of numbers 

𝑎𝑠0, 𝑎𝑠1, 𝑎𝑠2, … , 𝑎𝑠𝑙  such that  

(1) 𝑎𝑠0 = 1,  

(2) 𝑎𝑠𝑙 = 𝑛𝑘, 
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(3) 𝑎𝑠𝑖 =  𝑎𝑠𝑗 +  𝑎𝑠ℎ , 0 ≤ 𝑗, ℎ ≤ 𝑖 − 1, 

(4) 𝑁 ⊆ {𝑎𝑠0, 𝑎𝑠1, 𝑎𝑠2, … , 𝑎𝑠𝑙},  i.e., each number 𝑛𝑖  should appear in the sequence 

𝑎𝑠0, 𝑎𝑠1, 𝑎𝑠2, … , 𝑎𝑠𝑙 .  

The length of ASeq(N) is equal to l, and the minimal value of l is denoted by ℓ(𝑁). In the case 

of 𝑘 = 1, the sequence is called addition chain [1,2]. One of the important aspects of generating the 

shortest ASeq(N) is that it is equivalent to the simultaneous evaluation of k power monomials 

𝑔𝑛1 , 𝑔𝑛2 , … , 𝑔𝑛𝑘 

with a minimum number of multiplications. 

For example, let 𝑁 = {53, 163, 203, 363}. The following are two ASeqs with lengths of 15 and 

13, respectively. The first ASeq is: 1, 2=1+1, 3=2+1, 6=3+3, 12=6+6, 13=12+1, 26=13+13, 39=26+13, 

40=39+1, 53=40+13, 106=53+53, 159=106+53, 160=159+1, 163=160+3, 203=163+40, 363=203+160. 

The second ASeq is: 1, 2=1+1, 3=2+1, 5=3+2, 10=5+5, 13=10+3, 20=10+10, 40=20+20, 

53=40+13, 80=40+40, 160=80+80, 163=160+3, 203=163+40, 363=203+160. 

The computation of 𝑔53, 𝑔163, 𝑔203, 𝑔363, using the first sequence is  

𝑔, 𝑔2, 𝑔3, 𝑔6, 𝑔12, 𝑔13, 𝑔26, 𝑔39, 𝑔40, 𝑔53, 𝑔106, 𝑔159, 𝑔160, 𝑔163, 𝑔203, 𝑔363, 

while the computation of the same powers 𝑔53, 𝑔163, 𝑔203, 𝑔363 using the second sequence is 

𝑔, 𝑔2, 𝑔3, 𝑔5, 𝑔10, 𝑔13, 𝑔20, 𝑔40, 𝑔53, 𝑔80, 𝑔160, 𝑔163, 𝑔203, 𝑔363. 

A step i is called  

(1) star if 𝑎𝑠𝑖 =  𝑎𝑠𝑖−1 +  𝑎𝑠ℎ , 0 ≤ ℎ ≤ 𝑖 − 1; and  

(2) non-star if 𝑎𝑠𝑖 =  𝑎𝑠𝑗 +  𝑎𝑠ℎ , 0 ≤ 𝑗, ℎ ≤ 𝑖 − 2. 

In case, 𝑗 = ℎ = 𝑖 − 1, 𝑎𝑠𝑖 = 2𝑎𝑠𝑖−1, the step is called doubling. If all steps in the sequence are 

stars, then the sequence is called a star. If ℓ∗(𝑁) denotes the minimal length of star ASeq (N), then 

we have  

ℓ(𝑁) ≤ ℓ∗(𝑁)        (1) 

Yao [3] showed that: 

ℓ(𝑁) ≤ log 𝑛𝑘 + (𝑐 𝑘) log 𝑛𝑘 log log 𝑛𝑘⁄ ,   (2) 

where 𝑐 = 2 + 4 √log 𝑛𝑘⁄ . 

Bleichenbacher [4] computed the lower bound  

ℓ(𝑁 ∪ {𝑛𝑘+1}) ≥ ℓ(𝑁) + 𝛼 + 1,       (3) 

where 𝑛𝑘+1 >  2𝛼𝑛𝑘, 𝛼 ≥ 0. 

ASeqs have received a lot of consideration among mathematicians and computer scientists for 

the following reasons. The first reason is that one of the fundamental operations, that play a crucial 

function in the efficiency of many public key cryptosystems and protocols, such as RSA [5], is group 

exponentiation (sometimes it is called multi-modular exponentiation [1]), i.e., computing 𝑔𝑛1 ,

𝑔𝑛2 , … , 𝑔𝑛𝑘  simultaneously with a minimal number of operations, where g is an element in a group. 

Designing a fast algorithm for generating a shortest (or short) ASeq increases the efficiency of such 

public key cryptosystems and protocols. 
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The second reason is that ASeqs (including addition chains) are generalized to the following:  

• B-chains [6], where every element in the B-chain has the form 𝑎𝑠𝑖 =  𝑎𝑠𝑗  𝑜 𝑎𝑠ℎ , 0 ≤ 𝑗, ℎ ≤

𝑖 − 1, and the binary operation o belongs to a finite set of binary operations B over the set 

of natural numbers, i.e. 𝑜 ∈ 𝐵 = {+, −,∗,÷}. Guzmán-Trampe et. al. [7] proposed a method 

for generating addition-subtraction (i.e., 𝐵 = {+, −}) sequence for the Kachisa–Schaefer–

Scott family of pairing-friendly elliptic curves.  

• Vectorial addition chain [8, 9]: it is a sequence of k-dimensional vectors of nonnegative 

integers 𝑣𝑖 , −𝑘 + 1 ≤ 𝑖 ≤ 𝑙 , such that (1) 𝑣−𝑘+1 = [1,0,0 … ,0,0] , 𝑣−𝑘+2 =
[0,1,0 … ,0,0] , ,, 𝑣0 = [0,0,0 … ,0,1] ; (2) 𝑣𝑖 = 𝑣𝑗 +  𝑣ℎ, 1 ≤ 𝑖 ≤ 𝑙 , −𝑘 + 1 ≤ 𝑗, ℎ ≤ 𝑖 −

1 ; (3)  𝑣𝑙 = [𝑛1, 𝑛2, … , 𝑛𝑘].  Finding a shortest vectorial addition chain is equivalent to 

evaluating multi-exponentiation, i.e., the product ∏ 𝑔𝑖
𝑛𝑖𝑘

𝑖=1  with the minimal number of 

multiplications. 

The third reason for the importance of ASeq is that in Internet of Things, IoT, devices with limited 

resources have a problem when they perform some public-key primitives, such as decryption and 

signature which involve modular exponentiation, because most public-key primitives are (i) time-

consuming compared with symmetric-key cryptosystems; and (ii) using private information. One of 

the common solutions to this problem is to use what is called “server aided secret computation 

protocols,” denoted by SASCP [10–12], or sometimes it is called outsourcing protocols [13]. In such 

protocols, devices with limited power and resources can execute public-key primitives efficiently with 

the aid of an untrusted powerful server without revealing private information. Another and similar 

solution to the problem is to define a delegation protocol [14–16]. This is a protocol that satisfies two 

security requirements: (i) Privacy, which prevents passive attackers from recovering private 

information, and (ii) verifiability, which prevents an untrusted server from forcing the devices to accept 

a false value as the outcome of the delegated computation.  

The main challenge of finding a shortest ASeq is that it is NP-complete [9]. Additionally, when 

the size of N is large and the size of exponents is large, the running time for finding a shortest ASeq is 

very large. On the other side, designing a suboptimal algorithm generates ASeq with a long length. 

Therefore, designing a fast algorithm for generating a short (not necessarily shortest) ASeq is 

interesting using metaheuristics techniques, especially a simulated annealing strategy.  

A simulated annealing (SA) algorithm [17] is an iterative metaheuristic algorithm used to solve 

optimization problems. It was proposed as an adaptation of the Metropolis method to simulate the 

thermal moves of molecules at a fixed temperature T. 

A SA algorithm starts with the initial state (solution) 𝑆 and sets the current state to S. Then, it 

randomly generates a new state 𝑆′ from the neighbors of the current state S and decides whether to 

accept 𝑆′  or not based on the probability function. If 𝑆′  is accepted, then S is replaced by 𝑆′. 

Otherwise, a random real number 𝛼 is generated and if 𝛼 is less than the value of the probability 

function then the generated state 𝑆′ is accepted. These steps are repeated based on the number of 

metropolis cycles m for a fixed temperature. Then, the algorithm updates the temperature and repeats 

this process until it reaches the maximum number of annealing iterations.  

In this paper, we propose a new metaheuristic algorithm based on a simulated annealing strategy 

to find a short ASeq for the set N. The proposed simulated annealing algorithm generates an addition 

sequence with lengths shorter than the lengths generated by the previous suboptimal algorithms. It also 

shows that the execution time of the proposed algorithm is significantly faster than the exact algorithm 

that generates shortest addition sequences.  Thus, the proposed algorithm is a new trade-off between 

the size of the generated ASeq and the average running time of generating ASeq. 
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The organization of the remainder of this paper is as follows. Section 2 includes the previous 

works of ASeq. In Section 3, the outlines and details of the proposed algorithm are given. Section 4 

describes the implementation of three algorithms (the exact, a fast suboptimal, and the proposed 

algorithms). This section includes the dataset used in the experiments and an analysis of the 

experimental results for the three algorithms. Finally, Section 5 includes the conclusion of this paper 

and future works. 

2. Related work 

ASeq Algorithms are divided into two categories. The first category is to find a shortest ASeq. In 

fact, there are a few papers that discuss a generation of shortest ASeqs. Bleichenbacher [4] suggested 

an algorithm to find a shortest ASeq(N) with length r provided that the algorithm previously computed 

ℓ(𝑦) for all numbers 𝑦 < 𝑚𝑎𝑥𝑖𝑚𝑢𝑚(𝑁), and ℓ(𝑦) < 𝑟. The author used the suggested algorithm 

to find a shortest addition chain up to a certain number.  

The authors in [18] generated a shortest ASeq(N) based on a branch and bound search algorithm. 

The algorithm begins by calculating a lower bound, Eq (3), and looking for an addition chain for the 

first element 𝑛1 in the set N. Then, it extends the chain to an addition sequence for {𝑛1, 𝑛2}, and so 

on until it generates ASeq(N). The algorithm uses different strategies to speed up the generation as 

follows. (i) Using bounding sequences to prune some branches in the search tree which cannot lead to 

a shortest ASeq. (ii) Determining an upper bound of ℓ({𝑛1, 𝑛2, … , 𝑛𝑖}), 1 ≤ 𝑖 ≤ 𝑘. (iii) Using some 

sufficient conditions for star steps to skip the generation of non-star steps. (vi) If no ASeq(N) of length 

l is found, then the algorithm increases l by one and repeats the process until either l is equal to the 

length of the generated short ASeq produced by continued fraction (CF) method [19] or the algorithm 

finds a shortest ASeq. Recently, the authors in [20,21] used multicore systems to improve the 

generation of a shortest ASeq. 

The second category is to find a short ASeq. Yao [3] presented an algorithm to compute 𝑔𝑛1 ,

𝑔𝑛2 , … , 𝑔𝑛𝑘  in 𝑂(lg 𝑛𝑘 + 𝑐 ∑ (log 𝑛𝑖 𝑙𝑜𝑔𝑙𝑜𝑔(𝑛𝑖 + 2))⁄𝑘
𝑖=1   multiplications for some constant c. Bos 

and Coster [22] proposed four methods to generate a short ASeq and used them in the window method 

[2,22]. Experimentally, for 𝑛𝑘 ≤ 1000, the estimated upper bound of the lengths for the generated 

ASeqs by the four methods is  

ℓ({𝑛1, 𝑛2, … , 𝑛𝑘}) ≤
3

2
log 𝑛𝑘 + 𝑘 + 1,      (4) 

Bergeron et al. [19] proposed an efficient method based on CF. The suggested method can be 

considered an extension and unifying approach of some previously known methods (such as binary 

and k-ary methods [1,2]) for generating a short addition chain, i.e., ASeq with k=1. Recall that the CF 

expansion of 𝑛 𝑑⁄  is  

𝑛

𝑑
= 𝑐𝑡 +

1

𝑐𝑡−1+
1  

⋱                      

    +
1

𝑐2+
1

𝑐1
  

      (5) 

where d is an integer in the interval [2, 𝑛 − 1]. 

Bergeron et al. [19] suggested different strategies for choosing the value of d. One of the efficient 
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strategies that produces a good suboptimal ASeq is the dichotomic strategy, where  

𝑑 = ⌊
𝑛

2⌈⌊𝑙𝑜𝑔2𝑛⌋/2⌉⌋         (6) 

Let 𝑁′ = {𝑛k, 𝑛k−1, … , 𝑛1}, and ℒ(𝑁′) denotes the length of the ASeq(𝑁′) generated by CF using 

the dichotomic strategy. Then  

ℒ(𝑁′) = {

ℒ(𝑁′ ∖ {𝑛𝑘}) + ℓ(𝑞),                𝑖𝑓 𝑟𝑒𝑚 = 0;

ℒ(𝑁′ ∖ {𝑛𝑘}) + ℓ(𝑞) + 1,            𝑖𝑓 𝑟𝑒𝑚 = 1,2

ℒ(𝑁′ ∪ {𝑟𝑒𝑚} ∖ {𝑛𝑘}) + ℓ(𝑞) + 1,       otherwise

     (7) 

where 𝑛𝑘 = 𝑞 𝑛𝑘−1 + 𝑟𝑒𝑚, 𝑟𝑒𝑚 < 𝑛𝑘−1 and 

ℓ(𝑛) = {

𝛼,          𝑖𝑓 𝑛 = 2𝛼;
3,          𝑖𝑓 𝑛 = 3;

ℒ({𝑛, 𝑑}),     otherwise
       (8) 

where d is defined by Eq (6). 

Enge et. al. [23] proposed a special method to construct a short ASeq to find the first k nonzero 

terms in the sparse q-series belonging to the Dedekind eta function or the Jacobi theta constants. Nadia 

and Mourelle [24] used the Ant Colony strategy to find a short ASeq. They tested the strategy on a 

small set of numbers. Abbas and Gustafsson [25] proposed a method based on integer linear 

programming to generate a short ASeq for a small set of numbers. 

However, an extensive study is lacking to identify the difference in length between (1) the exact 

algorithm that generates the shortest ASeqs; and (2) suboptimal algorithms that generate short ASeqs. 

Two important parameters should be considered in the implementation. The first one is the domain of 

the numbers 𝑛𝑖 , 1 ≤ 𝑖 ≤ 𝑘. The other is the cardinality of N. In addition to the length, we compare 

the running times of algorithms. Another lacking direction of research is how to use the SA strategy to 

find a short ASeq. 

3. The proposed method 

This section presents a description of the proposed Simulated Annealing algorithm for Addition 

Sequence, denoted by SAAS. 

Initially, the algorithm starts by generating the initial state, 𝐴𝑆0, using the CF method [19], and 

its energy is equal to the length 𝑙𝐴𝑆0
 of 𝐴𝑆0. Then, the algorithm assigns these two values to the best 

state and the best energy, respectively. After that, the algorithm repeats the following steps based on 

the number of Metropolis cycles, metropolisNo, for a fixed temperature. In each iteration of this loop, 

the algorithm performs the following steps: 

The first step is generating a new state, 𝐴𝑆𝑛𝑒𝑤 , and its energy, 𝑙𝑛𝑒𝑤 . The second step is 

determining whether the algorithm accepts this new state or not. The algorithm accepts the new state 

and its energy, and then assigns these values to the best state and best energy if either of the following 

conditions is true. (1) If the energy of the new state is lower than the energy of the best state. (2) If the 

Boltzmann distribution is greater than a random real number in the range [0,1]. 

After completing the number of Metropolis cycles for a fixed temperature, the algorithm updates 

the temperature using the Kirkpatrick quenching method and repeats this process until it reaches the 
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maximum number of annealing iterations.  

The details of the algorithm steps are as follows. 

Step 1: Generate the initial state, 𝐴𝑆 , using the CF method for the set of exponents 𝑁 =
{𝑛1, 𝑛2, … , 𝑛𝑘}, where 𝐴𝑆 = {𝑎𝑠0, 𝑎𝑠1, 𝑎𝑠2, … , 𝑎𝑠𝑙} such that (1) 𝑎𝑠0 = 1 and 𝑎𝑠1 = 2; (2) ∃ 𝑖, 𝑙𝑖 

s.t. 𝑛𝑖 = 𝑎𝑠𝑙𝑖
 and 1 ≤ 𝑖 ≤ 𝑘; (3) 𝐿 = {𝑙1, 𝑙2, … , 𝑙𝑘} such that 𝑙𝑖 < 𝑙𝑖+1 and 𝑙 = 𝑙𝑘.  

Step 2: Repeat the following metropolisNo times: 

Step 2.1: Generate a random integer number, r, from the interval [0, 𝑘 − 1]. This number will be 

used as a starting point for new neighbor based on the elements of N. 

Step 2.2: Generate a new state, 𝐴𝑆𝑛𝑒𝑤 from the location 𝑙𝑟. If r=0, then the algorithm finds the new 

state from the element 𝑎𝑠1 = 2 of AS. Otherwise, the algorithm finds the new state from 𝑎𝑠𝑙𝑟
= 𝑛𝑟 

to 𝑛𝑘. The process of generating the new elements from 𝑛𝑖 to 𝑛𝑖+1 is based on the following rules. 

• Rule # 1: Doubling the current element, i.e., 𝑎𝑠𝑗+1 = 2 𝑎𝑠𝑗. 

• Rule # 2: Summing the last two elements, i.e., 𝑎𝑠𝑗+1 = 𝑎𝑠𝑗 +  𝑎𝑠𝑗−1. 

• Rule # 3: Summing the last element with any other random element in the sequence, 

𝑎𝑠𝑗+1 = 𝑎𝑠𝑗+𝑎𝑠ℎ, 0 ≤ ℎ < 𝑗. 

This step can be done as follows (Steps 2.2.1–2.2.3). 

Step 2.2.1 (Generate one element in the sequence): If the current goal is 𝑛𝑖+1 and the current ASeq 

is {𝑎𝑠0, 𝑎𝑠1, … , 𝑎𝑠𝑙𝑖
= 𝑛𝑖 , 𝑎𝑠𝑙𝑖+1, … , 𝑎𝑠𝑙𝑖+𝑗}, 𝑗 ≥ 0, then the steps of generating a new element in 

the chain are as follows. 

1. 𝑑 = 𝑛𝑖+1 − 𝑎𝑠𝑙𝑖+𝑗 

2. If 𝑑 = 𝑎𝑠𝑙𝑖+𝑗 then apply Rule # 1 

3. Else if 𝑑 = 𝑎𝑠𝑙𝑖+𝑗−1 then apply Rule # 2 

4.     Else if 𝑑 > 𝑎𝑠𝑙𝑖+𝑗 then  

5.             Generate a random real number 𝛼 ∈ [0,1] 

6.             If 𝛼 ≥ 0.5 then apply Rule # 1 

7.             Else  

8.                Generate a random real number 𝛼 ∈ [0,1] 
9.                If 𝛼 ≥ 0.5 then apply Rule # 2 

10.                Else  

11.                   Generate a random integer number 𝑟 ∈ [0, 𝑙𝑖 + 𝑗 − 2] 

12.                   Apply rule # 3, where h=r. 

13.        Else // 𝑑 < 𝑎𝑠𝑙𝑖+𝑗 

14.           Generate a random integer number 𝑟 ∈ [0, 𝑙𝑖 + 𝑗 − 2] 

15.           Apply Rule # 3, where h=r. 

16.           If the new element is less than or equal to 𝑛𝑖+1 then the element is accepted. 

Otherwise, decrease the value of r and apply rule #3 until the algorithm finds a 

certain value of h such that the new element is less than or equal to 𝑛𝑖+1. 

Step 2.2.2 (Generate all elements between 𝑛𝑖 and 𝑛𝑖+1): Repeat Step 2.2.1 starting from 𝑗 = 0, 

and 𝑎𝑠𝑙𝑖
= 𝑛𝑖 , until the algorithm finds 𝑎𝑠𝑙𝑖+𝑗𝑖

= 𝑛𝑖+1 . In this case, the algorithm updates the 

value of 𝑙𝑖+1 = 𝑙𝑖 + 𝑗𝑖 , 1 ≤ 𝑗𝑖 . 

Step 2.2.3 (Generate the ASeq from 𝑛𝑟 to 𝑛𝑘): Repeat Steps 2.2.1 and 2.2.2 until the algorithm 

generates 𝑛𝑘. Therefore, 

𝐴𝑆𝑛𝑒𝑤 = {𝑎𝑠0, 𝑎𝑠1, … , 𝑛𝑟 = 𝑎𝑠𝑙𝑟
, 𝑎𝑠𝑙𝑟+1

′ , … , 𝑛𝑖+1 = 𝑎𝑠𝑙𝑖+𝑗𝑖

′ , … , 𝑛𝑘 = 𝑎𝑠𝑙𝑘−1+𝑗𝑘−1

′ = 𝑎𝑠𝑗𝑘−1

′ }; 

𝐿𝑛𝑒𝑤 = {𝑙1, 𝑙2, … , 𝑙𝑟 , 𝑙𝑟+1
′ , 𝑙𝑟+2

′ , … , 𝑙𝑘
′ }. 
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Step 3: Test the acceptance of the new state by the following steps. 

1. If 𝑙𝑘
′ < 𝑙 then 𝐴𝑆 = 𝐴𝑆𝑛𝑒𝑤 and 𝑙 = 𝑙𝑘

′  

2. Else generate a random real number 𝛼. 

3.     𝑑𝑒 = 𝑙𝑘
′ − 𝑙 

4.     If 𝑒−𝑑𝑒/𝑇 > 𝛼 then 𝐴𝑆 = 𝐴𝑆𝑛𝑒𝑤 and 𝑙 = 𝑙𝑘
′  

Step 4: Decrease the temperature using Kirkpatrick quenching method: 𝑇 = 𝛾 𝑇, where 𝛾 = 0.99. 

Step 5: Repeat Steps 2, 3, and 4 until the algorithm reaches the maximum number of annealing 

iterations. 

Remarks: 

(1) Each random number is chosen uniformly. 

(2) The two symbols 𝑟, 𝑟′ are used for integer random numbers, while the symbol 𝛼 is used for a 

real random number. 

(3) The time complexity of the proposed algorithm is O (SuccNo * metropolisNo * log nk ), where the 

term log nk represents the running time to generate one ASeq, see Eq (2). 

(4) Figure 1 shows how to generate a random ASeq by applying the three rules for {13, 85, 254}. 

 

 

 

Figure 1. Example of randomly generating a short ASeq for the set {13, 85, 254}. 

Algorithm 1 (SAAS) and Algorithm 2 (ASNeighbours) represent the complete pseudocodes for 

the proposed method. The SAAS algorithm starts with assigning the initial value of temperature to T 

and then generates an initial ASeq using the CFAS method. After that the SAAS algorithm generates 

randomly a new state by calling ASNeighbours algorithm and decides whether to accept this new state 

or not. The ASNeighbours algorithm assigns the ASeq for {𝑛1, 𝑛2, … , 𝑛𝑟} to the new state and then 

generates new elements for the remainder set {𝑛r+1, 𝑛r+2, … , 𝑛𝑘}. 

Algorithm 1: SAAS 

Input: 𝑁 = {𝑛1, 𝑛2, … , 𝑛𝑘}, // a finite set of positive numbers  

𝑇0 // initial temperature 

𝛾 // cooling factor 

succNo // the maximum number of annealing iterations 

metropolisNo // number of Metropolis cycles 

Output: 𝐴𝑆 = {𝑎𝑠0, 𝑎𝑠1, … , 𝑎𝑠𝑙𝑘
} 

1. 𝑇 = 𝑇0 

2. CFAS(𝑁, 𝐴𝑆, 𝐿, 𝑙)                  // 𝐿 = {𝑙1, … , 𝑙𝑟 , … 𝑙𝑘}, 𝑙 = 𝑙𝑘 . 

3. for 𝑠𝑢𝑐 = 0 to 𝑠𝑢𝑐𝑐𝑁𝑜 -1 do 

4.  for 𝑚 = 1 to metropolisNo do 

5.   Generate a random integer number 𝑟 ∈ [0, 𝑘 − 1] 

6.   ASNeighbours(𝐴𝑆, 𝐿, 𝑟, 𝐴𝑆𝑛𝑒𝑤, 𝐿𝑛𝑒𝑤) 

7.   𝑑𝑙 = 𝑙𝑛𝑒𝑤 − 𝑙 

8.   if 𝑑𝑙 < 0 then 

R3(1) d R3(42) R1 R3 (13) R3 (1) R1 R2 

1 2 3 6 12 13 26 39 42 84 85 127 254 

R1 R1 R2 R1 
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9.    𝐴𝑆 = 𝐴𝑆𝑛𝑒𝑤 

10.    𝐿 = 𝐿𝑛𝑒𝑤 

11.    𝑙 = 𝑙𝑛𝑒𝑤 

12.   else 

13.    Generate a random real number 𝛼 ∈ [0,1] 

14.    if 𝑒−𝑑𝑙/𝑇 >  𝛼 then  

15.     𝐴𝑆 = 𝐴𝑆𝑛𝑒𝑤 

16.     𝑙 = 𝑙𝑛𝑒𝑤 

17.     𝐿 = 𝐿𝑛𝑒𝑤 

18.  𝑇 = 𝛾 𝑇 

 

Algorithm 2: ASNeighbours 

Input: 𝐴𝑆 = {𝑎𝑠0, 𝑎𝑠1, … , 𝑎𝑠𝑙𝑘
} // current ASeq 

𝐿 = {𝑙1, … , 𝑙𝑟 , … 𝑙𝑘} // energy of ASeq, i.e., 𝑙𝑖 is the index of 𝑛𝑖 in AS  

𝑟 // start position to generate a new neighbor; 1 ≤ 𝑟 < 𝑘. 

Output: 𝐴𝑆𝑛𝑒𝑤 = {𝑎𝑠0
′ , 𝑎𝑠1

′ , … , 𝑎𝑠
𝑙𝑘

′
′ } , 𝐿𝑛𝑒𝑤 = {𝑙1

′ , 𝑙2
′ , … , 𝑙𝑘

′ }. 

1.  for 𝑖 = 1 to 𝑟 do 

2.  𝑙𝑖
′ = 𝑙𝑖 

3.  for 𝑖 = 0 to 𝑙𝑟 do 

4.  𝑎𝑠𝑖
′ = 𝑎𝑠𝑖 

5.  for 𝑖 = 𝑟 to 𝑘 − 1 do  // from 𝑛𝑖 we generate 𝑛𝑖+1 

6.   𝑗 = 0 

7.   while 𝑎𝑠𝑙𝑖+𝑗
′  ≠ 𝑎𝑠𝑙𝑖+1

 (= 𝑁𝑖+1) do 

8.       𝑑 = 𝑎𝑠𝑙𝑖+1
−  𝑎𝑠𝑙𝑖+𝑗

′  

9.   if 𝑑 = 𝑎𝑠𝑙𝑖+𝑗
′  then 𝑎𝑠𝑙𝑖+𝑗+1

′ = 2 𝑎𝑠𝑙𝑖+𝑗
′  , 𝑗 = 𝑗 + 1 

10.   else if 𝑑 = 𝑎𝑠𝑙𝑖+𝑗−1
′  then 𝑎𝑠𝑙𝑖+𝑗+1

′ = 𝑎𝑠𝑙𝑖+𝑗
′ − 𝑎𝑠𝑙𝑖+𝑗−1

′ , 𝑗 = 𝑗 + 1 

11.     else if 𝑑 > 𝑎𝑠𝑙𝑖+𝑗
′  then 

12.      Generate a random real number 𝛼 ∈ [0,1]. 

13.      if 𝛼 ≥ 0.5 then 𝑎𝑠𝑙𝑖+𝑗+1
′ = 2 𝑎𝑠𝑙𝑖+𝑗

′  , 𝑗 = 𝑗 + 1 

14.      else  

15.       Generate a random real number 𝛼 ∈ [0,1] 

16.        if 𝛼 ≥ 0.5 then 𝑎𝑠𝑙𝑖+𝑗+1
′ = 𝑎𝑠𝑙𝑖+𝑗

′ + 𝑎𝑠𝑙𝑖+𝑗−1
′ , 𝑗 = 𝑗 + 1 

17.        else  

18.         Generate a random integer number 𝑟′ ∈ [0, 𝑙𝑖 + 𝑗 − 2] . 

19.             𝑎𝑠𝑙𝑖+𝑗+1
′ = 𝑎𝑠𝑙𝑖+𝑗

′ + 𝑎𝑠𝑟′
′  , 𝑗 = 𝑗 + 1 

20.    else //𝑑𝑎𝑠 < 𝑎𝑠𝑙𝑖+𝑗 

21.    Generate a random integer number b 𝑟′ ∈ [0, 𝑙𝑖 + 𝑗 − 2] . 

22.    𝑎𝑠𝑙𝑖+𝑗+1
′ = 𝑎𝑠𝑙𝑖+𝑗

′ + 𝑎𝑠𝑟′
′  , 𝑗 = 𝑗 + 1 

23.    while 𝑎𝑠𝑙𝑖+𝑗
′ >  𝑎𝑠𝑙𝑖+1

 do 

24.     𝑟′ = 𝑟′ − 1 

25.     𝑎𝑠𝑙𝑖+𝑗
′ = 𝑎𝑠𝑙𝑖+𝑗−1

′ + 𝑎𝑠𝑟′
′  

26.  𝑙𝑖+1
′ = 𝑖 + 𝑗 
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4. Results and discussions 

This section demonstrates the experimental study and its analysis for measuring the performance of 

the SAAS algorithm compared to the exact and suboptimal algorithms, ExAS and CFAS, respectively. 

The three algorithms were programmed using the C language and run on a machine with a 2.5 

GHz processor and a memory of 16 GB. Also, the three algorithms were compared by measuring the 

execution time in milliseconds and the length of the short/shortest sequence. The section consists of 

two subsections: Data generation and results.  

4.1. Data generation 

The data used in the experimental study is based on two factors. The first factor is the number of 

elements k in the set of exponents 𝑁. The experimental values of k are 2, 4, 6, 8, and 10. The second 

factor is the domain of each exponent in the set N. According to the window method and its variations 

[2,22], the range of exponents is the integer interval [1, 2𝑒 − 1], where e is the window length (of size 

e-bits). Also, according to the performance of the window method, the value of each exponent should 

be odd. The experimental values of e are equal to 7, 8, 9, and 10. The reason for starting the values of 

e with 7, the running times for all compared algorithms are fast when 𝑒 < 7. 

The methodology of generating the dataset is based on fixing the size of the window, i.e., e-bits, 

say e=7, and then generating different sets 𝑁𝑘,𝑒 with lengths k= 2, 4, 6, 8, and 10. For each value of k, 

25 sets of exponents in the range [1, 2𝑒 − 1] are generated. The process of generating different sets of 

exponents is as follows. 

1. Set e to the maximum number of bits in the exponents, i.e., the window size. 

2. Set the set 𝑁0,𝑒 = ∅ and i=2.  

3. While 𝑖 ≤ 𝑘 = 10 do the following 

Construct a new set 𝑁𝑖,𝑒 , by adding two randomly generated odd numbers, in the range 

[1, 2𝑒 − 1],  to the set 𝑁𝑖−2,𝑒, 𝑖. 𝑒., 𝑁𝑖,𝑒 = 𝑁𝑖−2,𝑒 ∪  {the two generated randomly odd 

numbers}. 

4. Set i=i+2. 

5. Make sure that 𝑁𝑖,𝑒 is sorted. 

6. Repeat Steps 2-4, 25 times to generate 25 sets of exponents with at most e-bits. 

7. Repeat Steps 1–5 for different sizes of exponents e=7, 8, 9, and 10. 

The following example illustrates the generation of five sets with different values of k and a fixed 

size of exponent e=8. 

𝑁2,8 = {177, 241}.  
𝑁4,8 = {65, 125, 177, 241}.  
𝑁6,8 = {65, 89, 125, 177, 189, 241}.  
𝑁8,8 = {43, 65, 89, 125, 177, 189, 221, 241}.  
𝑁10,8 = {43, 65, 89, 103, 125, 177, 189, 203, 221, 241}. 

The initial temperature, T0, is equal to the number of instances used, which is equal to 25. The 

value of γ = 0.99. 

4.2. Results 

The results of executing the three algorithms on the generated data in terms of the length of the 
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output are shown in Table 1. The first two columns represent the two factors e and k, while the three 

last columns represent the percentage of differences in the lengths of the output for the following cases: 

(1) ExAS and SAAS algorithms, (2) ExAS and CFAS algorithms, and (3) SAAS and CFAS algorithms. 

Since the exact algorithm always produces the shortest ASeq, the methodology of analyzing the results 

is to compute the number of instances in which the lengths of ASeqs generated by the SAAS and CFAS 

algorithms are longer than the lengths of shortest ASeqs generated by the ExAs algorithm. The 

percentages of these instances represent the third and fourth columns.  Also, Table 1 presents the 

difference between the output of the SAAS and CFAS algorithms, see the last column in Table 1.  

Table 1. Comparison between three algorithms in terms of the length of ASeq. 

  Percentage of cases when 

e k |𝑨𝑺𝑺𝑨𝑨𝑺| > |𝑨𝑺𝑬𝒙𝑨𝑺| |𝑨𝑺𝑪𝑭𝑨𝑺| > |𝑨𝑺𝑬𝒙𝑨𝑺| |𝑨𝑺𝑪𝑭𝑨𝑺| > |𝑨𝑺𝑺𝑨𝑨𝑺| 

7 

2 12% 28% 16% 

4 40% 64% 36% 

6 56% 76% 44% 

8 76% 84% 20% 

10 88% 92% 20% 

8 

2 20% 56% 44% 

4 32% 68% 52% 

6 80% 92% 40% 

8 82% 92% 36% 

10 92% 96% 32% 

9 

2 16% 56% 44% 

4 44% 80% 56% 

6 84% 88% 36% 

8 92% 96% 32% 

10 96% 100% 28% 

10 

2 16% 72% 60% 

4 52% 80% 32% 

6 88% 100% 24% 

8 92% 100% 16% 

10 100% 100% 16% 

The analysis of the data shows the following observations. 

First, as shown in Table 1, the percentage of differences between the lengths of the ASeq 

generated by the exact algorithm, ExAS and non-exact algorithms, SAAS and CFAS, increases with 

the increase in the number of elements in the set N. For example, for fixed e=7  and k=2, 4, 6, 8, and 

10, the percentages of cases that the exact algorithm generates ASeq with a length less than that 

generated by the SAAS algorithm are 12%, 40%, 56%, 76%, and 88%. Similarly, for the CFAS 

algorithm, the differences are 28%, 64%, 76%, 84%, and 92%. 

Second, the last column in Table 1 shows the comparison between the lengths of ASeqs generated 

by the SAAS and CFAS algorithms. The data in Table 1 shows that the SAAS algorithm outperforms 

the CFAS algorithm in terms of the length of generated ASeq for all studied cases. It is important to 

point out that the SAAS algorithm guarantees that the generated ASeq has a length less than or equal 
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to that generated by the CFAS algorithm. 

Third, the length of ASeq generated by the SAAS algorithm is near the minimal length compared 

to that generated by the CFAS algorithm. Figure 2 shows the distribution of the difference between the 

length of the shortest ASeq generated by the exact algorithm and the lengths of the generated ASeq 

using the SAAS and CFAS algorithms. 

 

(a) e=7                            (b) e=8 

 

(c) e=9                      (d) e=10 

Figure 2. Percentage of differences in terms of the length of ASeq for the cases: (i) ExAS 

& SAAS, and (ii) ExAS & CFAS. The bar in the figure contains four colors at maximum. 

The gold, green, blue and red colors represent the percentage of cases that have difference 

equal to 1, 2, 3, and 4, respectively. The figure includes four subfigures in case of (a) e=7, 

(b) e=8, (c) e=9, and (d) e=10. Each subfigure contains five pairs of bars, one for SAAS 

algorithm and the other for CFAS algorithm. The five pairs of bars represent the five cases 

k=2,4, 6, 8, and 10. 

Fourth, Figure 3 shows how the lengths of ASeqs change during the execution time of the SAAS 

algorithm for five instances in the case of e=10 and k=4. The SAAS algorithm starts with a short ASeq 

and then finds the shortest ASeq. 

It is clear that the SAAS algorithm generates short ASeqs with lengths that are closer to the 

shortest ASeq than those generated by the CFAS algorithm. For example, when e=8 and k=2, there are 

20% of the instances where the length of ASeq generated by the SAAS algorithm is longer by one than 

the length of ASeq generated by the ExAS algorithm. On the other side, using the CFAS algorithm, 

44% and 20% of instances have lengths greater than the shortest by one and two, respectively. 
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Fifth, the proposed algorithm has run on the same instances but with a change in the value of γ 

between 0.8 and 0.99, and the results have not changed, i.e., the generated ASeq has the same length. 

Similarly, when we change the initial value of T to 20, 25 and 30. 

The time comparison between the three algorithms, ExAS, SAAS, and CFAS is shown in Table 

2. The analysis of the data results demonstrates the following notes. (1) The fastest running time for 

all compared algorithms is CFAS algorithm. (2) In general, the values of e and k have no impact on 

the CFAS algorithm. On the other side, the SAAS algorithm is slightly affected by increasing e and k, 

whereas the ExAS algorithm is significantly affected by increasing e and k. (3) The execution time for 

the SAAS algorithm is affected by the two parameters, succNo and metropolisNo. The value of the 

running time for SAAS algorithm increases slightly with increasing the values of two parameters. (4) 

The execution time for the SAAS algorithm is faster than the exact algorithm, and the difference 

between the two algorithms in running time increases with an increase in e and k. (5) The last column 

of Table 2 illustrates the percentage improvement for the SAAS algorithm against the ExAS algorithm. 

Table 2. Comparison between different algorithms in terms of running time in milliseconds. 

e 

 

k 

 

ExAS Alg. 

 

SAAS Alg. 

 

CFAS Alg. 

 

% of improvement 

SAAS & ExAS 

7 

2 10 65 1 --- 

4 12 76 1 --- 

6 14 89 1 --- 

8 16 95 2 --- 

10 17 99 2 --- 

8 

2 12 82 1 --- 

4 107 101 2 5.5% 

6 175 112 2 35.9% 

8 245 115 3 53.3% 

10 307 116 4 62.1% 

9 

2 13 107 2 --- 

4 423 131 2 68.9% 

6 4376 145 3 96.7% 

8 14782 158 4 98.9% 

10 46592 162 4 99.7% 

10 

2 15 147 4 --- 

4 57827 167 4 99.7% 

6 805166 178 16 99.9% 

8 15878846 186 16 100% 

10 58645310 197 18 100% 

Note that: it should be pointed out that the implementation of the ExAS algorithm [19] used the CFAS 

algorithm to generate an upper bound of ℓ(𝑁), i.e., if the ExAS algorithm does not find a shortest 

ASeq with a length less than the length generated by the CFAS algorithm, then we stop the search and 

take the generated ASeq by the CFAS algorithm as a shortest ASeq. This technique improves the 

running times of the ExAS algorithm dramatically. This explains why the running time for the ExAS 

algorithm is small for small data sets, as shown in Table 2 in the case of e=7. 
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Figure 3. Change of the length of ASeq over execution time for five instances. 

5. Conclusions and future works 

We have proposed a new metaheuristic algorithm to find an addition sequence with a short length 

for a set of positive numbers N. The proposed algorithm starts with generating an addition sequence 

for N using the CFAS algorithm and then applies the simulated annealing strategy to get an addition 

sequence for N with shorter length. The proposed algorithm is very fast compared to the exact 

algorithm and can generate an addition sequence with a shorter length than the previous suboptimal 

algorithms. 

The efficiency of the proposed algorithm is determined by considering different parameters, such 

as the number of elements in the set N and the domain of the elements of the set N.  

There are many research directions related to this study that can be done in the future, such as: (1) 

How to apply the same (or similar) technique to B-chains and vectorial addition chains. (2) How to 

accelerate the computation of ASeq using high-performance systems. (3) How to accelerate multi-

modular exponentiation using ASeq. (4) Use of some recent strategies, such as the discrete Jaya 

algorithm and the evolutionary programming, to solve the ASeq problem [26,27]. 
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