
AIMS Mathematics, 9(5): 11024–11038.

DOI: 10.3934/math.2024540

Received: 20 January 2024

Revised: 03 March 2024

Accepted: 11 March 2024

Published: 20 March 2024

http://www.aimspress.com/journal/Math

Research article

An efficient simulated annealing algorithm for short addition sequences

Hazem M. Bahig1,*, Mohamed A.G. Hazber1 and Hatem M. Bahig2

1 Department of Information and Computer Science, College of Computer Science and Engineering,

University of Ha'il, Ha'il 81481, KSA
2 Department of Mathematics, Faculty of Science, Ain Shams University, Cairo, Egypt

* Correspondence: Email: h.bahig@uoh.edu.sa.

Abstract: Let 𝑁 = {𝑛1, 𝑛2, … , 𝑛𝑘} be a finite set of positive numbers. The problem of finding the

minimal number of additions required to compute all elements of N starting from 1 (called the addition

sequence problem) is NP-complete. It is equivalent to finding the minimum number of multiplications

needed to compute a group exponentiation 𝑔𝑛1 , 𝑔𝑛2 , … , 𝑔𝑛𝑘, where g is an element in a group. This

paper aims to propose a new metaheuristic algorithm using a simulated annealing strategy to generate

a short addition sequence. The performance of the proposed algorithm is measured by considering two

parameters: The size of N and the domain of 𝑛i, 1 ≤ 𝑖 ≤ 𝑘. The proposed algorithm is a new trade-off

between the length of the generated addition sequence and the average running time of generating

addition sequences. It sometimes produces longer addition sequences than exact algorithms that are

slower, and it is slower than suboptimal algorithms that produce longer addition sequences.

Keywords: addition sequence; addition chain; modular exponentiation; simulated annealing; heuristic

algorithm; optimization

Mathematics Subject Classification: 11Bxx, 90C59, 68T20

1. Introduction

Given a set of numbers 𝑁 = {𝑛1, 𝑛2, … , 𝑛𝑘} such that 1 < 𝑛1 < 𝑛2 < ⋯ < 𝑛𝑘. An addition

sequence [1,2] for the set N, denoted by ASeq(N), is an increasing sequence of numbers

𝑎𝑠0, 𝑎𝑠1, 𝑎𝑠2, … , 𝑎𝑠𝑙 such that

(1) 𝑎𝑠0 = 1,

(2) 𝑎𝑠𝑙 = 𝑛𝑘,

11025

AIMS Mathematics Volume 9, Issue 5, 11024–11038.

(3) 𝑎𝑠𝑖 = 𝑎𝑠𝑗 + 𝑎𝑠ℎ , 0 ≤ 𝑗, ℎ ≤ 𝑖 − 1,

(4) 𝑁 ⊆ {𝑎𝑠0, 𝑎𝑠1, 𝑎𝑠2, … , 𝑎𝑠𝑙}, i.e., each number 𝑛𝑖 should appear in the sequence

𝑎𝑠0, 𝑎𝑠1, 𝑎𝑠2, … , 𝑎𝑠𝑙 .

The length of ASeq(N) is equal to l, and the minimal value of l is denoted by ℓ(𝑁). In the case

of 𝑘 = 1, the sequence is called addition chain [1,2]. One of the important aspects of generating the

shortest ASeq(N) is that it is equivalent to the simultaneous evaluation of k power monomials

𝑔𝑛1 , 𝑔𝑛2 , … , 𝑔𝑛𝑘

with a minimum number of multiplications.

For example, let 𝑁 = {53, 163, 203, 363}. The following are two ASeqs with lengths of 15 and

13, respectively. The first ASeq is: 1, 2=1+1, 3=2+1, 6=3+3, 12=6+6, 13=12+1, 26=13+13, 39=26+13,

40=39+1, 53=40+13, 106=53+53, 159=106+53, 160=159+1, 163=160+3, 203=163+40, 363=203+160.

The second ASeq is: 1, 2=1+1, 3=2+1, 5=3+2, 10=5+5, 13=10+3, 20=10+10, 40=20+20,

53=40+13, 80=40+40, 160=80+80, 163=160+3, 203=163+40, 363=203+160.

The computation of 𝑔53, 𝑔163, 𝑔203, 𝑔363, using the first sequence is

𝑔, 𝑔2, 𝑔3, 𝑔6, 𝑔12, 𝑔13, 𝑔26, 𝑔39, 𝑔40, 𝑔53, 𝑔106, 𝑔159, 𝑔160, 𝑔163, 𝑔203, 𝑔363,

while the computation of the same powers 𝑔53, 𝑔163, 𝑔203, 𝑔363 using the second sequence is

𝑔, 𝑔2, 𝑔3, 𝑔5, 𝑔10, 𝑔13, 𝑔20, 𝑔40, 𝑔53, 𝑔80, 𝑔160, 𝑔163, 𝑔203, 𝑔363.

A step i is called

(1) star if 𝑎𝑠𝑖 = 𝑎𝑠𝑖−1 + 𝑎𝑠ℎ , 0 ≤ ℎ ≤ 𝑖 − 1; and

(2) non-star if 𝑎𝑠𝑖 = 𝑎𝑠𝑗 + 𝑎𝑠ℎ , 0 ≤ 𝑗, ℎ ≤ 𝑖 − 2.

In case, 𝑗 = ℎ = 𝑖 − 1, 𝑎𝑠𝑖 = 2𝑎𝑠𝑖−1, the step is called doubling. If all steps in the sequence are

stars, then the sequence is called a star. If ℓ∗(𝑁) denotes the minimal length of star ASeq (N), then

we have

ℓ(𝑁) ≤ ℓ∗(𝑁) (1)

Yao [3] showed that:

ℓ(𝑁) ≤ log 𝑛𝑘 + (𝑐 𝑘) log 𝑛𝑘 log log 𝑛𝑘⁄ , (2)

where 𝑐 = 2 + 4 √log 𝑛𝑘⁄ .

Bleichenbacher [4] computed the lower bound

ℓ(𝑁 ∪ {𝑛𝑘+1}) ≥ ℓ(𝑁) + 𝛼 + 1, (3)

where 𝑛𝑘+1 > 2𝛼𝑛𝑘, 𝛼 ≥ 0.

ASeqs have received a lot of consideration among mathematicians and computer scientists for

the following reasons. The first reason is that one of the fundamental operations, that play a crucial

function in the efficiency of many public key cryptosystems and protocols, such as RSA [5], is group

exponentiation (sometimes it is called multi-modular exponentiation [1]), i.e., computing 𝑔𝑛1 ,

𝑔𝑛2 , … , 𝑔𝑛𝑘 simultaneously with a minimal number of operations, where g is an element in a group.

Designing a fast algorithm for generating a shortest (or short) ASeq increases the efficiency of such

public key cryptosystems and protocols.

11026

AIMS Mathematics Volume 9, Issue 5, 11024–11038.

The second reason is that ASeqs (including addition chains) are generalized to the following:

• B-chains [6], where every element in the B-chain has the form 𝑎𝑠𝑖 = 𝑎𝑠𝑗 𝑜 𝑎𝑠ℎ , 0 ≤ 𝑗, ℎ ≤

𝑖 − 1, and the binary operation o belongs to a finite set of binary operations B over the set

of natural numbers, i.e. 𝑜 ∈ 𝐵 = {+, −,∗,÷}. Guzmán-Trampe et. al. [7] proposed a method

for generating addition-subtraction (i.e., 𝐵 = {+, −}) sequence for the Kachisa–Schaefer–

Scott family of pairing-friendly elliptic curves.

• Vectorial addition chain [8, 9]: it is a sequence of k-dimensional vectors of nonnegative

integers 𝑣𝑖 , −𝑘 + 1 ≤ 𝑖 ≤ 𝑙 , such that (1) 𝑣−𝑘+1 = [1,0,0 … ,0,0] , 𝑣−𝑘+2 =
[0,1,0 … ,0,0] , ,, 𝑣0 = [0,0,0 … ,0,1] ; (2) 𝑣𝑖 = 𝑣𝑗 + 𝑣ℎ, 1 ≤ 𝑖 ≤ 𝑙 , −𝑘 + 1 ≤ 𝑗, ℎ ≤ 𝑖 −

1 ; (3) 𝑣𝑙 = [𝑛1, 𝑛2, … , 𝑛𝑘]. Finding a shortest vectorial addition chain is equivalent to

evaluating multi-exponentiation, i.e., the product ∏ 𝑔𝑖
𝑛𝑖𝑘

𝑖=1 with the minimal number of

multiplications.

The third reason for the importance of ASeq is that in Internet of Things, IoT, devices with limited

resources have a problem when they perform some public-key primitives, such as decryption and

signature which involve modular exponentiation, because most public-key primitives are (i) time-

consuming compared with symmetric-key cryptosystems; and (ii) using private information. One of

the common solutions to this problem is to use what is called “server aided secret computation

protocols,” denoted by SASCP [10–12], or sometimes it is called outsourcing protocols [13]. In such

protocols, devices with limited power and resources can execute public-key primitives efficiently with

the aid of an untrusted powerful server without revealing private information. Another and similar

solution to the problem is to define a delegation protocol [14–16]. This is a protocol that satisfies two

security requirements: (i) Privacy, which prevents passive attackers from recovering private

information, and (ii) verifiability, which prevents an untrusted server from forcing the devices to accept

a false value as the outcome of the delegated computation.

The main challenge of finding a shortest ASeq is that it is NP-complete [9]. Additionally, when

the size of N is large and the size of exponents is large, the running time for finding a shortest ASeq is

very large. On the other side, designing a suboptimal algorithm generates ASeq with a long length.

Therefore, designing a fast algorithm for generating a short (not necessarily shortest) ASeq is

interesting using metaheuristics techniques, especially a simulated annealing strategy.

A simulated annealing (SA) algorithm [17] is an iterative metaheuristic algorithm used to solve

optimization problems. It was proposed as an adaptation of the Metropolis method to simulate the

thermal moves of molecules at a fixed temperature T.

A SA algorithm starts with the initial state (solution) 𝑆 and sets the current state to S. Then, it

randomly generates a new state 𝑆′ from the neighbors of the current state S and decides whether to

accept 𝑆′ or not based on the probability function. If 𝑆′ is accepted, then S is replaced by 𝑆′.

Otherwise, a random real number 𝛼 is generated and if 𝛼 is less than the value of the probability

function then the generated state 𝑆′ is accepted. These steps are repeated based on the number of

metropolis cycles m for a fixed temperature. Then, the algorithm updates the temperature and repeats

this process until it reaches the maximum number of annealing iterations.

In this paper, we propose a new metaheuristic algorithm based on a simulated annealing strategy

to find a short ASeq for the set N. The proposed simulated annealing algorithm generates an addition

sequence with lengths shorter than the lengths generated by the previous suboptimal algorithms. It also

shows that the execution time of the proposed algorithm is significantly faster than the exact algorithm

that generates shortest addition sequences. Thus, the proposed algorithm is a new trade-off between

the size of the generated ASeq and the average running time of generating ASeq.

11027

AIMS Mathematics Volume 9, Issue 5, 11024–11038.

The organization of the remainder of this paper is as follows. Section 2 includes the previous

works of ASeq. In Section 3, the outlines and details of the proposed algorithm are given. Section 4

describes the implementation of three algorithms (the exact, a fast suboptimal, and the proposed

algorithms). This section includes the dataset used in the experiments and an analysis of the

experimental results for the three algorithms. Finally, Section 5 includes the conclusion of this paper

and future works.

2. Related work

ASeq Algorithms are divided into two categories. The first category is to find a shortest ASeq. In

fact, there are a few papers that discuss a generation of shortest ASeqs. Bleichenbacher [4] suggested

an algorithm to find a shortest ASeq(N) with length r provided that the algorithm previously computed

ℓ(𝑦) for all numbers 𝑦 < 𝑚𝑎𝑥𝑖𝑚𝑢𝑚(𝑁), and ℓ(𝑦) < 𝑟. The author used the suggested algorithm

to find a shortest addition chain up to a certain number.

The authors in [18] generated a shortest ASeq(N) based on a branch and bound search algorithm.

The algorithm begins by calculating a lower bound, Eq (3), and looking for an addition chain for the

first element 𝑛1 in the set N. Then, it extends the chain to an addition sequence for {𝑛1, 𝑛2}, and so

on until it generates ASeq(N). The algorithm uses different strategies to speed up the generation as

follows. (i) Using bounding sequences to prune some branches in the search tree which cannot lead to

a shortest ASeq. (ii) Determining an upper bound of ℓ({𝑛1, 𝑛2, … , 𝑛𝑖}), 1 ≤ 𝑖 ≤ 𝑘. (iii) Using some

sufficient conditions for star steps to skip the generation of non-star steps. (vi) If no ASeq(N) of length

l is found, then the algorithm increases l by one and repeats the process until either l is equal to the

length of the generated short ASeq produced by continued fraction (CF) method [19] or the algorithm

finds a shortest ASeq. Recently, the authors in [20,21] used multicore systems to improve the

generation of a shortest ASeq.

The second category is to find a short ASeq. Yao [3] presented an algorithm to compute 𝑔𝑛1 ,

𝑔𝑛2 , … , 𝑔𝑛𝑘 in 𝑂(lg 𝑛𝑘 + 𝑐 ∑ (log 𝑛𝑖 𝑙𝑜𝑔𝑙𝑜𝑔(𝑛𝑖 + 2))⁄𝑘
𝑖=1 multiplications for some constant c. Bos

and Coster [22] proposed four methods to generate a short ASeq and used them in the window method

[2,22]. Experimentally, for 𝑛𝑘 ≤ 1000, the estimated upper bound of the lengths for the generated

ASeqs by the four methods is

ℓ({𝑛1, 𝑛2, … , 𝑛𝑘}) ≤
3

2
log 𝑛𝑘 + 𝑘 + 1, (4)

Bergeron et al. [19] proposed an efficient method based on CF. The suggested method can be

considered an extension and unifying approach of some previously known methods (such as binary

and k-ary methods [1,2]) for generating a short addition chain, i.e., ASeq with k=1. Recall that the CF

expansion of 𝑛 𝑑⁄ is

𝑛

𝑑
= 𝑐𝑡 +

1

𝑐𝑡−1+
1

⋱

 +
1

𝑐2+
1

𝑐1

 (5)

where d is an integer in the interval [2, 𝑛 − 1].

Bergeron et al. [19] suggested different strategies for choosing the value of d. One of the efficient

11028

AIMS Mathematics Volume 9, Issue 5, 11024–11038.

strategies that produces a good suboptimal ASeq is the dichotomic strategy, where

𝑑 = ⌊
𝑛

2⌈⌊𝑙𝑜𝑔2𝑛⌋/2⌉⌋ (6)

Let 𝑁′ = {𝑛k, 𝑛k−1, … , 𝑛1}, and ℒ(𝑁′) denotes the length of the ASeq(𝑁′) generated by CF using

the dichotomic strategy. Then

ℒ(𝑁′) = {

ℒ(𝑁′ ∖ {𝑛𝑘}) + ℓ(𝑞), 𝑖𝑓 𝑟𝑒𝑚 = 0;

ℒ(𝑁′ ∖ {𝑛𝑘}) + ℓ(𝑞) + 1, 𝑖𝑓 𝑟𝑒𝑚 = 1,2

ℒ(𝑁′ ∪ {𝑟𝑒𝑚} ∖ {𝑛𝑘}) + ℓ(𝑞) + 1, otherwise

 (7)

where 𝑛𝑘 = 𝑞 𝑛𝑘−1 + 𝑟𝑒𝑚, 𝑟𝑒𝑚 < 𝑛𝑘−1 and

ℓ(𝑛) = {

𝛼, 𝑖𝑓 𝑛 = 2𝛼;
3, 𝑖𝑓 𝑛 = 3;

ℒ({𝑛, 𝑑}), otherwise
 (8)

where d is defined by Eq (6).

Enge et. al. [23] proposed a special method to construct a short ASeq to find the first k nonzero

terms in the sparse q-series belonging to the Dedekind eta function or the Jacobi theta constants. Nadia

and Mourelle [24] used the Ant Colony strategy to find a short ASeq. They tested the strategy on a

small set of numbers. Abbas and Gustafsson [25] proposed a method based on integer linear

programming to generate a short ASeq for a small set of numbers.

However, an extensive study is lacking to identify the difference in length between (1) the exact

algorithm that generates the shortest ASeqs; and (2) suboptimal algorithms that generate short ASeqs.

Two important parameters should be considered in the implementation. The first one is the domain of

the numbers 𝑛𝑖 , 1 ≤ 𝑖 ≤ 𝑘. The other is the cardinality of N. In addition to the length, we compare

the running times of algorithms. Another lacking direction of research is how to use the SA strategy to

find a short ASeq.

3. The proposed method

This section presents a description of the proposed Simulated Annealing algorithm for Addition

Sequence, denoted by SAAS.

Initially, the algorithm starts by generating the initial state, 𝐴𝑆0, using the CF method [19], and

its energy is equal to the length 𝑙𝐴𝑆0
 of 𝐴𝑆0. Then, the algorithm assigns these two values to the best

state and the best energy, respectively. After that, the algorithm repeats the following steps based on

the number of Metropolis cycles, metropolisNo, for a fixed temperature. In each iteration of this loop,

the algorithm performs the following steps:

The first step is generating a new state, 𝐴𝑆𝑛𝑒𝑤 , and its energy, 𝑙𝑛𝑒𝑤 . The second step is

determining whether the algorithm accepts this new state or not. The algorithm accepts the new state

and its energy, and then assigns these values to the best state and best energy if either of the following

conditions is true. (1) If the energy of the new state is lower than the energy of the best state. (2) If the

Boltzmann distribution is greater than a random real number in the range [0,1].

After completing the number of Metropolis cycles for a fixed temperature, the algorithm updates

the temperature using the Kirkpatrick quenching method and repeats this process until it reaches the

11029

AIMS Mathematics Volume 9, Issue 5, 11024–11038.

maximum number of annealing iterations.

The details of the algorithm steps are as follows.

Step 1: Generate the initial state, 𝐴𝑆 , using the CF method for the set of exponents 𝑁 =
{𝑛1, 𝑛2, … , 𝑛𝑘}, where 𝐴𝑆 = {𝑎𝑠0, 𝑎𝑠1, 𝑎𝑠2, … , 𝑎𝑠𝑙} such that (1) 𝑎𝑠0 = 1 and 𝑎𝑠1 = 2; (2) ∃ 𝑖, 𝑙𝑖

s.t. 𝑛𝑖 = 𝑎𝑠𝑙𝑖
 and 1 ≤ 𝑖 ≤ 𝑘; (3) 𝐿 = {𝑙1, 𝑙2, … , 𝑙𝑘} such that 𝑙𝑖 < 𝑙𝑖+1 and 𝑙 = 𝑙𝑘.

Step 2: Repeat the following metropolisNo times:

Step 2.1: Generate a random integer number, r, from the interval [0, 𝑘 − 1]. This number will be

used as a starting point for new neighbor based on the elements of N.

Step 2.2: Generate a new state, 𝐴𝑆𝑛𝑒𝑤 from the location 𝑙𝑟. If r=0, then the algorithm finds the new

state from the element 𝑎𝑠1 = 2 of AS. Otherwise, the algorithm finds the new state from 𝑎𝑠𝑙𝑟
= 𝑛𝑟

to 𝑛𝑘. The process of generating the new elements from 𝑛𝑖 to 𝑛𝑖+1 is based on the following rules.

• Rule # 1: Doubling the current element, i.e., 𝑎𝑠𝑗+1 = 2 𝑎𝑠𝑗.

• Rule # 2: Summing the last two elements, i.e., 𝑎𝑠𝑗+1 = 𝑎𝑠𝑗 + 𝑎𝑠𝑗−1.

• Rule # 3: Summing the last element with any other random element in the sequence,

𝑎𝑠𝑗+1 = 𝑎𝑠𝑗+𝑎𝑠ℎ, 0 ≤ ℎ < 𝑗.

This step can be done as follows (Steps 2.2.1–2.2.3).

Step 2.2.1 (Generate one element in the sequence): If the current goal is 𝑛𝑖+1 and the current ASeq

is {𝑎𝑠0, 𝑎𝑠1, … , 𝑎𝑠𝑙𝑖
= 𝑛𝑖 , 𝑎𝑠𝑙𝑖+1, … , 𝑎𝑠𝑙𝑖+𝑗}, 𝑗 ≥ 0, then the steps of generating a new element in

the chain are as follows.

1. 𝑑 = 𝑛𝑖+1 − 𝑎𝑠𝑙𝑖+𝑗

2. If 𝑑 = 𝑎𝑠𝑙𝑖+𝑗 then apply Rule # 1

3. Else if 𝑑 = 𝑎𝑠𝑙𝑖+𝑗−1 then apply Rule # 2

4. Else if 𝑑 > 𝑎𝑠𝑙𝑖+𝑗 then

5. Generate a random real number 𝛼 ∈ [0,1]

6. If 𝛼 ≥ 0.5 then apply Rule # 1

7. Else

8. Generate a random real number 𝛼 ∈ [0,1]
9. If 𝛼 ≥ 0.5 then apply Rule # 2

10. Else

11. Generate a random integer number 𝑟 ∈ [0, 𝑙𝑖 + 𝑗 − 2]

12. Apply rule # 3, where h=r.

13. Else // 𝑑 < 𝑎𝑠𝑙𝑖+𝑗

14. Generate a random integer number 𝑟 ∈ [0, 𝑙𝑖 + 𝑗 − 2]

15. Apply Rule # 3, where h=r.

16. If the new element is less than or equal to 𝑛𝑖+1 then the element is accepted.

Otherwise, decrease the value of r and apply rule #3 until the algorithm finds a

certain value of h such that the new element is less than or equal to 𝑛𝑖+1.

Step 2.2.2 (Generate all elements between 𝑛𝑖 and 𝑛𝑖+1): Repeat Step 2.2.1 starting from 𝑗 = 0,

and 𝑎𝑠𝑙𝑖
= 𝑛𝑖 , until the algorithm finds 𝑎𝑠𝑙𝑖+𝑗𝑖

= 𝑛𝑖+1 . In this case, the algorithm updates the

value of 𝑙𝑖+1 = 𝑙𝑖 + 𝑗𝑖 , 1 ≤ 𝑗𝑖 .

Step 2.2.3 (Generate the ASeq from 𝑛𝑟 to 𝑛𝑘): Repeat Steps 2.2.1 and 2.2.2 until the algorithm

generates 𝑛𝑘. Therefore,

𝐴𝑆𝑛𝑒𝑤 = {𝑎𝑠0, 𝑎𝑠1, … , 𝑛𝑟 = 𝑎𝑠𝑙𝑟
, 𝑎𝑠𝑙𝑟+1

′ , … , 𝑛𝑖+1 = 𝑎𝑠𝑙𝑖+𝑗𝑖

′ , … , 𝑛𝑘 = 𝑎𝑠𝑙𝑘−1+𝑗𝑘−1

′ = 𝑎𝑠𝑗𝑘−1

′ };

𝐿𝑛𝑒𝑤 = {𝑙1, 𝑙2, … , 𝑙𝑟 , 𝑙𝑟+1
′ , 𝑙𝑟+2

′ , … , 𝑙𝑘
′ }.

11030

AIMS Mathematics Volume 9, Issue 5, 11024–11038.

Step 3: Test the acceptance of the new state by the following steps.

1. If 𝑙𝑘
′ < 𝑙 then 𝐴𝑆 = 𝐴𝑆𝑛𝑒𝑤 and 𝑙 = 𝑙𝑘

′

2. Else generate a random real number 𝛼.

3. 𝑑𝑒 = 𝑙𝑘
′ − 𝑙

4. If 𝑒−𝑑𝑒/𝑇 > 𝛼 then 𝐴𝑆 = 𝐴𝑆𝑛𝑒𝑤 and 𝑙 = 𝑙𝑘
′

Step 4: Decrease the temperature using Kirkpatrick quenching method: 𝑇 = 𝛾 𝑇, where 𝛾 = 0.99.

Step 5: Repeat Steps 2, 3, and 4 until the algorithm reaches the maximum number of annealing

iterations.

Remarks:

(1) Each random number is chosen uniformly.

(2) The two symbols 𝑟, 𝑟′ are used for integer random numbers, while the symbol 𝛼 is used for a

real random number.

(3) The time complexity of the proposed algorithm is O (SuccNo * metropolisNo * log nk), where the

term log nk represents the running time to generate one ASeq, see Eq (2).

(4) Figure 1 shows how to generate a random ASeq by applying the three rules for {13, 85, 254}.

Figure 1. Example of randomly generating a short ASeq for the set {13, 85, 254}.

Algorithm 1 (SAAS) and Algorithm 2 (ASNeighbours) represent the complete pseudocodes for

the proposed method. The SAAS algorithm starts with assigning the initial value of temperature to T

and then generates an initial ASeq using the CFAS method. After that the SAAS algorithm generates

randomly a new state by calling ASNeighbours algorithm and decides whether to accept this new state

or not. The ASNeighbours algorithm assigns the ASeq for {𝑛1, 𝑛2, … , 𝑛𝑟} to the new state and then

generates new elements for the remainder set {𝑛r+1, 𝑛r+2, … , 𝑛𝑘}.

Algorithm 1: SAAS

Input: 𝑁 = {𝑛1, 𝑛2, … , 𝑛𝑘}, // a finite set of positive numbers

𝑇0 // initial temperature

𝛾 // cooling factor

succNo // the maximum number of annealing iterations

metropolisNo // number of Metropolis cycles

Output: 𝐴𝑆 = {𝑎𝑠0, 𝑎𝑠1, … , 𝑎𝑠𝑙𝑘
}

1. 𝑇 = 𝑇0

2. CFAS(𝑁, 𝐴𝑆, 𝐿, 𝑙) // 𝐿 = {𝑙1, … , 𝑙𝑟 , … 𝑙𝑘}, 𝑙 = 𝑙𝑘 .

3. for 𝑠𝑢𝑐 = 0 to 𝑠𝑢𝑐𝑐𝑁𝑜 -1 do

4. for 𝑚 = 1 to metropolisNo do

5. Generate a random integer number 𝑟 ∈ [0, 𝑘 − 1]

6. ASNeighbours(𝐴𝑆, 𝐿, 𝑟, 𝐴𝑆𝑛𝑒𝑤, 𝐿𝑛𝑒𝑤)

7. 𝑑𝑙 = 𝑙𝑛𝑒𝑤 − 𝑙

8. if 𝑑𝑙 < 0 then

R3(1) d R3(42) R1 R3 (13) R3 (1) R1 R2

1 2 3 6 12 13 26 39 42 84 85 127 254

R1 R1 R2 R1

11031

AIMS Mathematics Volume 9, Issue 5, 11024–11038.

9. 𝐴𝑆 = 𝐴𝑆𝑛𝑒𝑤

10. 𝐿 = 𝐿𝑛𝑒𝑤

11. 𝑙 = 𝑙𝑛𝑒𝑤

12. else

13. Generate a random real number 𝛼 ∈ [0,1]

14. if 𝑒−𝑑𝑙/𝑇 > 𝛼 then

15. 𝐴𝑆 = 𝐴𝑆𝑛𝑒𝑤

16. 𝑙 = 𝑙𝑛𝑒𝑤

17. 𝐿 = 𝐿𝑛𝑒𝑤

18. 𝑇 = 𝛾 𝑇

Algorithm 2: ASNeighbours

Input: 𝐴𝑆 = {𝑎𝑠0, 𝑎𝑠1, … , 𝑎𝑠𝑙𝑘
} // current ASeq

𝐿 = {𝑙1, … , 𝑙𝑟 , … 𝑙𝑘} // energy of ASeq, i.e., 𝑙𝑖 is the index of 𝑛𝑖 in AS

𝑟 // start position to generate a new neighbor; 1 ≤ 𝑟 < 𝑘.

Output: 𝐴𝑆𝑛𝑒𝑤 = {𝑎𝑠0
′ , 𝑎𝑠1

′ , … , 𝑎𝑠
𝑙𝑘

′
′ } , 𝐿𝑛𝑒𝑤 = {𝑙1

′ , 𝑙2
′ , … , 𝑙𝑘

′ }.

1. for 𝑖 = 1 to 𝑟 do

2. 𝑙𝑖
′ = 𝑙𝑖

3. for 𝑖 = 0 to 𝑙𝑟 do

4. 𝑎𝑠𝑖
′ = 𝑎𝑠𝑖

5. for 𝑖 = 𝑟 to 𝑘 − 1 do // from 𝑛𝑖 we generate 𝑛𝑖+1

6. 𝑗 = 0

7. while 𝑎𝑠𝑙𝑖+𝑗
′ ≠ 𝑎𝑠𝑙𝑖+1

 (= 𝑁𝑖+1) do

8. 𝑑 = 𝑎𝑠𝑙𝑖+1
− 𝑎𝑠𝑙𝑖+𝑗

′

9. if 𝑑 = 𝑎𝑠𝑙𝑖+𝑗
′ then 𝑎𝑠𝑙𝑖+𝑗+1

′ = 2 𝑎𝑠𝑙𝑖+𝑗
′ , 𝑗 = 𝑗 + 1

10. else if 𝑑 = 𝑎𝑠𝑙𝑖+𝑗−1
′ then 𝑎𝑠𝑙𝑖+𝑗+1

′ = 𝑎𝑠𝑙𝑖+𝑗
′ − 𝑎𝑠𝑙𝑖+𝑗−1

′ , 𝑗 = 𝑗 + 1

11. else if 𝑑 > 𝑎𝑠𝑙𝑖+𝑗
′ then

12. Generate a random real number 𝛼 ∈ [0,1].

13. if 𝛼 ≥ 0.5 then 𝑎𝑠𝑙𝑖+𝑗+1
′ = 2 𝑎𝑠𝑙𝑖+𝑗

′ , 𝑗 = 𝑗 + 1

14. else

15. Generate a random real number 𝛼 ∈ [0,1]

16. if 𝛼 ≥ 0.5 then 𝑎𝑠𝑙𝑖+𝑗+1
′ = 𝑎𝑠𝑙𝑖+𝑗

′ + 𝑎𝑠𝑙𝑖+𝑗−1
′ , 𝑗 = 𝑗 + 1

17. else

18. Generate a random integer number 𝑟′ ∈ [0, 𝑙𝑖 + 𝑗 − 2] .

19. 𝑎𝑠𝑙𝑖+𝑗+1
′ = 𝑎𝑠𝑙𝑖+𝑗

′ + 𝑎𝑠𝑟′
′ , 𝑗 = 𝑗 + 1

20. else //𝑑𝑎𝑠 < 𝑎𝑠𝑙𝑖+𝑗

21. Generate a random integer number b 𝑟′ ∈ [0, 𝑙𝑖 + 𝑗 − 2] .

22. 𝑎𝑠𝑙𝑖+𝑗+1
′ = 𝑎𝑠𝑙𝑖+𝑗

′ + 𝑎𝑠𝑟′
′ , 𝑗 = 𝑗 + 1

23. while 𝑎𝑠𝑙𝑖+𝑗
′ > 𝑎𝑠𝑙𝑖+1

 do

24. 𝑟′ = 𝑟′ − 1

25. 𝑎𝑠𝑙𝑖+𝑗
′ = 𝑎𝑠𝑙𝑖+𝑗−1

′ + 𝑎𝑠𝑟′
′

26. 𝑙𝑖+1
′ = 𝑖 + 𝑗

11032

AIMS Mathematics Volume 9, Issue 5, 11024–11038.

4. Results and discussions

This section demonstrates the experimental study and its analysis for measuring the performance of

the SAAS algorithm compared to the exact and suboptimal algorithms, ExAS and CFAS, respectively.

The three algorithms were programmed using the C language and run on a machine with a 2.5

GHz processor and a memory of 16 GB. Also, the three algorithms were compared by measuring the

execution time in milliseconds and the length of the short/shortest sequence. The section consists of

two subsections: Data generation and results.

4.1. Data generation

The data used in the experimental study is based on two factors. The first factor is the number of

elements k in the set of exponents 𝑁. The experimental values of k are 2, 4, 6, 8, and 10. The second

factor is the domain of each exponent in the set N. According to the window method and its variations

[2,22], the range of exponents is the integer interval [1, 2𝑒 − 1], where e is the window length (of size

e-bits). Also, according to the performance of the window method, the value of each exponent should

be odd. The experimental values of e are equal to 7, 8, 9, and 10. The reason for starting the values of

e with 7, the running times for all compared algorithms are fast when 𝑒 < 7.

The methodology of generating the dataset is based on fixing the size of the window, i.e., e-bits,

say e=7, and then generating different sets 𝑁𝑘,𝑒 with lengths k= 2, 4, 6, 8, and 10. For each value of k,

25 sets of exponents in the range [1, 2𝑒 − 1] are generated. The process of generating different sets of

exponents is as follows.

1. Set e to the maximum number of bits in the exponents, i.e., the window size.

2. Set the set 𝑁0,𝑒 = ∅ and i=2.

3. While 𝑖 ≤ 𝑘 = 10 do the following

Construct a new set 𝑁𝑖,𝑒 , by adding two randomly generated odd numbers, in the range

[1, 2𝑒 − 1], to the set 𝑁𝑖−2,𝑒, 𝑖. 𝑒., 𝑁𝑖,𝑒 = 𝑁𝑖−2,𝑒 ∪ {the two generated randomly odd

numbers}.

4. Set i=i+2.

5. Make sure that 𝑁𝑖,𝑒 is sorted.

6. Repeat Steps 2-4, 25 times to generate 25 sets of exponents with at most e-bits.

7. Repeat Steps 1–5 for different sizes of exponents e=7, 8, 9, and 10.

The following example illustrates the generation of five sets with different values of k and a fixed

size of exponent e=8.

𝑁2,8 = {177, 241}.
𝑁4,8 = {65, 125, 177, 241}.
𝑁6,8 = {65, 89, 125, 177, 189, 241}.
𝑁8,8 = {43, 65, 89, 125, 177, 189, 221, 241}.
𝑁10,8 = {43, 65, 89, 103, 125, 177, 189, 203, 221, 241}.

The initial temperature, T0, is equal to the number of instances used, which is equal to 25. The

value of γ = 0.99.

4.2. Results

The results of executing the three algorithms on the generated data in terms of the length of the

11033

AIMS Mathematics Volume 9, Issue 5, 11024–11038.

output are shown in Table 1. The first two columns represent the two factors e and k, while the three

last columns represent the percentage of differences in the lengths of the output for the following cases:

(1) ExAS and SAAS algorithms, (2) ExAS and CFAS algorithms, and (3) SAAS and CFAS algorithms.

Since the exact algorithm always produces the shortest ASeq, the methodology of analyzing the results

is to compute the number of instances in which the lengths of ASeqs generated by the SAAS and CFAS

algorithms are longer than the lengths of shortest ASeqs generated by the ExAs algorithm. The

percentages of these instances represent the third and fourth columns. Also, Table 1 presents the

difference between the output of the SAAS and CFAS algorithms, see the last column in Table 1.

Table 1. Comparison between three algorithms in terms of the length of ASeq.

 Percentage of cases when

e k |𝑨𝑺𝑺𝑨𝑨𝑺| > |𝑨𝑺𝑬𝒙𝑨𝑺| |𝑨𝑺𝑪𝑭𝑨𝑺| > |𝑨𝑺𝑬𝒙𝑨𝑺| |𝑨𝑺𝑪𝑭𝑨𝑺| > |𝑨𝑺𝑺𝑨𝑨𝑺|

7

2 12% 28% 16%

4 40% 64% 36%

6 56% 76% 44%

8 76% 84% 20%

10 88% 92% 20%

8

2 20% 56% 44%

4 32% 68% 52%

6 80% 92% 40%

8 82% 92% 36%

10 92% 96% 32%

9

2 16% 56% 44%

4 44% 80% 56%

6 84% 88% 36%

8 92% 96% 32%

10 96% 100% 28%

10

2 16% 72% 60%

4 52% 80% 32%

6 88% 100% 24%

8 92% 100% 16%

10 100% 100% 16%

The analysis of the data shows the following observations.

First, as shown in Table 1, the percentage of differences between the lengths of the ASeq

generated by the exact algorithm, ExAS and non-exact algorithms, SAAS and CFAS, increases with

the increase in the number of elements in the set N. For example, for fixed e=7 and k=2, 4, 6, 8, and

10, the percentages of cases that the exact algorithm generates ASeq with a length less than that

generated by the SAAS algorithm are 12%, 40%, 56%, 76%, and 88%. Similarly, for the CFAS

algorithm, the differences are 28%, 64%, 76%, 84%, and 92%.

Second, the last column in Table 1 shows the comparison between the lengths of ASeqs generated

by the SAAS and CFAS algorithms. The data in Table 1 shows that the SAAS algorithm outperforms

the CFAS algorithm in terms of the length of generated ASeq for all studied cases. It is important to

point out that the SAAS algorithm guarantees that the generated ASeq has a length less than or equal

11034

AIMS Mathematics Volume 9, Issue 5, 11024–11038.

to that generated by the CFAS algorithm.

Third, the length of ASeq generated by the SAAS algorithm is near the minimal length compared

to that generated by the CFAS algorithm. Figure 2 shows the distribution of the difference between the

length of the shortest ASeq generated by the exact algorithm and the lengths of the generated ASeq

using the SAAS and CFAS algorithms.

(a) e=7 (b) e=8

(c) e=9 (d) e=10

Figure 2. Percentage of differences in terms of the length of ASeq for the cases: (i) ExAS

& SAAS, and (ii) ExAS & CFAS. The bar in the figure contains four colors at maximum.

The gold, green, blue and red colors represent the percentage of cases that have difference

equal to 1, 2, 3, and 4, respectively. The figure includes four subfigures in case of (a) e=7,

(b) e=8, (c) e=9, and (d) e=10. Each subfigure contains five pairs of bars, one for SAAS

algorithm and the other for CFAS algorithm. The five pairs of bars represent the five cases

k=2,4, 6, 8, and 10.

Fourth, Figure 3 shows how the lengths of ASeqs change during the execution time of the SAAS

algorithm for five instances in the case of e=10 and k=4. The SAAS algorithm starts with a short ASeq

and then finds the shortest ASeq.

It is clear that the SAAS algorithm generates short ASeqs with lengths that are closer to the

shortest ASeq than those generated by the CFAS algorithm. For example, when e=8 and k=2, there are

20% of the instances where the length of ASeq generated by the SAAS algorithm is longer by one than

the length of ASeq generated by the ExAS algorithm. On the other side, using the CFAS algorithm,

44% and 20% of instances have lengths greater than the shortest by one and two, respectively.

11035

AIMS Mathematics Volume 9, Issue 5, 11024–11038.

Fifth, the proposed algorithm has run on the same instances but with a change in the value of γ

between 0.8 and 0.99, and the results have not changed, i.e., the generated ASeq has the same length.

Similarly, when we change the initial value of T to 20, 25 and 30.

The time comparison between the three algorithms, ExAS, SAAS, and CFAS is shown in Table

2. The analysis of the data results demonstrates the following notes. (1) The fastest running time for

all compared algorithms is CFAS algorithm. (2) In general, the values of e and k have no impact on

the CFAS algorithm. On the other side, the SAAS algorithm is slightly affected by increasing e and k,

whereas the ExAS algorithm is significantly affected by increasing e and k. (3) The execution time for

the SAAS algorithm is affected by the two parameters, succNo and metropolisNo. The value of the

running time for SAAS algorithm increases slightly with increasing the values of two parameters. (4)

The execution time for the SAAS algorithm is faster than the exact algorithm, and the difference

between the two algorithms in running time increases with an increase in e and k. (5) The last column

of Table 2 illustrates the percentage improvement for the SAAS algorithm against the ExAS algorithm.

Table 2. Comparison between different algorithms in terms of running time in milliseconds.

e

k

ExAS Alg.

SAAS Alg.

CFAS Alg.

% of improvement

SAAS & ExAS

7

2 10 65 1 ---

4 12 76 1 ---

6 14 89 1 ---

8 16 95 2 ---

10 17 99 2 ---

8

2 12 82 1 ---

4 107 101 2 5.5%

6 175 112 2 35.9%

8 245 115 3 53.3%

10 307 116 4 62.1%

9

2 13 107 2 ---

4 423 131 2 68.9%

6 4376 145 3 96.7%

8 14782 158 4 98.9%

10 46592 162 4 99.7%

10

2 15 147 4 ---

4 57827 167 4 99.7%

6 805166 178 16 99.9%

8 15878846 186 16 100%

10 58645310 197 18 100%

Note that: it should be pointed out that the implementation of the ExAS algorithm [19] used the CFAS

algorithm to generate an upper bound of ℓ(𝑁), i.e., if the ExAS algorithm does not find a shortest

ASeq with a length less than the length generated by the CFAS algorithm, then we stop the search and

take the generated ASeq by the CFAS algorithm as a shortest ASeq. This technique improves the

running times of the ExAS algorithm dramatically. This explains why the running time for the ExAS

algorithm is small for small data sets, as shown in Table 2 in the case of e=7.

11036

AIMS Mathematics Volume 9, Issue 5, 11024–11038.

Figure 3. Change of the length of ASeq over execution time for five instances.

5. Conclusions and future works

We have proposed a new metaheuristic algorithm to find an addition sequence with a short length

for a set of positive numbers N. The proposed algorithm starts with generating an addition sequence

for N using the CFAS algorithm and then applies the simulated annealing strategy to get an addition

sequence for N with shorter length. The proposed algorithm is very fast compared to the exact

algorithm and can generate an addition sequence with a shorter length than the previous suboptimal

algorithms.

The efficiency of the proposed algorithm is determined by considering different parameters, such

as the number of elements in the set N and the domain of the elements of the set N.

There are many research directions related to this study that can be done in the future, such as: (1)

How to apply the same (or similar) technique to B-chains and vectorial addition chains. (2) How to

accelerate the computation of ASeq using high-performance systems. (3) How to accelerate multi-

modular exponentiation using ASeq. (4) Use of some recent strategies, such as the discrete Jaya

algorithm and the evolutionary programming, to solve the ASeq problem [26,27].

Use of AI tools declaration

The authors declare that they have not used Artificial Intelligence (AI) tools in the creation of this

article.

Acknowledgements

The authors are grateful to the referees for their valuable comments that helped to improve the

paper. The authors would like to acknowledge the support provided by Deputy for Research &

Innovation, Ministry of Education through Initiative of Institutional Funding at University of Ha’il –

Saudi Arabia through project number IFP-22 025.

Conflict of interest

The authors declare that they have no conflicts of interest.

11037

AIMS Mathematics Volume 9, Issue 5, 11024–11038.

References

1. D. E. Knuth, The art of computer programming: Seminumerical algorithms, 2, 3Ed. Addison-

Wesley, Reading, 461–485, (1997).

2. A. Menezes, P. van Oorschot, S, Vanstone. Handbook of applied cryptography, CRC Press, Boca

Raton, 1996 (Chapter 14).

3. A. Yao, On the evaluation of powers, SIAM J. Comput., 5 (1976) 100–103.

https://doi.org/10.1137/0205008

4. D. Bleichenbacher, Efficiency and security of cryptosystems based on number theory, chapter 4.

A Docotor Thesis, Swiss Federal Institue of Technology Zurich, Zurich, 1996.

https://www.research-collection.ethz.ch/handle/20.500.11850/142613

5. R. Rivest, A. Shamir, L. Adleman, A method for obtaining digital signatures and public-key

cryptosystems, Commun. ACM, 21 (1978), 120–126. https://doi.org/10.1145/359340.359342

6. H. Bahig, D. I. Nassr, Generating a shortest B-chain using multi-gpus, Inf. Sci. Lett., 11 (2022),

745–750. https://doi.org/10.18576/isl/110307

7. E. J. Guzmán-Trampe, N. Cruz-Cortés, L. J. Dominguez Perez, D. Ortiz-Arroyo, Francisco

Rodríguez-Henríquez, Low-cost addition–subtraction sequences for the final exponentiation in

pairings, Finite Fields Th. App., 29 (2014), 1–17, https://doi.org/10.1016/j.ffa.2014.02.009

8. E. Thurber, N. Clift, Addition chains, vector chains, and efficient computation, Discret. Math.,

344 (2021), 112200. https://doi.org/10.18576/isl/110307

9. P. Downey, B. Leong, B. R. Sethi, Computing sequences with addition chains, SIAM J. Comput.,

10 (1981), 638–646. https://doi.org/10.18576/isl/110307

10. C. Laih, S. Yen, L. Harn, Two efficient server-aided secret computation protocols based on the

addition sequence, In: Advances in cryptology-ASIACRYPT’91, 450–459, 1991.

https://doi.org/10.18576/isl/110307

11. C. Laih, S. Yen, Secure addition sequence and its applications on the server-aided secret

computation protocols, In: Advances in cryptology-AUSCRYPT’92, Lecture Notes in Computer

Science, 718 (1992), 219–229. https://doi.org/10.1007/3-540-57220-1_64

12. P. Nguyen, I. E. Shparlinski, On the insecurity of a server-aided RSA protocol. In: Boyd, C. (eds)

Advances in Cryptology—ASIACRYPT 2001. ASIACRYPT 2001. Lecture Notes in Computer

Science, vol 2248, Springer, Berlin, Heidelberg. (2001). https://doi.org/10.1007/3-540-45682-1_2

13. X. Chen, J. Li, J. Ma, Q. Tang, W. Lou, New algorithms for secure outsourcing of modular

exponentiations, IEEE T. Parallel Distr., 25 (2014), 2386–2396,

https://doi.org/10.1109/TPDS.2013.180

14. C. Bouillaguet, F. Martinez, D. Vergnaud, Cryptanalysis of modular exponentiation outsourcing

protocols, Comput. J., 65 (2022), 2299–2314. https://doi.org/10.1093/comjnl/bxab066

15. C. Chevalier, F. Laguillaumie, D. Vergnaud, Privately outsourcing exponentiation to a single

server: Cryptanalysis and optimal constructions, Computer Security–ESORICS 2016, 261–278.

https://doi.org/10.1007/978-3-319-45744-4_13

16. G. Di Crescenzo, M. Khodjaeva, D. Kahrobaei, V. Shpilrain, Delegating a product of group

exponentiations with application to signature schemes, J. Math. Cryptol., 14 (2020), 438–459.

https://doi.org/10.1515/jmc-2019-0036

17. S. Kirkpatrick, C. D. Gelatt, M. P. Vecchi, Optimization by simulated annealing, Science, 220

(1983), 671–680. https://doi.org/10.1515/jmc-2019-0036

https://doi.org/10.1137/0205008
https://www.research-collection.ethz.ch/handle/20.500.11850/142613
https://doi.org/10.1145/359340.359342
https://doi.org/10.18576/isl/110307
https://doi.org/10.1016/j.ffa.2014.02.009
https://doi.org/10.18576/isl/110307
https://doi.org/10.18576/isl/110307
https://doi.org/10.18576/isl/110307
https://doi.org/10.1007/3-540-57220-1_64
https://doi.org/10.1007/3-540-45682-1_2
https://doi.org/10.1109/TPDS.2013.180
https://doi.org/10.1093/comjnl/bxab066
https://doi.org/10.1007/978-3-319-45744-4_13
https://doi.org/10.1515/jmc-2019-0036
https://doi.org/10.1515/jmc-2019-0036

11038

AIMS Mathematics Volume 9, Issue 5, 11024–11038.

18. H. Bahig, H. Bahig, A new strategy for generating shortest addition sequences, Computing, 91

(2011), 285–306. https://doi.org/10.1515/jmc-2019-0036

19. F. Bergeron, J. Berstel, S. Brlek, Efficient computation of addition chains, J. Theor. Nombres

Bord., 6 (1994), 21–38. https://doi.org/10.5802/jtnb.104

20. H. Bahig, Y. Kotb, An efficient multicore algorithm for minimal length addition chains,

Computers, 8 (2019), 23. https://doi.org/10.3390/computers8010023

21. K. Fathy, H. Bahig, M. Farag, Speeding up multi-exponentiation algorithm on a multicore system,

J. Egypt. Math. Society, 26 (2018), 235–244. https://doi.org/10.21608/joems.2018.2540.1008

22. J. Bos, M. Coster, Addition chain heuristics. In: Brassard, G. (eds) Advances in Cryptology—

CRYPTO’ 89 Proceedings. CRYPTO 1989, Lecture Notes in Computer Science, 435. Springer,

New York, NY. https://doi.org/10.1007/0-387-34805-0_37

23. A. Enge, W. Hart, F. Johansson, Short addition sequences for theta functions, J. Integer Seq., 2

(2018), 1–34.

24. N. Nedjah, L. de Macedo Mourelle, Efficient pre-processing for large window-based modular

exponentiation using ant colony, In: Khosla, R., Howlett, R. J., Jain, L. C. (eds) Knowledge-Based

Intelligent Information and Engineering Systems. KES 2005. Lecture Notes in Computer Science,

vol. 3684. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11554028_89

25. M. Abbas, O. Gustafsson, Integer linear programming modeling of addition sequences with

additional constraints for evaluation of power terms, 2023.

https://doi.org/10.48550/arXiv.2306.15002

26. H. M. Bahig, K. A. Alutaibi, M. A. Mahdi, A. AlGhadhban, H. M. Bahig, An evolutionary

algorithm for short addition chains, Int. J. Adv. Comput. Sci. Appl., 11 (2020), 340–352.

http://dx.doi.org/10.14569/IJACSA.2020.0111258

27. K. Gao, F. Yang, M. Zhou, Q. Pan, P. N. Suganthan, Flexible job-shop rescheduling for new job

insertion by using discrete jaya algorithm, IEEE T. Cybernetics, 49 (2019), 1944–1955.

https://doi.org/10.1109/TCYB.2018.2817240

© 2024 the Author(s), licensee AIMS Press. This is an open access

article distributed under the terms of the Creative Commons

Attribution License (http://creativecommons.org/licenses/by/4.0)

https://doi.org/10.1515/jmc-2019-0036
https://doi.org/10.5802/jtnb.104
https://doi.org/10.3390/computers8010023
https://dx.doi.org/10.21608/joems.2018.2540.1008
https://doi.org/10.1007/0-387-34805-0_37
https://doi.org/10.1007/11554028_89
https://doi.org/10.48550/arXiv.2306.15002
http://dx.doi.org/10.14569/IJACSA.2020.0111258
https://doi.org/10.1109/TCYB.2018.2817240
http://creativecommons.org/licenses/by/4.0

