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1. Introduction

Since the Lundberg-Cramer classical risk model [1] was proposed, many researchers have paid
attention to the ruin problem and dividend payments in various risk models. Then, many researchers
focused on investment and dividend issues in various risk models, expecting to get the optimal
investment strategy so that the company’s shareholders can get more dividends [2–5].

The issue of investment can be traced back to 1995, when Sundt and Teugels [6] proposed a classical
risk model with interest and considered the ruin probability of the model. On investment, Fang and
Wu [7] introduced the assumption of risk-less asset investment based on the classical risk model.
However, companies do not invest all of their positive assets in practice, but keep some of it as liquid
reserve to protect against contingencies. Hence, Cai et al. [8] introduced the level of liquid reserves
into the model and discussed the effects of parameters such as the level of liquid reserves on the ruin
probability through some examples. Yang and He [9] further introduced loan interest into the model
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and discussed its absolute ruin probability. In order to obtain higher returns, insurance companies not
only invest their assets in risk-less markets, but also in risk markets in reality. Chen et al. [10] proposed
an improved risk model with proportional investment under the threshold strategy.

In addition, researchers pay more attention to the dividend problem under different risk models and
different dividend strategies [11–13]. In the actual situation, shareholders are more concerned about
what strategy can maximize the dividend, that is, to find the optimal dividend strategy. The problem of
optimal dividend can be traced back to 1957, when it was discussed by De Finetti [14] with the goal
of maximizing dividends to a company’s shareholders. Subsequently, there are many studies around
the issue of optimal dividends, and a large number of papers and academic monographs have been
published to study risk models under investment or dividend strategies [15–19].

At present, there are few relevant studies on proportional investment, which are all about investing
all positive assets, and there is no situation of combining proportional investment with liquid reserve.
Therefore, this paper starts from the actual situation, and considers the classical risk model with liquid
reserves and proportional investment to study the expected total discounted dividend before ruin.

In order to clearly demonstrate the innovation of our work, it is compared with some existing
literature in Table 1.

Table 1. Compared with previous literature.

Existing literature
model

sinc
liquid reserve risk investment risk-less investment dividend strategy

Fang and Wu [7] ! !

Cai et al. [8] ! ! !

Chen and Ou [10] ! ! ! !

Zhang and Han [17] !

Zhang et al. [18] ! ! !

Yu et al. [3] ! !

Peng et al. [19] ! ! !

Lin and Pavlova [12] !

wan [13] !

Yin and Yuen [11] !

Lin and Sendova [16] !

This paper ! ! ! ! !

2. The model

First, the expression of the classical risk model is

Ct = u + ct − Zt, t ≥ 0, (2.1)

where {Ct}t≥0 represents the surplus at time t, and c > 0 is the premium rate. Zt =
M(t)∑
i=1

Yi is a compound

Poisson process, which represents the cumulative claimed size at moment t. M(t) = sup{k : S 1 + S 2 +

· · · + S k ≤ t} is a homogeneous Poisson process with parameter θ ≥ 0, where the claim interval {S i}
∞
i=1
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has a common exponential distribution with the parameter θ. Yi is the i-th claim of {Yi}
∞
i=1, which is

a sequence of independent and identically distributed (i.i.d) non-negative random variables with c.d.f.
FY and p.d.f. fY , and the common mean is µ. {M(t)}t≥0 and {Yi}

∞
i=1 are independent each other. Besides,

the Eq (2.1) should satisfies the safe load condition c > θµ.
In order to improve profitability and reduce risks, insurance companies usually invest their assets in

a portfolio. There are two types of assets in the financial market: risk-less assets and risk assets. By
making a portfolio investment, insurers can pursue higher returns while protecting their interests by
moderately diversifying risk. The risk-less asset {Pt}t≥0 satisfies the equation

dPt = r0Ptdt, (2.2)

where r0 > 0 is the interest rate under risk-less investment. Risk asset {Qt}t≥0 obeys a geometric Lévy
process, and we have

Qt = e
ϵt+σr Bt+

N(t)∑
i=1

Xi
, (2.3)

where ϵ(ϵ > 0) is the expected instantaneous rate of return of the risk asset, and σr is the price volatility
of the risk asset. {Bt}t≥0 is a standard Brownian motion, and {Xi}

∞
i=1 is an i.i.d random sequence with

c.d.f. FX and p.d.f. fX. N(t) = sup{k : G1 +G2 + · · · +Gk ≤ t} is a homogeneous Poisson process with
parameter η ≥ 0, where {Gi}

∞
i=1 is the jump interval time of Qt with a common exponential distribution.

{Yi}
∞
i=1, {Xi}

∞
i=1, {M(t)}t≥0 and {N(t)}t≥0 are independent each other.

Therefore, the risk asset {Qt}t≥0 becomes

dQt

Qt
= (ϵ +

1
2
σr

2)dt + σrdBt + d
N(t)∑
i=1

(eXi − 1). (2.4)

In addition, q is used to represent the proportion of investment in risk asset, and p is used to represent
the proportion of investment in risk-less asset, and apparently there is 0 < q < 1, p + q = 1. Therefore,
the surplus process satisfying the above investment strategy is

dCt = qCt−
dQt

Qt
+ (1 − q)Ct−

dPt

Pt
+ cdt − dZt. (2.5)

In fact, the insurance company will not invest all of its assets, but will keep a portion of the funds
as liquid reserves, marking the level of liquid reserves as ∆(∆ > 0) [8]. On this basis, we consider the
dividend payment problem of model 2.5 under the threshold strategy, and label the threshold level as
b(b ≥ ∆). If the company’s positive assets are lower than ∆, it will neither invest nor pay dividends
to shareholders; if the surplus is higher than ∆, the surplus exceeding ∆ is invested in a portfolio; if
the surplus continues to exceed b, the surplus exceeding b will be paid to the shareholder at a fixed
dividend rate ϑ(0 < ϑ < c). Therefore, the surplus process {Ct}t≥0 is

dCt =



cdt − dZt, 0 ≤ Ct− < ∆,

qĈt
dQt
Qt
+ (1 − q)Ĉt

dPt
Pt
+ cdt − dZt, ∆ ≤ Ct− < b,

qĈt
dQt
Qt
+ (1 − q)Ĉt

dPt
Pt
+ (c − ϑ)dt − dZt, b ≤ Ct− < ∞,

(2.6)

AIMS Mathematics Volume 9, Issue 5, 10893–10910.



10896

where Ĉt = Ct− − ∆, and, according to Eqs (2.2)–(2.6), it can be obtained that

dCt =



cdt − dZt, 0 ≤ Ct− < ∆,

qσrĈtdBt − d
M(t)∑
i=1

Yi + (r̂Ĉt + c)dt + qĈtd
N(t)∑
i=1

(eXi − 1), ∆ ≤ Ct− < b,

qσrĈtdBt − d
M(t)∑
i=1

Yi + (r̂Ĉt + c − ϑ)dt + qĈtd
N(t)∑
i=1

(eXi − 1), b ≤ Ct− < ∞,

(2.7)

where r̂ = q(ϵ + 1
2σr

2) + (1 − q)r0, and the security loading condition is c − ϑ > θE[Y1].
In this paper, we will consider the expected total discounted dividend up to ruin, expressed as

V∆(u; b) and briefly recorded as V∆, which is

V∆ = ϑE
[ ∫ Tu

0
e−εtI(Ct > b)dt

]
, (2.8)

where ε is the interest force and Tu = inf{t : Ct ≤ 0} is the time of ruin.
The remainder is organized as follows: In Section 3, we derive a system of integral differential

equations (IDEs) in which the expected total discounted dividend V∆ before ruin satisfies certain
boundary conditions. In Section 4, we get an approximate solution of V∆ by means of sinc numerical
approximation. In Section 5, we go through numerical examples to discuss the effects of parameters
such as the risk capital ratio q and liquid reserves ∆ on the expected total discounted dividend before
ruin.

3. Integral differential equation for V∆

When the initial capital of the insurance company is different, the expected discounted dividend
payment V∆ satisfies different expressions, so we let

V∆(u; b) =



V1(u; b), 0 ≤ u < ∆;

V2(u; b), ∆ ≤ u < b;

V3(u; b), b ≤ u < +∞.

For convenience, we will simply write Vi(u; b) as Vi, i = 1, 2, 3. Then, we get the following theorem:

Theorem 3.1. For 0 ≤ u < ∆, we have

cV
′

1 − (θ + η + ε)V1 + θ

∫ u

0
V1(u − y; b)dFY(y) = 0, (3.1)

for ∆ ≤ u < b, we have

1
2

q2σr
2(u − ∆)2V

′′

2 + [r̂(u − ∆) + c]V
′

2 − (θ + η + ε)V2
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+ θ

[∫ u−∆

0
V2(u − y; b)dFY(y) +

∫ u

u−∆
V1(u − y; b)dFY(y)

]
+ η

[∫ R

−∞

V2(uq; b)dFX(x) +
∫ +∞

R
V3(uq; b)dFX(x)

]
= 0, (3.2)

and for b ≤ u < +∞, we have

1
2

q2σ2
r (u − ∆)2V

′′

3 + [r̂(u − ∆) + c − ϑ]V
′

3 − (θ + η + ε)V3

+ θ

[∫ u−b

0
V3(u − y; b)dFY(y) +

∫ u−∆

u−b
V2(u − y; b)dFY(y) +

∫ u

u−∆
V1(u − y; b)dFY(y)

]
+ ηI(u < B)

[∫ R

−∞

V2(uq; b)dFX(x) +
∫ +∞

R
V3(uq; b)dFX(x)

]
+ ηI(u ≥ B)

∫ +∞

−∞

V3(uq; b)dFX(x) + ϑ = 0, (3.3)

with boundary conditions

V∆(0; b) = 0, (3.4)

lim
u→∞

V∆(u; b) =
ϑ

ε
, (3.5)

where

B =
b − q∆
1 − q

,

uq = u + q(u − ∆)(ex − 1),

R = ln
q(u − ∆) + b − u

q(u − ∆)
.

Proof. We refer to the method in reference [13, 20]. Consider the infinitesimal interval [0, dt] and
apply the total probability formula according to whether there is a jump in claims and risk capital in
the interval.

When 0 ≤ u < ∆, it is relatively simple: there is no investment in the interval [0, dt], and the
premium income cannot make the surplus higher than ∆. Under such conditions, only two situations
occur: (1) neither the jump in risk investment process nor the claim occurs, with a probability of P(G1 >

dt, S 1 > dt); (2) no jump in risk investment process has occurred but the claim has occurred, with a
probability of P(G1 > dt, S 1 ≤ dt). Therefore, according to model (2.7), using the total probability
formula, the expression for V∆ is

V1 = e−εdt
{
P1V1(u + cdt; b) + P2V1(u + cdt − Y1; b)

}
, (3.6)

where

P1 = P(G1 > dt, S 1 > dt) = 1 − (η + θ)dt + o(dt), (3.7)
P2 = P(G1 > dt, S 1 ≤ dt) = θdt + o(dt). (3.8)
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By Taylor’s formula, we can get

V1(u + cdt; b) = V1(u; b) + cV1
′

(u; b)dt + o(dt). (3.9)

Then, substituting (3.7)–(3.9) into (3.6), rearranging the equation, and letting dt → 0 , we can get
Eq (3.1).

When ∆ ≤ u < b, the insurance company makes a portfolio investment. Under this condition,
there are three situations: (1) neither the jump in risk investment process nor the claim occurs; (2)
no jump in risk investment process has occurred but the claim has occurred, in which case the size of
the claim needs to be considered; (3) no claim but the jump in risk investment process has occurred,
with probabilityP(G1 ≤ dt, S 1 > dt), and also needs to consider the size of the jump in risk investment
process. Because the occurrence of both the claims and the jump in risk investment process is a small
probability event, we can get that the expression V∆ is

V2 =e−εdt

{
P1E[V2(A1; b)] + P2E

[
E[V2(A1 − Y1; b)|Y1 ∈ (0, A1 − ∆))]

+ E[V1(A1 − Y1; b)|Y1 ∈ (A1 − ∆,+∞))]
]

+ P3E
[
E[V2(A1 + q(u − ∆)(eX1 − 1); b)|X1 ∈ (−∞, h1)]

+ E[V3(A1 + q(u − ∆)(eX1 − 1); b)|X1 ∈ (h1,+∞)]
]}
, (3.10)

where

A1 = u + qσr(u − ∆)dBt + [r̂(u − ∆) + c]dt, (3.11)
P3 = P(G1 ≤ dt, S 1 > dt) = ηdt + o(dt), (3.12)

h1 = ln
q(u − ∆) + b − A1

q(u − ∆)
. (3.13)

By the Itô formula, we can get

E[V2(A1; b)] = E[V2(u + qσr(u − ∆)dBt + [r̂(u − ∆) + c]dt; b)]

= V2(u; b) + [r̂(u − ∆) + c]V2
′

(u; b)dt +
1
2

q2σr
2(u − ∆)2V2

′′

(u; b)dt, (3.14)

and then substituting (3.11)–(3.14) into (3.10) and doing the same thing with 0 ≤ u < ∆, we can get
Eq (3.2).

When b ≤ u < +∞, using the same treatment, we can get

V3 =e−εdt

{
ϑdt + P1E[V3(A2; b)] + P2E

[
E[V3(A2 − Y1; b)|Y1 ∈ (0, A2 − b)]

+ E[V2(A2 − Y1; b)|Y1 ∈ (A2 − b, A2 − ∆)]

+ E[V1(A2 − Y1; b)|Y1 ∈ (A2 − ∆,+∞)]
]

+ P3E
[
E[V2(A2 + q(U − ∆)(eX1 − 1); b)|X1 ∈ (−∞, h2)]

AIMS Mathematics Volume 9, Issue 5, 10893–10910.



10899

+ E[V3(A2 + q(b − ∆)(eX1 − 1); b)|X1 ∈ (h2,+∞)]
]}
, (3.15)

where

A2 = u + qσr(u − ∆)dBt + [r̂(u − ∆) + c − ϑ]dt, (3.16)
P3 = P(G1 ≤ dt, S 1 > dt) = ηdt + o(dt), (3.17)

h2 = ln
q(u − ∆) + b − A2

q(u − ∆)
. (3.18)

By the Itô formula, we can get

E[V3(A2; b)] = E[V3(u + qσr(u − ∆)dBt + [r̂(u − ∆) + c − ϑ]dt; b)]

= V3(u; b) + [r̂(b − ∆) + c − ϑ]V3
′

(u; b)dt +
1
2

q2σr
2(u − ∆)2V3

′′

(u; b)dt, (3.19)

and then substituting (3.16)–(3.19) into (3.15) and doing the same as above, we can get Eq (3.3).
Finally, if u = 0, the insurance company will immediately ruin, and therefore dividends will not be

paid and condition (3.4) can be obtained. If u→ ∞, ruin does not always occur, so Tu = ∞ and then
the boundary conditions (3.5) can be obtained by calculating (2.8), proving the theorem. □

Remark 3.1. It should be noted that, when u > ∆, there is q(u−∆)+∆−u < 0, which means ln q(u−∆)+∆−u
q(u−∆)

is meaningless. Therefore, it is impossible to jump to a value less than ∆ in (3.10) and (3.15).

Remark 3.2. The fact that V∆ and (V∆)′ are continuous at ∆ and b has been discussed in reference [13].

4. Numerical approximate solution of V∆

The explicit solutions of Theorem 3.1 cannot be obtained, so a method of sinc approximation to
find the approximate solution is provided in this section. Since E.T. Whiaker first proposed the idea
of the sinc numerical method [21], the sinc numerical method has attracted a lot of scholars to explore
and study it [22–25]. Compared with traditional methods, the sinc method not only converges faster
and can reach exponential order convergence, but also has stronger applicability to problems with
singularity, finite, infinite, and semi-finite integral regions [26].

We construct a one-to-one mapping of R+ → R, φ(x) = log x. Hence, the sinc grid point is defined
as

xk = φ
−1(kh) = ekh, (4.1)

where h > 0 is the interval of grid points, and k is a positive integer.
To facilitate the use of the sinc method, rearranging the integral differential equations (3.1)–(3.3),

we have

1
2

q2σr
2(u − ∆)2Iu≥∆(V∆)′′ + [r̂(u − ∆)Iu≥∆ + c − ϑIu≥b](V∆)′

− (ε + θ + η)V∆ + θ
∫ u

0

V∆(u − y; b) fY(y)dy
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+ ηIu≥∆

∫ +∞

−∞

V∆(u + q(u − ∆)(ex − 1); b) fX(x)dx + ϑIu≥b = 0. (4.2)

Next, letting z = u + q(u − ∆)(ex − 1) and transforming Eq (4.2), we get

1
2

q2σr
2(u − ∆)2Iu≥∆(V∆)′′ + [r̂(u − ∆)Iu≥∆ + c − ϑIu≥b](V∆)′

− (ε + θ + η)V∆ + θ
∫ u

0
V∆(y; b) fY(u − y)dy + ϑIu≥b

+ ηIu≥∆

∫ +∞

(1−q)u+q∆
V∆(z; b) fX

(
ln

z − u + q(u − ∆)
q(u − ∆)

) 1
z − u + q(u − ∆)

dz = 0, (4.3)

with boundary conditions

V∆(0; b) = 0,

lim
u→∞

V∆(u; b) =
ϑ

ε
.

According to reference [27] (p. 73), let K(u) = V∆ −
V∆(0)+eφ(u)V∆(s)

1+eφ(u) , and when s→ ∞, we have

K(u) = V∆ −
u

1 + u
ϑ

ε
. (4.4)

Substituting (4.4) into (4.3),we have

κ1(u)K′′(u) + κ2(u)K′(u) + κ3(u)K(u) + θ
∫ u

0
K(y)L1(u − y)dy

+ κ4(u)
∫ ∞

(1−q)u+q∆
K(z)L2(u, z)dz + H(u) = 0, (4.5)

with boundary conditions

K(0) = 0,
lim
u→∞

K(u) = 0,

where

κ1(u) =
1
2

q2σr
2(u − ∆)2Iu≥∆, κ2(u) = r̂(u − ∆)Iu≥∆ + c − ϑIu≥b,

κ3(u) = −(ε + θ + η), κ4(u) = ηIu≥∆, L1(u − y) = fY(u − y),

L2(u, z) =
fX

(
ln z−u+q(u−∆)

q(u−∆)

)
z − u + q(u − ∆)

,

H(u) = −
2

(1 + u)3

ϑ

ε
κ1(u) +

1
(1 + u)2

ϑ

ε
κ2(u) +

u
(1 + u)

ϑ

ε
κ3(u) + ϑIu≥∆

+ θ

∫ u

0

y
1 + y

ϑ

ε
L1(u − y)dy + κ4(u)

∫ ∞

(1−q)u+q∆

z
1 + z

ϑ

ε
L2(u, z)dz.
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By using Theorems 1.5.13, 1.5.19, and 1.5.20 of reference [27], let

M =
[
β̂N

ϑ̂

]
, h =

(
πd
β̂N

) 1
2

,

where 0 < ϑ̂, β̂ ≤ 1 and 0 < d < π. Then, we have∫ u

0
K(y)L1(u − y)dy ≈

N∑
j=−M

N∑
i=−M

ωiAi jK j, (4.6)

∫ ∞

(1−q)u+q∆
L2(u, z)K(z)dz ≈ h

N∑
j=−M

N∑
i=−M

ωiδ
(−1)
ji

L2(u, u j)
φ′(u j)

K j, (4.7)

K(u) ≈ K̂(u) =
N∑

j=−M

K j[S ( j, h) ◦ φ(u)], (4.8)

ωi = ωi(u) = S (i, h) ◦ φ(u) = sinc
(
φ(u) − ih

h

)
, i = −M,−M + 1, ...,N, (4.9)

A = hI(−1)Dm

( 1
φ′

)
, (4.10)

where

I(−1) = [δ(−1)
k j ], δ(−1)

k j = 0.5 +
∫ k− j

0

sin(πt)
πt

dt, sinc(x) =


sinc(πx)
πx , x , 0,

1, else,

K j denotes the approximate value of K(u j), N is a positive integer, and Ai j represents the elements of
matrix A.

Let uk = ekh, k = ±1,±2, ..., which is defined by (4.1) as the sinc grid points. According to
reference [28] (p. 106), we have

K̂(uk) =
N∑

j=−M

K j[S ( j, h) ◦ φ(uk)] =
N∑

j=−M

K jδ
(0)
jk , (4.11)

K̂
′

(uk) =
N∑

j=−M

K j[S ( j, h) ◦ φ(uk)]
′

=

N∑
j=−M

K jφ
′

(uk)δ
(1)
jk , (4.12)

K̂
′′

(uk) =
N∑

j=−M

K j[S ( j, h) ◦ φ(uk)]
′′

=

N∑
j=−M

K j[φ
′′

(uk)h−1δ(1)
jk + (φ

′

(uk))2h−2δ(2)
jk ], (4.13)

where

δ(0)
jk =


0, j , k,

1, else.
δ(1)

jk =


(−1)(k− j)

k− j , j , k;

0, else.
δ(2)

jk =


−2(−1)(k− j)

(k− j)2 , j , k,

−π
2

3 , else.
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Substituting (4.6)–(4.8) and (4.11)–(4.13) into Eq (4.5), we obtain

N∑
j=−M

{
κ1(uk)φ′′(uk)

δ(1)
jk

h
+ κ1(uk)(φ′(uk))2

δ(2)
jk

h2 + κ2(uk)φ′(uk)
δ(1)

jk

h
+ κ3(uk)δ

(0)
jk

+ θ

N∑
i=−M

ωi(uk)Ai j + hκ4(uk)
N∑

i=−M

ωi(uk)δ
(−1)
ji

L2(uk, u j)
φ′(u j)

}
K j = −H(uk). (4.14)

Let us multiply both sides of the Eq (4.14) by h2

(φ′(uk))2 . Then we have

N∑
j=−M

{
κ1(uk)δ

(2)
jk + h

[
κ1(uk)

φ′′(uk)
(φ′(uk))2 +

κ2(uk)
φ′(uk)

]
δ(1)

jk + h2 κ3(uk)
(φ′(uk))2 δ

(0)
jk

+ θ
h2

(φ′(uk))2

N∑
i=−M

ωi(uk)Ai j +
κ4(uk)h3

(φ′(uk))2φ′(u j)

N∑
i=−M

ωi(uk)δ
(−1)
ji L2(uk, u j)

}
K j = −

h2H(uk)
(φ′(uk))2 . (4.15)

Since

δ(0)
jk = δ

(0)
k j , δ

(1)
jk = −δ

(1)
k j , δ

(2)
jk = δ

(2)
k j ,

φ′′(uk)
(φ′(uk))2 = −

(
1
φ′(uk)

)′
,

Eq (4.15) can be rewritten as

N∑
j=−M

{
κ1(uk)δ

(2)
k j + h

[
κ1(uk)

(
1
φ′(uk)

)′
−
κ2(uk)
φ′(uk)

]
δ(1)

k j + h2 κ3(uk)
(φ′(uk))2 δ

(0)
k j

+ θ
h2

(φ′(uk))2

N∑
i=−M

ωi(uk)Ai j +
κ4(uk)h3

(φ′(uk))2φ′(u j)

N∑
i=−M

ωi(uk)δ
(−1)
ji L2(uk, u j)

}
K j

= −
h2H(uk)
(φ′(uk))2 , k = −M, . . . ,N. (4.16)

Set ΩM = (ω−M(uk), ..., ωN(uk)), L2 = [ L2(uk ,u j)
φ′(uk) ]. Dm(.) represents a diagonal matrix and I(m) = [δ(m)

k j ],
m = −1, 0, 1, 2, is a square matrix of order M+N +1, where δ(m)

k j represents the elements of matrix I(m).
We rewrite Eq (4.16) as

CK = H, (4.17)

where K = [K−M,K−M+1, · · · ,KN]T ,

H =
[
−h2 H(u−M)

(φ′(u−M))2 , . . . ,−h2 H(uN)
(φ′(uN))2

]T

,

C =κ1I(2) + hDm

(
κ1

(
1
φ′

)′
−
κ2
φ′

)
I(1) + h2Dm

(
κ3

(φ′)2

)
I(0) + h2θDm

(
1

(φ′)2

)
ΩMA

+ h3Dm

(
κ4

(φ′)2

)
ΩM[I(−1)]T L2.
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By solving the matrix equation (4.17) we can get K j, and according to Eqs (4.4) and (4.8), we obtain

V∆(u; b) ≈
N∑

j=−M

K jS ( j, h) ◦ φ(u) +
1

1 + u
ϑ

ε
. (4.18)

Therefore, we can get an approximate solution to V∆ by substituting the obtained K j into Eq (4.18) and
assigning the parameters.

5. Numerical example

In this section, we study the influence of some arguments on V∆(u; b) by some examples. The p.d.f.
fX(x) of the random returns for all examples is assumed to be

fX(x) = p1γ1e−γ1 xIx≥0 + q1γ2eγ2 xIx<0, (5.1)

where p1 + q1 = 1, 0 < p1, q1 < 1, γ1 ≥ 1, and γ2 > 0. fY(y) is assumed to be the exponential and
lognormal distributions commonly used in actuarial research.

5.1. The exponential distribution case

In this subsection, the p.d.f. of the random variable Y is an exponential distribution, defined as

fY(y) = µe−µy, 0 < y < ∞.

Then

L1(u − y) =


µe−µ(u−y), 0 < y ≤ u;

0, u < y < ∞.

Next, we discuss the effects of parameter q, p1, σr, and ∆ on V∆ and the optimal b. The basic
parameter of this subsection are θ = 1, ε = 0.06, r = 0.06, ϵ = 0.5, c = 0.5, ϑ = 0.2, γ1 = 1, γ2 = 2, µ =
5, and the parameters involved in the sinc numerical method are set to N = 10, ϑ̂ = π

4 , β̂ = 1
4 , and

d̂ = π
10 .

Example 5.1. For different initial surplus, we first observe the impact of different dividend boundaries
b on V∆. The basic parameter settings are the same as above, and then we fix q = 0.9, p1 = 0.2,
σr = 0.2, η = 1, and ∆ = 0.1. When the initial surplus is different, the optimal b is different, and some
of the data are listed in Table 2.

Table 2. The values of V∆ for different b with an exponential distribution.

u 0.5 1.0 2.0 3.0 4.0 5.0 6.0 7.0 8.0
b = 0.5 0.4412 1.8274 2.2429 2.5167 2.7387 2.8447 2.8897 2.9170 2.9447
b = 1.0 0.6950 1.8095 2.2408 2.4925 2.7458 2.8599 2.8910 2.9004 2.9164
b = 2.0 0.7069 1.8082 2.2377 2.4921 2.7479 2.8618 2.8917 2.8998 2.9151
b = 3.0 0.7069 1.8082 2.2377 2.4921 2.7479 2.8618 2.8917 2.8998 2.9151
b = 4.0 0.7066 1.8098 2.2363 2.4902 2.7471 2.8621 2.8924 2.9005 2.9157
b = 5.0 0.7066 1.8098 2.2363 2.4902 2.7471 2.8621 2.8924 2.9005 2.9157
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Example 5.2. We consider the impact of p1 and investment ratio q on the expected discounted dividend
payments V∆. As shown in Figure 1, when p1 is large, the value of V∆ is more affected by q. On the
whole, the curve of V∆ shows a fluctuating upward trend.
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Figure 1. Curves of V∆ when b = 1, σr = 0.2, η = 1, ∆ = 0.1.

Example 5.3. Next, we consider the impact of fluctuations in risk assets σr on V∆. As shown in
Figure 2, the larger σr is, the more the curve of V∆ fluctuates.

0 1 2 3 4 5 6 7 8 9 10
u

0.5

1

1.5

2

2.5

3

3.5

V
(u

;b
)

σ
r
=0.2

σ
r
=0.8

Figure 2. Curves of V∆ when b = 1, q = 0.9, p1 = 0.2, η = 1, ∆ = 0.1.

Example 5.4. Then, we consider the impact of the value of the jump in risky assets η on V∆. As shown
in Figure 3, as the value of η increases, the curve of V∆ becomes more stable.

Example 5.5. Finally, we consider the impact of liquid reserves ∆ on V∆. As shown in Figure 4, when
the liquid reserve is large, with the increase of initial surplus, the dividend of insurance companies is
more stable and the curve of V∆ shows an upward trend.
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Figure 3. Curves of V∆ when b = 1, q = 0.9, p1 = 0.2, σr = 0.2, ∆ = 0.1.

0 1 2 3 4 5 6 7 8 9 10
u

0

0.5

1

1.5

2

2.5

3

3.5

V
(u

;b
)

∆=0.01
∆=0.05
∆=0.10

Figure 4. Curves of V∆ when b = 1, q = 0.9, p1 = 0.2, η = 1, σr = 0.2.

5.2. The lognormal distribution case

In this subsection, we assume that fY(y) obeys the lognormal distribution with the parameter
(µ0, 2ν2), where µ0 is the mean and 2ν2 is the variance. The expression for fY(y) is

fY(y) =


1

2πνye− (ln y−µ0)2

4ν2 , 0 < y < +∞;

0, −∞ < y ≤ 0.

Then

L1(u − y) =


1

2πν(u−y))e
− (ln (u−y))−µ0)2

4ν2 , 0 < y < +∞;

0, −∞ < y ≤ 0.
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Next, we discuss the effects of parameter q, p1, and σr on V∆ and the optimal b. The basic parameter
of this subsection are θ = 1, ε = 0.06, r = 0.06, ϵ = 0.6, c = 0.6, ϑ = 0.2, γ1 = 1, γ2 = 2, ν = 0.03,
and µ0 = 0.05, and the parameters involved in the sinc numerical method are N = 10, ϑ̂ = π

4 , β̂ = 1
4 ,

and d̂ = π
10 .

Example 5.6. The basic parameter setting is the same as above, and we fix q = 0.9, p1 = 0.2, σr = 0.2,
η = 1, and ∆ = 0.1. For different initial surplus, the optimal b is different, and some of the data are
listed in Table 3.

Table 3. The values of V∆ for different b with a lognormal distribution.

u 0.5 1.0 2.0 3.0 4.0 5.0 6.0 7.0 8.0
b=0.5 2.1493 1.6224 2.1652 2.4479 2.6599 2.7804 2.8380 2.8701 2.8981
b=1.0 1.9732 1.7393 2.1281 2.4094 2.6885 2.8161 2.8458 2.8480 2.8587
b=2.0 1.9612 1.7400 2.1320 2.4102 2.6860 2.8136 2.8449 2.8487 2.8603
b=3.0 1.9612 1.7400 2.1320 2.4102 2.6860 2.8136 2.8449 2.8487 2.8603
b=4.0 1.9614 1.7392 2.1327 2.4112 2.6865 2.8136 2.8445 2.8483 2.8599
b=5.0 1.9614 1.7392 2.1327 2.4112 2.6865 2.8136 2.8445 2.8483 2.8599

Example 5.7. We consider the effects of p1 and q on V∆. As shown in Figure 5, when q increases, the
curve fluctuates greatly, and when p1 is larger, the curve fluctuation amplitude of V∆ is also larger.
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Figure 5. Curves of V∆ when b = 1, σr = 0.2, η = 1, ∆ = 0.1.

Example 5.8. Next, we consider the impact of σr on V∆. As shown in Figure 6, the overall curve shows
an upward trend, but σr has little influence on V∆.

Example 5.9. Then, we consider the impact of η on V∆. As shown in Figure 7, the curve shows an
overall upward trend. When u ∈ (0, 2), the larger η, the larger the curve fluctuation of V∆; when
u ∈ [2,∞), η has almost no effect on V∆.
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Figure 6. Curves of V∆ when b = 1, q = 0.9, p1 = 0.2, η = 1, ∆ = 0.1.
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Figure 7. Curves of V∆ when b = 1, q = 0.9, p1 = 0.2, σr = 0.2, ∆ = 0.1.

Example 5.10. Finally, we consider the impact of liquid reserve ∆ on expected discounted dividend
payments V∆. As shown in Figure 8, when u ∈ (0, 1), the curve of V∆ fluctuates greatly. When u ∈
[1,∞), ∆ = 0.10, and the curve of V∆ generally shows a steady upward trend; for ∆ = 0.01, 0.05, the
curve of V∆ generally shows a fluctuating upward trend.
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Figure 8. Curves of V∆ when b = 1, q = 0.9, p1 = 0.2, η = 1, σr = 0.2.

6. Conclusions

In this paper, the risk model with liquid reserve and proportional investment is considered. This
model is more in line with the actual operation of the company and has practical significance. Because
of the complexity of the model, it is impossible to find the exact solution of the expected total
discounted dividend before ruin, so the sinc numerical approximation method is used to find the
approximate solution. In the end, some examples are given to describe the effects of some parameters
on the expected total discounted dividend before ruin.

In addition, we can do further research as follows: (1) We can consider the Gerber-shu function
the model; (2) We can consider cooperating with insurance companies to study the optimal dividend
strategy based on this risk model and using real data; (3) We can find an optimal solution that is better
than the sinc numerical approximation. However, these goals and research methods may be hampered
by technical difficulties and practical problems, which are difficult to achieve, and we leave it to future
research to solve.
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