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Abstract: In order to research uniform continuity of fractal interpolation surface function on a closed
rectangular area, the accumulation principle was applied to prove uniform continuity of fractal
interpolation surface function on a closed rectangular area. First, fractal interpolation surface
function was constructed by affine mapping. Second, the continuous concept of fractal interpolation
surface function at a planar point in a three-dimensional cartesian coordinate space system and
uniform continuity of fractal interpolation surface function on a closed rectangular area were defined
in the paper. Finally, the uniformly continuous theorem of fractal interpolation surface function was
proven through accumulation principle in the paper. The conclusion showed that fractal interpolation
surface was uniformly continuous function on a closed rectangular area.
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1. Introduction

As a new branch of research in mathematics and physics, fractal geometry was proposed by
American mathematician Mandlebrot in the 1960s and 1970s [1-5]. In nature and society, rather
irregular phenomena and things are studied in fractal geometry. Because extremely irregular things
and phenomena are ubiquitous in nature and society, fractal geometry is applied in almost every field,
such as, chemistry, physics, biology, engineering mechanics, geology, economics, anthropology,
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sociology, and so on [6-10]. With the development of fractals, many new fractal research methods
have also emerged. First, in aspect of fractal theoretical research methods, on the one hand, there is
the fractal dimension method, which describes the roughness of extremely irregular curves and
surfaces in nature [11-12]. On the other hand, an iterated functional system generated by affine
mapping can produce a unique attractor, which has fractal self similar property and other fractal
properties. This fractal theory was first proposed by American mathematicians Barnsley and
Massopust in the 1980s and 1990s [13-17]. The self similar property of fractal can be applied in
describing highly irregular shapes in nature, for example, the irregular shapes of galaxies, clouds,
leaves, flowers, mountains, torrents of water, and much else. The advantage of the research method is
that as long as a small amount of data information is obtained, the picture shape can be iterated
through self similar property. For example, as long as three pairs of interpolation data points'
cartesian coordinates are obtained, the curve shape can be iterated by the fractal interpolation curve
by three iterations. (refer to: Figure 1). Of course, these fractal graphics are drawn by a computer
program. Second, a multi-fractal method describes the state in which the multi-fractal spectrum and
generalized fractal dimension change with a probability factor. The multi-fractal method is widely
applied in studying thin film growth in material science [18-20]. Finally, the theory of fractal
interpolation curves on the two-dimensional plane is extended to that of fractal interpolation surfaces
in the three-dimensional space [21-24]. Some properties of fractal interpolation surfaces in
three-dimensional space need to be researched. For example, the uniform continuity of a fractal
interpolation surface will be researched in the following content of the paper.

The proof of the uniform continuity theorem of fractal interpolation surface can be proven
rigorously by the accumulation principle on the two-dimensional plane and the uniform continuity
definition of a function of two variables in the three-dimensional space in the paper.

Figure 1. A fractal interpolation curve by three times iteration.
2. Major concepts and lemmas

Definition 1. [25-26] Let E and A(x,y) be a set of planar points and a point on the plane,

respectively. A(X,y) is called accumulation point if, for any nonempty neighborhood region U°(A)
of A, thereisalways apointin E, where A(x,y) belongsto E or A(x,y) does notbelongto E.
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Definition 2. [25-26] Let f be a function of two variables defined on a plane set D. There is a
point (x,,Y,)€D.The f iscalled continuous function at the point (X,,Y,) € D if, for any given
number ¢ >0, there is a real number >0 so that

[T y) = T (X, ¥o)| <& 1)

aslongas d((x,y),(X,Y,) <o forall (x,y)eD.
Definition 3. [25-26] Let f be a function of two variables defined on a plane set D. The f is

called uniformly continuous function on the set D if, for any given number & >0, there exists
0 =06(¢g)>0, such that

[T Y) - T (XY <e )

for any point (x',y),(x",y")e D, aslongas d((x,y"),(x",y")<d.

Definition 4 [27-28] Let | =[a,b] and J=[c,d] be two closed intervals. Construct a planar
rectangular closed regionD =1xJ ={(x,y)|a<x<b,c<y<d}. Divide D into grids in steps of
Ax and Ay . The segmentation points are as follows:

{a:x0<x1<---<xN:b @)

C=Yo <Y1 <<VYnm =d’

The spacial coordinate data (X, Y;,z ;) (i=0,1---N;j=0,1---,M) on a set of grid points are

given. The function of two variables f:D — R is called fractal interpolation function of two
variables if it satisfies:

f(Xiiyj):zi,]w 1=01---N;j=0,1---,M . (4)

The following discuss is based on spacial region K =Dx[h,h,] (-co<h <h, <+w0). The
special distance d((X,, ¥;,2,), (X,, Y5, 2,)) = max {|x, = X,|.|Y, = Y, ||z, — 2,|} is defined, for any points
(X0 Y1, 20), (X5, Y5, 2,) € K

Denote 1, =X, %], Jn =[Yms¥ul: Dom=1l,xJ,, (nNe€{l--N};me{l,---,M}). Define
d 1 —>1,¥Y, :J—J, becontraction mapping and satisfy:

{ ch(XO)_: Xn—l’ch(XN) :_Xn , (5)
Yo (¥o) = Yorr Vi (Yu) = Vi
and
{ |CDn(X1)—(Dn(X2)|<k1|X1—X2| (6)
|‘Pm(y1) _\Pm(yz)| < kz |y1 - y2| ’

where x,x,€l, y,y,eJ, 0<k <1, 0<k, <1.
Define the two mappings L,,:D—R?* and L, (X y)=(®,(x),¥,(y)) thatare contraction
mappings. The mapping F,, :D —[h,h,] is continuous and satisfies:
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Fn,m (Xo' Yo Zo,o) =Zy1ma
Fn,m(XN » Yoo ZN,O) =Zyma
I:n,m(xov Y1 Zowm )= Ziam .
Fn,m(XN 1 YmrZnm )= Zym

()

For any points (x,Y,),(%,Y,)eD, (z,2,)<[h,h], ne{l,2,---N};me{L,2,---,M}, and
0 <k, <1, the following formula is correct

Fn,m(X11 yl’ Zl) - I:n,m (XZ’ y2’ ZZ)‘ S k3 |Zl - Z2| - (8)

Lemma 1. [25-26] If E is a bounded infinite set of planar points, there is at least one accumulation
pointin E onthe plane R®.
Lemma 2. [25-26] If the sequence {P,(x,,y,)} of planar points is infinite and bounded, there exists

a convergent subsequence {Pnk (xnk,ynk)} of {P,(X,,¥,)}-

Lemma 3. [27-28] Let the mapping @, defined by Definition 5 above be a affine mapping,
@ (x)=a,x+b,, from the Eq (5) above,

an X0 + bn = Xn—l
ax,+b =x

©)

So, the two coefficients a, and b, can be solved. The following equation can be obtained

a = X, =Xy
n
Xy =%
. (10)
Xn1Xn — X0 %o

Xy — %o

b:

n

So,

X —X X Xy —X
O, (x) = 2Tty T X TR g N (11)
Xy — X Xy, — %

Let the mapping W, (y) defined by Definition 5 above be a affine mapping,
Y. (y)=c,y+d_ according to the Eq (5) above, the following equations can be obtained

CmyO + dm = ym—l (12)
CmyN +dm = ym .

From the equations above, ¢, and d_  can be solved.

Cm _ ym B ym—l
Yv = Yo . (13)
d = Yna¥m — YaYo
" Ym — yO
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So,
\Pm(y):ym_ym—l y+ym—1yM_ymyO’ mE{l,,M} (14)
Yv = Yo Yv = Yo
Let
Fon(X Y 2) =6 X+ f y+g, . xy+s,,z+k,, nef{l--- N}, me{l---,M}, (15)

according to the Eq (7), the following system of equations can be obtained

€omXo T+ fn,myO T 90 m% Yo T SamZoo + kn,m =Zyama
€mXn T fn,m Yot GnmXn Yo TShmino kn,m =Zyma
€mXo fn,m Ym T 9am%Ym +SimZom T kn,m =Zyam .
€mXn fn,myM T 9hmXnYm T Saiminm +kn,m =7

(16)

n,m

Let s,, be free parameter and satisfies 0<s <1, which is called vertical ratio factor. The
every coefficient of the system of equations above can be solved.

g, = Zn—l,m—l - Zn—l,m - Zn,m—l + Zn,m - Sn,m (Zo,o - ZN,O B ZO,M + ZO,M )
' XoYo = Xn Yo = %YM T Xy Ym
e = Zom1~ Sn,m(zo,o ~ ZN,o) ~Oim (Xo Yo =Xy yo)
’ Xo =Xy ) 17)
o= Zoama1 " Znaam —Sam (Zo,o —Zom )— O m (%Yo =% Yn)
' XoYo = Xn Yo = XoYm + Xy Ym
kn,m =Zym ~ Xy~ fn,myM ~SamZnm ~ GnmXnYm

where ne{l---,N}, me{l,---,M}.
Lemma 4 [27-28] For the interpolation function system defined above from Eq (4) to Eq (17), there
exists a unique attractor G = {(x, y, T (X, y))|(x, y) e D} and it is a graph of continuous function f,

which satisfies:

f(xilyj)zzi,j1 i:O,l,"'N;j:O,l,"',M. (18)

According to the principle of fractal interpolation on closed rectangular region, the following
analytic function of self affine two variables fractal interpolation function can be solved.

F(y) =, @) )+ f 0 (V) +9,,, @ )Y (V) +5,, F (O (), ¥ (V) + Ko (19)
where
q);l(X)=M(X—anl)+XO,XE[anl,Xn],ne{l,---,N}, (20)
n "~ “n-1
W) = 2 (Y oy )+ Yo Y €[ Yol ML M (21)
m m-1
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The coefficients e k —~ of Eq (19) can be solved by Eq (17) and the

n,m’ fn,m 1 gn,m ! n,m

coefficient s, is vertical compress ratio factor, which is artificially given according to roughness
of fractal interpolation surface.

3. Uniform continuity of fractal interpolation surface on a closed rectangular area

Theorem. If the fractal interpolation surface function f(x,y) defined by Eq (19) above is a
continuous function on a closed rectangular area D =[a,b]x[c,d]. Then f(x,y) is uniformly

continuous functionon D.
Proof: Here the contradiction proof method can be used. Suppose that f(x,y) is continuous on

closed rectangular region D, but it is not uniformly continuous on D . That is to say,
g, >0,vV5>0,3P(x,y),Q(x,y)e D, and d(P,Q)<d, but

[f(x,y)-f(X,y)|2¢g>0. (22)

Because D is a bounded closed domain, from Lemmas 2 and 3, there is a convergent
subsequence {P (%o Y, )}QD,and let

N

lim Pnk(xnk,ynk):PO(xO,yo). (23)

k—o0

According to the hypothesis condition of contradiction proof method above, there exists points
sequence {an (% ¥e, )} with the same subscript as {Pnk EA )} and satisfies:

d(Pnk(xnk,ynk),an(xrﬁk,y;k ))<5. (24)

On the one hand,

06,0 ) = T O Y)
en,m(D:L(XI’M< ) + fn,m\P;l(ynk ) + gn,mq);l(xnk )\Il;’ll(ynk ) + Sn,m f ((D;l(xnk )’ lIl;L(ynk )) + kn,m
(80 n @, 06+ Fo W (0)+ Qe @, 06 )W (Y1) 48, F(D,106), WL (V0 ) + K )

<[ [0 (%, ) = @300+ Fonl [P V) =i (Yo )| | G| [R5 O ) (Y,

—0, (0 )W (Va )|+ [0l £ (@206, W0 (3 ) = F (@10, ), ¥ (vs,))] - (25)
0720, )~ 07 (x, )| = ;‘N—_Xol X, x| < ;‘N_—‘X’:: -%—>O(nk ). (26)
B e e L A M e %»om ). (27)

[, (%, ) (Y ) — @1 (%0 )W, (V)
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< XN — Xo Yvm — Yo |£
- 2
Xh =X Ym = Y ‘ Ny

=(

| £(@106,), W, (9, ) = F (@10, ), ¥ (y2,))|

Xn =% . Yvm — Yo |i
Xy =X ym_ym—l‘ n

_—XXO]-E—N(nk—)oo). (28)

+|y0|

ym ym—l

= (80 ®@y (@ (%, ) + £ 0 (P (Yo, ) + Gy @y (@7, )W (P (Y,,))

n,m n n,m m

+8m T (@@ (%,)), ¥ (P (Vo D) + Ky = (8,0 @, (@} ) + B ¥ (P (07,)

n,m n n,m m

+00n @0 (O (6 N (L (7)) #5850 f (@77 (@706 )), P (P (v, ) + Ky )

-1

-1

2 ) = @@ (X )|+ | f

YLy, ) - (P ()

n,m

DD, (X, N (W (¥, ) =@ (D, (% DY (W (V)

Sol | (@M@ 06, ), W (P (¥, ) = (@@, ), W (P (v, )|

2 2 2
< ( Xy — X i_'_ Ym — YO 1 Xy — %o Ym — Yo
Xn = Xna Ny " Y = Yma Xn = Xna Y = Yma

2
(15~ —yo|+|xn_l|+|ym_1|>+(XXN_‘XffJ P (AT

n

2 2
Yu=Yo ) 1y _y +[yM ]X 1
( J|°| [ym ym_lj o= Yoo = Yt bl n,

Sonl| F (@@, ), Wl (8 (v, ) = (@@ () WL (F (v )| = 0(n > 0). (29)

+ gn,m

€

190m

n,m

The following Eq (30) is correct.
| £ (@@, (%, ) W (P (v, ) = F (@@, ), ¥ (W (i)
. W) = @@ @, )|+ f

O (@ (@ (%, W (W (0 (35, ) = @ (@ (@] 06 W (W (P (v, )|

-1 -1

W (P (P (o )~ W (P (P ()

n,m

+ gn,m
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Spm|| T (@1 (DD (%, ), o (o (P (¥, ) = F (D (D@, (%)), o () (P (v, ))))‘
—0(n, —>0), (30)

+

which repeats the steps of Eq (29).
To sum up, Eq (25)

LHCWDES TR

<le, .. N %o i+ fnm Yvm — Yo 'i—'_gnm XN_XO.yM_yO 'i+|xo| Yvm = Yo
’ Xn = Xoa| M ’ Yo = Ymoa| M ’ Xo =X Yo = Y| M Yn = Yma
Xy — X 2 e T
Yol || |+ 50  em[0H@FH@706, ) — @ (@ (@7, )|
Xy = Xna Ny
| (o (P (3 ) = B (0 (2 (i D)+ [0 021 (@@ (0, D)W (P (W (Y, )))

Spm|| T (@ (@D (%, ), o (P (P (¥,)))

— 0 (@@ )W (F L (W (s )| +

— (@, (@, (@, (%, D), W, (P (W (v )] | > 0(n —0) (31)
can be arbitrarily positive small and tend to zero. In other words,

=0. (32)

lim| f (x, .y, )= f (%, Vi)

However, according to the not uniform continuity definition and the inequalities of limits, the
following inequality is right.

lim| f (x, ¥, )= 060 v,)| 2 4 (33)
It is very obvious that there is a contradiction between Eqgs (32) and (33), which indicates that
the previous negative hypothesis is incorrect. Thus, the conclusion above indicates that fractal
interpolation surface on a closed rectangular region is uniformly continuous through the proof from
Eq (25) to Eq (31) by the definition of uniform continuity. A uniformly continuous fractal
interpolation surface on a rectangle can be drawn by a computer program (refer to: Figure 2).
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Figure 2. Schematic diagram of a uniformly continuous fractal interpolation surface.

4. Conclusions

First, the definition and relational theorems of fractal interpolation surface function are
expounded. Second, the definition and theorem of accumulation point are introduced. Finally, the
contradiction proof method and accumulation principle are applied to prove the uniform continuity
of fractal interpolation surface function on a closed rectangular area.

In the future, on the one hand, research will be conducted on the variation of uniformly
continuous fractal surface. On the other hand, the study of the relationship between the morphology
differences of rock fracture surfaces and the fracture mechanics mechanisms of uniformly continuous
fractal surfaces will continue.
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