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Abstract: Fire is a common but serious disaster, which poses a great threat to human life and property. 

Therefore, fire-smoke detection technology is of great significance in various fields. In order to 

improve the detection ability of tiny-fire, so as to realize the prediction and suppression of fire as soon 

as possible, we proposed an efficient and accurate tiny-fire detection method based on the optimized 

YOLOv7, and we named the improved model YOLOv7-FIRE. First, we introduced the BiFormer into 

YOLOv7 to make the network pay more attention to the fire-smoke area. Second, we introduced the 

NWD technique to enhance the perception of the algorithm for small targets, and provided richer 

semantic information by modeling the context information around the target. Finally, CARAFE was 

applied for content-aware feature reorganization, which preserved the details and texture information 

in the image and improved the quality of fire-smoke detection. Furthermore, in order to improve the 

robustness of the improved algorithm, we expanded the fire-smoke dataset. The experimental results 

showed that YOLOv7-FIRE as significantly better than the previous algorithm in detection accuracy 

and recall rate, the Precision increased from 75.83% to 82.31%, and the Recall increased from 66.43% 

to 74.02%. 
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1. Introduction 

In recent years, as a common but very serious disaster, fire has caused a great threat to human life 

and property. Therefore, fire-smoke detection technology is of great significance in various fields, such 

as building safety, intelligent transportation, industrial monitoring, etc. Our main purpose of this 

research is to improve the detection accuracy and detection speed of tiny-fire. The method adopted is 

to improve the detection ability of small targets. Tiny-fire detection can quickly detect the distance of 

even faint fire-smoke, allowing the fire to be detected at the initial stage. This provides valuable time 

for timely fire suppression measures, which greatly reduces the spread and loss caused by the fire. 

Traditional fire-smoke detection methods often have problems such as low detection rates, high 

computational complexity, and poor adaptability to environmental changes, so they need to be 

optimized. At present, the technology of sensor-based pyrotechnics detection devices is becoming 

more and more mature, but it faces a problem that when the pyrotechnics are small, they cannot 

generate an alarm in time, so they cannot effectively suppress the spread of the fire in time [1,2]. With 

the development of deep learning, fire-smoke detection methods based on deep learning have been 

widely studied and applied in recent years. Among them, YOLO (You Only Look Once) series 

algorithms [3–9] are a kind of real-time object detection algorithms, which have attracted much 

attention for their efficiency and accuracy. As an improved version of YOLO series, YOLOv7 [9] has 

achieved remarkable results in the field of object detection. However, the original YOLOv7 algorithm 

has certain limitations in tiny-fire detection scenes, such as low detection accuracy and missed 

detection. Therefore, it is urgent to propose an efficient and accurate improved algorithm to realize 

tiny-fire detection. 

 

Figure 1. An annotated illustration of some key modules of YOLOv7-FIRE. Among them, 

CBS means Conv+BN (BatchNormalization) +SiLU, and the three CBS modules are 

combined with other modules to become new modules, such as CBS and Concat modules 

combined to become ELAN modules, and the rest of the modules are similar. 

We aim to study and propose an efficient and accurate tiny-fire detection method based on the 
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improved YOLOv7 [9] algorithm. By optimizing the network structure and loss function, and 

expanding and upgrading the dataset, the detection accuracy and robustness of the algorithm are 

improved. Specifically, we introduce the BiFormer [10] attention mechanism, integrate the NWD [11] 

loss function to the model, and also apply the CARAFE [12] technique. Through the improvement of 

the above three aspects, YOLOv7 is specifically optimized to enhance the detection ability of the 

algorithm in tiny-fire scenes. The BiFormer technique utilizes Bi-Level Routing Attention mechanism, 

which helps to improve the accuracy of object localization and improve the detection ability of small 

objects. Furthermore, it can better capture the global and semantic information of the image in the 

feature extraction process, improve the model’s ability to perceive the image and global feature 

extraction ability, and can more accurately identify the characteristics of fire-smoke, such as color, 

shape, and texture. Therefore, by introducing BiFormer in fire-smoke detection, we can make the 

network pay more attention to the pyrotechnical area and be able to capture the global and semantic 

features of pyrotechnical more accurately. Figure 1 is the annotation of the key modules in the model 

of YOLOv7-FIRE, from which we can see that after adding the BiFormer module to the ELAN module, 

we named it ELAN-B. Furthermore, after a large number of experiments to verify, the BiFormer 

module can also be added to the SPPCSPC module and become the SPPCSPC-B module. The overall 

structure of YOLOv7-FIRE will be shown and explained in detail in Chapter 3. The NWD technique 

is specifically improved for tiny-object detection. Tiny-fire usually have the characteristics of low 

resolution, low contrast and large spatial variation, which brings great challenges to fire-smoke 

detection. The normalized Gaussian Wasserstein distance is used to model the distribution between the 

predicted bounding box and the real bounding box, and to correlate and match the target features, 

which can effectively overcome the above problems and improve the detection accuracy and recall 

rate of tiny-fire. We also applied the CARAFE technique for content-aware feature reorganization. 

Traditional object detection algorithms may lose details and texture information when dealing with 

small objects. By introducing the CARAFE layer, we are able to preserve the detail and texture 

information in the image during the feature reorganization process, thus improving the quality of 

pyrotechnics detection. Especially for the detail enhancement and reconstruction of small targets, 

CARAFE technology shows significant advantages in fire-smoke detection. The structure diagram of 

the improved model is shown in Figure 1. In order to make YOLOv7-FIRE more targeted for detection, 

we have also specially optimized the fire-smoke dataset, selected more images containing tiny-fire, 

covering a variety of different environments, such as indoor, outdoor, strong light, etc., and accurately 

labeled the location of fires and smokes. Moreover, we also retain a certain proportion of images 

containing medium and large fires and smokes, in order to make the algorithm not only be able to 

identify tiny-fire, but also be able to detect medium and large fires and smokes, and enhance the 

accuracy of fire-smoke recognition. In order to improve the robustness of the algorithm, the dataset 

also contains fire-smoke images under different lighting conditions and different viewing angles. On 

our dataset, we evaluate the performance of the improved algorithm in fire-smoke detection through a 

large number of experiments. The improved algorithm is superior to the unimproved algorithm in terms 

of detection accuracy and calculation speed, the Precision rises from 75.83% to 82.31%, an increase 

of about 7 percentage points, and the Recall rises from 66.43% to 74.02%, an increase of about 8 

percentage points. Because the detection of tiny-fire is difficult, such an improvement effect has been 

very difficult.We also compare with other object detection algorithms, and the experimental results 

show that our improved algorithm has excellent performance. 

The contributions of this paper mostly include two aspects. First, we integrate YOLOv7 with 
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three technologies of BiFormer, NWD, and CARAFE and carry out special optimization to form a new 

target detection model YOLOv7-FIRE, which improves the detection accuracy of tiny-fire. Second, 

we propose a fire-smoke detection method based on the improved YOLOv7 algorithm, which improves 

the robustness of tiny-fire and is of great significance for tiny-fire detection. 

The remaining part of this paper is organized as follows: Section 2 introduces the related work in 

detail, including a brief introduction of YOLOv7, and describes some representative results of current 

fire-smoke detection and small object detection. Section 3 will detail the improved method for tiny 

pyrotechnics. Section 4 will describe the experimental method, the evaluation index of the model and 

the comparison and analysis of the experimental results. Section 5 will conclude this paper and propose 

future research directions. It is believed that the results of this study will be of great significance to 

realize a more accurate and efficient fire-smoke detection system, improve fire safety, and reduce 

casualties and property losses. Future research can further explore the problem of pyrotechnical 

detection in more complex scenarios and further improve the algorithm to improve its performance. 

2. Related works 

2.1. Optimizations and shortcomings of YOLOv7 

YOLOv7 [9] is a new real-time target detection model. The model can quickly and accurately 

detect multiple types of targets, such as people, cars, animals and other common targets, and can 

provide more fine detection details for objects. The main optimization work of YOLOv7 includes the 

following aspects: 

1) The backbone network structure is optimized: the lightweight network structure is adopted to reduce 

the complexity and redundant calculation of the network, so as to improve the operation speed and 

detection accuracy of the network. 

2) An efficient feature extraction method is adopted: YOLOv7 extracts the features of the target image 

by means of feature pyramid network (FPN) [13] and attention mechanism [14], thereby reducing the 

computational complexity of target detection. 

3) A new data enhancement method is introduced: YOLOv7 improves the generalization ability and 

robustness of the model by increasing the diversity and amount of data, thereby improving the 

performance of the model. 

4) The model training process is optimized: the cumulative gradient correction, weight adjustment and 

multi-scale training techniques are used to optimize the model training process, thereby improving the 

training efficiency and accuracy of the model. 

In short, YOLOv7 is an efficient, accurate and fast object detection model, which is one of the 

more excellent real-time object detection models at present. It has been widely used and promoted. 

However, in some special scenarios, the detection performance is unsatisfactory, and there is room for 

improvement. For example, the detection accuracy of small targets is not high, and the detection 

performance of infrequent targets such as fire-smoke is poor. The purpose of this paper is to improve 

YOLOv7 and improve the detection performance of fire-smoke, especially tiny-fire and tiny-smoke. 

2.2. Current research progress of fire-smoke detection 

Through reading the literatures, it can be seen that deep learning and convolutional neural network 
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(CNN) have caused extensive research in the academic community in fire detection, and have achieved 

good results in practical applications. Take the study of Zhao et al. [15] in 2018 as an example, they 

proposed a forest fire detection system based on visual camera, which can be applied in UAV 

deployment. Due to the possible instability in the images captured by the UAV during flight, the 

detection and localization of fires become very difficult. To solve this problem, their research team 

proposed a saliency detection method. The method first identifies the location of the fire by locating 

the core of the fire region, and then divides the fire region into multiple sub-images to avoid the loss 

of features due to the change of image size. The application of this method can improve the accuracy 

and efficiency of forest fire detection. In addition, in 2020, Li et al. [16] tested the fire detection ability 

of the current most advanced object detection convolutional neural network model in different 

scenarios. It includes the two-stage Faster R-CNN [17], the fully convolutional network model R-

FCN [18], the single-stage SSD [19], and the much-concerned YOLOv3 [5] image fire detection 

algorithm. Moreover, in 2021, Xu et al. [20] adopted an ensemble learning approach and developed 

a new model for forest fire detection. The model integrates three deep learning algorithms, YOLOv5 [7] 

and EfficientDet [21] to detect fire locations and generate candidate boxes, while EfficientNet [22] is used 

to learn global information to determine whether an image contains a fire object and reduce the possibility 

of false positives. Despite the improvement to some extent in all the above studies, there are some 

limitations and deficiencies. 

2.3. Related work on tiny-object detection 

2.3.1. Application of BiFormer to tiny-object detection 

BiFormer [10] is an improved vision Transformer model that improves the performance of image 

understanding tasks by introducing Bi-Level Routing Attention. In the traditional Transformer model, 

the attention mechanism is widely used to capture relevant information in the input data. However, 

when dealing with visual data such as images, traditional Transformer models may face some 

challenges. Image data has high dimensionality and rich spatial structure, which may not be fully 

utilized by traditional attention mechanisms. 

To solve this problem, the BiFormer model is proposed, which introduces Bi-Level Routing 

Attention. This mechanism better captures important features in the image by introducing two levels 

of routing in the attention computation. This Bi-Level Routing Attention mechanism enables the 

BiFormer model to better understand the contextual relationships and interactions between local 

features in images, thus improving the performance of image understanding tasks. Specifically, the Bi-

Level Routing Attention consists of two phases. Initially, the first level routes the attention weights 

learned from the global context. These weights are then used to compute the routing attention at the 

second level to further capture important features in local regions. This mechanism enables the 

BiFormer model to simultaneously capture the global context and local features in the image [10]. 

In the task of tiny-object detection, the BiFormer [10] model has some advantages. The Bi-Level 

Routing Attention enables the BiFormer model to better capture the local features of tiny objects in the 

image, especially for those tiny objects that occupy a small area in the image. The traditional attention 

mechanism may not be able to effectively focus on these tiny target areas, while the BiFormer model 

shows better results in detection performance by introducing dual-level routing attention. 
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2.3.2. Principle of NWD 

Literature [11] proposed an innovative tiny-object detection evaluation method based on 

Wasserstein distance. In this method, the bounding box (BBox) is represented as a two-dimensional 

Gaussian distribution, and the Normalized Wasserstein Distance (NWD) is introduced as a new metric 

to evaluate the quality of object detection results. The NWD metric is measured by calculating the 

similarity between the Gaussian distribution in the object detection result and the Gaussian distribution 

in the true bounding box. This metric can be easily embedded into the assignment, non-maximum 

suppression, and loss functions of anchor-based detectors to replace the traditional IoU metric. Wang 

et al. [11] evaluated the metric on AI-TOD, a new dataset dedicated to tiny-object detection. Compared 

with the existing object detection datasets, the average size of the objects in the AI-TOD dataset is 

smaller. Extensive experimental results demonstrate the potential application of the proposed method 

in improving the accuracy of tiny-object detection when using the NWD metric. 

The traditional tiny-object detection method has the problem of inaccurate detection, which is 

caused by the small size and weak characteristics of the small object. To solve this problem, we propose 

a new loss function called NWD. Specifically, the method first uses a pre-trained detector to detect 

small objects in the image and obtains the detection results. Then, the normalized Gaussian tile loss 

distance is calculated as the loss function based on the difference between the detection results and the 

true labels. 

Wang et al. [11] also pointed out that this method can effectively cope with the size, shape and 

distribution changes of small objects, so as to improve the stability and accuracy of small object 

detection. Overall, we provide an innovative way to evaluate algorithm improvements in the field of 

tiny-object detection and demonstrates the potential of the method to improve accuracy. 

2.3.3. CARAFE is applied to tiny-object detection 

The main goal of CARAFE is to solve the blurring and distortion problems faced by traditional 

super-resolution methods when dealing with details and textures. Traditional methods usually employ 

techniques such as interpolation or inverse convolution to perform image enlargement, but these 

techniques often introduce artifacts and blur. To this end, the CARAFE layer proposes a content-aware 

feature reorganization method to improve the quality and detail preservation ability of the 

reconstructed image. The key idea is to improve the spatial resolution of the image by regrouping and 

reconstructing the input feature map. Specifically, the CARAFE layer uses trainable operation units to 

reorganize the input features into different patches, so that each patch can interact and reorganize 

information with the surrounding features pixel by pixel. In this content-aware way, CARAFE is able 

to better preserve the texture details of the image. To achieve efficient computation, the CARAFE layer 

employs a design based on differentiable parameterization to reduce computation and memory 

consumption. In addition, in order to better guide the grouping and interaction process, an adaptive 

context-aware filter is proposed, and an attention mechanism is introduced to further enhance the 

reconstruction effect [12]. 

The CARAFE [12] layer can improve the spatial resolution of the image through the content-

aware feature reorganization method, so as to better retain the texture and detail information of the 

image in the small target detection, thereby enhancing the feature expression of the small target and 

improving the quality of the reconstructed image. Improving the resolution and contrast of the target 
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region by means of reorganizing features helps to improve the detection precision and accuracy of 

small targets. The feature reorganization method of CARAFE layer can better retain details and 

textures, and then enhance the features of the target area, which has obvious advantages in the detection 

and recognition tasks of small targets. 

3. Methods 

3.1. BiFormer attention mechanism is added 

In reference [10], there has been a detailed introduction to BiFormer. In order to better understand 

the working mechanism of BiFormer, I will first briefly introduce the principle of BiFormer. 

BiFormer [10] introduced Bi-Level Routing Attention (BRA), an approach to achieve content-

aware sparsity patterns through adaptive queries. First, the feature map is divided into S×S non-

overlapping regions to obtain Q, K and V. Next, Q𝑟 and K𝑟 are obtained by averaging Q and K, and 

the affinity adjacency matrix A𝑟 between regions is obtained by transpose multiplication. The region 

routing index matrix I𝑟 is obtained using the top k operator to retain only the top k regions most 

closely related to the region. Then, fine-grained token-to-token attention can be applied, as shown in 

Figure 2. First, all the routing regions indexed by I𝑟 are clustered, and all their key sum values are 

collected to obtain K𝑔 and V𝑔, and then K𝑔 and V𝑔 are applied to the attention calculation. Finally, 

BiFormer use O = Attention(Q, K𝑔, V𝑔) + LCE(V) structure, including LCE is a local context [23]. 

 

Figure 2. Schematic diagram of the principle of BiFormer [10]. 

BiFormer uses BRA as the basic building block and the overall structure can be viewed as a four-

stage pyramid structure (Figure 3 left). Overlapping patch embedding is used in the first stage, patch 

merging module is used in the second to fourth stages, and finally Ni consecutive BiFormer blocks are 

used to transform features [10]. 
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Figure 3. The left is the overall structure of the BiFormer, and the right is the details of the 

BiFormer block [10]. 

According to the above principles, we first consider the whole BiFormer module as the backbone 

network of YOLOv7. However, doing so results in a substantial increase in the amount of FLOPs and 

parameters. To solve this problem, we tried other ways of adding. We try to use only the attention 

mechanism in the BiFormer module. Experiments show that adding BiFormer attention to a location 

in backbone can improve the detection ability of tiny-fire, while increasing the FLOPs, parameters, 

and training time is not much. Therefore, we decided that only adding BiFormer attention to YOLOv7 

would achieve good results. Theoretically, the amount of BiFormer attention is positively correlated 

with the detection effect. Therefore, we add multiple BiFormer attention to the two ELAN modules of 

backbone and the SPPCSPC module of head. After experiments, when the accuracy reaches a certain 

level, adding more BiFormer attention is difficult to further improve the accuracy, but it will lead to a 

rapid increase in the amount of parameters and FLOPs. Therefore, after repeated experiments, we 

finally determined that adding BiFormer attention to the two ELAN modules of the backbone network 

and the SPPCSPC module of the head works best. Thus, ELAN becomes ELAN-B and SPPCSPC 

becomes SPPCSPC-B, where the letter “B” indicates that BiFormer attention has been added. Please 

refer to Figures 4 and 5 for the modification method of the two modules. 
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Figure 4. ELAN module becomes ELAN-B after adding BiFormer attention system. 

 

Figure 5. SPPCSPC module becomes SPPCSPC-B after adding BiFormer attention system. 

3.2. Add NWD 

Before we talk about how to add NWD, let us first explain the principle and limitations of 

YOLOv7’s original coordinate Loss function CIoU (Complete IoU Loss). 

The CIoU loss [27] takes into account three important geometric factors, namely the overlap area, 
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the distance of the center point, and the aspect ratio. Given a prediction box 𝐁 and a target box 𝐁𝑔𝑡, 

the CIOU loss is defined as follows: 

ℒ𝐶𝐼𝑜𝑈 = 1 − 𝐼𝑜𝑈 +
𝜌2(𝐛, 𝐛𝑔𝑡)

𝑐2
+ 𝛼𝑣. (1) 

Here,𝐛 and 𝐛𝑔𝑡 denote the center points of 𝐁 and 𝐁𝑔𝑡, respectively 𝜌(⋅) =∥ 𝑏 − 𝑏𝑔𝑡 ∥2 denotes 

the Euclidean distance. 𝑐 is the diagonal length of the smallest closed box covering both boxes. The 

𝛼 is a balancing parameter (this coefficient is not involved in the gradient calculation), where the 

priority is given based on the IoU value. The higher the IoU of the prediction and target boxes, the 

higher the coefficient. It is calculated as follows: 

𝛼 =
𝑣

(1 − 𝐼𝑜𝑈) + 𝑣
. (2) 

The 𝑣 is used to calculate the consistency of the aspect ratio of the predicted and target boxes, 

which is measured by the tan Angle, and it is calculated as follows: 

𝑣 =
4

𝜋2
(arctan

𝑤𝑔𝑡

ℎ𝑔𝑡
− arctan

𝑤

ℎ
)

2

. (3) 

The gradient of 𝑣 with respect to w and h is computed as follows: 

∂𝑣

∂𝑤
=

8

𝜋2
(arctan

𝑤𝑔𝑡

ℎ𝑔𝑡
− arctan

𝑤

ℎ
) ∗

ℎ

𝑤2 + ℎ2
, (4) 

∂𝑣

∂ℎ
= −

8

𝜋2
(arctan

𝑤𝑔𝑡

ℎ𝑔𝑡
− arctan

𝑤

ℎ
) ∗

𝑤

𝑤2 + ℎ2
. (5) 

Although CIoU is based on DIoU, it adds the loss of detection box scale, and increases the loss 

of length and width, so that the predicted box will be more in line with the real box. However, there 

are four problems as follows: (Ⅰ) 𝑣 reflects only the difference of aspect ratio, rather than the actual 

relationship between 𝑤 and 𝑤𝑔𝑡  or h  and ℎ𝑔𝑡 . That is, all with attributes {(𝑤 = 𝑘𝑤𝑔𝑡, ℎ =

𝑘ℎ𝑔𝑡) ∣ 𝑘 ∈ 𝑅+} have 𝑣 = 0, so the CIoU loss may optimize the similarity in an unreasonable way, 

which is not consistent with reality. (Ⅱ) CIoU loss function is sensitive to the size of the bounding box. 

When calculating the CIoU loss, the width and height of the bounding box need to be divided, which 

makes the CIoU loss function very sensitive to the size change of the bounding box. This means that 

when the size of the bounding box changes a lot, the value of the CIoU loss function also changes a 

lot. This sensitivity may cause the model to focus more on the size of the bounding box while ignoring 

other important features during training. (Ⅲ) CIoU loss function is not sensitive to the error of the 

center point. When calculating the CIoU loss, only the overlap degree of the bounding boxes and the 

distance of the center point are considered, and the error of the center point is ignored. However, in 

the object detection task, the accuracy of the center point is very important for locating the object. 

Therefore, the insensitivity of the CIoU loss function may cause the model to ignore the accuracy of 

the center point during the training process, which affects the positioning accuracy of the object. (Ⅳ) 

The CIoU loss function has difficulties in dealing with objects of different scales. Since the CIoU loss 

function is sensitive to the size of the bounding box, difficulties arise when dealing with objects of 

different scales. When the target scale difference is large, the CIoU loss function may lead to a large 
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loss value, which affects the training effect of the model [27]. 

Then, we will briefly describe the implementation process of NWD. 

It was mentioned in reference [11] that for small objects, there tend to be some background pixels 

in their bounding boxes, since most real objects are not strictly rectangular. In these bounding boxes, 

foreground and background pixels are concentrated on the center and boundary of the bounding box, 

respectively. To better describe the weights of different pixels in the bounding box, the bounding box 

can be modeled as a two-dimensional Gaussian distribution, where the center pixel of the bounding 

box has the highest weight and the importance of the pixel gradually decreases from the center to the 

boundary. Specifically, for the horizontal bounding box R = (cx, cy, w, h), where (cx, cy), w and h 

denote the center coordinates, width and height, respectively. The equation for its inscribed ellipse can 

be expressed as 

(𝑥 − 𝜇𝑥)
2

𝜎𝑥
2

+
(𝑦 − 𝜇𝑦)

2

𝜎𝑦
2

= 1. (6) 

Where(𝜇𝑥，𝜇𝑦)  represents the center coordinates of the ellipse, and 𝜎𝑥，𝜎𝑦  represent the 

lengths along the X-axis and the Y-axis. Therefore, 𝜇𝑥 = 𝑐𝑥, 𝜇𝑦 = 𝑐𝑦, 𝜎𝑥 =
𝑤

2
, 𝜎𝑦 =

ℎ

2
 . The 

probability density function of a two-dimensional Gaussian distribution can be expressed as follows. 

𝑓( x ∣∣ 𝜇, Σ ) =
exp(−

1
2

(x − 𝜇)⊤Σ−1(x − 𝜇))

2𝜋|Σ|
1
2

. (7) 

Where x，𝜇，Σ denote the center point (x,y), 𝜇 denote the mean of the Gaussian distribution, 

and Σ denote the covariance of the Gaussian distribution. When (x − 𝜇)⊤Σ−1(x − 𝜇) = 1, the ellipse 

in Eq (6) is the density profile of a two-dimensional Gaussian distribution. Thus, the horizontal 

bounding box can be represented as a two-dimensional Gaussian distribution 𝑁(𝜇, Σ), obeying 

𝜇 = [
𝑐𝑥

𝑐𝑦
] , 𝛴 =

[
 
 
 
𝑤2

4
0

0
ℎ2

4 ]
 
 
 

. (8) 

Thus, the similarity of two bounding boxes is transformed into the distance distribution of two 

Gaussians. 

Wasserstein distance [11] is derived from the optimal transport theory and is used to calculate the 

distance between two distributions. For two gaussian distribution 𝜇1 = 𝒩(𝑚1, Σ1)  and 𝜇2 =

𝒩(𝑚2, Σ2), the second-order Wasserstein distance between 𝜇1 and 𝜇2 can be defined as: 

𝑊2
2(𝜇1, 𝜇2) =∥ m1 − m2 ∥2

2+ Tr(Σ1 + Σ2 − 2(Σ2

1
2Σ1Σ2

1
2)

1
2

). (9) 

It can be simplified to: 

𝑊2
2(𝜇1, 𝜇2) =∥ m1 − m2 ∥2

2+∥ Σ1

1
2 − Σ2

1
2 ∥𝐹

2 . (10) 

For two bounding boxes: 
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𝑊2
2(𝒩𝑎,𝒩𝑏) =∥ ([𝑐𝑥𝑎 , 𝑐𝑦𝑎,

𝑤𝑎

2
,
ℎ𝑎

2
]
T

, [𝑐𝑥𝑏 , 𝑐𝑦𝑏,
𝑤𝑏

2
⋅
ℎ𝑏

2
]
T

) ∥2
2. (11) 

However, this is a distance metric and cannot be used directly for similarity. The normalized 

exponent is used to obtain a new metric called the normalized Wasserstein distance [11]. 

𝑁𝑊𝐷(𝒩𝑎,𝒩𝑏) = exp(−
√𝑊2

2(𝒩𝑎,𝒩𝑏)

𝐶
). (12) 

Here, C is a constant, depending on the dataset. The best results are achieved by setting C to the 

average absolute size of the objects in the dataset. C is stable with respect to the results within a certain 

range. 

Since NWD [11] is not sensitive to objects of different scales, it is more suitable for measuring 

the similarity between tiny objects. However, NWD can also be used when the objects to be detected 

in the dataset are not entirely small objects. In this paper, both IoU loss and NWD loss are used. In 

order to better deal with small targets, we introduce the coefficient iou_ratio. This factor is critical to 

balance the weight of IoU loss and NWD loss in the total loss. Suppose we set iou_ratio = 0.5, meaning 

that IoU and NWD each account for 50% of the total loss. 

First, let us consider the case when the dataset is full of small objects. Since small targets tend to 

have small regions, the intersection and union ratio between the predicted box and the true target box 

may be relatively low. Therefore, we can set the iou_ratio to 0 so that the NWD loss will be more 

important. By paying more attention to the distance between the predicted box and the true target box, 

the algorithm will locate the small target more accurately and improve the detection accuracy. 

However, the number of tiny targets in my dataset is about 80%. This means that a certain 

percentage of medium and large targets exist in the dataset. If we completely ignore the importance of 

the IoU metric, we may not be able to take full advantage of the overlap between the predicted box 

and the actual target box. Therefore, in order to balance the performance of the object detection 

algorithm considering different object sizes, I set iou_ratio to 0.8. With this setting, we add the losses 

of IoU and NWD to the total loss with equal weight. This practice allows the algorithm to achieve a 

reasonable balance between small objectives and other objectives. It makes the algorithm more 

accurate in locating small targets, and can make full use of the intersection and union ratio information 

of medium and large targets. 

Using iou_ratio to balance the loss of IoU and NWD is very important when dealing with datasets 

containing small targets. By properly setting the value of iou_ratio, we are able to optimize the 

performance of the object detection algorithm on different object sizes. This method takes full account 

of the characteristics of small targets, but also retains the accuracy requirements for other targets, so 

as to improve the overall object detection performance. In practical applications, we can dynamically 

adjust the value of iou_ratio according to the characteristics and requirements of the dataset to further 

improve the effect of the algorithm. Compared with IoU, NWD has the advantages of scale invariance 

in tiny-object detection, smoothness to position deviations, and the ability to measure the similarity 

between bounding boxes that do not overlap or contain each other. 
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3.3. Add CARAFE 

As mentioned in reference [12], CARAFE is divided into two major modules, which are called 

Kernel Prediction Module (Figure 6) and Content-aware Ressembly Module (Figure 7). Assuming an 

upsampling multiplier 𝜎 , we are given an input feature map of shape 𝐻 × 𝑊 × 𝐶 . First, the 

upsampling kernel prediction module is used to predict the upsampling kernel, and then the upsampling 

is performed by the feature recombination module to obtain the output feature map with shape 

𝜎𝐻 × 𝜎𝑊 × 𝐶. 

 

Figure 6. Kernel prediction module [12]. 

 

Figure 7. Content-aware ressembly module [12]. 

For an input feature map of shape 𝐻 × 𝑊 × 𝐶, a 1×1 convolutional layer is first used to compress 

the number of channels to 𝐶𝑚, the main purpose of this step is to reduce the complexity of subsequent 

calculations. 
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Assuming that the upsampling kernel size is 𝑘𝑢𝑝 × 𝑘𝑢𝑝 (a larger upsampling kernel means a 

larger receptive field and more computation), if we want to use a different upsampling kernel for each 

position of the output feature map, we need to predict an upsampling kernel of shape 

𝜎𝐻 × 𝜎𝑊 × 𝑘𝑢𝑝 × 𝑘𝑢𝑝 . To achieve this goal, for the compressed input feature map, we use a 

convolutional layer that utilizes a 𝑘encoder × 𝑘encoder to predict the upsampling kernel, where the 

number of input channels is 𝐶𝑚 and the number of output channels is 𝜎2𝑘𝑢𝑝
2 . Then, we expand the 

channel dimension in the spatial dimension to obtain an upsampling kernel of shape 

𝜎𝐻 × 𝜎𝑊 × 𝑘𝑢𝑝
2  [12]. 

The parameters of the encoder are 𝑘encoder × 𝑘encoder × 𝐶𝑚 × 𝐶𝑢𝑝. Intuitively, increasing 𝑘encoder 

expands the acceptance range of the encoder and exploits a wider range of contextual information, 

which is important for predicting and reorganizing kernels. However, as the kernel size increases, the 

computational complexity also increases. The benefits of a larger kernel do not increase the 

computational complexity. Therefore, choosing 𝑘encoder = 𝑘𝑢𝑝 − 2  can strike a good balance 

between performance and efficiency. Each 𝑘𝑢𝑝 × 𝑘𝑢𝑝 recombination kernel is spatially normalized 

using a softmax function. This normalization step enforces the sum of kernel values to be one, 

achieving soft selection across local regions. Thanks to the kernel normalizer, CARAFE does not do 

any scaling or change the mean of the feature maps [12]. 

Since only two Upsample modules are included in the original YOLOv7 [9] algorithm, adding 

CARAFE to YOLOv7 becomes very simple by simply replacing the Upsample module with CARAFE. 

The specific replacement method is shown in Figure 8. There are two key hyperparameters for tiny-

object detection, 𝑘encoder  and 𝑘𝑢𝑝 . The authors experimented with various Settings of these two 

hyperparameters, and the best detection performance was obtained when 𝑘encoder = 5 and 𝑘𝑢𝑝 = 7. 

To simplify the experiment, I directly adopted the setting of the authors to evaluate the performance 

of CARAFE in tiny-fire detection. However, we found that 𝑘encoder is set to 5 and 𝑘𝑢𝑝 is set to 6 to 

achieve the best tiny-fire detection. 

 

Figure 8. Upsampling module replacement mode, the Upsample module is replaced by the 

CARAFE module. 
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3.4. General structure of YOLOv7-FIRE 

After the above improvements on the three main aspects of YOLOv7, we finally formed an 

efficient detector that can detect tiny fire-smoke, namely YOLOv7-FIRE. As you can see from Figure 

9, an image of size 640*640*3 is input into Backbone to process the image. In backbone, due to the 

addition of the BiFormer attention module (the improved ELAN module, its name is ELAN-B), 

Therefore, the detection will focus more on the area of the image where the fireworks are, so as to 

improve the feature extraction ability. Then, in the Head part, the BiFormer attention module is also 

applied (the improved SPPCSPC module, its name is SPPCSPC-B). In this part, we also replace the 

Upsample module with the CARAFE module, so that the feature extraction ability of YOLOv7-FIRE 

is further enhanced. Finally, the processed image is output. From the output results, no matter what 

kind of scene, fireworks can be accurately detected and the location of fireworks can be accurately 

located. The input image in the structure diagram is only used as an example, and more detailed 

detection results will be described in Section 4. 

 

Figure 9. General structure diagram of YOLOv7-FIRE. 

4. Experiments 

4.1. Preparation before the experiments 

The operating system used in this experiment is Windows 10, and Python 3.8 and PyTorch 1.13 

are used to build the network model. The image input size is 640×640×3, and a Nvidia GeForce RTX 

3080 is utilized as computational resources. Considering the limited computing resources, we set the 

batch-size to 8 and the epoch to 200. During training, each epoch takes about 3 minutes, so each 

training session will last about 600 minutes, or 10 hours. 

4.2. Introduction of relevant parameters 

In the training process, some parameters are involved as shown in Table 1. First, let us explain 

the meaning of some parameters: lr0 stands for the initial value of the learning rate, and lrf stands for 

the final value of the learning rate.The momentum can be understood as the inertia of the parameter 
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update. It does this by maintaining a momentum vector that records the weighted average of the 

previous gradient directions and uses it for parameter updates. Doing so can speed up training and 

improve model stability. Properly adjusting the magnitude of the momentum can make the parameter 

update direction smoother, and a larger momentum can accelerate the parameter update. Another 

parameter is weight_decay, which is a common regularization technique designed to reduce model 

complexity to prevent overfitting. Higher values of weight_decay leads to stronger regularization and 

better model generalization. However, too much weight_decay will cause the problem of underfitting 

the model. Now to warmup_epochs, when training a deep learning model, it is sometimes necessary 

to warmup with a smaller learning rate first to avoid unstable gradients or loss in the initial stage. The 

warmup_epochs control the number of warm-up epochs, that is, using a smaller learning rate for the 

first few epochs of training to allow the model to converge to a steady state faster. After the warm-up 

phase, the learning rate will gradually increase to the set initial learning rate, and the training will 

continue at the set learning rate. Finally, we have warmup_momentum, which, in a nutshell, represents 

the setting of the momentum during warmup. 

Table 1. Parameters of YOLOv7-FIRE during training. 

Parameters Values 

Epoch 200 

Batch size 8 

Lr0 0.01 

Lrf 0.1 

Momentum 0.937 

Weight_Decay 0.005 

Warmup_Epochs 3 

warmup_momentum 0.8 

Number of images 2885 

Image size 640 

Layers 503 

Parameters 71736790 

FLOPS 190.4G 

4.3. Dataset used 

In this experiment, the dataset pictures we use are all from the public data in the network. The 

dataset contains two categories, namely fire-smoke and smoke. We first collect a large number of 

images containing fire-smoke and smoke from the Web. In order to verify the performance of the 

improved algorithm in the detection ability of tiny-fire, we screened from these pictures. We kept most 

of the images containing tiny-fire and a small number of images containing larger fire-smoke. Among 

them, tiny-fire account for about 80%, while large fire-smoke account for about 20%. The purpose of 

retaining large fire-smoke images is to evaluate whether the improved algorithm has an impact on the 

detection ability of large fire-smoke in addition to tiny-fire. Our goal is to improve the detection 

accuracy of tiny-fire without degrading the detection ability of large fire-smoke. In order to achieve 

the robustness of the algorithm, in addition to considering the size of the fire-smoke shape, we also 

collected fire-smoke pictures with different angles, different shapes, different colors, and different 
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brightness. After the collection of images in the dataset, we carried out the data cleaning work. For the 

bad quality images, we deleted them or processed the blurry images clearly. Finally, we annotate the 

remaining pictures in detail to accurately locate the location of the fire-smoke to ensure the accuracy 

of the model during training. After labeling the images, we randomly split the dataset into training, 

validation, and test sets. The training set contains 2522 images, the validation set contains 240 images, 

and the test set contains 123 images. 

The experimental results based on this dataset show that YOLOv7-FIRE achieves a significant 

improvement in fire-smoke detection, and does not have a negative impact on the detection effect of 

large fire-smoke. This indicates that the improved method can accurately detect tiny-fire and maintain 

a good detection effect for large fire-smoke. These experimental results further verify the effectiveness 

and robustness of YOLOv7-FIRE in dealing with the problem of fire-smoke detection. In general, we 

obtain a high equality fire-smoke image dataset containing diversity using public datasets in the web 

through screening and cleaning work. The improved algorithm shows a significant improvement in 

fire-smoke detection ability on this dataset, and also maintains a good effect on the detection of large 

fire-smoke. These experimental results provide further verification basis for the effectiveness and 

robustness of YOLOv7-FIRE. 

4.4. Evaluation indicators 

4.4.1. Precision 

Accuracy refers to the proportion of detected pyrotechnical targets that are truly pyrotechnical. It 

measures the accuracy of the model in predicting fire-smoke. The accuracy is calculated as follows: 

Precision =
TP

TP + FP
. (13) 

Where TP is a true positive (bounding box correctly detected as a firework) and FP is a false 

positive (bounding box incorrectly detected as a fire-smoke). High accuracy indicates that the model 

produces fewer false positives when predicting fire-smoke, that is, incorrectly labeling non-fire-smoke 

targets as fire-smoke. 

4.4.2. Recall 

Recall is the proportion of targets that are actually fire-smoke that are correctly detected. It 

measures the ability of the model in identifying all the pyrotechnical targets. Recall is calculated as 

follows: 

Recall =
TP

TP+FN
. (14) 

Where TP is a true positive and FN is a false negative (a real firework bounding box that was not 

detected). A high recall indicates that the model produces fewer false negatives when identifying fire-

smoke, that is, the targets that are actually fire-smoke are correctly labeled as fire-smoke. 
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4.4.3. mAP 

Mean Average Precision (mAP) is a widely used object detection evaluation metric to 

comprehensively evaluate the performance of an algorithm on multiple object categories. It is 

measured by calculating the average accuracy of the model between the detection result and the true 

label under different accuracy thresholds. The mAP value is between 0 and 1, and a higher mAP value 

indicates that the model has better performance on multiple categories and can accurately detect and 

locate the object. This metric yield results by calculating the area under the precision-recall curve for 

each category. For each class, the mAP is computed as follows: 

1) Rank the detection results according to the confidence of the prediction. 

2) Calculate the precision and recall of the model according to different confidence thresholds. 

3) The final mAP is obtained by calculating the area under the precision-recall curve and averaging 

the results across all classes. 

The formula is expressed as: 

mAP =
1

𝑐
∑ APj

𝑐

𝑗=1
. (15) 

AP = ∫ Precision(Recall) 𝑑(Recall)
1

0
. (16) 

4.5. Analysis of experimental results 

4.5.1. Training effects 

After training, YOLOv7-FIRE has good performance. We use YOLOv7-FIRE to detect tiny-fire, 

and the results can meet the expected requirements. Figure 10 shows the confusion matrix of YOLOv7-

fire after training. The confusion matrix summarizes the records in the dataset in the form of a matrix 

according to the two criteria of the true category and the category judgment predicted by YOLOv7-

FIRE. The rows of the matrix represent the actual values and the columns represent the predicted 

values. 
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Figure 10. The confusion matrix. 

In the Figure 11, we can see that YOLOv7-FIRE can accurately detect tiny fire-smokes in the 

image. Furthermore, the detection effect of slightly larger fire-smokes is not affected at all. The 

detected images cover almost all scenarios of fire-smokes. From the detection results, our YOLOv7-

FIRE is robust and accurate, it can accurately detect fire-smokes in different scenarios and accurately 

locate the position of fire-smokes. Moreover, the brightness of the illumination, the change of the 

background and even the occlusion of the foreground object do not have a great impact on the detection 

of fire-smokes. Note that different classes are labeled with different bounding boxes, with the orange 

box for smoke and the blue box for fire. 

 

Figure 11. (a) shows the smoke detection results in different scenes. The image is 

dominated by smoke, with a small portion containing fires. (b) shows the detection results 

for larger fires. (c) is the detection result of tiny-fires. It can be seen from this figure that 

YOLOv7-FIRE is more accurate in locating tiny-fires. The above three detection results 

cover almost all scenarios under fire. 
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4.5.2. Comparison between YOLOv7-FIRE and YOLOv7 

The first thing we need to compare is the change in accuracy between YOLOv7 [9] and optimized 

YOLOv7-FIRE. On our dataset, the accuracy of YOLOv7 is 75.83%, and the accuracy of optimized 

YOLOv7-FIRE is improved to 82.31%, which is about 7 percentage points higher. This is not an easy 

achievement because objects with irregular shapes are often involved in fire detection, which makes 

the detection work difficult. From Figure 12, we can intuitively see the detection performance 

improvement of YOLOv7-FIRE. 

 

Figure 12. Precision comparison between YOLOv7-FIRE and YOLOv7. 

Second, we compare the improvement of the two in terms of Recall. Compared with YOLOv7, 

YOLOv7-FIRE improves the Recall by about 8 percentage points. From Figure 13, we can observe 

the improvement in Recall. 

 

Figure 13. Recall comparison between YOLOv7-FIRE and YOLOv7. 
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Next, we look at how the mAP value changes. mAP values have two forms: mAP@.5 and 

mAP@.5:.95. Here, mAP@.5 represents the average mAP at a threshold greater than 0.5, and 

mAP@.5:.95 represents the average mAP at different IoU thresholds (0.5 to 0.95 in steps of 0.05) (0.5, 

0.55, 0.6, 0.65, 0.7, 0.75, 0.8, 0.85, 0.9, 0.95). From Figure 14, we can observe the lifting of both mAP 

values. 

 

Figure 14. mAP of YOLOv7-FIRE versus YOLOv7, (a) is mAP@.5 and (b) is mAP@.5:.95. 

Finally, we analyze the change of loss. As can be seen in Figure 15, the optimization effect for 

loss is not particularly obvious. However, through our experiments, we can conclude that it is feasible 

to optimize the loss function with our improved method. In the following, we will continue to study 

the optimization of the loss function on this basis, in order to obtain more significant improvement. 

 

Figure 15. Loss of YOLOv7-FIRE vs YOLOv7. 
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4.5.3. Comparison of YOLOv7-FIRE with other models for object detection 

In order to enhance the authority of YOLOv7-FIRE model in fire-smoke detection, we conduct a 

comparison with other mainstream object detection models, including YOLOv4 [6], YOLOv5s [7], 

and Faster R-CNN [17]. Same as YOLOv7-FIRE, we use the same hyperparameter setting, 

experimental environment and dataset in the experiment. We recorded the precision, recall, mAP@0.5, 

number of parameters, and FLOPs of these models to evaluate their performance. 

Table 2. Comparison of YOLOv7-FIRE with other object detection models. 

Model Precision Recall mAP@0.5 #Param. (M) FLOPs (G) 

YOLOv4 0.6952 0.6085 0.5027 64.40 142.8 

YOLOv5s 0.7336 0.6525 0.5403 21.26 49.2 

Faster R-CNN 0.7583 0.6643 0.5314 37.62 116.5 

YOLOv7 0.8154 0.7176 0.6018 60.13 245.7 

YOLOv-FIRE 0.8231 0.7402 0.6159 71.74 190.4 

It can be seen from Table 2 that compared with other mainstream object detection models, our 

YOLOv7-FIRE has good performance and achieves the best results in the three indicators of precision, 

recall rate and mAP@0.5. Therefore, it can be further verified that our improved YOLOv7-FIRE 

method is feasible in the detection of tiny fire-smokes. Figure 16 shows the precision, recall and 

mAP@0.5 of different object detection models in a more clear and intuitive form. 

 

Figure 16. Comparison of YOLOv7-FIRE with other object detection models in terms of 

Precision, Recall and mAP@0.5. 
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It is worth noting that although Faster R-CNN is almost the same as YOLOv7-FIRE in the 

detection of tiny fire-smokes, or even can ignore the difference between them, it can be seen from 

Figure 17 that the FLOPs of Faster R-CNN is much higher than that of YOLOv7-FIRE. Thus, it can 

be concluded that our YOLOv7- FIRE performs better. 

 

Figure 17. Comparison of YOLOv7-FIRE with other models in terms of parameters and 

computation. 

5. Conclusions 

We aim to study and propose an efficient and accurate fire-smoke detection method based on the 

improved YOLOv7 algorithm. By optimizing the network structure and loss function, and augmenting 

the dataset, we improve the detection accuracy and robustness of the algorithm. The experimental 

results verify the superior performance of the improved algorithm in fire-smoke detection. In the 

following, the research of this paper is summarized and future research directions are proposed. 

We first analyze the importance of fire detection and the problems of existing methods, and point 

out the research significance of the improved YOLOv7 algorithm. By introducing the BiFormer 

attention mechanism and introducing the NWD loss function, and integrating the CARAFE technology, 

we improve the YOLOv7 algorithm and achieve higher detection accuracy in tiny-fire scenes. The 

attention mechanism makes the network pay more attention to detecting fire-smoke areas and improves 

the accuracy of the algorithm. NWD and CARAFE improve the accuracy of the algorithm by focusing 

on the details of the fire-smoke. In addition, through the optimization of the dataset, we increase the 

robustness of the algorithm in diverse environments, so that it can better adapt to different fire-smoke 

detection tasks. After experimental evaluation, we verified the superior performance of the improved 

algorithm in pyrotechnical detection. Compared with the traditional YOLOv7 algorithm and other fire-
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smoke detection algorithms, the improved algorithm has achieved significant advantages in detection 

accuracy and calculation speed. Furthermore, the robustness test shows that the improved algorithm 

has strong ability to detect fire-smoke in different environments. These experimental evidences fully 

demonstrate the effectiveness and feasibility of the proposed method. 

However, the work of this paper has some limitations and room for improvement. To this end, we 

propose the following outlook and future research directions: 

First, although we optimized the algorithm and achieved good results, it is possible to further 

improve the network structure and algorithm design to further improve the accuracy and robustness of 

fire-smoke detection. For example, more complex attention mechanisms and fusion strategies can be 

considered to further improve the algorithm's ability to perceive fire-smoke areas. In addition, different 

loss function [24–26] designs and training strategies can be explored to further improve the 

performance of the algorithm. 

Second, although the dataset used in this paper has been expanded, there may be certain data bias 

and shortcomings. Future research could consider collecting more diverse and realistic pyrotechnical 

data covering more fire scenarios and environmental conditions to increase the adaptability and 

robustness of the algorithm. In addition, the introduction of Uavs or other sensor devices for 

pyrotechnical detection using multi-source data can be considered to enhance the reliability and 

accuracy of the algorithm. 

In addition, the research in this paper focuses on the static scene of fire-smoke detection, and 

future research can extend the focus to the detection of fire-smoke in dynamic scenes. Considering the 

characteristics of fire movement in the actual scene, the detection and tracking of mobile fire-smoke 

is also a challenging problem. Future research can explore the application of the improved YOLOv7 

algorithm in dynamic scenarios to improve the accuracy and real-time performance of mobile fire-

smoke. 

Finally, our focus of this paper is on pyrotechnical detection; however, fire safety also involves a 

wider range of applications and challenges, such as fire prevention, suppression strategies, and rescue 

operations. Future research can further explore other issues related to fire safety, such as smoke 

detection and combustion process analysis, on the basis of pyrotechnics detection, in order to 

comprehensively improve the ability of fire safety. 

In summary, we propose an efficient and accurate fire-smoke detection method based on the 

improved YOLOv7 algorithm, and verifies its superior performance through experiments. However, 

there are many aspects that can be further improved and studied. We believe that in future work, these 

perspectives and research directions will further promote the development of pyrotechnic detection 

technology and provide more reliable and efficient solutions for fire safety. 
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