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Abstract: Determining the weight distribution of all Reed-Muller codes is a huge and exciting problem
that has been around since the sixties. Some progress has been made very recently, but we are still far
from a solution. In this paper, we addressed the subproblem of determining as many codeword weights
as possible in Reed-Muller codes of any lengths and any orders, which is decisive for determining their
weight spectra (i.e., the lists of all possible weights in these codes). New approaches seem necessary
for both the main problem and the subproblem. We first studied the difficulties and the limits of the
approach, which consisted of using the usual primary and secondary constructions of Boolean functions
for the purpose of determining as many weights as possible in Reed-Muller codes. We then introduced
a way, different from the usual constructions, to generate Boolean functions in n variables having an
algebraic degree bounded from above, without any restriction on n, and whose Hamming weights can
be determined. This provided weights in Reed-Muller codes of any lengths 2n and any orders, allowing
us to reach potentially new values in the weight spectra of Reed-Muller codes (as we illustrate with all
Reed-Muller codes of lengths up to 221), with the related codewords being given with their supports
and their algebraic normal forms being mathematically derived.
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1. Introduction

For every nonnegative integers r, n such that r ≤ n, the Reed-Muller code RM(r, n) of length* N = 2n

and order r equals the vector space over F2 of n-variable Boolean functions of algebraic degree at most
r. Recall that each n-variable Boolean function f : Fn

2 7→ F2 admits a representation in the form of a
*Usually in coding theory, the length of a code is denoted by n, but since we deal with Boolean functions, we keep n for the number

of variables; we denote then the length by N.
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multivariate polynomial over F2 of a particular shape:

f (x) =
∑

I⊆{1,...,n}

aI xI; aI ∈ F2, x = (x1, . . . , xn) ∈ Fn
2, xI =

∏
i∈I

xi (1.1)

(the sum being calculated modulo 2). Such representation is unique for each function and is called its
algebraic normal form (ANF). The global degree max{|I|; aI = 1} of the ANF is called the algebraic
degree of f .

For a binary block code needing to be a subset of FN
2 for some N, each Boolean function is identified

with the list of its N = 2n values, some order on Fn
2 being previously chosen. When we shall speak

of codewords of Reed-Muller codes, we will not make the difference between an n-variable Boolean
function and the corresponding vector of length N.

Reed-Muller codes were introduced in 1954 by David Muller in [27] and their decoding algorithm
was given the same year by Irving Reed in [29]. These codes have originally played an important
role in the theory of error correcting codes, as well as in their applications. It is well known that the
Reed-Muller code RM(1, 5) was used in the sixties for correcting the errors of transmission of the
first photographs of Mars by Mariner. These photographs were in black and white. Every codeword
corresponded to the level of brightness of a pixel. There were 64 different levels since there are 64
codewords in RM(1, 5), and the minimum distance of this code was equal to 16, with up to

⌊
16−1

2

⌋
= 7

errors that could be corrected in the transmission of each codeword†.
Reed-Muller codes were also used in the 3rd generation (3G) of mobile phones (starting in 2000).

Reed-Muller codes intervened in the initial “handshake” between the mobile device and the base
station, whose role was to inform the receiver of what type of communication would come next. Again,
RM(1, 5) was initially used for this purpose, and it was later replaced by a punctured subcode of the
second-order Reed-Muller code RM(2, 5), which had a dimension of 10 and a minimum distance of 12.

The parameters of Reed-Muller codes are not so good, except for the first order, but they contain
optimal codes such as the Kerdock codes [19]. They still play an important role nowadays, thanks
to their specific properties (see, e.g., [2, 13]) and their roles with respect to new problematics, such
as locally correctable codes [20]), low degree testing, private information retrieval, and compressed
sensing. The interest in Reed-Muller codes has also been renewed because of polarization (see,
e.g., [24]). At various block-lengths and rates, Reed-Muller codes can be superior to polar codes [25],
even for 5G [14]. A nice survey on Reed-Muller codes can be found in [1].

We can easily generate the ANF (1.1) of (infinite classes of) codewords in any Reed-Muller codes,
but in most cases, it is impossible to calculate (mathematically) their Hamming weight wH( f ) = |{x ∈
Fn

2; f (x) = 1}|.
Determining Hamming weights (if possible, all weights of codewords, and, if possible, the whole

weight distribution) in Reed-Muller codes has always been considered very important; see, e.g., the
papers [4, 5, 7, 12, 15–18, 23, 26, 30], the data in [31], and the books [22, 28]. The weight distributions
of the Reed-Muller codes of length 2n and orders 0, 1, 2, n − 2, n − 1, n are known. The weights in
these codes equal 0, 2n for the order 0, with additionally 2n−1 for the order 1, and 2n−1 ± 2i where
n
2 ≤ i ≤ n for the order 2; see, e.g., [22]. The weights in RM(n, n) are all integers between 0 and 2n

since RM(n, n) = F2n

2 ; the weights in RM(n−1, n) are all even integers between 0 and 2n; the weights in
†In the late seventies, for transmitting color photographs of Mars, Voyager used the extended binary Golay code and still later

Reed-Solomon codes
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RM(n− 2, n) are all even integers between 0 and 2n except 2 and 2n − 2. For all these codes, the weight
distributions are known (thanks to the Mac Williams identity for the orders n − 2, n − 1 [21, 22], since
the dual of RM(r, n) equals RM(n − r − 1, n)). The weight distributions of some Reed-Muller codes
RM(r,m) have been determined thanks to heavy computations, for m small enough; they are reported
in [31].

The weights in RM(n − 3, n) have been recently determined in [12]. They are all even integers in
{0, 2, 4, ..., 2n} \ {2, 4, 6, 10, 2n − 10, 2n − 6, 2n − 4, 2n − 2} = {0, 8, 12 + 2i, 2n − 12, 2n − 8, 2n}, where i
ranges over consecutive integers from 0 to 2n−1−13. They have been obtained by an induction (the Mac
Williams identity does not allow us to determine the weight distribution, which is still unknown despite
the fact that the weight distribution of RM(2,m) is known, because the expression of the number of
codewords of Hamming weight 2n−1 in RM(2, n) is too complex). This induction does not allow us to
determine the weight distribution, and new ideas to be found seem necessary for obtaining it. However,
determining the weight spectrum‡ of RM(n − 3, n) is already a step forward.

The same method worked for determining the weights in RM(n − 4, n) [12], which are all integers
in {0, 16, 24, 28 + 2i, 2n − 28, 2n − 24, 2n − 16, 2n}, where i ranges over the set of consecutive integers
from 0 to 2n−1 − 29. The weights in RM(n − 5, n) could not be determined in [12], but they were found
in [9]; they are all integers in {0, 32, 48, 56, 60, 62, 64, 68, 72 + 2i, 2n − 68, 2n − 64, 2n − 62, 2n − 60, 2n −

56, 2n − 48, 2n − 32, 2n}, where i ranges over the set of consecutive integers from 0 to 2n−1 − 72.
For general Reed-Muller codes, bounds are known on the weight enumerators, which are useful for

studying the capacity of Reed-Muller codes on the binary erasure channel and the binary symmetric
channel (see [1, Chapter 4]), but our knowledge on the weights themselves is limited.

McEliece’s theorem [23] shows that the weights in RM(r, n) are divisible by 2b
n−1

r c, and Kasami-
Tokura’s result (that we shall recall in Section 2) and Kasami-Tokura-Azumi’s results [17] give the
weights of RM(r, n), which are between the minimum distance d = 2m−r and 2.5 times d. It is
conjectured in [12] that for every constant c and for n large enough, the weight spectrum of RM(n−c, n)
is made of 0 and 2n and all the weights between the minimum distance 2c and its complement
to the length 2n, which are authorized by McEliece’s theorem and Kasami-Tokura-Azumi’s results.
This means, in particular, that every even number between 2.5 times the minimum distance and its
complement to 2m would be a weight in RM(m − c,m). This conjecture§ is verified by the weight
spectra of RM(n − 5, n),RM(n − 4, n) and RM(n − 3, n). The method used in [9, 12] for handling these
three weight spectra is the same: There is a corollary in [30], which can easily be proved directly, and
which says that the weight spectrum of RM(r, n) includes A + A, where A is the weight spectrum of
RM(r − 1, n − 1). This allows us to address the weight spectrum of RM(n − c, n) by an induction on n,
starting from a value n0 such that the weight spectrum of RM(n0−c, n0) is already generic, which means
that it has, according to McEliece’s theorem, a divisibility by 2 and not by a larger power of 2. This
means that we need to start from n0 ≥ 2c. Indeed, according to McEliece’s theorem, all the weights in
RM(c−1, 2c−1) are divisible by 4, while those in RM(c, 2c) are divisible by 2. We know from [6] that
McEliece’s divisibility bound is tight in the sense that there is at least a codeword in every RM(r, n)
code, with a weight congruent to 2b

n−1
r c modulo 2b

n−1
r c+1. We can try to see whether the weights obtained

from A+A, where A is the weight spectrum of RM(c, 2c), allow us to reach all the weights authorized by

‡In coding theory, contrary to Boolean function theory, the spectrum does not include the multiplicities of the values (when these
multiplicities are taken into account, we speak of weight distribution).

§It seems a little risky to present this as a conjecture and in [9], it is then presented as an open question.
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McEliece’s theorem and Kasami-Tokura-Azumi’s result. The first difficulty is then to reach all weights
in RM(c, 2c). In the case of c = 3, 4, this has been rather easy, but proving the conjecture recalled
above for c = 5 with this method, which needs to start the induction with n = 10 (a value much larger
than what can be reached with the heavy computations made by M. Terada, J. Asatani, and T. Koumoto
and reported in [31]), has led to the construction of functions in 10 variables with an algebraic degree
of at most 5 and having all possible even weights between 2.5 times the minimum distance 32, that is,
80 and 210 − 80. The next step c = 6 needs to address the code RM(6, 12), which has huge parameters
[4096,2510], while the largest reached currently are [512,256] and [512,382]). It is shown in [9] how
determining the weight spectrum of RM(6, 12) needs to determine whether some specific values (such
as 166), which are “holes” after general methods were applied, are the weights of codewords. This
may not be as hard as expected for c = 6, but addressing larger values of c will probably lead to more
of such “holes”. Hence, being able to build as many weights as possible in Reed-Muller codes is of a
great importance, and in particular, reaching weights that are not obtained by classic constructions.

Providing weights can indeed be tried by investigating the known (primary and secondary)
constructions of Boolean functions and deducing functions whose weight can be determined, as was
done in [9]. Some weights are easily reached this way, but we can expect that these constructions will
not suffice for addressing the weights in RM(n − c, n) for larger values of c.

Note that the codes RM(n− c, n) considered above, being such that n ≥ 2c, are of the form RM(r, n)
with n ≥ 2(n − r), that is, r ≥ n

2 . Another case where more weights in Reed-Muller codes RM(r, n) are
useful information is when r < n

2 .
Recall that when Boolean functions in n variables are given, for instance, by their ANF, with n

ranging over N, it is rarely possible to mathematically evaluate their Hamming weights. Of course,
it is always possible when the function is affine (belonging then to the Reed-Muller code of order 1),
but this provides only three weights for each n. When the function is taken quadratic (i.e., belonging
to the second-order Reed-Muller code), there are methods for determining its weight (see a survey
in [8, Chapter 4]). However, these methods allow us to concretely address only a few cases (even the
first step, which consists of determining the linear kernel of the function, is impossible to complete
systematically). The weights of quadratic functions are very specific. The indicators of affine spaces
(flats) are also addressable, but their weights are minimal in the Reed-Muller codes to which they
belong. It needs specific work to study the weights of Boolean functions obtained by the constructions
evoked above, and we shall describe in Section 2, as nothing automatic exists.

The problem we want to address in this paper is not as hard as determining the weight of any
given Boolean function: We only want to find as many weights as possible in general Reed-Muller
codes. However, it is not so easy to provide codewords of Reed-Muller codes whose weights can be
determined.

For finding more weights, methods complementary to the usual constructions are needed. In the
present paper, we give such a method to automatically generate codewords in Reed-Muller codes of
any lengths 2n. These codewords depend on the number of variables n, the order r, a parameter t,
and the choice of t vectors ai. We have, thanks to a property of the corresponding functions, an
upper bound on their algebraic degree (but determining the degree exactly would be difficult, and even
trying to directly show this upper bound by working on the ANF of the functions seems quite hard).
The weights of these functions can be evaluated or at least bounded from above, because when these
Boolean functions are given as the sums (modulo 2) of atomic ones, the only limitation for evaluating
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their weights is to determine the number of these atomic functions which appear an odd number of
times in the expression.

There is a case (when the vectors ai involved in the construction are linearly independent) where
we can ensure that all these atomic functions are distinct, which allows us to exactly calculate the
Hamming weight. This provides information on the weight spectra of Reed-Muller codes when they
are unknown (that is, currently, for the orders from 3 to n − 6). For instance, we shall see in the tables
provided that our method gives weights in RM(r, n) that are much larger than twice the minimum
distance and have low valuation.

The case mentioned above, where the vectors ai are linearly independent, provides at most n
2 distinct

weights for each Reed-Muller code, and this is not much. We then investigate two cases where the
vectors are linearly dependent. We do not cover all the cases where the vectors are linearly dependent
(it seems impossible to do so), but other cases could be similarly investigated.

We also study the weights of the sums of the designed functions, in a case where we know they
have disjoint supports. This provides many more weights.

The paper is structured as follows. In Section 2, we recall the state of the art in the determination
of weights in Reed-Muller codes by using the classic constructions (Maiorana-McFarland, etc.). We
show the difficulties presented by this method and why it suits better for low orders. In Section 3,
we introduce our new construction of Reed-Muller codewords and we study some particular cases.
We determine the weights under a condition that is rather general (namely, some vectors ai involved
in the construction are linearly independent), and we also study two cases where this condition is
not satisfied; this provides a list of weights for each Reed-Muller code, which is longer for larger
orders. We then show that more weights - a huge number when the order is large enough - can be
obtained as the additions of some of these weights. To conclude this section, we determine the ANF
of the constructed functions when the vectors ai are linearly independent. We conclude with some
observations on future work.

2. State of the art on the Hamming weights of Reed-Muller codewords

It is well-known that the minimum nonzero Hamming weight of RM(r, n) equals 2n−r (see [22,
Chapter 13], and see [8, Chapter 4] for a more direct proof), and that the nonzero minimum weight
codewords in this code are the indicators of the (n − r)-dimensional affine subspaces of Fn

2.
All the low Hamming weights are known in all Reed-Muller codes, and there are very few:

Berlekamp and Sloane [4] (see the Addendum in this paper) and Kasami and Tokura [16] have
shown that, for r ≥ 2, the only Hamming weights in RM(r, n) occurring in the range [2n−r; 2n−r+1[
are of the form 2n−r+1 − 2n−r+1−i, where we have i ≤ max(min(n − r, r), n−r+2

2 ). The latter has
completely characterized the codewords: The corresponding functions are affinely equivalent either
to x1 · · · xr−2(xr−1xr + xr+1xr+2 + · · · + xr+2l−3xr+2l−2), 2 ≤ 2l ≤ n − r + 2, or to x1 · · · xr−l(xr−l+1 · · · xr +

xr+1 · · · xr+l), 3 ≤ l ≤ min(r, n − r). The functions whose Hamming weights are strictly less than 2.5
times the minimum distance 2n−r have later been studied in [17].

Recall that, on the contrary, the general weights in RM(r, n) can be rather diverse, as soon as r ≥ 3
and n is large enough. Indeed, as shown in [7], for every Boolean function f on Fn

2, there exist an integer
m and a Boolean function g of an algebraic degree of at most 3 on Fn+2m

2 , such that
∑

x∈Fn+2m
2

(−1)g(x) =

2m ∑
x∈Fn

2
(−1) f (x), which gives the following relation between the Hamming weights of f and g: 2n+2m−

AIMS Mathematics Volume 9, Issue 5, 10609–10637.
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2wH(g) = 2m(2n − 2wH( f )). Hence, the Hamming weight of f is related in a simple way to the
Hamming weight of a cubic function (in a number of variables which can be exponentially larger).
This shows that the weights in RM(3, n) (that is, the distances) can be complex, contrary to those in
RM(2, n). Unfortunately, this result does not provide an efficient method for finding weights in third-
order Reed-Muller codes: Trying to find new weights in these codes by starting with Boolean functions
f of any degree in less variables and applying the result does not work well, because m in this result is
exponentially large compared to n.

The possible weights of the codewords in the Reed-Muller codes of orders 3, . . . , n−6 whose values
lie between 2.5 d and 2n − 2.5 d are unknown¶, except for some functions that we shall describe, and
which hardly allow to provide non-peculiar weights for general Reed-Muller codes:

• Quadratic functions, in the form f (x) = l1(x)l2(x) + l3(x)l4(x) + · · · + l2k−1(x)l2k(x) + l2k+1(x),
possibly added with constant 1 (that is, complemented), when we are able to ensure that the linear
functions l1, . . . , l2k are linearly independent. Then f equals the function x1x2 + · · · + x2k−1x2k

composed on the right by a linear or an affine automorphism (we say that such a function is
linearly, respectively affine, equivalent to x1x2 + · · · + x2k−1x2k), added with an affine function
(we say then that the function is extended affine equivalent to x1x2 + · · · + x2k−1x2k; see more on
equivalences in [8, Chapter 2]), and we can evaluate its Hamming weight. This provides weights
0, 2n−1, 2n−1 ± 2i, where i = d n

2e, 2n, which are all weights in RM(2, n) (all being easy to produce),
but are rather peculiar in the larger Reed-Muller codes. We can also calculate the weights of
the concatenations of such functions, of course, whose weights are a little more general (but the
algebraic degree needs to then be determined).
• Indicators of flats (and their concatenations as well), that is, minimum nonzero weight codewords

in Reed-Muller codes (see [22, Chapter 13]), in the form
∏

i∈I(ai · x + εi), where ai ∈ F
n
2, εi ∈ F2,

when we are able to ensure that the vectors ai are linearly independent. This provides weights 2i,
where i = 0, . . . , n, which are also easy to produce but are peculiar, too. Note that this class of
functions is (as the previous one) preserved by affine equivalence.
• Functions whose weight is smaller than twice-and-a-half the minimum distance d of the Reed-

Muller codes to which they belong. We have recalled above what these weights are when they
are smaller than 2d; between 2d and 2.5d, the weights (determined in [17]) are too numerous
for being recalled here; They are easy to produce but we encounter the same difficulty as for
quadratic functions if we want to exhibit all functions with such weights: We know that they
are affine equivalent to some particular functions, but ensuring such affine equivalence is not
mathematically possible in an exhaustive way. Anyway, this strong result by Kasami, Tokura, and
Azumi allows us to reach in Reed-Muller codes all weights smaller than 2.5 times the minimum
distance (and their complements to 2n). The question is then to find as many other weights as
possible.
• Some functions obtained by using the classic primary constructions of Boolean functions, in

particular, Maiorana-McFarland, Niho, and PSap-like constructions; see [8, Chapter 4]. This
allows us to reach some weights, but numerous subclasses of functions have to be separately
investigated for allowing us to cover enough weights. Finding the weights that are reachable
often poses technical issues, to be overcome for each subclass, such as solving equations, which
can be done in some cases but not in general. To give an example, the weights of those particular

¶But when n = 2r + 1, they are known in some cases by using invariant theory, because the code is then self-dual, see [22, 28]).
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Maiorana-McFarland functions of the form f (x, y) = x·φ(y), where x ∈ Ft
2, y ∈ F

n−t
2 , φ is a function

from Fn−t
2 to Ft

2, and “·” is an inner product, are deduced from the relation
∑

(x,y)∈Fn
2
(−1) f (x,y) =

2n − 2wH( f ) = 2t |φ−1(0)|, which theoretically makes the study of the weights of these particular
functions simpler. However, this replaces the difficulty of determining the weights of the functions
having algebraic degrees of at most r by that of determining the possible values of the size |φ−1(0)|
when φ has an algebraic degree of at most r − 1, that is, when all its coordinate functions have
algebraic degrees of at most r − 1. This latter problem, which is interesting to study for its own
sake, may be hard since it results in determining the possible numbers of solutions of nonlinear
systems of equations. Denoting the coordinate functions of φ by φ1, . . . , φt, the solutions of the
equation φ(y) = 0 are the elements of the support of the Boolean function

∏t
i=1(φi(y) + 1), which

has an algebraic degree of at most t (r − 1). In the case t = 1, we only get that the weights
in RM(r − 1, n − 1) are also weights in RM(r, n) (which is clear since, denoting xi = yi−1 for
i = 2, . . . , n, the n-variable function x1g(x2, . . . , xn) has the same Hamming weight as the (n − 1)-
variable function g), and as soon as t ≥ 2, the situation becomes complex. For instance, for r = 3
and t = 2, we will arrive in general to the determination of the support of a function of degree 4,
which instead of reducing the degree, increases it. Moreover, the weights that are easier to obtain
correspond to a large value of t and are then not quite general, since they have a valuation of
at least t. The same kind of situation happens with the general Maiorana-McFarland, Niho, and
PSap-like constructions. Hence, even if it is possible to try using these classic constructions to
reach weights in Reed-Muller codes, it is necessary, for reaching many weights, to have other
approaches posing less problems; this is the purpose of the present paper.
• Direct sums of monomials and threshold functions (see a complete study of the cryptographic

parameters of these functions in [10]). These are two cases where we can give the Hamming
weights. The character sum

∑
x∈Ft

2,y∈F
n−t
2

(−1) f (x,y) of a direct sum f (x, y) = f1(x)+ f2(y), of functions
f1, f2 being the product of the character sums

∑
x∈Ft

2
(−1) f1(x) and

∑
y∈Fn−t

2
(−1) f2(y) of these functions,

the Hamming weight of the direct sum
∏

i∈I1
xi + · · · +

∏
i∈Ik

xi of monomials (where the index
sets I1, . . . , Ik are disjoint and n =

∑k
j=1 |I j|) satisfies 2n − 2wH( f ) =

∏k
j=1(2|I j | − 2). The Hamming

weight of the function whose support equals all vectors of a Hamming weight of at least k equals∑n
i=k

(
n
i

)
. We find in both cases rather peculiar weights and, in the latter case, the algebraic degree

needs to be determined.

There exist also secondary constructions of Boolean functions:

• The direct sum, already recalled above in the particular context of monomials, consists of adding
functions whose sets of variables are disjoint. It gives weights that are a little peculiar: We have
recalled above that if f is the direct sum of a t-variable function f1 and a (n − t)-variable function
f2, then the character sum of f equals the product of the character sums of f1 and f2, and this
implies:

2n − 2wH( f ) = (2t − 2wH( f1))(2n−t − 2wH( f2)).

This construction is interesting because it does not need particular precautions about the algebraic
degree of f , which equals the maximum of the algebraic degrees of f1 and f2. Hence, for every
weight w1 in RM(r, t) and every weight w2 in RM(r, n − t), the number w such that 2n − 2w =

(2t−2w1)(2n−t−2w2) is a weight in RM(r, n)), with the convention that if r > t, then RM(r, t) equals

AIMS Mathematics Volume 9, Issue 5, 10609–10637.
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RM(t, t) (and can then have the weight of any integer between 0 and 2t). With this construction,
there is a systematic way of building weights in RM(r, n) from weights in RM(r, t) and RM(r, n−t).
• The indirect sum (see [8, Sections 6.1.16 and 7.1.9]) also deals with functions whose sets

of variables are disjoint, but in a more complex way: We have two functions f1, f2 on
the same set of t variables, two functions g1 and g2 on the same set of n − t variables,
disjoint from the previous one, and f (x, y) = f1(x) + g1(x) + ( f1(x) + f2(x))(g1(x) + g2(x)).
We then have

∑
x∈Ft

2,y∈F
n−t
2

(−1) f (x,y) = 1
2 (

∑
x∈Ft

2
(−1) f1(x))[

∑
y∈Fn−t

2
(−1)g1(y) +

∑
y∈Fn−t

2
(−1)g2(y)] +

1
2 (

∑
x∈Ft

2
(−1) f2(x))[

∑
y∈Fn−t

2
(−1)g1(y) −

∑
y∈Fn−t

2
(−1)g2(y)] and, therefore:

2n − 2wH( f ) =

(2t − 2wH( f1))
[
2n−t − wH(g1) − wH(g2)

]
+ (2t − 2wH( f2))

[
wH(g2) − wH(g1)

]
.

The algebraic degree of f is not automatically bounded by r from above, unless we take the initial
functions f1, f2 in RM(s, t) with s ≤ r and the initial functions g1, g2 in RM(r−s, n−t) but this does
not allow to provide interesting weights. If we take f1, f2 in RM(r, t) and g1, g2 in RM(r, n − t),
this construction provides weights that are possibly less peculiar than with the direct sum, but in
a much less systematic way, because we need to take care of the algebraic degree.
• The sum without extension of the number of variables (see [8, Sections 6.1.16 and 7.1.9]) takes

three n-variable Boolean functions f1, f2, f3 and defines the Boolean function f = f1 f2+ f1 f3+ f2 f3.
We have:

wH( f ) =
1
2

(
wH( f1) + wH( f2) + wH( f3) − wH( f1 + f2 + f3)

)
.

This secondary construction has been introduced because of the nice behavior of its Walsh
transform, but it has the same drawback as the indirect sum about the algebraic degree of f .
• The so-called (u|u + v)-construction (see [22]) allows us to construct all of RM(r, n) from

RM(r − 1, n − 1) and RM(r, n − 1). It corresponds to the fact that an n-variable Boolean function
f (x1, . . . , xn) can be written in the form f0(x1, . . . , xn−1) + xn f1(x1, . . . , xn−1) and has an algebraic
degree of at most r if and only if f0 has an algebraic degree of at most r and f1 has an algebraic
degree of at most r − 1. The corresponding codeword is the concatenation of the codewords in
RM(r, n − 1) associated to f0 and f0 + f1, and for the Hamming weight, it has the sum of the
Hamming weights of these two functions.
The pairs ( f0, f0 + f1), when f0 ranges over RM(r, n − 1) and f1 ranges over RM(r − 1, n − 1), do
not provide all possible pairs of codewords in RM(r, n − 1) because of the restriction that f1 has
an algebraic degree of at most r − 1, but if we impose that f0 itself ranges over RM(r − 1, n − 1),
then the weights of the resulting codewords of RM(r, n) range over the sums of two weights in
RM(r − 1, n − 1). This leads to a result given in [30] and used in [12]: For all pairs of integers
(r, n) with 0 ≤ r ≤ n, the weight spectrum of RM(r, n) includes as a subset S + S , where S is the
weight spectrum of RM(r − 1, n − 1). This result has allowed us to obtain the weight spectra of
infinite classes of Reed-Muller codes, but only for orders that are very close to n.

A completely different way of evaluating weights in Reed-Muller codes consists of the fact that,

for every Boolean function f of an algebraic degree of at most r, we have
(∑

x∈Fn
2
(−1) f (x)

)2
=∑

a∈Fn
2

∑
x∈Fn

2
(−1)Da f (x), where for every a, the so-called derivative Da f (x) = f (x) + f (x + a) has an

algebraic degree of at most r − 1. If we are able to determine the weights of all these derivatives, we

AIMS Mathematics Volume 9, Issue 5, 10609–10637.



10617

obtain the absolute value of
∑

x∈Fn
2
(−1) f (x) = 2n−2wH( f ), and since every Reed-Muller code is invariant

under the complementation of its codewords, this provides two weights if
∑

x∈Fn
2
(−1) f (x) , 0. However,

this method, which is clearly more efficient for low orders r, is better suited for determining some
specific weights than for systematically finding new weights in infinite classes of Reed-Muller codes.

It is then useful to find a new way, as systematic as possible, for providing weights (hopefully
previously unknown) and codewords having such weights.

3. A new construction of Boolean functions with an algebraic degree bounded from above

In this section, we present our construction. It comes from a formula that is satisfied by all Boolean
functions of an algebraic degree bounded from above by some number s (and therefore by all vectorial
functions F : Fn

2 7→ F
m
2 of an algebraic degree of at most s). This formula has been originally found and

used (in [11]) in the framework of countermeasures against side channel attacks, a domain of applied
cryptography. It also corresponds to what we call zero-sum sets, a notion used in the cryptanalysis
of block ciphers. It could seem rather unrelated to coding theory in general and to the determination
of weights in Reed-Muller codes in particular, but it is not, as we shall see. This formula depends on
parameters (that are elements of Fn

2) and will lead to numerous Boolean functions f of the algebraic
degree bounded from above, since the Hamming weight of these functions can be determined, to
numerous weights in Reed-Muller codes.

3.1. Degree-s zero-sum sets as Reed-Muller codewords

A set S ⊆ Fn
2 is called degree-s zero-sum‖ if we have

∑
x∈S f (x) = 0 for every n-variable Boolean

function f of an algebraic degree of at most s (and then
∑

x∈S F(x) = 0 for every vectorial function F
in n variables of an algebraic degree of at most s).

The degree-s zero-sum sets are then the supports of the codewords in the dual code of RM(s, n).
The dual of RM(s, n) equals RM(r, n) where r = n − s − 1 [22] and degree-s zero-sum sets are then
the supports of the n-variable Boolean functions of an algebraic degree of at most r, that is, of the
codewords of RM(r, n). Hence, determining the possible sizes of degree-s zero-sum sets is directly
related to determining the weights in Reed-Muller codes.

3.2. A construction of Boolean functions with bounded algebraic degree

We know from [11, Corollary 1] that if an n-variable Boolean function f : Fn
2 7→ F2 or, more

generally a vectorial (n,m)-function F : Fn
2 7→ F

m
2 , has an algebraic degree of at most s, then for every

t > s and for every a1, . . . , at ∈ F
n
2, we have

F
( t∑

i=1

ai

)
=

s∑
j=0

µt,s( j)
∑

J⊆{1,...,t};|J|= j

F
(∑

i∈J

ai

)
(3.1)

(the sum, of course, being calculated modulo 2) where

µt,s( j) =

(
t − j − 1

s − j

)
mod 2

‖This term comes from [3], which denotes by d what we denote here by s; we prefer using s to avoid any confusion with the minimum
distance of codes.
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for every j ≤ s, with the conventions
(

l
0

)
= 1 for every l and

∑
i∈∅ ai = 0.

According to (3.1), the set of all the elements a of Fn
2, which appear an odd number of times as

a =
∑t

i=1 ai, or a =
∑

i∈J ai where J has size at most s and µt,s(|J|) = 1, is a degree-s zero-sum set. We
then have the following result, in which, for every a ∈ Fn

2, we denote by δa the Boolean function over
Fn

2 which takes value 1 at a and 0 everywhere else (such a function can be called an atomic, or Dirac,
or Kronecker function):

Theorem 1. Let n, s ≥ 0 and t ≥ 1 be integers such that s < t and s < n. Given any elements a1, . . . , at

of Fn
2, the Boolean function:

f (s)
a1,...,at

:= δ∑t
i=1 ai +

s∑
j=0

µt,s( j)
∑

J⊆{1,...,t};|J|= j

δ∑i∈J ai , (3.2)

(where µt,s( j) =
(

t− j−1
s− j

)
mod 2 =

(
t− j−1
t−s−1

)
mod 2), has an algebraic degree of at most r = n − s − 1.

Remark 1. (1) f (s)
a1,...,at is in general not a symmetric function (that is, its value changes when we permute

its input bits) despite the fact that its expression (3.2) is symmetric with respect to a1, . . . , at (i.e., its
value does not change when we permute the ai’s).
(2) For every positive integers n, s, t such that s < n and s < t, and every a1, . . . , at in Fn

2, all the
functions f (s)

a1,...,at , f (s+1)
a1,...,at , . . . , f (t−1)

a1,...,at have algebraic degrees of at most r.
(3) Suppose that for some n, s, t, the function f (s)

a1,...,at has an algebraic degree r′ < n − s − 1, then it is
orthogonal to every codeword of the Reed-Muller code RM(n − r′ − 1, n) with n − r′ − 1 > s, and it is,
therefore, orthogonal to the Reed-Muller code RM(s + 1, n), whose elements satisfy the Relation (3.1).
There seems to most often exist codewords of RM(s + 1, n) which do not satisfy Relation (3.1). We
deduce that, most often, f (s)

a1,...,at has in fact an algebraic degree of r = n− s−1 exactly. Examples 1 and 2
will illustrate this, but there are also examples where f (s)

a1,...,at has an algebraic degree strictly smaller;
see, for instance, Proposition 1.

Example 1. (toy example) Let n = 3, s = 1 (and, therefore, r = 1), t = 4, a1 = (1, 0, 0), a2 =

(0, 1, 0), a3 = (0, 0, 1), and a4 = (1, 1, 1). We have µt,s(0) =
(

3
1

)
(mod 2) = 1, µt,s(1) =

(
2
0

)
(mod 2) = 1.

Hence, f (s)
a1,a2,a3,a4 = δa1+a2+a3+a4 + δ(0,0,0) + δa1 + δa2 + δa3 + δa4 is the indicator function of the affine plane

{a1, a2, a3, a4}.

3.2.1. Linear equivalence between the constructed functions when a1, . . . , at are linearly independent

We say that two n-variable Boolean functions f , g are linearly (resp., affinely) equivalent if there
exists a linear automorphism (resp., an affine automorphism) L of Fn

2 such that g = f ◦ L, then f and g
have the same Hamming weight and the same algebraic degree. All the functions in a same equivalence
class contribute then for the same weight in the weight spectrum of the corresponding Reed-Muller
code. We are then interested, when we find a function with a known algebraic degree and weight, to
know whether it is inequivalent to previously found functions. For t ≤ n, two choices “a1, . . . , at”,
respectively, “a′1, . . . , a

′
t”, of linearly independent elements give linearly equivalent functions f (s)

a1,...,at

and f (s)
a′1,...,a

′
t
, because there exists a linear automorphism L, mapping a1, . . . , at to a′1, . . . , a

′
t , respectively,

and, therefore, mapping
∑

i∈J ai to
∑

i∈J a′i for every J. We then have f (s)
a1,...,at = f (s)

a′1,...,a
′
t
◦ L.
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3.2.2. Studying some particular cases of (t, s) when a1, . . . , at are not necessarily linearly independent

For two choices a1, . . . , at and a′1, . . . , a
′
t , of linearly dependent elements, the corresponding

functions f (s)
a1,...,at and f (s)

a′1,...,a
′
t

may not be affine equivalent. Of course, if a1, . . . , at and a′1, . . . , a
′
t satisfy

exactly the same linear relations over F2, then there is again a linear automorphism mapping a1, . . . , at

to a′1, . . . , a
′
t , respectively (indeed, the two families have the same rank k; we can choose in each family

k elements generating the other elements of the family by the same relations and deduce such linear
automorphism), but if not, then the functions f (s)

a1,...,at and f (s)
a′1,...,a

′
t

may be inequivalent.

Before seeing an example where f (s)
a1,...,at and f (s)

a′1,...,a
′
t

are not affine equivalent, let us systematically
visit the first possible values of s (for any t > s):
• Case s = 0: For t ≥ 1, we have f (0)

a1,...,at = δ∑t
i=1 ai + δ0, which can have a weight of either 0 or 2; we get

then only the two smallest weights of RM(n, n − 1);
• Case s = 1: For t ≥ 2, we have f (1)

a1,...,at = δ∑t
i=1 ai + (t − 1) δ0 +

∑t
i=1 δai (we omit the “mod2”); if t is

even, then we get δ∑t
i=1 ai + δ0 +

∑t
i=1 δai , which has an even weight of at most t + 2, and if n is odd, then

we get δ∑t
i=1 ai +

∑t
i=1 δai , which has an even weight as well of at most t+1; Since t is not bounded above,

we get all possible weights of RM(n, n− 2) (and this case is then very different from the previous one):
We can easily check that the weights 2 and 2n − 2 are impossible and all other even weights between
0 and 2n are possible; for instance, weight 4 is achieved by taking either t = 2 and a1, a2 nonzero and
distinct (i.e., linearly independent over F2) or t = 3 and a1, a2, a3 distinct;
• Case s = 2: For t ≥ 3, we have f (2)

a1,...,at = δ∑t
i=1 ai +

(
t−1
2

)
δ0 + (t − 2)

∑t
i=1 δai +

∑
1≤i< j≤t δai+a j; hence, if

all the sums ai + a j and the ai are nonzero and distinct, we have a function of a Hamming weight in
J
(

t
2

)
+ t− 1,

(
t
2

)
+ t + 2K if t is odd and in J

(
t
2

)
− 1,

(
t
2

)
+ 2K if t is even. If we only assume that all the sums

ai + a j are distinct, we have a function of a Hamming weight of at least
(

t
2

)
− 2 − t = t2−3t−4

2 if t is odd

and
(

t
2

)
− 2 = t2−t−4

2 if t is even.

• Case s = 3: For t ≥ 4, we have f (3)
a1,...,at = δ∑t

i=1 ai +
(

t−1
3

)
δ0 +

(
t−2
2

)∑t
i=1 δai + (t − 3)

∑
1≤i< j≤t δai+a j +∑

1≤i< j<k≤t δai+a j+ak ; hence, if all the sums ai + a j + ak are distinct, we have a function of a Hamming
weight of at least

(
t
3

)
− 2 − t −

(
t
2

)
= t3−6t2−t−12

6 if t is even and
(

t
3

)
− 2 − t = t3−3t2−4t−12

6 if t is odd.

Since, for the same value of n and the same value of t, f (1)
a1,...,at = δ∑t

i=1 ai + (t − 1) δ0 +
∑t

i=1 δai can
have different Hamming weights according to the values of the ai’s when they are linearly dependent,
we have an example where f (s)

a1,...,at and f (s)
a′1,...,a

′
t

are not affine equivalent, even if a1, . . . , at are distinct as
well as a′1, . . . , a

′
t .

Let us now systematically visit the first possible values of t > s (for any s):
• For t = s + 1, we have µt,s( j) =

(
s− j
s− j

)
mod 2 = 1 for all j ≤ s. Note that this was expected since

Relation (3.1) expresses, in particular, that for a function of degree of at most s, the sum of the values
of the function taken over any (s + 1)-dimensional affine space equals 0. The Hamming weight ws+1,s

of f (s)
a1,...,as+1 is at most 1 +

∑s
j=0

(
t
j

)
= 2s+1. Hence, since 2s+1 equals the minimum distance of RM(r, n),

the Hamming weight of f (s)
a1,...,as+1 is either zero or 2s+1 (depending on the choice of a1, . . . , as+1). More

precisely:

Proposition 1. For every s ≥ 0 and every linearly independent a1, . . . , as+1 in Fn
2, f (s)

a1,...,as+1 is the
minimum weight codeword in RM(r, n) whose support equals 〈a1, . . . , as+1〉, the vector space over F2

generated by a1, . . . , as+1. If a1, . . . , as+1 are linearly dependent, then f (s)
a1,...,as+1 equals the zero function.
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Proof. We have f (s)
a1,...,as+1 =

∑
J⊆{1,...,s+1} δ

∑
i∈J ai . If a1, . . . , as+1 are linearly independent, then f (s)

a1,...,as+1

equals the indicator of the vector space generated by a1, . . . , as+1 (and we obtain with the functions
f (s)
a1,...,at all the minimum weight codewords in RM(r, n)). If a1, . . . , as+1 are linearly dependent, then

the Hamming weight of f (s)
a1,...,at is strictly less than the minimum distance of RM(r, n), and it is then 0.

Note that, assuming (without loss of generality, thanks to the invariance of f (s)
a1,...,at when permuting the

ai’s) that at = a1 + · · · + ak, for some k < t, it is easily seen that each Dirac function obtained after
replacing at by its value in the expression of f (s)

a1,...,as+1 appears an even number of times. This implies
that this expression cancels. �

• For t = s + 2, we have µt,s( j) =
(

s+1− j
s− j

)
mod 2 = (s + 1 − j) mod 2 and f (s)

a1,...,at = δ∑t
i=1 ai +∑b s

2 c

k=0

∑
J⊆{1,...,t}
|J|=s−2k

δ∑i∈J ai .

We have ws+2,s ≤ 1 +
∑b s

2 c

k=0

(
s+2
s−2k

)
= 1 +

∑b s
2 c

k=0

(
s+2

2k+2

)
= 2s+1. More precisely:

Proposition 2. For every s ≥ 0 and every linearly independent a1, . . . , as+2 in Fn
2, f (s)

a1,...,as+2 is a minimum
weight codeword in RM(r, n). If a1, . . . , as+1 are linearly dependent, then f (s)

a1,...,as+1 can equal a minimum
weight codeword in RM(r, n) or the zero function.

• For t = s + 3, we have that µt,s( j) =
(

s+2− j
s− j

)
mod 2 =

(
s+2− j

2

)
mod 2 equals{

1 if s + 2 − j mod 4 ∈ {2, 3}
0 if s + 2 − j mod 4 ∈ {0, 1}

, and we have:

f (s)
a1,...,at

= δ∑t
i=1 ai +

∑
0≤ j≤s

s+2− j≡2,3 mod 4

∑
J⊆{1,...,t}
|J|= j

δ∑i∈J ai .

3.3. On the weights of the constructed functions

The interest of Theorem 1 is that it is possible to calculate mathematically, under some conditions,
the Hamming weight of f (s)

a1,...,at , and that the weights obtained do not look peculiar.

Proposition 3. Let n, s ≥ 0 and t ≥ 1 be integers such that s < t and s < n. For any elements a1, . . . , at

of Fn
2, let f (s)

a1,...,at be the Boolean function given by (3.2). If a1, . . . , at are linearly independent over F2,
then f (s)

a1,...,at has Hamming weight:

wt,s = 1 +
∑

j∈{0,...,s};
µt,s( j)=1

(
t
j

)
, (3.3)

where µt,s( j) =
(

t− j−1
s− j

)
mod 2, and otherwise, it has a Hamming weight of at most wt,s.

Indeed, the former assertion comes from the fact that, for any two distinct J, the corresponding
elements

∑
i∈J ai are distinct, since a1, . . . , at are linearly independent over F2, and the latter is obvious.

Note that the Hamming weight of f (s)
a1,...,at has necessarily the same parity as wt,s since the atomic

functions involved in (3.2) cancel by pairs, but since we already know that this weight is even because
r = n − s − 1 is strictly smaller than n, this only tells us that wt,s is even (while it may not always
be a weight in RM(r, n) when t > n). Note also that wt,s ≥ 1 +

(
t
s

)
since µt,s(s) = 1 (and then the

weight of f (s)
a1,...,at cannot equal wt,s if

(
t
s

)
≥ 2n), and that if t − s is odd, then wt,s ≥ 1 +

(
t

s−1

)
+

(
t
s

)
, since

µt,s(s − 1) = t − s (and then the weight of f (s)
a1,...,at cannot equal wt,s if

(
t

s−1

)
+

(
t
s

)
≥ 2n).
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Example 2. Let us take n = 12, r = 8. We can check that f (s)
a1,...,at can reach weight 166 in two cases

where a1, . . . , at are linearly independent over F2. Indeed, for having r = n − s − 1 = 8, we need to
take s = 3. For the weight wt,s = 1 +

∑
j∈{0,...,s};
µt,s( j)=1

(
t
j

)
given by Proposition 3 to equal 166, we need to

take t ∈ {10, 11}. Recall that all these functions are affine equivalent, for a fixed value of t. Denoting
by (e1, . . . , e12) the canonical basis of F12

2 (made of all weight 1 vectors), we obtain then two classes
of functions, that are respectively affine equivalent to f (3)

e1,...,e10
= δ∑10

i=1 ei
+

∑
0≤ j≤3

(9− j
3− j) mod 2=1

∑
J⊆{1,...,10};|J|= j

δ∑i∈J ei =

δ∑10
i=1 ei

+
∑

J⊆{1,...,10};|J|=2

δ∑i∈J ei +
∑

J⊆{1,...,10};|J|=3

δ∑i∈J ei and f (3)
e1,...,e11

= δ∑11
i=1 ei

+
∑
0≤ j≤3

(10− j
3− j ) mod 2

∑
J⊆{1,...,11};|J|= j

δ∑i∈J ei =

δ∑11
i=1 ei

+
∑

J⊆{1,...,11};|J|=3

δ∑i∈J ei .

Recall (see e.g., [8, Subsection 10.1.1]) that denoting by 1En, j the n-variable Boolean function whose
support is the set En, j of all vectors of a Hamming weight of j in Fn

2, we have 1En, j(x) =
∑

I⊆{1,...,n}

(|I|j )=1 (mod 2)

xI .

We then have f (3)
e1,...,e10

(x) = (x11 + 1)(x12 + 1)
[ 10∏

i=1

x j +
∑

I⊆{1,...,10}
|I|∈{2,3,6,7,10}

∏
i∈I

xi +
∑

I⊆{1,...,10}
|I|∈{3,7}

∏
i∈I

xi

]
and f (3)

e1,...,e11
(x) =

(x12 + 1)
[ 11∏

i=1

x j +
∑

I⊆{1,...,11}
|I|∈{3,7,11}

∏
i∈I

xi

]
and these two functions both have an algebraic degree of 8.

It is interesting to notice that wt,s, defined in Relation (3.3), does not depend on n (we only have the
condition that n ≥ t). Of course, n plays a role through the value of r.

We can see that the weights provided by Proposition 3 are few for low orders (since t ranges from
n − r to n) and a little more numerous for large orders.

We now observe a property of wt,s that seems easier to show by considering Relation (3.3) than to
infer directly from the way f (s)

a1,...,at was derived:

Lemma 1. For every s, i ≥ 0, we have ws+2i+1,s = ws+2i+2,s ≤ ws+2i+3,s and this latter inequality is strict
for s > 0.

Proof. According to Lucas’ theorem (see, e.g., [22, Page 404]), we have that µs+2i+1,s(s− j) =
(

2i+ j
j

)
mod

2 equals 1 if, and only if, the binary expansion of j is covered by that of 2i + j, then µs+2i+1,s(s − j)
has the same value for j = 2k and j = 2k + 1, while µs+2i+2,s(s − j) =

(
2i+ j+1

j

)
mod 2 shares the same

value if j = 2k and equals 0 if j = 2k + 1. We deduce that ws+2i+2,s = 1 +
∑

0≤ j≤s; j even;
µs+2i+1,s(s− j)=1

(
s+2i+2

s− j

)
=

1 +
∑

0≤ j≤s; j even;
µs+2i+1,s(s− j)=1

((
s+2i+1

s− j

)
+

(
s+2i+1
s− j−1

))
= 1 +

∑
j≥0; j even;

µs+2i+1,s(s− j)=1

(
s+2i+1

s− j

)
+

∑
j≥0; j odd;

µs+2i+1,s(s− j)=1

(
s+2i+1

s− j

)
= ws+2i+1,s. This

proves the equality.
We have µs+2i+3,s(s− j) =

(
2i+2+ j

j

)
mod 2 =

((
2i+1+ j

j

)
+
(

2i+1+ j
j−1

))
mod 2 = µs+2i+2,s(s− j)+µs+2i+3,s(s− j+1).

If µs+2i+3,s(s − j + 1) = 0, then µs+2i+3,s(s − j) = µs+2i+2,s(s − j). Using for µs+2i+3,s(s − j + 1) = 0 that(
s+2i+3

s− j

)
is strictly larger than

(
s+2i+2

s− j

)
and for µs+2i+3,s(s− j+1) = 1 that

(
s+2i+3
s− j+1

)
equals

(
s+2i+2

s− j

)
+
(

s+2i+2
s− j+1

)
, we

deduce that ws+2i+3,s = 1 +
∑

j∈{0,...,s};
µs+2i+3,s(s− j)=1

(
s+2i+3

s− j

)
≥ ws+2i+2,s = 1 +

∑
j∈{0,...,s};

µs+2i+2,s(s− j)=1

(
s+2i+2

s− j

)
and the inequality

is then verified. Moreover, if s > 0, then the inequality is strict. �
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Open problem: Find a direct explanation of Lemma 1, from the proofs of [11, Theorem 1 and
Corollary 1].

Remark 2. We have seen in the proof of Lemma 1 that µs+2i+2,s(s− j) equals 0 for every odd j. Hence,
if all the elements

∑
i∈J ai are distinct for all J ⊂ {1, . . . , s + 2i + 2} whose sizes are at most s and have

the same parity as s, then f (s)
a1,...,as+2i+2 has a Hamming weight of ws+2i+2,s as well. This is possible with

s + 2i + 2 > n: Take, for instance, s = 2, i = 1, n = s + 2i + 1 = 5, t = 6, and a6 = a5 + a4, then
µ(t, s)(0) = 0, µt,s(1) = 0, µt,s(2) = 1, and a1 + · · · + a6 = a1 + a2 + a3, a1 + a2, a1 + a3, a1 + a4, a12 +

a5, a1 + a6 = a1 + a4 + a5, a2 + a3, a2 + a4, a2 + a5, a2 + a6 = a2 + a4 + a5, a3 + a4, a3 + a5, a3 + a6 =

a3 + a4 + a5, a4 + a5, a4 + a6 = a5, a5 + a6 = a4 are all distinct.

Open problem: Determine the exact Hamming weight of f (s)
a1,...,at by means of s, n and a1, . . . , at when

the latter are linearly dependent over F2.
In the next corollary we call the weight spectrum of RM(r, n) the list of all possible weights in

RM(r, n))

Corollary 1. Whatever the positive integers of n and r < n are, the weight spectrum of RM(r, n)
contains all the numbers:

wt,n−r−1 ; t = n − r, . . . , n;
wt,n−r ; t = n − r + 1, . . . , n;

...

wt,n−2 ; t = n − 1, n.

Indeed, for every t ≤ n, there exist t linearly independent elements.
In Table 1, we give for n ≤ 21 and for all r = 1, . . . , n − 1, the list in regular roman** of the values

wt,n−r−1 where t ranges from n − r to n. All these numbers are weights in RM(r, n), and all the lists
displayed for the input pairs (n, r), (n, r − 1), . . . , (n, 1) provide weights in RM(r, n). We can check on
these lists that Lemma 1 is verified, that is, the numbers go by pairs of consecutive equal values and
the lists are nondecreasing.

We can find in Table 1 many numbers which were not known before as weights in RM(r, n), such
as 3004 or 6436 in RM(6, 14).

**The values in bold will be obtained below in Subsection 3.3.1.

AIMS Mathematics Volume 9, Issue 5, 10609–10637.



10623

Table 1. Lists of values of wn−r,n−r−1, . . . ,wn,n−r−1; w′t,n−r−1.

n r [wn−r,n−r−1, . . . ,wn,n−r−1; w′t,n−r−1]
3

1 [4 4 ]
2 [2 2 2 ]

4
1 [8 8 ]
2 [4 4 6 ]
3 [2 2 2 2 ]

5
1 [16 16 ]
2 [8 8 16 ]
3 [4 4 6 6 8 ]
4 [2 2 2 2 2 ]

6
1 [32 32 ]
2 [16 16 36 ]
3 [8 8 16 16 24]
4 [4 4 6 6 8 ]
5 [2 2 2 2 2 2 ]

7
1 [64 64 ]
2 [32 32 72 ]
3 [16 16 36 36 56 ]
4 [8 8 16 16 30 24 ]
5 [4 4 6 6 8 8 10 ]
6 [2 2 2 2 2 2 2 ]

8
1 [128 128 ]
2 [64 64 136 ]
3 [32 32 72 72 112 ]
4 [16 16 36 36 94 56 ]
5 [8 8 16 16 30 30 24 40 ]
6 [4 4 6 6 8 8 10 ]
7 [2 2 2 2 2 2 2 2 ]

9
1 [256 256 ]
2 [128 128 256 ]
3 [64 64 136 136 208 ]
4 [32 32 72 72 256 112 ]
5 [16 16 36 36 94 94 56 124]
6 [8 8 16 16 30 30 46 24 40 ]
7 [4 4 6 6 8 8 10 10 12]
8 [2 2 2 2 2 2 2 2 2 ]AIMS Mathematics Volume 9, Issue 5, 10609–10637.
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n r [wn−r,n−r−1, . . . ,wn,n−r−1; w′t,n−r−1]
10

1 [512 512 ]
2 [256 256 496 ]
3 [128 128 256 256 384 ]
4 [64 64 136 136 628 208]
5 [32 32 72 72 256 256 112 328 ]
6 [16 16 36 36 94 94 166 56 124 ]
7 [8 8 16 16 30 30 46 46 24 40 62 ]
8 [4 4 6 6 8 8 10 10 12 14]
9 [2 2 2 2 2 2 2 2 2 2 ]

11
1 [1024 1024 ]
2 [512 512 992 ]
3 [256 256 496 496 736]
4 [128 128 256 256 1420 384]
5 [64 64 136 136 628 628 208 784 ]
6 [32 32 72 72 256 256 496 112 328 ]
7 [16 16 36 36 94 94 166 166 56 124 238 ]
8 [8 8 16 16 30 30 46 46 68 40 62 ]
9 [4 4 6 6 8 8 10 10 12 12 ]

10 [2 2 2 2 2 2 2 2 2 2 2 ]

12
1 [2048 2048 ]
2 [1024 1024 2016 ]
3 [512 512 992 992 1472 ]
4 [256 256 496 496 3004 736 ]
5 [128 128 256 256 1420 1420 384 1744 ]
6 [64 64 136 136 628 628 1288 208 784 ]
7 [32 32 72 72 256 256 496 496 112 328 736 ]
8 [16 16 36 36 94 94 166 166 300 124 238 300 ]
9 [8 8 16 16 30 30 46 46 68 68 24 40 62 86]

10 [4 4 6 6 8 8 10 10 12 12 14 ]
11 [2 2 2 2 2 2 2 2 2 2 2 2 ]
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n r [wn−r,n−r−1, . . . ,wn,n−r−1; w′t,n−r−1]
13

1 [4096 4096 ]
2 [2048 2048 4096 ]
3 [1024 1024 2016 2016 3008]
4 [512 512 992 992 6008 1472 ]
5 [256 256 496 496 3004 3004 736 3664]
6 [128 128 256 256 1420 1420 3004 384 1744 ]
7 [64 64 136 136 628 628 1288 1288 208 784 1948]
8 [32 32 72 72 256 256 496 496 1094 112 328 736 ]
9 [16 16 36 36 94 94 166 166 300 300 56 124 238 390 ]
10 [8 8 16 16 30 30 46 46 68 68 92 40 62 86 ]
11 [4 4 6 6 8 8 10 10 12 12 14 14 16 ]
12 [2 2 2 2 2 2 2 2 2 2 2 2 2 ]

14
1 [8192 8192 ]
2 [4096 4096 8256 ]
3 [2048 2048 4096 4096 6144]
4 [1024 1024 2016 2016 11456 3008]
5 [512 512 992 992 6008 6008 1472 7328 ]
6 [256 256 496 496 3004 3004 6436 736 3664 ]
7 [128 128 256 256 1420 1420 3004 3004 384 1744 4588]
8 [64 64 136 136 628 628 1288 1288 3474 784 1948]
9 [32 32 72 72 256 256 496 496 1094 1094 112 328 736 1424]
10 [16 16 36 36 94 94 166 166 300 300 456 56 124 238 390]
11 [8 8 16 16 30 30 46 46 68 68 92 92 24 40 62 86 116]
12 [4 4 6 6 8 8 10 10 12 12 14 14 16 ]
13 [2 2 2 2 2 2 2 2 2 2 2 2 2 2 ]

15
1 [16384 16384 ]
2 [8192 8192 16512 ]
3 [4096 4096 8256 8256 12416]
4 [2048 2048 4096 4096 21000 6144 ]
5 [1024 1024 2016 2016 11456 11456 3008 14032 ]
6 [512 512 992 992 6008 6008 12872 1472 7328 ]
7 [256 256 496 496 3004 3004 6436 6436 736 3664 9868]
8 [128 128 256 256 1420 1420 3004 3004 9950 384 1744 4588]
9 [64 64 136 136 628 628 1288 1288 3474 3474 784 1948 4464]
10 [32 32 72 72 256 256 496 496 1094 1094 1822 328 736 1424]
11 [16 16 36 36 94 94 166 166 300 300 456 456 56 124 238 390 612]
12 [8 8 16 16 30 30 46 46 68 68 92 92 122 24 40 62 86 116 ]
13 [4 4 6 6 8 8 10 10 12 12 14 14 16 16 18 ]
14 [2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 ]
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n r [wn−r,n−r−1, . . . ,wn,n−r−1; w′t,n−r−1]
16

1 [32768 32768 ]
2 [16384 16384 32896 ]
3 [8192 8192 16512 16512 24832 ]
4 [4096 4096 8256 8256 37384 12416 ]
5 [2048 2048 4096 4096 21000 21000 6144 25888]
6 [1024 1024 2016 2016 11456 11456 24328 3008 14032]
7 [512 512 992 992 6008 6008 12872 12872 1472 7328 19736 ]
8 [256 256 496 496 3004 3004 6436 6436 26334 736 3664 9868 ]
9 [128 128 256 256 1420 1420 3004 3004 9950 9950 384 1744 4588 12524]
10 [64 64 136 136 628 628 1288 1288 3474 3474 6206 208 784 1948 4464]
11 [32 32 72 72 256 256 496 496 1094 1094 1822 1822 328 736 1424 2550 ]
12 [16 16 36 36 94 94 166 166 300 300 456 456 698 56 124 238 390 612]
13 [8 8 16 16 30 30 46 46 68 68 92 92 122 122 24 40 62 86 116 148 ]
14 [4 4 6 6 8 8 10 10 12 12 14 14 16 16 18 20 ]
15 [2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 ]

17
1 [65536 65536 ]
2 [32768 32768 65536 ]
3 [16384 16384 32896 32896 49408]
4 [8192 8192 16512 16512 65536 24832 ]
5 [4096 4096 8256 8256 37384 37384 12416 46432]
6 [2048 2048 4096 4096 21000 21000 43912 6144 25888]
7 [1024 1024 2016 2016 11456 11456 24328 24328 3008 14032 37200 ]
8 [512 512 992 992 6008 6008 12872 12872 65536 1472 7328 19736 ]
9 [256 256 496 496 3004 3004 6436 6436 26334 26334 736 3664 9868 32340]
10 [128 128 256 256 1420 1420 3004 3004 9950 9950 18718 384 1744 4588 12524 ]
11 [64 64 136 136 628 628 1288 1288 3474 3474 6206 6206 208 784 1948 4464 8938 ]
12 [32 32 72 72 256 256 496 496 1094 1094 1822 1822 3214 112 328 736 1424 2550 ]
13 [16 16 36 36 94 94 166 166 300 300 456 456 698 698 56 124 238 390 612 880 ]
14 [8 8 16 16 30 30 46 46 68 68 92 92 122 122 154 24 40 62 86 116 148 ]
15 [4 4 6 6 8 8 10 10 12 12 14 14 16 16 18 18 20]
16 [2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 ]
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n r [wn−r,n−r−1 , . . . ,wn,n−r−1; w′t,n−r−1]
18

1 [131072 131072 ]
2 [65536 65536 130816 ]
3 [32768 32768 65536 65536 98304]
4 [16384 16384 32896 32896 115312 16384 49408]
5 [8192 8192 16512 16512 65536 65536 8192 24832 82048 ]
6 [4096 4096 8256 8256 37384 37384 76552 4096 12416 46432 ]
7 [2048 2048 4096 4096 21000 21000 43912 43912 6144 25888 66824]
8 [1024 1024 2016 2016 11456 11456 24328 24328 155364 3008 14032 37200]
9 [512 512 992 992 6008 6008 12872 12872 65536 65536 1472 7328 19736 78408 ]

10 [256 256 496 496 3004 3004 6436 6436 26334 26334 51358 736 3664 9868 32340 ]
11 [128 128 256 256 1420 1420 3004 3004 9950 9950 18718 18718 384 1744 4588 12524 27486 ]
12 [64 64 136 136 628 628 1288 1288 3474 3474 6206 6206 12598 208 784 1948 4464 8938]
13 [32 32 72 72 256 256 496 496 1094 1094 1822 1822 3214 3214 112 328 736 1424 2550 4126]
14 [16 16 36 36 94 94 166 166 300 300 456 456 698 698 970 56 124 238 390 612 880]
15 [8 8 16 16 30 30 46 46 68 68 92 92 122 122 154 154 24 40 62 86 116 148 186 ]
16 [4 4 6 6 8 8 10 10 12 12 14 14 16 16 18 18 20 ]
17 [2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 ]

19
1 [262144 262144 ]
2 [131072 131072 261632 ]
3 [65536 65536 130816 130816 65536 196096]
4 [32768 32768 65536 65536 208336 32768 98304]
5 [16384 16384 32896 32896 115312 115312 16384 49408 145504 ]
6 [8192 8192 16512 16512 65536 65536 130816 8192 24832 82048 ]
7 [4096 4096 8256 8256 37384 37384 76552 76552 12416 46432 115720 ]
8 [2048 2048 4096 4096 21000 21000 43912 43912 354332 6144 25888 66824 ]
9 [1024 1024 2016 2016 11456 11456 24328 24328 155364 155364 3008 14032 37200 181136]

10 [512 512 992 992 6008 6008 12872 12872 65536 65536 130816 1472 7328 19736 78408 ]
11 [256 256 496 496 3004 3004 6436 6436 26334 26334 51358 51358 736 3664 9868 32340 76382]
12 [128 128 256 256 1420 1420 3004 3004 9950 9950 18718 18718 43606 384 1744 4588 12524 27486 ]
13 [64 64 136 136 628 628 1288 1288 3474 3474 6206 6206 12598 12598 208 784 1948 4464 8938 16270]
14 [32 32 72 72 256 256 496 496 1094 1094 1822 1822 3214 3214 4846 112 328 736 1424 2550 4126 ]
15 [16 16 36 36 94 94 166 166 300 300 456 456 698 698 970 970 56 124 238 390 612 880 1242]
16 [8 8 16 16 30 30 46 46 68 68 92 92 122 122 154 154 192 24 40 62 86 116 148 186 ]
17 [4 4 6 6 8 8 10 10 12 12 14 14 16 16 18 18 20 20 22]
18 [2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 ]
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n r [wn−r,n−r−1 , . . . ,wn,n−r−1; w′t,n−r−1]
20

1 [524288 524288 ]
2 [262144 262144 523776 ]
3 [131072 131072 261632 261632 392192]
4 [65536 65536 130816 130816 394384 196096 ]
5 [32768 32768 65536 65536 208336 208336 98304 264640 ]
6 [16384 16384 32896 32896 115312 115312 223840 49408 145504 ]
7 [8192 8192 16512 16512 65536 65536 130816 13081624832 82048 196096 ]
8 [4096 4096 8256 8256 37384 37384 76552 76552 783276 12416 46432 115720 ]
9 [2048 2048 4096 4096 21000 21000 43912 43912 354332 354332 6144 25888 66824 403224 ]

10 [1024 1024 2016 2016 11456 11456 24328 24328 155364 155364 314280 3008 14032 37200 181136 ]
11 [512 512 992 992 6008 6008 12872 12872 65536 65536 130816 130816 1472 7328 19736 78408 196096]
12 [256 256 496 496 3004 3004 6436 6436 26334 26334 51358 51358 136630 736 3664 9868 32340 76382 ]
13 [128 128 256 256 1420 1420 3004 3004 9950 9950 18718 18718 43606 43606 384 1744 4588 12524 27486 56254 ]
14 [64 64 136 136 628 628 1288 1288 3474 3474 6206 6206 12598 12598 20350 208 784 1948 4464 8938 16270 ]
15 [32 32 72 72 256 256 496 496 1094 1094 1822 1822 3214 3214 4846 4846 112 328 736 1424 2550 4126 6478]
16 [16 16 36 36 94 94 166 166 300 300 456 456 698 698 970 970 1352 56 124 238 390 612 880 1242 ]
17 [8 8 16 16 30 30 46 46 68 68 92 92 122 122 154 154 192 192 24 40 62 86 116 148 186 226]
18 [4 4 6 6 8 8 10 10 12 12 14 14 16 16 18 18 20 20 22 ]
19 [2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 ]

n = 21
1 [1048576 1048576 ]
2 [524288 524288 1048576 ]
3 [262144 262144 523776 523776 785408]
4 [131072 131072 261632 261632 788768 392192 ]
5 [65536 65536 130816 130816 394384 394384 196096 502912 ]
6 [32768 32768 65536 65536 208336 208336 394384 98304 264640 ]
7 [16384 16384 32896 32896 115312 115312 223840 223840 49408 145504 332368]
8 [8192 8192 16512 16512 65536 65536 130816 130816 1687676 24832 82048 196096 ]
9 [4096 4096 8256 8256 37384 37384 76552 76552 783276 783276 12416 46432 115720 872424]

10 [2048 2048 4096 4096 21000 21000 43912 43912 354332 354332 721260 6144 25888 66824 403224 ]
11 [1024 1024 2016 2016 11456 11456 24328 24328 155364 155364 314280 314280 3008 14032 37200 181136 473196 ]
12 [512 512 992 992 6008 6008 12872 12872 65536 65536 130816 130816 394384 1472 7328 19736 78408 196096 ]
13 [256 256 496 496 3004 3004 6436 6436 26334 26334 51358 51358 136630 136630 736 3664 9868 32340 76382 175390 ]
14 [128 128 256 256 1420 1420 3004 3004 9950 9950 18718 18718 43606 43606 74614 384 1744 4588 12524 27486 56254 ]
15 [64 64 136 136 628 628 1288 1288 3474 3474 6206 6206 12598 12598 20350 20350 208 784 1948 4464 8938 16270 28102 ]
16 [32 32 72 72 256 256 496 496 1094 1094 1822 1822 3214 3214 4846 4846 7548 112 328 736 1424 2550 4126 6478 ]
17 [16 16 36 36 94 94 166 166 300 300 456 456 698 698 970 970 1352 1352 56 124 238 390 612 880 1242 1658]
18 [8 8 16 16 30 30 46 46 68 68 92 92 122 122 154 154 192 192 232 24 40 62 86 116 148 186 226 ]
19 [4 4 6 6 8 8 10 10 12 12 14 14 16 16 18 18 20 20 22 22 24]
20 [2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 ]

3.3.1. The weights in some cases where a1, . . . , at are linearly dependent

We have seen that restricting ourselves to the case where a1, . . . , at are linearly independent over
F2 reduces the number of the weights, which can be found by using Theorem 1, because t is then
necessarily in the range {n − r, . . . , n} and since, for fixed n and r (i.e., for fixed n and s), all the
obtained functions corresponding to the same t have the same Hamming weight. In the present section,
we investigate two cases where a1, . . . , at are linearly dependent. We shall see that the first does not
provide more weights but the second does.

Case where two elements are equal: We study this case by curiosity, to check whether with t
elements a1, . . . , at, it is identical to the case of t − 2 elements or not (the formulas are different but the
functions and/or the weights may be the same).

To ease the comparison, we start with t + 2 elements a1, . . . , at+2 such that (without loss
of generality) at+2 = at+1, then for every J ⊆ {1, . . . , t + 2}, we have that

∑
i∈J ai equals{ ∑

i∈J ai if {t + 1, t + 2} ∩ J = ∅∑
i∈J\{t+1,t+2} ai if {t + 1, t + 2} ⊆ J

. We get the same atomic function (which cancels then) if exactly

one element among {t + 1, t + 2} belongs to J, whether we choose t + 1 or t + 2.
We deduce that:

f (s)
a1,...,at+2

= δ∑t
i=1 ai+
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s∑
j=0

µt+2,s( j)
∑

J⊆{1,...,t};|J|= j

δ∑i∈J ai +

s−2∑
j=0

µt+2,s( j + 2)
∑

J⊆{1,...,t};|J|= j

δ∑i∈J ai ,

that is: f (s)
a1,...,at+2 =

δ∑t
i=1 ai +

s∑
j=0

(
µt+2,s( j) + µt+2,s( j + 2)

) ∑
J⊆{1,...,t};|J|= j

δ∑i∈J ai , (3.4)

where µt,s( j) equals
(

t− j−1
s− j

)
mod 2 if 0 ≤ j ≤ s and equals 0 otherwise.

For s < t, we obtain f (s)
a1,...,at+2 = f (s)

a1,...,at . Indeed, µt+2,s( j) + µt+2,s( j + 2) =
((

t− j+1
s− j

)
+

(
t− j−1
s− j−2

))
mod 2 equals(

t− j−1
s− j

)
mod 2 = µt,s( j).

Remark 3. We could additionally consider the cases s = t and s = t + 1 since, having s < t + 2, we
can still use Relation (3.2), with t + 2 in the place of t. The only difference with the case s < t is that
the atomic function δ∑t

i=1 ai may equal one of the other atomic functions appearing in (3.4). When we
evaluate the Hamming weight, we then have to consider particular cases according to whether δ∑t

i=1 ai

is present in
∑s

j=0

(
µt+2,s( j) + µt+2,s( j + 2)

)∑
J⊆{1,...,t};|J|= j δ

∑
i∈J ai (that is, in

∑s
j=s−1

(
µt+2,s( j) + µt+2,s( j +

2)
)∑

J⊆{1,...,t};|J|= j δ
∑

i∈J ai), and then cancels, or not. Anyway, the sum
∑s

j=0

(
µt+2,s( j) + µt+2,s( j + 2)

)(
s
j

)
is

smaller than or equal to
∑s

j=0

(
s
j

)
= 2s and the sum

∑s
j=0

(
µt+2,s( j) + µt+2,s( j + 2)

)(
s−1

j

)
is still smaller,

and we will necessarily obtain 0 since 2s is strictly smaller than the minimum distance of RM(r, n).

Case where one element equals the sum of two others: We start with t + 1 elements a1, . . . , at+1

such that (without loss of generality) at+1 = at + at−1 (and t ≥ 3, so that there remains one element after
cancellation in the sum

∑y
i=1 ai). For every J ⊆ {1, . . . , t + 1}, we have that

∑
i∈J ai equals:

∑
i∈J ai if t + 1 < J∑
i∈J∪{t−1,t}\{t+1} ai if {t − 1, t, t + 1} ∩ J = {t + 1}∑
i∈J∪{t}\{t−1,t+1} ai if {t − 1, t, t + 1} ∩ J = {t − 1, t + 1}∑
i∈J∪{t−1}\{t,t+1} ai if {t − 1, t, t + 1} ∩ J = {t, t + 1}∑
i∈J\{t−1,t,t+1} ai if {t − 1, t, t + 1} ⊆ J

,

then:

f (s)
a1,...,at+1

= δ∑t−2
i=1 ai

+

s∑
j=0

µt+1,s( j)
∑

J⊆{1,...,t};|J|= j

δ∑i∈J ai+

s∑
j=1

µt+1,s( j)
∑

J⊆{1,...,t−2};|J|= j−1

δat+at−1+
∑

i∈J ai+

s∑
j=0

µt+1,s( j)
∑

J⊆{1,...,t−2};|J|= j−2

δat+
∑

i∈J ai+

s∑
j=1

µt+1,s( j)
∑

J⊆{1,...,t−2};|J|= j−2

δat−1+
∑

i∈J ai+
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s∑
j=1

µt+1,s( j)
∑

J⊆{1,...,t−2};|J|= j−3

δ∑i∈J ai =

δ∑t−2
i=1 ai

+

s∑
j=0

(
µt+1,s( j) + µt+1,s( j + 3)

) ∑
J⊆{1,...,t−2};|J|= j

δ∑i∈J ai+

s∑
j=0

(
µt+1,s( j) + µt+1,s( j + 1)

) ∑
J⊆{1,...,t};|J|= j
J∩{t−1,t}={t−1}

δ∑i∈J ai+

s∑
j=0

(
µt+1,s( j) + µt+1,s( j + 1)

) ∑
J⊆{1,...,t};|J|= j
J∩{t−1,t}={t}

δ∑i∈J ai+

s+1∑
j=0

(
µt+1,s( j) + µt+1,s( j − 1)

) ∑
J⊆{1,...,t};|J|= j
{t−1,t}⊆J

δ∑i∈J ai ,

where µt,s( j) equals
(

t− j−1
s− j

)
mod 2 if 0 ≤ j ≤ s and equals 0 otherwise.

Proposition 4. Let n ≥ 3, s ≥ 0, and t ≥ 3 be integers such that s < t and s < n. For any elements
a1, . . . , at of Fn

2, let f (s)
a1,...,at+1 be the Boolean function given by (3.2) with at+1 = at + at−1. If a1, . . . , at are

linearly independent over F2, then f (s)
a1,...,at+1 has Hamming weight:

w′t,s = ε +

s∑
j=0

(
µt+1,s( j) + µt+1,s( j + 3)

)(t − 2
j

)
+

2
s∑

j=1

(
µt+1,s( j) + µt+1,s( j + 1)

)(t − 2
j − 1

)
+

s+1∑
j=2

(
µt+1,s( j) + µt+1,s( j − 1)

)(t − 2
j − 2

)
,

where µt+1,s( j) equals
(

t− j
s− j

)
mod 2 if 0 ≤ j ≤ s and equals 0 otherwise (and the additions “µt+1,s( j) +

µt+1,s( j + 3)”, etc., are made modulo 2). Here, ε equals −1 if s ≥ t − 2 and µt+1,s(t − 2) = 1, and equals
1 otherwise. If a1, . . . , at are linearly dependent, then f (s)

a1,...,at+1 has a Hamming weight of at most w′t,s.

The value of ε is −1 when δ∑t−2
i=1 ai

is equal to one of the other atomic functions present in the formula,
and this is possible only when s ≥ t − 2 and µt+1,s(t − 2) + µt+1,s(t + 1) = 1, that is, µt+1,s(t − 2) = 1.

We obtain again the weights that we had obtained with linearly independent vectors a1, . . . , at, and
we obtain about 50% additional weights, which we display in bold (after these ones) in Table 1.

3.3.2. Making linear combinations of the constructed functions

We have seen in the previous subsection that taking a1, . . . , at linearly dependent provides more
weights than taking them linearly independent, but not in a large proportion (at least for the two cases
that we studied: two elements equal and one element equal to the sum of two others). We need then
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to find other ways to provide more weights. One is very simple. Since all the functions f (s)
a1,...,at have an

algebraic degree of at most r = n − s − 1, we can sum, for every choice of s, some of the functions
f (s)
a1,...,at , f (s+1)

a1,...,at , . . . , f (t−1)
a1,...,at for different choices of t > s and of a1, . . . , at.

The difficulty is to evaluate the Hamming weight of the resulting functions, but there is a case where
the weight is easily determined: when we take disjoint families of vectors ai whose union is made of
linearly independent vectors.

In the simplest case, we have (globally) t linearly independent vectors a1, . . . , at in Fn
2 (with t ≤ n),

and we partition {1, . . . , t} in two subsets (without loss of generality, we can take these subsets equal
to {1, . . . , l} and {l + 1, . . . , t}), then two functions f (s)

a1,...,al and f (s′)
al+1,...,at with s < l and s′ < t − l have

algebraic degrees of at most r = n − s − 1 and r′ = n − s′ − 1, respectively, and they have disjoint
supports. Their sum has then an algebraic degree of at most max(r, r′) and has for Hamming weight
the sum of their Hamming weights, that is, wl,s + wt−l,s′ .

Example 3. Let us take n = t = 12 and s = s′ = 2, that is, r = r′ = 9. We must take l and
12 − l strictly larger than 2, that is, l between 3 and 9. We find in Table 1 that, when l ranges from
3 to 9, (wl,2,wt−l,2) takes the following values, indicated in the row corresponding to n = 12 and r =

9: (8, 46), (8, 30), (16, 30), (16, 16), (30, 16), (30, 8), (46, 8), respectively. We obtain then the weights
54, 38, 46, 32, 46, 38, 54 in RM(9, 12). This way, we obtain two new weights (38 and 54) in RM(9, 12).

Example 3 can be generalized:

Proposition 5. Let n and r < n be any positive integers. All the numbers wl,n−r1−1 + wt−l,n−r2−1, where
t ≤ n, n − r1 ≤ l ≤ t − n + r2, r1 ≤ r, r2 ≤ r and r1 + r2 ≥ 2n − t are weights in RM(r, n).

This is straightforward. The condition l ≤ t − n + r2 is for having t − l ≥ n − r2 and the condition
r1 + r2 ≥ 2n − t is for having n − r1 ≤ t − n + r2. The condition l ≤ t is automatically satisfied thanks to
l ≤ t − n + r2.

Of course, Proposition 5 can be generalized to sums of more than two numbers (taking more than
two families partitioning {a1, . . . , at}).

Remark 4. The conditions r ≥ r1, r2 and r1 + r2 ≥ 2n− t imply that 2r ≥ 2n− t, that is, t ≥ 2n− 2r and
since t cannot be larger than n, this means that Proposition 5 can be used only if n ≥ 2n − 2r, that is,
r ≥ n

2 . Our results are then unfortunately limited to those of Proposition 3 (that is, those of Table 1) for
the orders in the lower half of [0, n] (those for which the table provides the least values), in particular
for the smallest order for which the weight spectrum is unknown: r = 3. We shall see below that, on
the contrary, we can derive a very large number of weights as soon as r is large enough.
Note that if we partition {a1, . . . , at} in three families {a1, . . . , al}, {al+1, . . . , ak} and {ak+1, . . . , at}, we
get the weight wl,n−r1−1 + wk−l,n−r2−1 + wt−k−l,n−r3−1 (instead of wl,n−r1−1 + wt−l,n−r2−1 that we had with two
families), and conditions l ≥ n − r1, k − l ≥ n − r2 and t − k − l ≥ n − r3 imply t ≥ 3n − (r1 + r2 + r3),
that is, 3r ≥ r1 + r2 + r3 ≥ 3n − t ≥ 2n, and the condition r ≥ n

2 becomes r ≥ 2n
3 .

For each n ≤ 23, the weights provided by Proposition 5 can be obtained by adding in Table 1 any
number located in any row r1 ≤ r at the k-th position (by taking k = l − (n − r1) + 1 so that it starts at
position 1 in the list given by Table 1) where k ≤ t − n + r2 − (n − r1) + 1 = t − 2n + r1 + r2 + 1, and the
number located in any row r2 ≤ r such that r1 + r2 ≥ 2n − t, at the position corresponding to t − l, that
is at the position t− (k + n− r1 − 1)− (n− r2) + 1 = t− k− 2n + r1 + r2 + 2. It is for large orders that our
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method gives the best results, since the weights are then more numerous in Table 1; and making sums
(applying Proposition 5) is also possible only when r ≥ n

2 , and these sums are more numerous when r
is larger.
Example 3, revisited: For n = 12 and r = 9, the condition t ≥ 2n − 2r writes t ≥ 6, and we obtain the
following:
For t = 12: The conditions r1, r2 ≤ r and r1 + r2 ≥ 2n − t allow (r1, r2) =

(3, 9); (4, 8), (4, 9); (5, 7), (5, 8), (5, 9); . . . ; (9, 3), (9, 4), . . . , (9, 9), which provide the following weights:
For (3,9): 520
for (4,8): 272
for (4,9): 264 and 264
for (5,7): 160
for (5, 8): 144 and 144
for (5, 9): 144 and 136 and 264
for (6,6): 128
for (6,7): 96 and 96
for (6,8): 100 and 80 and 152
for (6,9): 80 and 80 and 144 and 144
for(7,5), we have the same as for the swap (5,7)
for (7,6), we have the same as for the swap
for (7,7): 104 and 64 and 104
for (7,8): 68 and 68 and 88 and 88
for (7,9): 62 and 48 and 88 and 80 and 264
for (8,4), (8,5), (8,6), (8,7), we have the same as for their swaps,
for (8,8): 110 and 52 and 72 and 52 and 110
for (8,9): 46 and 46 and 52 and 52 and 102 and 102
for (9,3), (9,4), (9,5), (9,6), (9,7), (9,8) we obtain the same as for their swaps
for (9,9): 54 and 38 and 46 and 32 and 46 and 38 and 54.
For this single value of t, we have then obtained in addition to the weights present in Table 1 and to the
two weights 38 and 54 found above: 48, 52, 62, 72, 80, 88, 96, 100, 102, 104, 110, 136, 144, 152, 160,
264, 272, 520.

We would also have to consider all the other values of t, from 11 down to 6.
As mentioned after Proposition 5, we could find more weights by partioning {a1, . . . , at} in more

than two families.
We see that our method gives in fact a large number of weights, for sufficiently large orders, that is,

when the usual constructions of Boolean functions (Maiorana-McFarland, etc.) give the worst results.
It is then nicely complementary to the method using classic constructions.

Example 4. We have seen in introduction that trying to determine the weight spectrum of all codes
RM(n − c, n) for c = 6 (the smallest value of c for which this is an open problem) requires determining
the weights in RM(6 + k, 12 + k), for some k ≥ 0.
– Let us first consider RM(6, 12). Table 1 already provides the weights 64, 128, 136, 208, 256,
384, 496, 512, 628, 736, 784, 992, 1024, 1288, 1420, 1472, 1744, 2016, 2048, 3004. We could
complete with the weights provided by Kasami-Tokura. We could also add the weights obtained
by adding 16 weights from RM(2, 8) (that are 0, 64, 96,112,120,128,136, 144, 160, 192, 256
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according to what we know on quadratic functions) and adding 8 weights of RM(3, 9) (that are 0, 64,
96,112,120,128,136,144,148,152,156,160,164,168,172,176,180,184,188,
192,196,200,204,208,212,216,220,224,228,232,236,240,244,248,252,256,260,264,
268,272,276,280,284,288,292,296,300,304,308,312,316,320, 324,328,332,336,340,
344,348,352,356,360,364,368,376,384,392,400,416,448,512, see the URL:
https://isec.ec.okayama-u.ac.jp/home/kusaka/wd/RM/tomita/RM512 130.wd).
The weights of RM(4, 10) and RM(5, 11) are unknown (but we know from
Table 1 that they include respectively 64,128,136,208,256,384,496,512,628 and
64,128,136,208,256,384,496,512,628,736,784,992,1024,1420. We can add the weights obtained
by adding weights from RM(r1, 12) and RM(r2, 12) in Table 1 as explained above. For n = 12 and
r = 6, the condition n ≥ t ≥ 2n − 2r writes t = 12. The conditions r1, r2 ≤ r and r1 + r2 ≥ 2n − t
allow only one possibility: (r1, r2) = (6, 6), which provides only one weight (since the number
k ∈ {1, t − 2n + r1 + r2 + 1} in the description we gave can take value 1 only): 128, which is already
there.
– Let us then consider RM(7, 13). Table 1 already provides the weights 64,128, 136, 208, 256, 384,
496, 512, 628, 736, 784, 992,1024, 1288,1420, 1472, 1744, 1948, 2016, 2048, 3004, 3008, 3664,
4096, 6008. Note also that the weights of RM(6, 12) are also weights of RM(7, 13), but this provides
no new weight. We could complete with the weights provided by Kasami-Tokura, and we can add the
weights obtained by adding weights from RM(r1, 13) and RM(r2, 13) in Table 1 as explained above.
For n = 13 and r = 7, the condition n ≥ t ≥ 2n − 2r writes t ∈ {12, 13}.
- For t = 13, the conditions r1, r2 ≤ r and r1 + r2 ≥ 2n − t allow (up to a swap between r1 and r2):
(r1, r2) = (7, 6), (7, 7). The case (7,6) provides one weight (the number k ∈ {1, t − 2n + r1 + r2 + 1} can
take value 1 only): 96. The case (7,7) provides one weight (the number k ∈ {1, t − 2n + r1 + r2 + 1} can
take values 1 and 2, which give the same weight): 64 which was already there.
- For t = 12, the conditions r1, r2 ≤ r and r1 + r2 ≥ 2n − t allow: (r1, r2) = (7, 7), which provides the
weight 64 also already obtained.
We could continue by visiting RM(8, 14) (which is the first case where we obtain a weight not divisible
by 4: 3474) etc., but with this example, we see the huge difference between low and high orders.
We leave as an open problem the determination of more weights in RM(6, 12) (and in particular,
some that are not divisible by 4), which will probably need to find another method than exploiting
Relation (3.1).

3.4. The ANF of the constructed functions when a1, . . . , at are linearly independent over F2

We have seen that for t ≤ n, two choices “a1, . . . , at”, respectively “a′1, . . . , a
′
t”, of linearly

independent elements give linearly equivalent functions, having then the same weight and the same
algebraic degree.

Let us then determine the ANF of f (s)
e1,...,et , where t ≤ n. We shall need the following lemma:

Lemma 2. Let n ≥ 1, t ≥ 1, j ≥ 0 be integers such that j ≤ t ≤ n and let e1, . . . , et be the t first elements
of the canonical basis of Fn

2. The Boolean function:

h j,e1,...,et =
∑

J⊆{1,...,t};|J|= j

δ∑i∈J ei
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has for ANF: ∑
I⊆{1,...,n}

j�|{1,...,t}∩I|

xI ,

where | . . . | denotes the size and j � m means that if j =
∑

k∈K 2k and m =
∑

l∈L 2l are the binary
expansions of j and m, then K ⊆ L.

Proof. Since
∑

i∈J ei is the vector of support J, we have, denoting x = (x1, . . . , xn):

h j,e1,...,et(x) =
∑

J⊆{1,...,t};|J|= j

(∏
k∈J

xk

)( ∏
k∈{1,...,n}\J

(xk + 1)
)

=
∑

J⊆{1,...,t};|J|= j

∑
J⊆I⊆{1,...,n}

xI

=
∑

I⊆{1,...,n}

∑
J⊆{1,...,t}∩I;|J|= j

xI

=
∑

I⊆{1,...,n}

(
|{1, . . . , t} ∩ I|

j

)
xI ,

where these sums are taken modulo 2 and
(
|{1,...,t}∩I|

j

)
equals 0 if |{1, . . . , t}∩ I| < j. The proof is complete

thanks to Lucas’ theorem [22, page 404]. �

We deduce:

Proposition 6. Let n ≥ 1, s ≥ 0 and t ≥ 1 be integers such that s < t and s < n. Given any linearly
independent elements a1, . . . , at of Fn

2, the Boolean function (3.2) is linearly equivalent to the function
of ANF: ∑

{1,...,t}⊆I

xI +

s∑
j=0

µt,s( j)
∑

I⊆{1,...,n}
j�|{1,...,t}∩I|

xI ,

where µt,s( j) =
(

t− j−1
s− j

)
mod 2 =

(
t− j−1
t−s−1

)
mod 2.

This is straightforward since f (s)
e1,...,et = ht,e1,...,et +

∑s
j=0 µt,s( j) h j,e1,...,et . �

Remark 5. Even after these caculations, it is not obvious to see (what we already know) that f (s)
e1,...,et

has an algebraic degree of at most r = n − s − 1, that is, for every I ⊆ {1, . . . , n} whose size is strictly
larger than r, we have

∑
0≤ j≤s

j�|{1,...,t}∩I|
µt,s( j) = 1 mod 2 if {1, . . . , t} ⊆ I and

∑
0≤ j≤s

j�|{1,...,t}∩I|
µt,s( j) = 0 mod 2

otherwise.

Open problem: Determine the exact algebraic degree of f (s)
a1,...,at by means of s, n and a1, . . . , at.

Subproblem: Determine the algebraic degree of f (s)
a1,...,at by means of s and n when a1, . . . , at are linearly

independent.
Still more complex is the following:

Open problem: Determine what can be the ANF of f (s)
a1,...,at when a1, . . . , at are linearly dependent.
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4. Conclusions

We have introduced a novel way of constructing Reed-Muller codewords. It consists of exploiting
relations satisfied by all n-variable Boolean or vectorial functions F of an algebraic degree of at most
s (corresponding when F is Boolean to codewords in RM(s, n)), these relations being interpretable in
terms of the orthogonality between some Boolean function, say f , and (the coordinate functions of) all
such F. Function f belongs then to RM(r, n), where r = n − s − 1. This construction depends on n, s
(or r), a parameter t and the choice of t vectors ai. We showed how it allows us to determine weights in
Reed-Muller codes that are not accessible by other methods, as far as we know, and in a simpler way.
As a matter of fact, our method for determining weights in Reed-Muller codes is complementary of
the classic method, which consists of using the known constructions, since the latter is more efficient
for low orders and our method is more efficient for large orders. Anyway, the method using the known
constructions poses technical problems (and provides a number of weights that is small compared to
the amount of work needed) while ours provides weights with less difficulties. Functions having the
weights we can derive with our method can be deduced, as well as a general form of their ANF when
the vectors ai are linearly independent, but determining mathematically their exact algebraic degree
seems difficult. This is one of the open problems we proposed. We also found more weights by
considering cases where the vectors are linearly dependent. We could also identify that with some of
the constructed functions having disjoint supports, the weights of the sums are equal to the sums of the
weights; this provided for each Reed-Muller code of a sufficiently large order a very large number of
new weights.

More work is possible in many directions, for instance, by investigating as many cases of functions
as possible where the vectors ai are linearly dependent and studying sums of such functions as well.
Moreover, there may be other relations to find that are interpretable in terms of orthogonality, leading
to more codewords and weights in Reed-Muller codes. This may provide an avenue for further results,
with the ultimate goal of determining all the weight spectra of Reed-Muller codes (starting with those
of high orders when they are still unknown, since they seem to be more accessible than those of low
orders larger than 2), and still better, their weight distributions.
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