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Abstract: The homotopy perturbation transform method was examined in the present research
to address the nonlinear time-fractional Korteweg-de Vries equations using a nonsingular kernel
fractional derivative that Caputo-Fabrizio recently developed. We devoted our research to the nonlinear
time-fractional Korteweg-de Vries equation and certain associated phenomena because of some
physical applications of this equation. The results are significant and necessary for illuminating a
range of physical processes. This paper considered an innovative method and fractional operator in
this context to obtain satisfactory approximations to the provided issues. To solve nonlinear time-
fractional Korteweg-de Vries equations, we first considered the Yang transform of the Caputo-Fabrizio
fractional derivative. In order to confirm the applicability and efficacy of the provided method, we
took into consideration two cases of the nonlinear time-fractional Korteweg-de Vries equation. He’s
polynomials were useful in order to manage nonlinear terms. In this method, the outcome was
calculated as a convergent series, and it was demonstrated that the homotopy perturbation transform
method solutions converge to the exact solutions. The main benefit of the suggested method was that
it offered solutions with a high degree of precision while requiring minimal computation. Graphs were
also used to illustrate the series solution for a certain non-integer orders. Finally, a comparison of both
examples outcomes were examined using diagrams and numerical data. These graphs showed how the
approximated solution’s graph and the precise solution’s graph eventually converged as the non-integer
order gets closer to integer order. When ς = 1, several numerical comparisons were conducted with
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the exact solutions. The numerical simulation was offered to illustrate the efficiency and reliability
of the proposed approach. In addition, the behavior of the provided solutions was explained using a
number of fractional orders. The theoretical analysis matched with the findings obtained using the
current technique, and the suggested technique can be extended to tackle many higher-order nonlinear
dynamics problems.

Keywords: Caputo-Fabrizio operator; Yang transform; homotopy perturbation transform method
Mathematics Subject Classification: 26A33, 34A34, 35A22

1. Introduction

A 300-year-old branch of mathematics recognized as fractional calculus (FC) was created in
1823 by Euler, Abel, and Liouville after being defined as “the generalization of the ordinary
derivative to non-integer values” by Rieman and Liouville in the nineteenth century. It was found
that many applications, especially multidisciplinary ones, can be precisely modeled using fractional
derivatives [1–4]. Numerous people in the areas of engineering and the natural sciences are
interested in learning fractional calculus because of its significant applications, such as those found in
electrodynamics [1, 5], nanotechnology [6], biotechnology [7], signal and image processing [8], chaos
theory [9], viscoelasticity [10], random walk [11], and other numerous areas [3,12–15]. Remember as
well that there are only two main definitions of the fractional derivative: The first is the derivative of
the convolution of a given function and a power law kernel (Riemann and Liouville), and the second
is the convolution of the local derivative of a given function with a power law function (Caputo). On
the other hand, these categories come with built-in limitations. The Caputo derivative has addressed
this limitation, but it is still insufficient to fully describe the phenomena of index law. The Riemann-
Liouville derivative is not enough for understanding the significance of the initial requirements. Indeed,
every fractional derivative has benefits and drawbacks. The singularity of the kernel is one flaw in the
Caputo and Riemann-Liouville derivative. This flaw is fixed by a nonlocal derivative developed by
Caputo and Fabrizio. Caputo and Fabrizio have proposed an alternative idea of differentiation utilizing
the exponential decay as the kernel instead of the power law because the power law cannot be utilized to
address all physical situations. It is observed that in nature, many problems also follow the exponential
decay law, which does not in fact possess a singularity; thus, this derivative is considerably suitable
in modeling such real-life problems. This novel differentiation has also captured the consideration
of several researchers, but was disqualified also for fractional derivative arrangement due to the
nonlocality of kernel.

The theory of fractional differential equations effectively and methodically represents the fact of
nature [16]. Alternative models to nonlinear differential equations are fractional differential equations.
In order to develop the mathematical modeling of numerous physical events, a variety of them play
significant roles and serve as tools not only in mathematics, but also in control systems, dynamical
systems, engineering, and physics. Additionally, they are used in social scientific fields like economics,
dietary supplements, and climate change [17]. Physical science makes use of the mathematical
physics governed by nonlinear partial deferential dynamical equations. Numerous phenomena in
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optics, fluid mechanics, plasma physics, and hydrodynamics [18–20] depend on the analytical solutions
to these dynamical equations. It inspires many academics to develop innovative techniques for
solving fractional partial differential equations (FPDEs) precisely and approximatively. Over the past
few years, a large number of scholars have developed efficient direct procedures for the analytical
solution of fractional nonlinear differential equations. Several effective methods have been used for
solving FPDEs including the Sine-Gordon expansion method [21], Yang transform decomposition
method [22], q-homotopy analysis Sumudu transform method [23], reduced differential transform
method [24], Existence and stability analysis [25], fractional variational iteration method [26], Elzaki
transform decomposition method [27], variational iteration method [28], F-expansion method [29],
homotopy perturbation Sumudu transform method [30], and many more [31–35].

The Korteweg-de Vries (KdV) equations are discovered in the investigation of nonlinear dispersive
waves [36]. For the purpose of simulating shallow water waves in a canal, Korteweg and de Vries
invented them in 1895 [37]. Hydrodynamics, water waves, quantum field theory, and plasma physics
are just a few of the many applied sciences and engineering fields where the suggested KdV equations
are essential. They discuss how two long waves with various dispersion relations interact. The
study of the KdV-type equations has received considerable attention. In order to solve the KdV
problem in the 1980s, the linearized technique was merged with the Adomian decomposition method,
the finite element method, and the finite difference schemes [38–40]. Wang [41] derived lump
solutions of the (2+1)-dimensional KdV equation using a method based on quadratic functions, while
Wazwaz [42] derived solitons and periodic solutions of the KdV, modified KdV, and generalized KdV
equations using various trustworthy methods. Recently, a number of systematic methods have been
used in cite41,42 to examine the fractional versions of the KdV-type equations. Wang and Kara [45] in
2019 were the first to present the classical type of the new two dimensional modified KdV (2D-mKdV)
equation. They did this by employing the extended Lax pair. Through the Lie symmetry technique,
Wang and Kara in [45] extracted a collection of solitary wave solutions of the novel 2D-mKdV problem
(the classical type).

He created the homotopy perturbation technique (HPM) in 1999, which combines the homotopy
approach and the traditional perturbation methodology [46]. The work [47, 48] shows that both linear
and nonlinear problems can be solved satisfactorily using this method. HPM has less restrictions
than traditional perturbation techniques because it avoids the need for a small parameter in the
equation. This study’s main objective is to handle fractional nonlinear PDEs employing Yang’s
recently developed integral transform [49], also referred to as the “Yang Transform”, which has been
demonstrated with HPM using the fractional derivative of Caputo-Fabrizio (CF). The CF fractional
derivative has added a new dimension to the analysis of fractional differential equations. One of the
most interesting aspects of the new derivative is its nonsingular kernel. Two well-known nonlinear
PDEs can be solved using the given technique. The recommended approach generates reliable
outcomes that provide accurate solutions to the required problems. We acquired a power series solution
in the setting of a rapidly convergent series, and only a small number of iterations are required to
achieve outstanding results. After only a few iterations, a solution that can be quickly established
using this method can be reached, eliminating the requirement for techniques like discretization or
linearization of the nonlinear issue. This study can be used as a basic reference by researchers
to explore this approach and implement it in many applications to obtain precise and approximate
outcomes in a few simple steps.
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The organization of the paper is described below: The core idea behind CF definitions is illustrated
in Section 2. Section 3 introduced the fractional CF derivative and the Yang-Laplace duality property.
In Section 4, we show convergence analysis as well as the general applicability of the proposed
technique. In Section 5, there are several test problems that demonstrate the viability of the suggested
approach. In Section 6, the conclusion is presented.

2. Preleminaries

Here, we address basic ideas associated to our study. Also, we give the exponential decay as a
kernel as, P(ϑ, %) = exp[−℘(ϑ − %/1 − ℘)].

Definition 2.1. If F(ϑ) ∈ H1[0,T ],T > 0, then the CF fractional derivative is stated as:

CF D℘
t [F(ϑ)] =

Q(℘)
1 − ℘

∫ ϑ

0
F
′

(%)P(ϑ, %)d%, (2.1)

withQ(℘) illustrating the normalization function withQ(0) = Q(1) = 1. In addition, if F(ϑ) < H1[0,T ],
then:

CF D℘
t [F(ϑ)] =

Q(℘)
1 − ℘

∫ ϑ

0
[F(ϑ) − F(%)]P(ϑ, %)d%. (2.2)

Definition 2.2. The CF integral with non-integer order is given as:

CF I℘t [F(ϑ)] =
1 − ℘
Q(℘)

F(ϑ) +
℘

Q(℘)

∫ ϑ

0
F(%)d%, ϑ ≥ 0, ℘ ∈ (0, 1]. (2.3)

Definition 2.3. For Q(℘) = 1, the CF derivative in terms of Laplace transform (LT) is as:

L
[
CF D℘

t [F(ϑ)]
]

=
$L[F(ϑ) − F(0)]
$ + ℘(1 −$)

. (2.4)

Definition 2.4. The Yang transform (YT) of F(ϑ) is stated as:

Y [F(ϑ)] = ζ($) =

∫ ∞

0
F(ϑ)e−

t
$ dϑ. ϑ > 0, (2.5)

where $ is the transform variable.

Remark 2.1. Some properties of YT are given below.

Y[1] =$,

Y[ϑ] =$2,

Y[tq] =Γ(q + 1)$q+1.

(2.6)

3. Core idea

We initially create the YT formula for the CF fractional derivative using the Yang-Laplace duality
principle. At the end of this part, we offer a few cases with comprehensive results to demonstrate the
precision and efficacy of the suggested technique.
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Lemma 3.1. (Laplace-Yang duality) Assume the LT of F(ϑ) is F($), then ζ(v) = F( 1
$

).

Proof. By putting ϑ
u = ı in Eq (2.5), we determine YT another form as.

Y [F(ϑ)] = ζ($) = $

∫ ∞

0
F($ı)eıdı. ı > 0. (3.1)

As L [F(ϑ)] = F($), we have

F($) = L [F(ϑ)] =

∫ ∞

0
F(ϑ)e−$ϑdϑ. (3.2)

Put ϑ = ı/$ in (3.2), and we have

F($) =
1
$

∫ ∞

0
F
( ı
$

)
eıdı. (3.3)

From Eq (3.1), we get

F($) = ζ

(
1
$

)
. (3.4)

From Eqs (2.5) and (3.2), we have

F
(

1
$

)
= ζ ($) . (3.5)

So, (3.4) and (3.5) illustrate the duality relation among the YT and Laplace.

Lemma 3.2. The YT of the fractional CF derivative is stated as:

Y [F(ϑ)] =
Y[F(ϑ) −$F(0)]

1 + ℘($ − 1)
. (3.6)

Proof. The LT of the CF derivative is illustrated as

L [F(ϑ)] =
L[$F(ϑ) − F(0)]
$ + ℘(1 −$)

. (3.7)

Also, the Laplace and Yang properties are related, as shown by the equation ζ($) = F 1
$

. To get the
desired outcome, the variable $ in Eq (3.7) is changed to 1

$
, and we get.

Y [F(ϑ)] =

1
$

Y[F(ϑ) − F(0)]
1
$

+ ℘(1 − 1
$

)
,

Y [F(ϑ)] =
Y[F(ϑ) −$F(0)]

1 + ℘($ − 1)
,

(3.8)

which is proved.

4. General procedure of the proposed technique

Assume the general arbitrary order differential equation, in order to determine the fundamental
solution procedure.
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4.1. General procedure of fractional differential equations in terms of CF derivative

Assume the following nonlinear general PDE as: CF D℘
t J(ı, ϑ) + M(J(ı, ϑ)) + N(J(ı, ϑ)) = g(ı, ϑ),

J(ı, 0) = h(ı),
(4.1)

with M(J(ı, ϑ)) and N(J(ı, ϑ)) illustrating the linear and nonlinear terms, and g(ı, ϑ) as the source
term.
By implementing YT to Eq (4.2), we obtain

Y[J(ı, ϑ) −$J(ı, 0)]
1 + ℘($ − 1)

= −Y[M(J(ı, ϑ)) + N(J(ı, ϑ))] + Y[g(ı, ϑ)],

Y[J(ı, ϑ)] = $h(ı) − (1 + ℘($ − 1))[Y[M(J(ı, ϑ)) + N(J(ı, ϑ))]] + Y[g(ı, ϑ)]. (4.2)

Now, in terms of the inverse Yang transform, we have

J(ı, ϑ) = G(ı, ϑ) − Y−1[(1 + ℘($ − 1))[Y[M(J(ı, ϑ)) + N(J(ı, ϑ))]] + Y[g(ı, ϑ)]], (4.3)

with G(ı, ϑ) illustrating the combined form of initial guess and source term. By using HPM:

J(ı, ϑ) =

∞∑
q=0

ρqJq(ı, ϑ). (4.4)

The nonlinear term N(J(ı, ϑ)) is decomposed as

N(J(ı, ϑ)) =

∞∑
q=0

ρqHq(J), (4.5)

with Hq(J) illustrating the He’s polynomial, which is calculated as:

Hq(J1,J2,J3, · · · ,Jq) =
1

Γ(q + 1)
∂q

∂ρq

N  ∞∑
i=0

ρiJi


ρ=0

, q = 1, 2, 3, · · · . (4.6)

By using Eqs (4.4) and (4.5) in Eq (4.3), we obtain
∞∑

q=0

ρqJq(ı, ϑ) = G(ı, ϑ) − ρ

Y−1

(1 + ℘($ − 1))Y

M
∞∑

q=0

ρqJq(ı, ϑ) + N
∞∑

q=0

ρqHq(J)



 . (4.7)

By comparison of the ρ coefficients in (4.7), we have:

ρ0 : J0(ı, ϑ) =G(ı, ϑ),
ρ1 : J1(ı, ϑ) =Y−1 [(1 + ℘($ − 1))Y [M(J0(ı, ϑ)) + H0(J)]] ,
ρ2 : J2(ı, ϑ) =Y−1 [(1 + ℘($ − 1))Y [M(J1(ı, ϑ)) + H1(J)]] ,
ρ3 : J3(ı, ϑ) =Y−1 [(1 + ℘($ − 1))Y [M(J2(ı, ϑ)) + H2(J)]] ,

...

ρq : Jq(ı, ϑ) =Y−1
[
(1 + ℘($ − 1))Y

[
M(Jq(ı, ϑ)) + Hq(J)

]]
.

(4.8)

Thus, we obtain the solution as:

J(ı, ϑ) = J0(ı, ϑ) +J1(ı, ϑ) + · · · . (4.9)
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4.2. Convergence analysis

The given theorems, which depend on the principle of the technique described in [50], deal with the
convergence analysis of the original problem (4.1).

Theorem 4.1. Assume the accurate solution of (4.1) is J(ı, ϑ) and assume J(ı, ϑ), Jn(ı, ϑ) ∈ H, and
θ ∈ (0, 1), with H illustrating the Hilbert space. The result obtains that

∑∞
q=0Jq(ı, ϑ) will converge with

J(ı, ϑ) if Jq(ı, ϑ) ≤ Jq−1(ı, ϑ) ∀q > A, i.e., for all ω > 0∃A > 0, with ||Jq+n(ı, ϑ)|| ≤ β,∀q, n ∈ N.

Proof. Assume a sequence of
∑∞

q=0Jq(ı, ϑ).

K0(ı, ϑ) =J0(ı, ϑ),
K1(ı, ϑ) =J0(ı, ϑ) +J1(ı, ϑ),
K2(ı, ϑ) =J0(ı, ϑ) +J1(ı, ϑ) +J2(ı, ϑ),
K3(ı, ϑ) =J0(ı, ϑ) +J1(ı, ϑ) +J2(ı, ϑ) +J3(ı, ϑ),

...

Kq(ı, ϑ) =J0(ı, ϑ) +J1(ı, ϑ) +J2(ı, ϑ) + · · · +Jq(ı, ϑ).

(4.10)

To attain the required result, we must verify that Kq(ı, ϑ) forms a “Cauchy sequence”. Moreover, let’s
take

||Kq+1(ı, ϑ) − Kq(ı, ϑ)|| = ||Jq+1(ı, ϑ)|| ≤ θ||Jq(ı, ϑ)|| ≤ θ2||Jq−1(ı, ϑ)|| ≤ θ3||Jq−2(ı, ϑ)|| · · ·
≤ θq+1||J0(ı, ϑ)||.

(4.11)

For q, n ∈ N, we obtain

||Kq(ı, ϑ) − Kn(ı, ϑ)|| =||Jq+n(ı, ϑ)|| = ||Kq(ı, ϑ) − Kq−1(ı, ϑ) + (Kq−1(ı, ϑ) − Kq−2(ı, ϑ))
+ (Kq−2(ı, ϑ) − Kq−3(ı, ϑ)) + · · · + (Kn+1(ı, ϑ) − Kn(ı, ϑ))||
≤||Kq(ı, ϑ) − Kq−1(ı, ϑ)|| + ||(Kq−1(ı, ϑ) − Kq−2(ı, ϑ))||

+ ||(Kq−2(ı, ϑ) − Kq−3(ı, ϑ))|| + · · · + ||(Kn+1(ı, ϑ) − Kn(ı, ϑ))||
≤θq||J0(ı, ϑ)|| + θq−1||J0(ı, ϑ)|| + · · · + θq+1||J0(ı, ϑ)||
=||J0(ı, ϑ)||(θq + θq−1 + θq+1)

=||J0(ı, ϑ)||
1 − θq−n

1 − θq+1 θ
n+1.

(4.12)

As 0 < θ < 1, and J0(ı, ϑ) are bounded, assume β = 1 − θ/(1 − θq−n)θn+1||J0(ı, ϑ)||, and we get

||Jq+n(ı, ϑ)|| ≤ β,∀q, n ∈ N. (4.13)

Thus, {Jq(ı, ϑ)}∞q=0 forms a “Cauchy sequence” in H. It shows that {Jq(ı, ϑ)}∞q=0 is a convergent sequence
having the limit limq→∞Jq(ı, ϑ) = J(ı, ϑ) for ∃J(ı, ϑ) ∈ H .

Theorem 4.2. Assume that
∑k

h=0Jh(ı, ϑ) is finite and thatJ(ı, ϑ) illustrates the series solution. Taking
θ > 0 such that ||Jh+1(ı, ϑ)|| ≤ ||Jh(ı, ϑ)||, the maximum absolute error is as:

||J(ı, ϑ) −
k∑

h=0

Jh(ı, ϑ)|| <
θk+1

1 − θ
||J0(ı, ϑ)||. (4.14)
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Proof. Suppose
∑k

h=0Jh(ı, ϑ) is finite, which illustrates that
∑k

h=0Jh(ı, ϑ) < ∞.
Assume

||J(ı, ϑ) −
k∑

h=0

Jh(ı, ϑ)|| =||
∞∑

h=k+1

Jh(ı, ϑ)||

≤

∞∑
h=k+1

||Jh(ı, ϑ)||

≤

∞∑
h=k+1

θh||J0(ı, ϑ)||

≤θk+1(1 + θ + θ2 + · · · )||J0(ı, ϑ)||

≤
θk+1

1 − θ
||J0(ı, ϑ)||,

(4.15)

which proves the theorem.

5. Numerical applications

The HPTM is used to solve fractional nonlinear KdV equations in this work.

Problem 5.1. Consider the fractional KdV equation as
CF D℘

ϑz(ı, ϑ) = −zzı − zııı + ı2 + 2ı3ϑ2, ℘ ∈ (0, 1], (5.1)

with initial guess
z(ı, 0) = 0.

Solution 5.1. By employing YT to Eq (5.1), we obtain

Y[z(ı, ϑ)] = (1 + ℘$ − ℘)
[
$ı2 +$22ı3ϑ2

]
− (1 + ℘$ − ℘)Y [zzı + zııı] . (5.2)

Now in terms of inverse YT, we get

z(ı, ϑ) = ı3(
2℘ϑ3

3
− 2℘ϑ2 + 2ϑ2) + ı2(1 + ℘ϑ − ℘) − Y−1 [(1 + ℘$ − ℘)Y [zzı + zııı]] . (5.3)

By using the homotopy perturbation technique, we have
∞∑

q=0

ρqzq(ı, ϑ) = ı3(
2℘ϑ3

3
− 2℘ϑ2 + 2ϑ2) + ı2(1 + ℘ϑ − ℘) − Y−1

[
(1 + ℘v − ℘)Y

[ ∞∑
q=0

ρqHq(z)+

( ∞∑
q=0

ρqzq(ı, ϑ)
)

ııı

]]
,

(5.4)

where Hq(z) represents the nonlinear terms and is determined as

H0(z) =z0z0ı,

H1(z) =z0z1ı + z1z0ı,

...

(5.5)
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By comparison of the ρ coefficients in (5.5), we have:

ρ0 : z0(ı, ϑ) =ı3(
2℘ϑ3

3
− 2℘ϑ2 + 2ϑ2) + ı2(1 + ℘ϑ − ℘),

ρ1 : z1(ı, ϑ) = − Y−1
[
(1 + ℘v − ℘)

[
H0(z) +

∂3

∂ı3 z0

]]
,

= −
4℘3ϑ7ı5

21
− 6ϑ(℘3ı3 − 2℘2ı3 + ℘ı3) + 2(℘3ı3 − 3℘2ı3 + 3℘ı3 − ı3)

+ 2ϑ2(−6℘3 + 12℘ + 5℘3ı4 − 15℘2ı4 + 15℘ı4 − 5ı4 + 2℘3ı3 − 2℘2ı3 − 6)

+
8ϑ6

3
(℘3ı5 − ℘2ı5) −

2ϑ3

3
(−12℘2 + 12℘ + 25℘3ı4 − 50℘2ı4 + 25℘ı4 + ℘3ı3)

+
ϑ4

3
(−3℘2 + 36℘3ı5 − 108℘2ı5 + 108℘ı5 − 36ı5 + 20℘3ı4 − 20℘2ı4)

2ϑ5

15
(78℘3ı5 − 156℘2ı5 + 78℘ı5 + 5℘3ı4).

(5.6)

Finally, the series form solution is taken as:

z(ı, ϑ) = z0(ı, ϑ) + z1(ı, ϑ) + · · ·

z(ı, ϑ) = ı3(
2℘ϑ3

3
− 2℘ϑ2 + 2ϑ2) + ı2(1 + ℘ϑ − ℘) −

4℘3ϑ7ı5

21
− 6ϑ(℘3ı3 − 2℘2ı3 + ℘ı3) + 2

(℘3ı3 − 3℘2ı3 + 3℘ı3 − ı3) + 2ϑ2(−6℘3 + 12℘ + 5℘3ı4 − 15℘2ı4 + 15℘ı4 − 5ı4 + 2℘3ı3 − 2

℘2ı3 − 6) +
8ϑ6

3
(℘3ı5 − ℘2ı5) −

2ϑ3

3
(−12℘2 + 12℘ + 25℘3ı4 − 50℘2ı4 + 25℘ı4 + ℘3ı3)

+
ϑ4

3
(−3℘2 + 36℘3ı5 − 108℘2ı5 + 108℘ı5 − 36ı5 + 20℘3ı4 − 20℘2ı4)

2ϑ5

15
(78℘3ı5 − 156℘2ı5+

78℘ı5 + 5℘3ı4) + · · · .

(5.7)

If we take ℘ = 1, the solution approaches to:

z(ı, ϑ) = ı2ϑ. (5.8)

Problem 5.2. Assume the nonlinear fractional mKdV equation as

CF D℘
ϑz(ı, ξ, ϑ) = 6z2zı − 6z2zξ + zııı − zξξξ − 3zııξ + zıξξ, ℘ ∈ (0, 1], (5.9)

with initial guess

z(ı, ξ, 0) = −4
eı−ξ

1 + e2(ı−ξ) .

Solution 5.2. By employing YT to Eq (5.9), we obtain

Y[z(ı, ξ, ϑ)] = $z(ı, ξ, 0) + (1 + ℘$ − ℘)Y
[
6z2zı − 6z2zξ + zııı − zξξξ − 3zııξ + zıξξ

]
. (5.10)

Now, in terms of inverse YT, we get

z(ı, ξ, ϑ) = −4
eı−ξ

1 + e2(ı−ξ) + Y−1
[
(1 + ℘$ − ℘)Y

[
6z2zı − 6z2zξ + zııı − zξξξ − 3zııξ + zıξξ

]]
. (5.11)
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By using the HPT technique, we have

∞∑
q=0

ρqzq(ı, ξ, ϑ) = −4
eı−ξ

1 + e2(ı−ξ) + Y−1
[
(1 + ℘v − ℘)Y

[
6
∞∑

q=0

ρqH1
q(z) − 6

∞∑
q=0

ρqH2
q(z)

+

( ∞∑
q=0

ρqzq(ı, ξ, ϑ)
)

ııı

−

( ∞∑
q=0

ρqzq(ı, ξ, ϑ)
)
ξξξ

− 3
( ∞∑

q=0

ρqzq(ı, ξ, ϑ)
)

ııξ

+ 3
( ∞∑

q=0

ρqzq(ı, ξ, ϑ)
)

ıξξ

]]
,

(5.12)

where Hq(z) represents the nonlinear terms and is determined as

H1
0(z) =z2

0(z0)ı,

H1
1(z) =z2

0(z1)ı + 2z0z1(z0)ı,

...

H2
0(z) =z2

0(z0)ξ,
H2

1(z) =z2
0(z1)ξ + 2z0z1(z0)ξ,
...

(5.13)

By comparison of the ρ coefficients in (5.13), we have:

ρ0 : z0(ı, ξ, ϑ) = − 4
eı−ξ

1 + e2(ı−ξ) ,

ρ1 : z1(ı, ξ, ϑ) =Y−1
[
(1 + ℘v − ℘)

[
6H1

0(z) − 6H2
0(z) + (z0)ııı − (z0)ξξξ − 3(z0)ııξ + (z0)ıξξ

]]
,

= 32
eı−ξ(℘e2(ı−ξ)ϑ − ℘e2(ı−ξ) − ℘ϑ + ℘ − 1)

(1 + e2(ı−ξ))2 .

(5.14)

Finally the series form solution is taken as:

z(ı, ξ, ϑ) = z0(ı, ξ, ϑ) + z1(ı, ξ, ϑ) + · · ·

z(ı, ξ, ϑ) = −4
eı−ξ

1 + e2(ı−ξ) + 32
eı−ξ(℘e2(ı−ξ)ϑ − ℘e2(ı−ξ) − ℘ϑ + ℘ − 1)

(1 + e2(ı−ξ))2 + · · · .
(5.15)

If we take ℘ = 1, the solution approaches to:

z(ı, ξ, ϑ) = −4
eı−ξ+8ϑ

1 + e2(ı−ξ+8ϑ) . (5.16)

6. Results and discussion

The numerical results for the KdV equation are shown with the homotopy perturbation transform
method (HPTM) via the CF derivative in this section. With the help of Maple, the above problems
are displayed in tabular and graphical form. The numerical results demonstrate the technique’s
applicability, and the precision of the approach is assessed in light of the precise results. The behavior
of the approximate solution and exact solution for example 1 at ℘ = 1 is depicted in Figure 1. The
behavior of the proposed method solution in terms of CF at ℘ = 0.90, 0.95 is depicted in Figure 2.
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The nature of absolute error, as well as the variation in fractional order ℘ for the solution in example 1
employing the suggested method, is displayed in Figure 3. The suggested approach solution of the
first example at ξ = 0.5, ϑ = 0.01 is compared with exact and various fractional orders in Table 1.
The behavior of the approximate solution and exact solution for example 2 at ℘ = 1 is depicted in
Figure 4. The behavior of the proposed method solution in terms of CF at ℘ = 0.90, 0.95 is depicted in
Figure 5. The nature of absolute error, as well as the variation in fractional order ℘ for the solution in
example 2 employing the suggested method, is displayed in Figure 6. The suggested approach solution
of the second example at ξ = 0.5, ϑ = 0.01 is compared with exact and various fractional orders in
Table 2. The absolute error comparison of the suggested approach with HATM is shown in Table 3.
The graph illustrates how different fractional orders impact the behavior of the solution and shows
how variations in ℘ impact the solution with respect to the given parameters. Also, the numerical
results are briefly specified in the tables, which enables a direct comparison of the performance of the
solution at various fractional orders. It needs to be noted that throughout the calculations, we used
different approximations, and that using accurate results for the problem gave us a better estimate. By
increasing the order of the approximation, which adds more terms to the solution, we could have been
able to get approximation solutions that were more accurate.

Figure 1. Behavior of (a) exact solution and (b) our technique solution for Problem 5.1.

Figure 2. Surface of (a) analytical solution at ℘ = 0.90 (b) analytical solution at ℘ = 0.95.
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Figure 3. The (a) 3D plot of absolute error and (b) 2D solution graph of our technique
solution at different values of ℘.

Figure 4. The HPTM solution z(ı, ξ, ϑ) (a) second order approximate solution (b) exact
solution for Problem 5.2.

Figure 5. Behavior of the suggested approach solution at (a) ℘ = 0.90 and (b) ℘ = 0.95 .
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Figure 6. The (a) absolute error between exact solution and second order approximate
solution and (b) analytical solution behavior at numerous values of ℘.

Table 1. Accurate solution as well as second-order approximate solution at numerous values
of ℘.

λ ℘ = 0.97 ℘ = 0.98 ℘ = 0.99 ℘ = 1(appro) ℘ = 1(exact)
0.0 0.00000000 0.00000000 0.00000000 0.00000000 0.00000000
0.1 0.00039700 0.00029800 0.00019900 0.00010000 0.00010000
0.2 0.00158805 0.00119203 0.00079602 0.00040000 0.00040000
0.3 0.00357317 0.00268212 0.00179107 0.00090001 0.00090000
0.4 0.00635242 0.00476829 0.00318417 0.00160004 0.00160000
0.5 0.00992583 0.00745058 0.00497533 0.00250008 0.00250000
0.6 0.01429343 0.01072900 0.00716457 0.00360014 0.00360000
0.7 0.01945527 0.01460359 0.00975191 0.00490022 0.00490000
0.8 0.02541140 0.01907438 0.01273736 0.00640034 0.00640000
0.9 0.03216184 0.02414139 0.01612093 0.00810048 0.00810000
1.0 0.03970664 0.02980465 0.01990266 0.01000066 0.01000000
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Table 2. Numerical comparison between the second term approximate solution at different
fractional orders and exact solution.

λ ℘ = 0.97 ℘ = 0.98 ℘ = 0.99 ℘ = 1(appro) ℘ = 1(exact)
0.0 -1.97670891 -1.91120420 -1.84569950 -1.78019479 -1.78016202
0.1 -2.02416819 -1.96799152 -1.91181486 -1.85563819 -1.85559583
0.2 -2.05134623 -2.00680238 -1.96225852 -1.91771466 -1.91766362
0.3 -2.05653542 -2.02560757 -1.99467972 -1.96375187 -1.96369386
0.4 -2.03918307 -2.02333146 -2.00747985 -1.99162824 -1.99156574
0.5 -2.00000000 -2.00000000 -2.00000000 -2.00000000 -1.99993600
0.6 -1.94089992 -1.95675153 -1.97260314 -1.98845475 -1.98839241
0.7 -1.86477656 -1.89570441 -1.92663226 -1.95756011 -1.95750242
0.8 -1.77516541 -1.81970926 -1.86425312 -1.90879698 -1.90874636
0.9 -1.67586161 -1.73203828 -1.78821494 -1.84439161 -1.84434975
1.0 -1.57056662 -1.63607133 -1.70157603 -1.76708074 -1.76704848

Table 3. Comparison between HATM [51] and our method in terms of absolute error.

ϑ HATM at ı = 0.5 HPTM at ı = 0.5 HATM at ξ = 0.5 HPTM at ξ = 0.5
0.0 9.921881×10−07 3.2500000000×10−07 2.607245×10−07 3.2500000000×10−07

0.5 1.702236×10−05 6.4000000000×10−07 1.702236×10−05 6.4000000000×10−07

0.1 2.607245×10−07 3.2500000000×10−07 9.921881×10−07 3.2500000000×10−07

1.5 6.913822×10−06 6.6000000000×10−08 7.076190×10−06 6.7000000000×10−08

2.0 2.534162×10−06 1.7410000000×10−07 2.783063×10−06 1.7350000000×10−07

2.5 2.305783×10−07 1.46500000000×10−07 3.045477×10−07 1.4590000000×10−07

3.0 2.741436×10−07 9.9000000000×10−08 2.651408×10−07 9.9100000000×10−08

3.5 2.706178×10−07 6.2300000000×10−08 2.751423×10−07 6.2400000000×10−08

4.0 1.884674×10−07 3.8400000000×10−08 1.936185×10−07 3.8300000000×10−08

4.5 1.198279×10−07 2.3390000000×10−08 1.235044×10−07 2.3370000000×10−08

5.0 7.391757×10−08 1.4210000000×10−08 7.627198×10−08 1.4190000000×10−08

7. Conclusions

In order to provide an analytical solution to the nonlinear time-fractional KdV problems, we employ
the HPTM along with the CF fractional derivative. We have considered two cases of the KdV equations
together with different initial conditions. The potential application for physicists and engineers working
in diverse fields of the natural sciences has inspired the development of the approach as a significant
mathematical instrument. In light of the fractional operator of the CF type, this work demonstrates
that the HPTM approach is an effective tool for solving nonlinear FPDEs. With only a few steps,
the HPTM produces a quickly converging series solution. The suggested method has been used
to compute the solutions for both examples. The effectiveness of HPTM has also been shown via
various figures and tables. The efficacy as well as reliability of the proposed approach are illustrated
by the investigation of HPTM approximations for various fractional order KdV equations with exact
solutions. We consequently come to the conclusion that the presented approach is significant non-
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sophisticated effective tools that generate good quality approximations for nonlinear partial differential
equations using straightforward computations and achieve convergence with a minimal number of
terms. The simple operation of the suggested solutions led to the conclusion that they are appropriate
for handling every physical issue arising up in engineering and the sciences. Thus, the expansion
will be significantly valued to add other operators and approaches in the future, especially in light of
the advantages of the current operator. The results can be of great use to many authors in evaluating
and understanding their experimental and observational data, particularly those working in nonlinear
sciences like nonlinear optics and plasma physics.
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6. D. Baleanu, Z. B. Güvenç, J. T. Machado, New trends in nanotechnology and fractional
calculus applications, New York: Springer, 10 (2010), 978–990. https://doi.org/10.1007/978-90-
481-3293-5

AIMS Mathematics Volume 9, Issue 5, 10561–10579.

http://dx.doi.org/https://doi.org/10.1016/j.cnsns.2013.01.005
http://dx.doi.org/https://doi.org/10.3390/sym15040850
http://dx.doi.org/https://doi.org/10.3390/e17020885
http://dx.doi.org/https://doi.org/10.1186/s13662-018-1722-8
http://dx.doi.org/https://doi.org/10.1155/2022/6832472
http://dx.doi.org/https://doi.org/10.1007/978-90-481-3293-5
http://dx.doi.org/https://doi.org/10.1007/978-90-481-3293-5


10576

7. D. Kumar, A. R. Seadawy, A. K. Joardar, Modified Kudryashov method via new exact solutions
for some conformable fractional differential equations arising in mathematical biology, Chinese J.
Phys., 56 (2018), 75–85. https://doi.org/10.1016/j.cjph.2017.11.020

8. Y. Zhang, Y. F. Pu, J. R. Hu, J. L. Zhou, A class of fractional-order variational image inpainting
models, Appl. Math. Inf. Sci., 6 (2012), 299–306.

9. D. Baleanu, G. C. Wu, S. D. Zeng, Chaos analysis and asymptotic stability of generalized
Caputo fractional differential equations, Chaos Soliton. Fract., 102 (2017), 99–105.
https://doi.org/10.1016/j.chaos.2017.02.007

10. F. Mainardi, Fractional calculus and waves in linear viscoelasticity: An introduction to
mathematical models, World Scientific, 2022.

11. R. Hilfer, L. Anton, Fractional master equations and fractal time random walks, Phys. Rev. E, 51
(1995), R848. https://doi.org/10.1103/physreve.51.r848

12. A. H. Ganie, F. Mofarreh, A. Khan, On new computations of the time-fractional nonlinear KdV-
Burgers equation with exponential memory, Phys. Scr., 99 (2024). https://doi.org/10.1088/1402-
4896/ad2e60

13. S. Rida, A. Arafa, A. Abedl-Rady, H. Abdl-Rahaim, Fractional physical differential
equations via natural transform, Chinese J. Phys., 55 (2017), 1569–1575.
https://doi.org/10.1016/j.cjph.2017.05.004

14. S. Mubeen, R. S. Ali, Y. Elmasry, E. Bonyah, A. Kashuri, G. Rahman, et al., On novel
fractional integral and differential operators and their properties, J. Math., 2023 (2023).
https://doi.org/10.1155/2023/4165363

15. M. M. AlBaidani, A. H. Ganie, F. Aljuaydi, A. Khan, Application of analytical techniques for
solving fractional physical models arising in applied sciences, Fractal Fract., 7 (2023), 584.
https://doi.org/10.3390/fractalfract7080584

16. D. Baleanu, H. K. Jassim, H. Khan, A modification fractional variational iteration method for
solving non-Linear gas dynamic and coupled Kdv equations involving local fractional operators,
Therm. Sci., 22 (2018), 165–175. https://doi.org/10.2298/tsci170804283b

17. R. W. Ibrahim, M. Darus, On a new solution of fractional differential equation
using complex transform in the unit disk, Math. Comput. Appl., 19 (2014), 152–160.
https://doi.org/10.3390/mca19020152

18. A. H. Ganie, F. Mofarreh, A. Khan, A novel analysis of the time-fractional nonlinear dispersive
K (m, n, 1) equations using the homotopy perturbation transform method and Yang transform
decomposition method, AIMS Math., 9 (2024), 1877–1898. https://doi.org/10.3934/math.2024092

19. M. M. AlBaidani, A. H. Ganie, A. Khan, The dynamics of fractional KdV type equations
occurring in magneto-acoustic waves through non-singular kernel derivatives, AIP Adv., 13 (2023).
https://doi.org/10.1063/5.0176042

20. M. M. AlBaidani, F. Aljuaydi, N. S. Alharthi, A. Khan, A. H. Ganie, Study of fractional forced
KdV equation with Caputo-Fabrizio and Atangana-Baleanu-Caputo differential operators, AIP
Adv., 14 (2024). https://doi.org/10.1063/5.0185670

AIMS Mathematics Volume 9, Issue 5, 10561–10579.

http://dx.doi.org/https://doi.org/10.1016/j.cjph.2017.11.020
http://dx.doi.org/https://doi.org/10.1016/j.chaos.2017.02.007
http://dx.doi.org/https://doi.org/10.1103/physreve.51.r848
http://dx.doi.org/https://doi.org/10.1088/1402-4896/ad2e60
http://dx.doi.org/https://doi.org/10.1088/1402-4896/ad2e60
http://dx.doi.org/https://doi.org/10.1016/j.cjph.2017.05.004
http://dx.doi.org/https://doi.org/10.1155/2023/4165363
http://dx.doi.org/https://doi.org/10.3390/fractalfract7080584
http://dx.doi.org/https://doi.org/10.2298/tsci170804283b
http://dx.doi.org/https://doi.org/10.3390/mca19020152
http://dx.doi.org/https://doi.org/10.3934/math.2024092
http://dx.doi.org/https://doi.org/10.1063/5.0176042
http://dx.doi.org/https://doi.org/10.1063/5.0185670


10577

21. G. Yel, H. M. Baskonus, H. Bulut, Novel archetypes of new coupled Konno-Oono
equation by using sine-Gordon expansion method, Opt. Quant. Electron., 49 (2017), 1–10.
https://doi.org/10.1007/s11082-017-1127-z

22. A. H. Ganie, F. Mofarrah, A. Khan, A fractional analysis of Zakharov-Kuznetsov equations with
the Liouville-Caputo operator, Axioms, 12 (2023), 1–18. https://doi.org/10.3390/axioms12060609

23. J. Singh, D. Kumar, M. Al Qurashi, D. Baleanu, A novel numerical approach for a nonlinear
fractional dynamical model of interpersonal and romantic relationships, Entropy, 19 (2017), 375.
https://doi.org/10.3390/e19070375

24. K. A. Gepreel, A. M. S. Mahdy, M. S. Mohamed, A. Al-Amiri, Reduced differential transform
method for solving nonlinear biomathematics models, Comput. Mater. Con., 61 (2019), 979–994.
https://doi.org/10.32604/cmc.2019.07701

25. A. Hussain, I. Ahmed, A. Yusuf, M. J. Ibrahim, Existence and stability analysis of a fractional-
order COVID-19 model, Bangmod Int. J. Math. Comp. Sci., 7 (2021), 102–125.

26. G. C. Wu, A fractional variational iteration method for solving fractional
nonlinear differential equations, Comput. Math. Appl., 61 (2011), 2186–2190.
https://doi.org/10.1016/j.camwa.2010.09.010

27. A. H. Ganie, M. M. AlBaidani, A. Khan, A comparative study of the fractional partial differential
equations via novel transform, Symmetry, 15 (2023), 1101. https://doi.org/10.3390/sym15051101

28. A. A. Alderremy, S. Aly, R. Fayyaz, A. Khan, R. Shah, N. Wyal, The analysis of fractional-order
nonlinear systems of third order KdV and Burgers equations via a novel transform, Complexity,
2022 (2022). https://doi.org/10.1155/2022/4935809

29. B. Kaur, R. K. Gupta, Dispersion analysis and improved F-expansion method for
space-time fractional differential equations, Nonlinear Dyn., 96 (2019), 837–852.
https://doi.org/10.1007/s11071-019-04825-w

30. J. Singh, D. Kumar, D. Sushila, Homotopy perturbation Sumudu transform method for nonlinear
equations, Adv. Theor. Appl. Mech., 4 (2011), 165–175.

31. L. Akinyemi, M. Senol, S. N. Huseen, Modified homotopy methods for generalized fractional
perturbed Zakharov-Kuznetsov equation in dusty plasma, Adv. Differ. Equ., 2021 (2021), 1–27.
https://doi.org/10.1186/s13662-020-03208-5

32. L. Akinyemi, O. S. Iyiola, U. Akpan, Iterative methods for solving fourth- and sixth-
order time-fractional Cahn-Hillard equation, Math. Method. Appl. Sci., 43 (2020), 4050–4074.
https://doi.org/10.1002/mma.6173

33. H. A. Alyousef, R. Shah, N. A. Shah, J. D. Chung, S. M. Ismaeel, S. A. El-Tantawy, The fractional
analysis of a nonlinear mKdV equation with Caputo operator, Fractal Fract., 7 (2023), 259.
https://doi.org/10.3390/fractalfract7030259

34. L. Akinyemi, O. S. Iyiola, I. Owusu-Mensah, Iterative methods for solving seventh-
order nonlinear time fractional equations, Prog. Fract. Differ. Appl., 8 (2022), 147–175.
https://doi.org/10.18576/pfda/080110

AIMS Mathematics Volume 9, Issue 5, 10561–10579.

http://dx.doi.org/https://doi.org/10.1007/s11082-017-1127-z
http://dx.doi.org/https://doi.org/10.3390/axioms12060609
http://dx.doi.org/https://doi.org/10.3390/e19070375
http://dx.doi.org/https://doi.org/10.32604/cmc.2019.07701
http://dx.doi.org/https://doi.org/10.1016/j.camwa.2010.09.010
http://dx.doi.org/https://doi.org/10.3390/sym15051101
http://dx.doi.org/https://doi.org/10.1155/2022/4935809
http://dx.doi.org/https://doi.org/10.1007/s11071-019-04825-w
http://dx.doi.org/https://doi.org/10.1186/s13662-020-03208-5
http://dx.doi.org/https://doi.org/10.1002/mma.6173
http://dx.doi.org/https://doi.org/10.3390/fractalfract7030259
http://dx.doi.org/https://doi.org/10.18576/pfda/080110


10578

35. D. Ntiamoah, W. Ofori-Atta, L. Akinyemi, The higher-order modified Korteweg-de Vries
equation: Its soliton, breather and approximate solutions, J. Ocean Eng. Sci., 2022.
https://doi.org/10.1016/j.joes.2022.06.042

36. D. J. Korteweg, G. De Vries, XLI. On the change of form of long waves advancing in a rectangular
canal, and on a new type of long stationary waves, London Edinb. Dublin Philos. Mag. J. Sci., 39
(1895), 422–443. https://doi.org/10.1080/14786449508620739

37. Y. Wu, X. Geng, X. Hu, S. Zhu, A generalized Hirota-Satsuma coupled Korteweg-
de Vries equation and Miura transformations, Phys. Lett. A, 255 (1999), 259–264.
https://doi.org/10.1016/s0375-9601(99)00163-2

38. G. Adomian, A review of the decomposition method in applied mathematics, J. Math. Anal. Appl.,
135 (1988), 501–544. https://doi.org/10.1016/0022-247x(88)90170-9

39. L. Iskandar, New numerical solution of the Korteweg-de Vries equation, Appl. Numer. Math., 5
(1989), 215–221. https://doi.org/10.1016/0168-9274(89)90035-4

40. K. Pen-Yu, J. M. Sanz-Serna, Convergence of methods for the numerical solution
of the Korteweg-de Vries equation, IMA J. Numer. Anal., 1 (1981), 215–221.
https://doi.org/10.1093/imanum/1.2.215

41. C. Wang, Spatiotemporal deformation of lump solution to (2+1)-dimensional KdV equation,
Nonlinear Dynam., 84 (2016), 697–702. https://doi.org/10.1007/s11071-015-2519-x

42. A. M. Wazwaz, New sets of solitary wave solutions to the KdV, mKdV, and
the generalized KdV equations, Commun. Nonlinear Sci., 13 (2008), 331–339.
https://doi.org/10.1016/j.cnsns.2006.03.013

43. B. R. Sontakke, A. Shaikh, The new iterative method for approximate solutions of time fractional
KdV, K (2, 2), Burgers and cubic Boussinesq equations, Asian Res. J. Math., 1 (2016), 1–10.
https://doi.org/10.9734/arjom/2016/29279

44. B. R. Sontakke, A. Shaikh, K. S. Nisar, Approximate solutions of a generalized Hirota-Satsuma
coupled KdV and a coupled mKdV systems with time fractional derivatives, Malays. J. Math. Sci.,
12 (2018), 175–196.

45. G. Wang, A. H. Kara, A (2+1)-dimensional KdV equation and mKdV equation: Symmetries,
group invariant solutions and conservation laws, Phys. Lett. A, 383 (2019), 728–731.
https://doi.org/10.1016/j.physleta.2018.11.040

46. J. H. He, Homotopy perturbation technique, Comput. Method. Appl. M., 178 (1999), 257–262.
https://doi.org/10.1016/s0045-7825(99)00018-3

47. J. H. He, Application of homotopy perturbation method to nonlinear wave equations, Chaos
Soliton. Fract., 26 (2005), 695–700. https://doi.org/10.1016/j.chaos.2005.03.006

48. S. Das, P. K. Gupta, An approximate analytical solution of the fractional diffusion equation with
absorbent term and external force by homotopy perturbation method, Z. Naturforsch. A, 65 (2010),
182–190. https://doi.org/10.1515/zna-2010-0305

49. X. J. Yang, A new integral transform method for solving steady heat-transfer problem, Therm.
Sci., 20 (2016), 639–642. https://doi.org/10.2298/tsci16s3639y

AIMS Mathematics Volume 9, Issue 5, 10561–10579.

http://dx.doi.org/https://doi.org/10.1016/j.joes.2022.06.042
http://dx.doi.org/https://doi.org/10.1080/14786449508620739
http://dx.doi.org/https://doi.org/10.1016/s0375-9601(99)00163-2
http://dx.doi.org/https://doi.org/10.1016/0022-247x(88)90170-9
http://dx.doi.org/https://doi.org/10.1016/0168-9274(89)90035-4
http://dx.doi.org/https://doi.org/10.1093/imanum/1.2.215
http://dx.doi.org/https://doi.org/10.1007/s11071-015-2519-x
http://dx.doi.org/https://doi.org/10.1016/j.cnsns.2006.03.013
http://dx.doi.org/https://doi.org/10.9734/arjom/2016/29279
http://dx.doi.org/https://doi.org/10.1016/j.physleta.2018.11.040
http://dx.doi.org/https://doi.org/10.1016/s0045-7825(99)00018-3
http://dx.doi.org/https://doi.org/10.1016/j.chaos.2005.03.006
http://dx.doi.org/https://doi.org/10.1515/zna-2010-0305
http://dx.doi.org/https://doi.org/10.2298/tsci16s3639y


10579

50. S. Ahmad, A. Ullah, A. Akgül, M. De la Sen, A novel homotopy perturbation method with
applications to nonlinear fractional order KdV and Burger equation with exponential-decay kernel,
J. Funct. Space., 2021 (2021), 1–11. https://doi.org/10.1155/2021/8770488

51. K. Hosseini, M. Ilie, M. Mirzazadeh, D. Baleanu, A detailed study on a new (2+1)-dimensional
mKdV equation involving the Caputo-Fabrizio time-fractional derivative, Adv. Differ. Equ., 2020
(2020), 331. https://doi.org/10.1186/s13662-020-02789-5

© 2024 the Author(s), licensee AIMS Press. This
is an open access article distributed under the
terms of the Creative Commons Attribution License
(http://creativecommons.org/licenses/by/4.0)

AIMS Mathematics Volume 9, Issue 5, 10561–10579.

http://dx.doi.org/https://doi.org/10.1155/2021/8770488
http://dx.doi.org/https://doi.org/10.1186/s13662-020-02789-5
http://creativecommons.org/licenses/by/4.0

	Introduction
	Preleminaries
	Core idea
	General procedure of the proposed technique
	General procedure of fractional differential equations in terms of CF derivative
	Convergence analysis

	Numerical applications
	Results and discussion
	Conclusions

