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Abstract: Globally, the COVID-19 pandemic has claimed millions of lives. In this study, we
develop a mathematical model to investigate the impact of human behavior on the dynamics of
COVID-19 infection in South Africa. Specifically, our model examined the effects of positive versus
negative human behavior. We parameterize the model using data from the COVID-19 fifth wave of
Gauteng province, South Africa, from May 01, 2022, to July 23, 2022. To forecast new cases of
COVID-19 infections, we compared three forecasting methods: exponential smoothing (ETS), long
short-term memory (LSTM), and gated recurrent units (GRUs), using the dataset. Results from the time
series analysis showed that the LSTM model has better performance and is well-suited for predicting
the dynamics of COVID-19 compared to the other models. Sensitivity analysis and numerical
simulations were also performed, revealing that noncompliant infected individuals contribute more
to new infections than those who comply. It is envisaged that the insights from this work can better
inform public health policy and enable better projections of disease spread.
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1. Introduction

The coronavirus disease (COVID-19), first discovered in Wuhan, China, in 2019 [1], has been a
worldwide pandemic since its emergence and has resulted in the loss of millions of lives. This
infectious disease, caused by the pathogen coronavirus, SARS-CoV-2, is transmitted through contact
with droplets from the respiratory tract of an infected person. Consequently, slowing down the
transmission of COVID-19 requires large-scale behavioral change [2]. Such changes can influence the
disease status of individuals, such as the infection rate, the recovery rate, and the contact network
structure associated with the spread of the disease [3]. Generally, stopping a disease outbreak relies
on the technical implementation of control strategies, such as vaccination, treatment, or educational
campaigns. One key objective of these controls is to induce a change in human behavior that will
either halt or eradicate the infection spread.

Human behavior has been critical in shaping the COVID-19 pandemic, with the actions of
individuals, groups, nation-states, and international bodies all playing roles in curbing its spread.
Although people in specific geographic settings are expected to behave in certain ways to help curb
the spread of COVID-19, not all individuals adhere to these expected preventative measures. Some
individuals neglect to wear face masks in public places, and others disregard social distancing, hand
sanitization, or covering their mouths and nose while coughing and sneezing. Additionally, due to
misinformation about vaccines [4] and healthcare facilities, particularly in Africa, individuals are
reluctant to visit vaccination centers or seek hospital treatment when experiencing symptoms of the
infection. Misinformation has also led to the use of informal or nonintegrated forms of healthcare,
such as traditional and complementary medicine (TCM) [5]. Furthermore, the fear of stigmatization
during or after infection can drive individuals to conceal their illness and avoid formal healthcare
assistance. Alcohol abuse is also another significant factor. Alcohol has a suppressive effect on the
immune system, particularly impairing the lungs’ ability to fight off infectious diseases like
COVID-19 [6]. A weakened immune system not only increases the risk of contracting the virus but
may also exacerbate the severity of the illness and potentially slow recovery.

Normally, where treatment is available, health workers expect patients to behave in a prescribed
manner, such as consistently taking medication. In the case of COVID-19, individuals are expected to
wear masks in public places, maintain personal hygiene, comply with vaccination recommendations,
seek medical help promptly when experiencing symptoms, remain quarantined for at least 14 days
after infection, frequently clean their hands with an alcohol-based hand rub or soap and water, and
cover their mouths and noses when coughing or sneezing [7]. Due to variations in human behavior,
many of these control measures are not uniformly adhered to in communities affected by the disease.
Poor adherence to control measures during a pandemic significantly affects transmission dynamics,
particularly with diseases like COVID-19 with high inactivity and case fatality rates [8]. Therefore,
human behavior is at the core of any disease eradication strategy [9].

Mathematical modeling has proven instrumental in examining the influence of human behavior on
the evolution and dynamics of various diseases, as evidenced by the following literature: [3, 10–17].
However, quantifying human behavior is very challenging, which complicates the development and
analysis of mathematical models that include human behavior [3]. This viewpoint is shared by Funk,
et al. [10], who outlined some challenges faced in integrating the dynamics of human behavior into
infectious disease models. These challenges include setting a baseline and establishing the effects of
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deviating from it, determining the manner and extent to which human behavior should be explicitly
modeled, ascertaining the minimum level of detail needed to model behavioral differences, estimating
changes in reporting behavior, forecasting responses to interventions and health campaigns, identifying
the role of movement and travel, constructing models that can be validated against real-time data, and
facilitating communication across disciplines [10].

Zhang et al. [18] explored how the COVID-19 pandemic influenced human behaviors in Hong
Kong and the subsequent impact on the transmission of other respiratory diseases (e.g., influenza).
Their work focused on the spread of COVID-19 and influenza infections using COVID-19-reported
cases and influenza surveillance data. They investigated changes in human behavior using mass
transit railway data and telephone survey results. The study indicated that human behavior was
significantly influenced by the COVID-19 pandemic in Hong Kong and that close contact control
contributed to more than 47% of the reduction in COVID-19 infection risk. Umakrishnan et al. [19]
analyzed COVID-19 preventive behavior and the socio-economic drivers behind health responses in
South Africa. Through employing various statistical and econometric techniques, they found that
preventative behavior evolved, with the most widely adopted measure being effective mask usage,
surpassing hand washing. Additionally, they observed that other measures like social distancing and
avoiding large groups had declined over time. Furthermore, various other mathematical models have
explored COVID-19 infection dynamics globally, predicting the importance of several control
measures, including [20–32] among many others. The aforementioned human behaviors may have
serious effects on the spread of COVID-19, which we investigate in this work. Using a mathematical
model that incorporates individuals who exhibit positive behavior (compliance to all control
measures) and those with negative behavior (noncompliance to some or all of the control measures),
we evaluate the impact of various human behaviors on the spread and dynamics of COVID-19 within
South Africa.

In addition to the analysis of the deterministic model for COVID-19 in Gauteng Province, we
construct time series models, namely the exponential smoothing (ETS) [33], long short-term memory
(LSTM) [34], and the gated recurrent unit network (GRU) [35]. The reason behind adopting this
approach is to rigorously assess and compare the efficacy of different modeling techniques in
predicting the daily new cases of COVID-19 in Gauteng Province. Also, our exploration extends
beyond conventional forecasting methods by incorporating considerations of positive and negative
behaviors in the mathematical model. By so doing, we aim to capture human dynamics and societal
responses, thereby providing a more comprehensive understanding of the factors influencing the
spread of COVID-19 in Gauteng. To achieve optimal predictive accuracy, the performance of the
ETS, LSTM, and GRU models will be critically evaluated. To the best of our knowledge, we present
the first COVID-19 model for Gauteng Province that assesses the impact of both positive and negative
human behaviors, coupled with the comparison of ETS, LSTM, and GRU models. We envisage that
the insights from this work can better inform public health policy and enable better projections of
disease spread.

The rest of the paper is organized as follows: Section 2 is devoted to the model formulation and the
analysis of the basic reproduction number. Sections 3 and 4 present the time series data forecasting
and numerical simulations of the mathematical model, respectively. The paper is finalized in Section 5
with a conclusion and discussion of the results.
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2. The mathematical model

2.1. Model description

This study uses a mathematical model with 9 compartments to assess the impact of human behavior
on COVID-19 transmission dynamics. The population under investigation is split into the population
of individuals who are of positive behavior (individuals who adhere to all the COVID-19 preventative
measures such as social distancing, wearing masks in crowded places, the washing and sanitizing
of hands, quarantining when experiencing symptoms, those on treatment, etc.). These individuals
are assumed to willingly show up at vaccination centers to be vaccinated against COVID-19. They
also show up at the hospital when they start having symptoms and follow treatment diligently if they
are infected. The model also considers individuals who are of negative behavior (those who do not
adhere to all or some of the preventive measures, refuse to be vaccinated for various reasons, hide
their infection status when they start experiencing symptoms, and seek informal health care from TCM
practitioners rather than formal healthcare providers).

Our compartmental model consists of two suppopulations described as follows: susceptible
individuals with positive (negative) behavior, S p (S n); asymptomatic individuals with positive
(negative) behavior, Ap (An); infectious individuals with positive (negative) behavior, Ip (In);
hospitalized individuals, H, and recovered individuals with positive (negative) behavior, Rp (Rn).
Those in In are assumed to be hiding their infection and seeking informal rather than formal health
care. Additionally, they are also assumed to be the most infectious as compared to individuals in Ip.
Those in Ip are willing to seek hospital care, and so they are assumed to be less infectious than those
in In. A susceptible individual within the population is either recruited into the class, S p of individuals
who are susceptible with positive behavior at a constant rate of πp, or into the class, S n of individuals
who are susceptible with negative behavior at a rate of, πn. Individuals in S p contact COVID-19 at an
infection rate of λp where

λp = β(In + η1Ap + η2Ip + η3An + η4H),

and move into the class of asymptomatic individuals with positive behavior, Ap. The model assumes
that a proportion, p, moves into Ap while the remainder moves into the infectious compartment with
positive behavior, Ip, at a rate, (1 − p). The modification parameters within the force of infection are
such that 0 < η1 < η2 < η3 < η4 < 1, and the effective contact rate is given by β. Those in the
asymptomatic class, (Ap) may recover at a rate of ρpσp while a fraction (1 − ρp)σp may progress to
the infectious compartment with positive behavior, Ip. Now, a proportion, κpγp may recover naturally
and proceed to class, Rp, while the remaining proportion, (1− κp)γp, due to full symptoms of infection,
may progress to the hospitalized class, H at a later stage. We note that the individuals in the class S n

contract the disease at a relatively higher infection rate since they are of negative behavior, and, hence,
the force of infection is given by

λn = kλp,

and k > 1. Upon interaction with an infectious individual, those in class, S n can become actively
infectious at a rate of qλn and move into class In, while the remainder (1 − q)λn becomes
asymptomatically infected and move into class, An. Asymptomatic individuals with negative behavior
may fully develop COVID-19 symptoms and move into class In at a rate of, (1 − ρn)σn, while some
may recover naturally at a rate ρnσn. During the course of the infection, those in class In may change
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their minds and seek proper health care, and, hence, progress to the hospitalized class at a rate of
(1 − κn)γn, while some may recover naturally at a rate of κnγn and progress to class Rn. The model also
assumes that hospitalized individuals recover at a rate of α and move into the Rp class. Individuals
from all compartments are assumed to die from natural causes at a rate of µ, while those in Ip, In, and
H have disease-induced death rates given by δp, δn, and δh, respectively. Table 1 gives a summarized
epidemiological interpretation of our model parameters, and the model flow diagram is depicted in
Figure 1.

Table 1. Model parameters and their descriptions.

Parameter Description
µ Natural mortality rate
β Effective contact rate
k, η1, η2, η3, η4 Modification parameters
πp(πn) Rate of recruitment into S p(S n)
λp(λn) Infection rates of people in S p(S n)
δp, δn, δh Disease-induced death rate in Ip, In, and H, respectively
κp(κn) Proportion of Ip (In), respectively, who recover naturally
ρp(ρn) Proportion of Ap (An), respectively, who recover naturally
ωp (ωn) Rates at which Rp (Rn), respectively, becomes susceptible again
γp (γn) Exit rate from infectious with positive (negative) behavior, respectively
σp (σn) Exit rate from asymptomatic with positive (negative) behavior, respectively
p (q) Proportion of S p(S n) who become asymptomatic Ap (An), respectively

S p S n

Ap Ip H In An

Rp Rn

πp µ πn µ

(1 − ρp)σp (1 − κp)γp (1 − κn)γn (1 − ρn)σn

µ µ + δp µ + δh µ + δn µ

α

µ µ

pλ p

(1
−

p)λ
p

ρ
pσ

p κ pγ
p

qλn
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− q)λ

n

κnγn ρ nσ
n

ω
p

ω
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Figure 1. Model flow diagram for COVID-19 dynamics incorporating behavior change.
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The model equations are given as

S ′p = πp + ωpRp − (λp + µ)S p,

A′p = pλpS p − (σp + µ)Ap,

I′p = (1 − p)λpS p + (1 − ρp)σpAp − (γp + µ + δp)Ip,

R′p = ρpAp + κpIp + αH − (ωp + µ)Rp,

S ′n = πn + ωnRn − (λn + µ)S n,

A′n = qλnS n − (σn + µ)An,

I′n = (1 − q)λnS n + (1 − ρn)σnAn − (γn + µ + δn)In,

R′n = ρnAn + κnIn − (ωn + µ)Rp,

H′ = (1 − κp)γpIp + (1 − κn)γnIn − (µ + α + δp)H,

(2.1)

with positive initial conditions

S p(0) > 0, S n(0) > 0, Ip(0) ≥ 0, In(0) ≥ 0, Ap(0) ≥ 0, An(0) ≥ 0, H(0) ≥ 0, Rp(0) ≥ 0, Rn(0) ≥ 0.

For the existence, uniqueness, and positivity of solutions, see Appendix 5.

2.2. Basic reproduction number

To compute the reproduction number, we first calculate the disease-free equilibrium point. This is
found when we set system (2.1) to zero and solve it for the case where

S p , 0, Ap = 0, Ip = 0,Rp = 0, S n , 0, An = 0, In = 0,Rn = 0.

Therefore, this yields
E0 = (S ⋆p , 0, 0, 0, S

⋆
n , 0, 0, 0, 0),

where S ⋆p =
πp

µ
and S ⋆n =

πn

µ
.

The reproduction number is a critical threshold that measures how many secondary infections are
produced by one infectious individual in a wholly susceptible population. To compute this threshold,
we employ the next generation matrix approach by [36–38] and, therefore, R0 = Rp + Rn, where,

Rp = βS ⋆p

(
p
η1

Q1
+ (1 − p)

η2

Q3
+ p
η2Q2

Q1Q3
+ (1 − p)

η4Q7

Q3Q9
+ p
η4Q2Q7

Q1Q3Q9

)
, (2.2)

Rn = kβS ⋆n

(
q
η3

Q4
+ (1 − q)

1
Q6
+ q

Q5

Q4Q6
+ (1 − q)

η4Q8

Q6Q9
+ q
η4Q5Q8

Q4Q6Q9

)
(2.3)

and Q1 = σp + µ, Q2 = (1 − ρp)σp, Q3 = γp + µ + δp, Q4 = σn + µ, Q5 = (1 − ρn)σn, Q6 = γn + µ + δn,
Q7 = (1 − κp)γp, Q8 = (1 − κn)γn and Q9 = α + µ + δh.

The computed threshold quantity, R0, is a measure of the average number of new COVID-19 cases
generated by a typical COVID-19 infected individual (living or dead but not buried) introduced into
a purely susceptible human population [36–38]. The disease can thus be effectively controlled in the
community if R0 can be decreased to (and sustained at) a value less than one (i.e., R0 < 1).
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2.3. Interpretation of R0

When an infectious human is introduced into a population consisting only of susceptible
individuals with positive behavior, individuals may acquire infection, and the probability of becoming

asymptomatic is p, while that of being symptomatic is (1 − p). During the asymptomatic period,
1

Q1
,

an infectious individual can infect a susceptible individual with a probability of pβη1. After this

period, a fraction,
Q2

Q1
will become symptomatic. During the period,

1
Q3
, symptomatic individuals can

infect a susceptible individual with a probability of pη2β. Now, after this symptomatic period, a

fraction,
Q2Q7

Q1Q3
will become hospitalized, and during the hospitalization period,

1
Q9
, they may infect a

susceptible individual with a probability of, pη4β. So, the total number of susceptible individuals
infected by an asymptomatic individual will be,

pβS ∗p

(
η1

Q1
+ η2

Q2

Q1Q3
+ η4

Q2Q7

Q1Q3Q9

)
.

On the other hand, if an individual is symptomatic, then during their symptomatic period
1

Q3
, they will

infect a susceptible individual with a probability of (1−p)η2β.After the symptomatic period, a fraction,
Q7

Q3
will become hospitalized, and during the hospitalization period

1
Q9
, they can infect a susceptible

individual with a probability of (1 − p)η4β. Thus, the total number of susceptible individuals infected
by a symptomatic person will be

(1 − p)βS ∗p

(
η2

Q3
+ η4

Q7

Q3Q9

)
.

Hence, the overall total number of susceptible individuals with positive behavior that will be infected is:

Rp = βS ⋆p

(
p
η1

Q1
+ (1 − p)

η2

Q3
+ p
η2Q2

Q1Q3
+ (1 − p)

η4Q7

Q3Q9
+ p
η4Q2Q7

Q1Q3Q9

)
.

The same approach can be done for the susceptible individuals with negative behavior, and this will
yield Rn. Hence, we have R0 = Rp + Rn.

3. Time series data analysis

Time series analysis is crucial for identifying trends in epidemics, such as COVID-19 [39–41]. This
analysis is useful in providing valuable information that aids government and public health authorities
in their preparedness and response strategies for current and future outbreaks. Some of the forecasting
models chosen for this study are as follows: ETS, LSTM, and GRU.

3.1. Data overview

The dataset used for the simulations in this study was obtained from the COVID-19 dynamics in
Gauteng, South Africa. The Gauteng Province has the highest population density in South Africa
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compared to other provinces. We utilized the daily COVID-19 case data for the fifth wave in South
Africa, from May 1, 2022, to July 23, 2022 [42]. The primary reason for choosing this specific dataset
was its representation of the higher rate of COVID-19 transmission during the selected period
compared to other provinces in the country, reflecting shifts in human behavioral patterns.

The descriptive statistics for daily confirmed cases are presented in Table 2, offering a
comprehensive overview of the epidemiological trend throughout the study period, with 79 data
points. As observed in Figure 2, the mean daily case count is 990.2, representing the average number
of cases per day. However, the standard deviation of 1089.01 indicates significant variability in daily
case numbers, reflecting substantial fluctuations over time. The positive skewness of 1.48 indicates an
asymmetrical distribution of daily cases, with a tail extending toward higher case counts. This
skewness suggests that, although most days recorded relatively lower numbers of new cases, there
were occasional days with exceptionally high numbers of new cases, likely due to outbreaks or
enhancements in testing and reporting measures.

Table 2. Descriptive statistics of daily COVID-19 cases in Gauteng, South Africa.

Statistics Values
Count 79
Mean (Average) 990.2
Standard Deviation 1089.01
Minimum 0
25th Percentile (Q1) 205
Median (50th Percentile) 439
75th Percentile (Q3) 1352.5
Maximum 4332
Skewness 1.48

Figure 2. The histogram showing the daily COVID-19 cases in Gauteng, South Africa.

We observe considerable fluctuation in daily COVID-19 cases over time (Figure 3). There are peaks
where the cases rise sharply, followed by troughs where the cases fall. The highest peaks appear to
occur in early May, with the number of cases reaching the maximum observed on the graph. After
the initial peaks, there is a downward trend with some variability, but the overall movement is toward
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fewer daily cases as time progresses.

Figure 3. The sequence showing the trend of the daily COVID-19 cases in Gauteng over
time.

3.2. Forecasting models

We applied three forecasting models, that is, the ETS, LSTM, and GRU, to forecast future
COVID-19 cases. The models were trained and tested on the dataset using an 80/20 split, and future
cases were forecasted to determine potential trends and patterns. We chose the models for their
proven capabilities in handling the complexities of epidemic time series data. Each model offers
unique advantages that is, the ETS for its simplicity and effectiveness in capturing trends, the LSTM
for its ability to understand long-term dependencies, and the GRU for its efficiency in modeling
time-dependent sequences.

3.2.1. ETS

ETS is a commonly employed technique in time series forecasting aimed at smoothing out noise in
data and extracting underlying trends or patterns. Mathematically, ETS is defined as follows:

Ŷt+1 = αYt + (1 − α)Ŷt (3.1)

where: Ŷt+1 is the forecasted value for the next time period t + 1. Yt is the observed value at time t.
Ŷt is the smoothed value (forecast) at time t. α is the smoothing parameter, often referred to as the
smoothing factor or smoothing coefficient, with 0 < α < 1.

As shown in Figure 4, we applied the ETS model to forecast daily COVID-19 cases. This method
is particularly suited for data with significant levels of trend and seasonality, as it assigns exponentially
decreasing weights to past observations. However, the choice of the model’s smoothing parameters
is critical, as they determine how quickly the influence of previous observations decline. The training
data, depicted in blue, demonstrates the initial volatile behavior of the epidemic, with a clear downward
trend following the initial surge. The test data, in orange, is the subset of the data not used in the training
of the model but is crucial for validating the model’s predictive power. The forecast, represented by
the green dashed line, projects a stabilization in the number of new cases, oscillating around a constant
mean. This suggests that the model expects the incidence rate to plateau in the next 45 days, without
significant peaks or troughs.
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Figure 4. ETS result showing the training, testing, and 45-day forecast.

3.2.2. LSTM

The LSTM model is well-suited for time series prediction due to its ability to remember long-term
dependencies [43, 44]. It is particularly beneficial when dealing with fluctuating data such as daily
infection rates. The model was trained using data that was normalized to ensure effective learning.
An Adam optimizer was employed for its efficiency in handling sparse gradients and adaptive learning
rate capabilities, along with a mean squared error metric for the loss function to quantify the model’s
accuracy.

The model was fitted over 100 epochs, indicative of the number of complete passes through the
training dataset, with a batch size of 1, ensuring that the model weights were updated after each sample.
Also, the verbosity level of 2 was set ensuring that there was a per-epoch output to track the training
progress. The training data, shown in blue, illustrates initial fluctuations in COVID-19 cases and a
subsequent downward trend, as depicted in Figure 5. The test data, in orange, is used to evaluate the
model’s accuracy on new, unseen data and follows a similar downward pattern. The model’s 45-day
forecast, depicted by the green dashed line, suggests a stable trend of new cases in the near future,
providing a basis for pandemic response planning.

Figure 5. LSTM result showing the training, testing, and 45-day forecast.

3.2.3. GRU

Similar to the LSTM model, GRUs are a type of recurrent neural network that excel in capturing
temporal dependencies in time series data. GRUs are known for their efficiency and simplicity as
they use fewer parameters than LSTMs while achieving comparable performance, especially in cases
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where the time series is not excessively long [45, 46]. A similar configuration to that used for the
LSTM was employed for the GRU model to forecast daily COVID-19 cases. The GRU model, trained
on data characterized by sharp initial fluctuations and a subsequent decline, has seemingly grasped the
outbreak’s dynamics. The test phase, essential for model validation, showed that the GRU’s predictions
mostly followed the trend set by the training data, albeit with some variability. The 45-day forecast
by the GRU model, illustrated with a green dashed line, suggests a stable pattern in new cases with
a slight uptick toward the end of the period, hinting at a possible rise in cases that could necessitate
preemptive public health measures.

Figure 6. GRU result showing the training, testing, and 45-day forecast.

The analyses using the models revealed a trend toward short-term stabilization in the number of
new COVID-19 cases, providing critical data for informed public health decision-making. The ETS
model indicated a consistent trend with minimal variations, the LSTM model showed a continued
decrease and a stable plateau of new cases, and the GRU model forecasted stability with a potential
slight increase in cases as the forecast period concluded. These insights are instrumental for strategic
planning in the public health domain.

3.3. Evaluation of forecasting models

The metrics used to evaluate model performance include Mean Average Error (MAE), the Mean
Squared Error (MSE), and the Root Mean Squared Error (RMSE). The metrics MAE, MSE, and RMSE
were calculated in each scenario by using Eqs (5.1)–(5.3) (see Appendix 5). The calculated result is
summarized in Table 3, which reflects the metrics used to compare the predicted performance of the
ETS, LSTM, and GRU models.

Table 3. Model performance evaluation.

Model MAE MSE RMSE
ETS 183.19 50425.55 224.56
LSTM 156.66 31643.93 177.89
GRU 165.16 35078.70 187.29

The ETS model had an MAE of 183.19, which is the highest among the three models, indicating
that, on average, the ETS model’s forecasts were about 183.19 units off from the actual values. The
MSE, which is the average squared difference between the estimated values and actual value,
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was 50425.55, showing the highest among the three models, suggesting less accuracy in the
predictions. The RMSE was 224.56, indicating that the typical deviation from the actual data was
approximately 224.56 units. The LSTM model performed better on all three metrics, with an MAE
of 156.66, indicating its forecasts were closer to the actual values on average. The MSE was
significantly lower at 31643.93, suggesting greater accuracy, and the RMSE was 177.89, indicating a
smaller spread in the forecast errors compared to the ETS model. The GRU model showed an
intermediate performance between the ETS and LSTM models. The model reported an MAE
of 165.16, an MSE of 35078.70, and an RMSE of 187.29. This suggests that the GRU model’s
predictions were less accurate than those of the LSTM model, but more accurate than those of the
ETS model. The analysis underscores the LSTM model as the best-performing model, suggesting its
potential for predicting trends in daily COVID-19 cases. The relative performance of these models
highlights their importance in epidemiological forecasting, which can significantly influence the
effectiveness of public health strategies. These insights are crucial for public health decision-making,
enabling more useful projections of disease spread and facilitating timely and effective responses.

Our forecast predicts an increase in new daily infections. As a result, it is imperative to understand
the likely causes of this increase. To gain deeper insights, we implement a mathematical model to
understand the underlying dynamics driving the rise in infections and to identify potential intervention
strategies. These results will indicate which risk factors should be targeted for effective disease control
to reduce the number of people infected with COVID-19 in Gauteng.

4. Numerical simulations of the mathematical model

In this section, we present the results from the numerical simulation of the Model (2.1).

4.1. Model calibration

The epidemic has been ongoing in South Africa for over three years; hence, the model
incorporates the demographic effects. Model (2.1) was fitted to the daily COVID-19 data from
May 2022 to July 2022 for the Gauteng Province in South Africa [42], as shown in Figure 7, while
Figure 8 gives the impact of increasing contact rates due to behavior change on the fitted model.

Figure 7. Model fitting for the Gauteng Province COVID-19 data from May 01, 2022 to
July 23, 2022, using the fminsearch algorithm.
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Figure 8. Model fitting for the Gauteng Province COVID-19 data using the fminsearch
algorithm varying the infection rate β = 0.0135, 0.0357, 0.0800 varied while other
parameters are kept constant as given in Table 4.

The model was calibrated in Matlab using the fminsearch algorithm. The data from [42] used for
this calibration consists of clinical data collected after individuals tested positive for COVID-19. This
model considers the infected individuals with negative behavior, In, as those who, because of stigma
and other factors, never showed up at any hospital or testing center to be tested for COVID-19, but
remained within the community or sought health care from TCM practitioners. However, it is
important to note that there is no existing data for COVID-19-infected individuals with negative
behavior. Therefore, we used the infectious with positive behavior, Ip, class to carry out our model
fitting. It is observed from Figure 7 that the data fits well, and, hence, we estimated some of the
parameters for the model. Table 4 gives the numerical values (or ranges) of the model parameters
used in the simulations. While some parameter values were obtained from existing literature, others
were fitted. The rest of the parameters associated with negative behavior are estimated similarly and
presented in Table 4.

Table 4. Model parameters values used for numerical simulations obtained from literature
and data fitting Figure 7.

Parameter Value Unit Reference

πp, πn
10000

64 × 365
day−1 [47]

p, q 0.7 unit-less [48]
γp,γn 0.0833 day−1 [49]
σp,σn 0.13978 day−1 [48, 49]
κp,κn 0.05 day−1 [50]
ρp,ρn 0.14 day−1 [51]
α 0.0701 day−1 [52]

µ
1

64 × 365
day−1 [53]

δp, δn, δh 0.018 day−1 [49, 52]
ωp, ωn 0.011 day−1 [54]
k 4.4463 day−1 Fitted
β 0.0335 day−1 Fitted
η1, η2, η3, η4 0.1296, 0.0168, 0.0251, 0.0279 unit-less Fitted
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4.2. Global sensitivity analysis

To determine which of the parameters have the highest impact on the outcome of the numerical
simulations of the model, sensitivity analysis [55] is carried out on the entire parameter space of the
model. Figure 9 presents a tornado plot for the partial rank correlation coefficient (PRCC) values
for each parameter of the model, using the baseline values given in Table 4. From Figure 9, it can
be seen that parameters with positive PRCC values (> 0.5) are β, k, πn. Increasing these parameters
consequently increases the reproduction number; hence, it becomes difficult to eliminate COVID-19
within the population, and the model will be driven to an endemic equilibrium. Identifying these key
parameters is crucial in establishing effective control measures for fighting the spread of the COVID-19
disease. On the other hand, the parameter with a negative PRCC value (< 0.5) is γn. Increasing the rate
at which individuals recover naturally or get hospitalized will significantly decrease the reproduction
number; hence, the model will be driven to a disease-free equilibrium. Parameter, δn, though having
an effect on the reproduction number when increased, is not feasible as it is a death-induced rate. The
other parameters in Figure 9 have very small PRCC values and are, therefore, not discussed.

(a)

Figure 9. Tornado plot for the PRCC values of model system (2.1). Parameter values used
are as given in Table 4.

4.3. Impact of human behaviors on the disease dynamics

The dynamics of infection are depicted in the time series plots shown in Figure 10. As seen in
Figure 10(a) initially, an increase in the modification parameter, k,which relates to the force of infection
for individuals exhibiting negative behavior, leads to a rise in the number of infected individuals with
such behavior. However, over time, the dynamics shift. The shaded green area diminishes, suggesting
that when k = 10, there are more infected individuals with negative behavior as compared to scenarios
with smaller k values. The absence of the shaded region over time simply indicates that a reduction in
k, does not reduce the number of infected humans with negative behavior. On the other hand, a similar
situation is observed in Figure 10(b). However, it is observed that over time, there are more infections
when k = 10 and fewer infections are reduced through the reduction of k, as indicated by the smaller
shaded region. Figures 10(c) and 10(d) present time series plots for the effects of the exit rate out of
classes In and Ip over time. It is observed from Figure 10(c) that when there are no infected individuals
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who are either recovering from an infection or getting hospitalized, (γn = 0), then there is an influx
of infected individuals with negative behavior. On the other hand, an increase in the exit rate, γn > 0
presents a significant reduction in the infected population with negative behavior. The green-shaded
region represents the number of infections reduced due to increasing the exit rate. The same pattern
can be observed in Figure 10(d).

(a) (b)

(c) (d)

Figure 10. Impact of the behavior parameters for: (a) Infectious population In for k = 3.4463
and when k = 10, (b) infectious population Ip for k = 3.4463 and when k = 10, (c) infectious
population In for γn = 0 and when γn = 0.0833, and (d) infectious population Ip for γn =

0 and when γn = 0.0833. The shaded area with green and magenta colors represents the
impact of negative and positive behaviors while varying k and γn on In/Ip, respectively. The
remaining parameter values are kept constant, as given in Table 4.

4.4. Effects of parameters on In and Ip

In this section, we explore the impact of parameters η1, η2, η3, k, γn, and γp on the dynamics of our
system. The simulations presented focus specifically on the infectious classes In and Ip. To simulate,
we present the model solutions for varying values of these parameters. As illustrated in Figures 11(a)
and 11(b), an increase in the exit parameters, γn, γp, consequently leads to a decrease in the number
of infected individuals over time for both classes, In and Ip. This is due to more people either getting
hospitalized or recovering from infection. In Figures 11(c) and 11(d), it can be seen that adjusting the
modification parameter, k, results in an increase in the number of infected individuals over time.
Given the presence of hospitalization and recovery processes, we notice that the infected classes
eventually stabilize at a constant value as individuals transition out of these classes. Figure 12(a)
and 12(b) present the dynamics of infection in the presence of varying parameters η1, η2 and k, η3,
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respectively. In Figure 12(a), we observe that an initial rise in infected individuals with positive
behavior is evident when η1 and η2 are increased. However, as time progresses, the number of
infected individuals stabilizes around a constant value after approximately 100 days, reflecting
transitions out of Ip. Similar dynamics are observed in Figure 12(b) where parameters k, and η3 are
varied in the time series for In versus time. We initially observe an increase in the number of infected
individuals when both parameters are increased. Now, due to progression out of class, In as a result of
hospitalization or recovery, the number of infected individuals approaches a constant value over time.

(a) (b)

(c) (d)

Figure 11. Modeling the dynamics of infection through varying the parameters on In and Ip.

(a) (b)

Figure 12. Modeling the dynamics of infection through varying the parameters on In and Ip.
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4.5. Variations of R0 on the infected population

The graphs in Figure 13 show the changes within the population of infected individuals with
negative behavior and those with positive behavior for different values of the threshold quantity R0.

We observe that as the value of R0 increases from low through to average, the population of infected
individuals with negative behavior is higher than that of individuals with positive behavior over time.
This indicates that those with negative behavior have a higher disease-spreading capacity and,
therefore, generate more new infections than those with positive behavior. This points to the
importance of the promotion of control strategies that decrease the practice of various negative
behaviors to achieve disease containment/eradication. An interesting dynamic is also noticed at
approximately 90 days, indicating a switch in the time series trajectories for the infectious individuals
with positive and negative behavior. The epidemiological interpretation links to the onset of the
COVID-19 spread. Most people are hesitant when it comes to taking vaccines and do not adhere to
both pharmaceutical/non-pharmaceutical interventions, leading to more negatively behaved
individuals. However, as the disease progresses and more people get infected and are hospitalized or
die due to the disease, we see a change in human behaviors, as can be seen in Figure 13.

Figure 13. Time series trajectories of the infected population for different values of R0.

4.6. Heat maps for parameters in R0.

This subsection is devoted to using heat maps to numerically simulate some of the key parameters
within the model (2.1) that are responsible for driving infection rates. We simulate the effective
contact rate, (β), and the modification parameters (γn, k) as a function of the basic reproduction
number R0, as shown in Figure 14. It is observed in 14(a) that increasing the modification parameter
for negative behavior k, and the effective contact rate, β, leads to an increase R0. This means that as
the basic reproduction number increases, the population will experience a greater number of
COVID-19 infections, leading to an increased likelihood of individuals either contracting the virus or
requiring hospitalization due to its heightened infectiousness. A similar interpretation applies to
Figure 14(b), portraying k versus γn in relation to R0. The heat maps show that effective control
measures are essential in reducing these key parameters to curb disease transmission.
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(a) (b)

Figure 14. Heat maps of parameters β, γn, and k as a function of R0.

5. Discussion and conclusions

Human behavior plays a crucial role in the transmission and mitigation of COVID-19. This study
has provided valuable insights into the relationship between human behavior and the dynamics of
COVID-19 transmission. By leveraging time series analysis and mathematical modeling, we have
unraveled the intricate dynamics shaping the spread of the virus in relation to human actions and
interventions. Our time series analysis reveals that the LSTM model outperforms other models in
terms of predictive accuracy and suitability for capturing the complex temporal patterns inherent in
COVID-19 data. This finding underscores the effectiveness of deep learning approaches, particularly
LSTM, in modeling and forecasting infectious disease dynamics. The superior performance of the
LSTM model suggests its potential utility in informing public health interventions and decision-making
processes aimed at controlling the spread of COVID-19.

A mathematical model was developed and used to differentiate the total population into individuals
with positive and negative behaviors. This model was used to study COVID-19 infection in the
Gauteng province of South Africa. It incorporated key features associated with disease transmission,
such as the interaction between infectious individuals exhibiting both positive and negative behaviors.
Our modeling framework assessed the effect of human behavior on COVID-19 transmission. The
study revealed that, in the absence of individuals with negative behaviors, COVID-19 outbreaks could
impose a much bigger public health burden in Gauteng and South Africa nationally. Variations of the
basic reproduction number (R0), an epidemiological threshold quantity measuring the disease’s spread
capacity, indicate that the reproduction number is high in the presence of a large number of infectious
individuals with negative behavior and decreases as their number decreases. Additionally, some
isolated infected individuals chose to escape isolation, further contributing to the spread of infections.
Furthermore, this study identifies the main negative human behaviors driving the COVID-19
outbreaks during the disease’s early (pre-intervention) phase. These behaviors include disbelief in the
existence of COVID-19, hiding infections, seeking help from TCM practitioners, and conducting
unsafe burials of deceased individuals. Identifying these critical parameters aids in constructing an
effective control strategy, such as one that minimizes the impact of disbelief in COVID-19 and
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reduces stigmatization and the practice of unsafe burials. This could lead to effective community-wide
control strategies through public health education campaigns. The study demonstrates that COVID-19
outbreaks are controllable using basic and affordable public health control measures. Specifically, a
strategy that convinces community members that COVID-19 is a genuine viral infection and not
merely government propaganda or a spiritual problem and that individuals who recover from it can no
longer transmit the disease could dramatically reduce the infection burden in affected communities.

Other works in literature have shown that medical mistrust and other behaviors exhibited by
humans across the globe significantly impacted the COVID-19 pandemic infection. To substantiate
our claim, see, for instance, mentions of proof of human behaviors in the following countries:
USA [56], South Africa [57], United Kingdom [58], and other country-level analyses [59, 60]
responsible for increasing COVID-19 infection rates. The World Health Organization [60], classified
these negative or positive behaviors exhibited by humans as an infodemic, a rapid and far-reaching
spread of false or misleading information in digital and physical environments during a disease
outbreak. This leads to confusion and risk-taking behaviors that harm health policies and mistrust in
health authorities and undermine public health response [60]. In particular, Mphahlele [57] found that
in many African countries, including South Africa, an infodemic of misinformation propagated by
popular figures, trusted community members/leaders, and fake news and conspiracy theories
surrounding vaccine hesitancy fueled the distrust toward the COVID-19 vaccine and, therefore,
increased the risk of COVID-19 infection. Negative human behavior significantly fueled the
COVID-19 outbreaks in South Africa [57]. People in affected communities generally did not adhere
to preventive measures, often due to mistrust of authorities and the belief that COVID-19 did not
exist; hence, they considered it government propaganda [56, 57].

However, the results obtained in this study were limited by the lack of specific data on COVID-19
for infectious individuals with negative behavior as well as the failure to consider vaccination, which is
a widely used means of control against COVID-19. Despite this weakness, our model remains highly
applicable to real-case scenarios of COVID-19 transmission pathways. In future work, we will take
vaccination into account and extend the mathematical model to study the coinfection of COVID-19
with streptococcus pneumoniae.
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Appendix

Appendix A: Existence, uniqueness, and positivity of solutions

The righthand side of the system (2.1) consists of Lipschitz continuous functions. Picard’s existence
theorem, therefore, guarantees that Model (2.1) has a unique solution.

Theorem 1. The solutions of the system (2.1) are all nonnegative, given that the initial conditions are
nonnegative.

Proof. We assume that there exists a time t̂ such that S p(t̂) = 0, S ′p(t̂) < 0, S p(t) > 0, S n(t) > 0,
Ip(t) > 0, In(t) > 0, Ap(t) > 0, An(t) > 0, H(t) > 0, Rp(t) > 0, Rn(t) > 0 for 0 < t < t̂. From the first
equation of (2.1), we have

Ṡ p(t̂) = πp + ωpRp > 0.

This contradicts the assumption that Ṡ p(t̂) < 0. Therefore S (t) is positive. Similarly, S n(t) > 0,
Ip(t) > 0, In(t) > 0, Ap(t) > 0, An(t) > 0, H(t) > 0, Rp(t) > 0, Rn(t) > 0. □

Theorem 2. The region

Θ =

{
(S p, S n, Ap, An, Ip, In,Rp,Rn,H) ∈ R9

+ : Np(t) ≤
πp

µ
, Nn(t) ≤

πn

µ

}
is the invariant region in which the solutions of system (2.1) are bounded.

Proof. Given that Np(t) = S p(t) + Ap(t) + Ip(t) + Rp(t) + H(t) and Nn(t) = S n(t) + An(t) + In(t) + Rn(t)
then

N′p = (πp − µNp) − (δpIp + (1 − κn)γnIn + δhH),
≤ πp − µNp.

Solving the above differential inequality, we obtain

Np(t) ≤
πp

µ
−

(πp

µ
− Np0

)
exp (−µt).

Therefore,
lim sup

t−→∞
Np(t) =

πp

µ
.

Since Np(t) = S p(t) + Ap(t) + Ip(t) + H(t) + Rp(t), it follows that S p(t) ≤
πp

µ
, Ap(t) ≤

πp

µ
, Ip(t) ≤

πp

µ
,

H(t) ≤
πp

µ
, Rp(t) ≤

πp

µ
.

Also,

Ṅn(t) ≤ πn − µNn.

Hence, we solve the differential inequality and obtain

Nn(t) ≤
πn

µ
−

(
πn

µ
− Nn0

)
exp (−µt).
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Therefore,
lim sup

t−→∞
Nn(t) =

πn

µ
,

and it follows that S n(t) ≤
πn

µ
, An(t) ≤

πn

µ
, In(t) ≤

πn

µ
, Rn(t) ≤

πn

µ
. This clearly shows that all the

solutions of the system (2.1) are bounded, and hence, this completes the proof. □

Appendix B: Forecast error measures

B1: MAE

The MAE measures the mean of the absolute differences between actual and predicted values,
assigning equal significance to errors regardless of their direction or magnitude.

MAE =
1
n

n∑
i=1

|Yi − Ŷi|. (5.1)

B2:MSE

The MSE is the mean of the squared differences between predicted and actual values, magnifying
larger errors due to the squaring process. This metric is valuable for evaluating a model’s precision
comprehensively and is frequently employed in optimization procedures.

MSE =
1
n

n∑
i=1

(Yi − Ŷi)2. (5.2)

B3: RMSE

The RMSE measures the square root of the mean of the squared differences between the actual
and predicted values. RMSE proves valuable for assessing error magnitude across various models and
gauging the scale of discrepancies relative to predicted values.

RMSE =

√√
1
n

n∑
i=1

(Yi − Ŷi)2. (5.3)
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