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Abstract: We presented a novel N = 2 Z2
2-graded supersymmetric quantum mechanics (Z2
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1. Introduction

In our previous work [1], a Z2
2-graded supersymmetric Lagrangian in two-dimensional spacetime

was constructed by the Z2
2-extension of the superfield formalism. The Z2

2-supersymmetry is a higher
graded extension of the supersymmetry, based on the Z2

2-graded superalgebras introduced by Bruce [2].
The Lagrangian given in [1], which isL in (2.5) of the present paper, has very general interaction terms,
and appropriate choices of them give Z2

2-graded supersymmetric extensions of the two-dimensional
integrable systems, for example, the sine(h)-Gordon equation and Liouville equation. The integrability
of these Z2

2-extended equations is an open problem; however, one may expect the existence of a novel
class of integrable systems characterized by the Z2

2-supersymmetry. Indeed, a Z2
2-graded extension of

the sine-Gordon equation, which is different from the one in [1], was introduced and its integrability is
shown by Bruce [3]; this is the only integrable classical system having the Z2

2-supersymmetry known so
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far. Therefore, in order to open up a new field of integrable systems, the study of the classical systems
obtained from L in (2.5) is important.

It is also important to quantize the Lagrangian L, which will give quantum integrable systems. In
the present paper, however, instead of quantizing L, we study the simpler but highly nontrivial case,
that is, Z2

2-supersymmetric quantum mechanics (Z2
2-SQM) obtained from L via dimensional

reduction. The Z2
2-SQM was first introduced by Bruce and Duplij [4], which is N = 1 in our

terminology (see Section 2 for the definition of N). The operators of this Z2
2-SQM close in ordinary

the one-dimensional (1D) super-Poincaré algebra, as well as its Z2
2-counterpart. However, this does

not mean the Z2
2-SQM is trivial, since the Z2

2-SQM shows detectable difference from the ordinary
SQM in multiparticle sectors [5, 6]. The Bruce-Duplij Z2

2-SQM is also extended to N > 1 [7],
Zn

2-grading [8], and conformal symmetries [9].
Our Lagrangian L in (2.5) is N = 1 and defined in two-dimensional spacetime. Reduction of it to

one-dimension gives N = 2 Z2
2-supersymmetric classical mechanics. We quantize 1D system using a

Z2
2-graded extension of the Dirac-Bergmann method of constrained systems [10,11]. This gives us a Z2

2-

SQM, which has different features from the Z2
2-SQMs mentioned above (see Section 4). In particular,

the Z2
2-SQM obtained is a two-dimensional or two-particle (with the same mass) quantum mechanics

and the left and right movers are separated in the light cone coordinates. Furthermore, it is realized
by 8 × 8 matrix differential operators, which correspond to the eight-dimensional irrep of N = 2 Z2

2-
supersymmetry algebra [12], and it is the first example of the quantum mechanical realization of the
irrep.

It is well known that SQMs are closely related to solvable potentials through the factorization of
Hamiltonian (see, e.g., [13–15]). It is also known that Z2

2-graded algebraic structure appears in simple
solvable systems in quantum mechanics [16–18]. We therefore expect the Z2

2-SQMs to have a deep
connection with solvable quantum mechanical systems.

Before proceeding further, we mention some works discussing Z2
2-graded algebraic structure in

physics. Vasiliev pointed out that the symmetry group of SUGRA in de Sitter spacetime is enhanced
to Z2

2-graded superalgebra [19]. The quasi-spin formalism is generalized to higher graded algebra
in [20], and the superconformal symmetry in two-dimension is also generalized to Z2

2-graded
setting [21]. Equivalence between algebraic structures generated by parastatistics triple relations of
Green and Greenberg–Messiah and certain orthosymplectic Z2

2-graded superalgebras is pointed out
in [22]. This observation of Z2

2-graded superalgebras in parastatistics leads to further development of
parastatistics representations of Z2

2-graded superalgebras [23–25]. We also comment that the
paraparticles are simulated recently by using a trapped ion [26].

There are some proposals of Zn
2-graded extensions of the spacetime supersymmetry [27–30],

which are related to higher graded SQMs. Regarding the higher graded supersymmetry, we mention
the bosonization [31], sigma model [32], and n-bit extension of parastatistics [33]. A precise analysis
of the Z2

2-graded superfield formulation of Z2
2-supersymmetry has recently been done [12, 34, 35]. The

Z2
2-graded superfield formulation is the simplest example of higher supergeometry, which was started

in [36] (see [37, 38] for a concise review of the higher supergeometry). Integration over the
Z2

2-superspace is a necessary ingredient of the superfield formulation. There are some different ideas
of integration, and one of them recently proposed by two of the present authors is suitable for the
superfield formulation [39].
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This paper is organized as follows: In the next section, we recall the definition of the Z2
2-graded

Lie superalgebras and collect the results from [1], which we need in the present work. In Section 3,
we investigate the classical aspects of the 1D system obtained by dimensional reduction. The 1D
Lagrangian is derived from the 2D one, and equations of motion and conserved Noether charges are
computed explicitly. The Lagrangian is singular, but all the constraints are second class. We thus
develop a Z2

2-extension of the Dirac-Bargmann method suitable to the present model to quantize the
system. We also observe the increase of the Z2

2-supersymmetry from N = 1 to N = 2. Section 4
is devoted to the study of the quantized system. The quantum operators are realized in terms of the
eight-dimensional real irrep of the Clifford algebra Cl (4, 2). The use of light cone coordinates provides
separation of variables. This allows us to easily study the ground states of the Hamiltonian. We close
the paper with a short summary and some remarks in Section 5.

2. Preliminaries

Let us first recall the definition of Z2
2-graded Lie superalgebras [40, 41] (see also [42, 43]). A Z2

2-
graded vector space (over R or C) is the direct sum of homogeneous vector subspaces labeled by an
element of Z2

2:
g = g(0,0) ⊕ g(1,1) ⊕ g(1,0) ⊕ g(0,1).

An element of ga⃗ is said to have the Z2
2-degree a⃗ ∈ Z2

2. We define the Z2
2-Lie bracket by

JX,YK = XY − (−1)a⃗·⃗bYX, X ∈ ga⃗, Y ∈ gb⃗, (2.1)

where a⃗ · b⃗ is the standard scalar product of two-dimensional vectors, namely, the Z2
2-Lie bracket is

the commutator (anti-commutator) for a⃗ · b⃗ is even (odd). A Z2
2-graded vector space is said to be a

Z2
2-graded Lie superalgebra if JX,YK ∈ ga⃗+b⃗, and the Jacobi identity is satisfied:

JX, JY,ZKK = JJX,YK,ZK + (−1)a⃗·⃗bJY, JX,ZKK.

If JX,YK = 0, we say that X and Y are Z2
2-commutative. We also define the even and odd subspaces of

g by g(0,0) ⊕ g(1,1) and g(1,0) ⊕ g(0,1), respectively.
The Z2

2-graded Lie superalgebra considered in [1], which is denoted simply by g, is five-dimensional
and the Z2

2-degree assignment is as follows:

H ∈ g(0,0), Z, L11 ∈ g(1,1), Q10 ∈ g(1,0), Q01 ∈ g(0,1). (2.2)

Their nonvanishing Z2
2-Lie brackets, in terms of commutator or anti-commutator, are given by

{Q10,Q10} = {Q01,Q01} = 2H, [Q10,Q01] = iZ,

[L11,H] =
i
2

Z, [L11,Z] = 2iH,

{L11,Q10} = −
1
2

Q01, {L11,Q01} =
1
2

Q10. (2.3)

The subalgebra ⟨H,Q10,Q01,Z⟩ is the Z2
2-supersymmetry algebra introduced in [2]. We refer to this

algebra as N = 1 since each odd subspace has only one element.
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We consider the eight real fields with Z2
2-grading defined in two-dimensional spacetime

φ00(t, x), A00(t, x), A11(t, x), φ11(t, x),
ψ10(t, x), λ10(t, x), ψ01(t, x), λ01(t, x), (2.4)

where the suffices indicate their Z2
2-degree and the fields are Z2

2-commutative. It is shown in [1] that
the following action is invariant under the transformations generated by g:

S =
∫

dt dxL, L = Lkin +Lint,

Lkin =
1
2

(φ̇2
00 − φ

′
00

2 + φ̇2
11 − φ

′
11

2) + 2A2
00 + 2A2

11

+ i(ψ10ψ̇10 + ψ01ψ̇01 + λ10λ̇10 + λ01λ̇01) − i(ψ10λ
′
10 − ψ

′
10λ10 − ψ01λ

′
01 + ψ

′
01λ01),

Lint = −2α
(
A11V00 + A00V11

)
+ 2α

(
(ψ10ψ01 + λ10λ01)∂00V00 + i(ψ10λ10 + ψ01λ01)∂00V11

)
, (2.5)

where α is a degree (1, 1) coupling constant and V00,V11 are functions of φ00, φ11 satisfying

∂00V00(φ00, φ11) = ∂11V11(φ00, φ11), ∂11V00(φ00, φ11) = ∂00V11(φ00, φ11) (2.6)

with
∂00 :=

∂

∂φ00
, ∂11 :=

∂

∂φ11
. (2.7)

H and Z are the generator of the translations of t and x, respectively. Q10 and Q01 are supercharges
mixing up even (bosonic) and odd (fermionic) fields and changing the degree by (1, 0) and (0, 1),
respectively. L11 is the degree (1, 1) Lorentz transformation, which gives rise to mixture among bosonic
(fermionic) fields with different degrees. The transformation generated by Z and L11 disappears after
the reduction to one-dimensional spacetime due to the nonexistence of space translationa and Lorentz
transformation. Explicit form of the transformations are given in the equations (3.28)–(3.32) of [1].
The matrix presentation of the generators is found in (3.34)–(3.37) of [1].

As is seen from the Lagrangian (2.5), A00, A11 are auxiliary, i.e., their equations of motion are given
by the algebraic equation

A00 =
α

2
V11, A11 =

α

2
V00. (2.8)

Using these relations, we remove the auxiliary fields.

3. 1D: classical mechanics

3.1. Lagrangian and equations of motion

We make the dimensional reduction (t, x) → (t), then, we have the world-line Z2
2-supersymmetric

Lagrangian from (2.5):

L =
1
2

(φ̇2
00 + φ̇

2
11) + i(ψ10ψ̇10 + ψ01ψ̇01 + λ10λ̇10 + λ01λ̇01)

+ 2A2
00 + 2A2

11 − 2α
(
A11V00 + A00V11

)
+ 2α

(
(ψ10ψ01 + λ10λ01)∂00V00 + i(ψ10λ10 + ψ01λ01)∂00V11

)
. (3.1)
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This Lagrangian is invariant under the following transformations generated by g which is the one-
dimensional reduction of (3.28)–(3.32) of [1]:

(i) Transformations by H and Z

δ00 f (t, x) = −
ϵ00

2
∂t f (t, x), δ11 f (t, x) = 0, for any component fields. (3.2)

(ii) Transformations by Q10

δ10φ00 = − iϵ10ψ10, δ10φ11 =ϵ10λ01,

δ10ψ10 =
1
2
ϵ10φ̇00, δ10λ01 = −

i
2
ϵ10φ̇11,

δ10ψ01 =iϵ10A11, δ10λ10 =ϵ10A00,

δ10A11 = −
1
2
ϵ10ψ̇01, δ10A00 = −

i
2
ϵ10λ̇10. (3.3)

(iii) Transformations by Q01

δ01φ00 = − iϵ01ψ01, δ01φ11 =ϵ01λ10,

δ01ψ10 =iϵ01A11, δ01λ01 =ϵ01A00,

δ01ψ01 =
1
2
ϵ01φ̇00, δ01λ10 = −

i
2
ϵ01φ̇11,

δ01A11 = −
1
2
ϵ01ψ̇10, δ01A00 = −

i
2
ϵ01λ̇01. (3.4)

Using the equations of motion (2.8), we get rid of V00,V11 (instead of A’s) so that the coupling
constant is absorbed into A’s and does not appear in L. We change the notations W00 = A00,W11 = A11

as they will be the potentials of our model, then our Lagrangian reads

L =
1
2

(φ̇2
00 + φ̇

2
11) + i(ψ10ψ̇10 + λ10λ̇10 + ψ01ψ̇01 + λ01λ̇01)

− 2W2
00 − 2W2

11 + 4(ψ10ψ01 + λ10λ01)∂00W11 + 4i(ψ10λ10 + ψ01λ01)∂00W00, (3.5)

and the constraints (2.6) are given by

∂00W00 = ∂11W11, ∂00W11 = ∂11W00. (3.6)

We present here an example of the potentials satisfying the constraints:

W00 = eφ00 coshφ11, W11 = eφ00 sinhφ11. (3.7)

The conserved charges corresponding to the transformations (3.2)–(3.4) are obtained from the
formulas (3.47)–(3.50) of [1]:

H =
1
2

(φ̇2
00 + φ̇

2
11) + 2W2

00 + 2W2
11 − 4(ψ10ψ01 + λ10λ01)∂00W11 − 4i(ψ10λ10 + ψ01λ01)∂00W00,

Z = 0,
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Q10 =
√

2(φ̇00ψ10 − iφ̇11λ01 + 2W00λ10 + 2iW11ψ01),

Q01 =
√

2(φ̇00ψ01 − iφ̇11λ10 + 2W00λ01 + 2iW11ψ10). (3.8)

The charge Z vanishes as the operator Z does not generate any transformation, cf. (3.2).
We now introduce the complex femionic variables:

ξ := ψ10 + iλ10, η := ψ01 + iλ01. (3.9)

The Lagrangian (3.5) becomes (up to total time derivative)

L =
1
2

(φ̇2
00 + φ̇

2
11) + i(ξ̄ξ̇ + η̄η̇) − 2W2

00 − 2W2
11

+ 2(η̄ξ + ξ̄η)∂00W11 + 2(ξ̄ξ + η̄η)∂00W00. (3.10)

The equations of motion derived from the Lagrangian are given by

φ̈00 + 4W00∂00W00 + 4W11∂00W11 − 2(η̄ξ + ξ̄η)∂2
00W11 − 2(ξ̄ξ + η̄η)∂2

00W00 = 0,

φ̈11 + 4W00∂11W00 + 4W11∂11W11 − 2(η̄ξ + ξ̄η)∂2
00W00 − 2(ξ̄ξ + η̄η)∂2

00W11 = 0,

iψ̇10 + 2ψ01∂00W11 + 2iλ10∂00W00 = 0,

iλ̇10 + 2λ01∂00W11 − 2iψ10∂00W00 = 0,

iψ̇01 + 2ψ10∂00W11 + 2iλ01∂00W00 = 0,

iλ̇01 + 2λ10∂00W11 − 2iψ01∂00W00 = 0. (3.11)

In terms of the complex fermions, the conserved Noether charges Q10 and Q01 split into two parts
which are conjugate to each other; see (3.18).

3.2. Hamiltonian formalism

When we switch from Lagrangian theory to Hamiltonian theory, we have to be careful about the
order of Z2

2-commutative variables and their derivatives, since the derivatives are also Z2
2-commutative

among themselves and have nontrivial relations with the Z2
2-graded variables [11]. We describe our

conventions below.
First, we define the conjugate momentum by

pq := L
←−
∂ q, q ∈ {φ00, φ11, ξ, ξ̄, η, η̄}. (3.12)

Explicitly,
p00 = φ̇00, p11 = φ̇11, pξ = iξ̄, pη = iη̄, pξ̄ = pη̄ = 0. (3.13)

We see that, as the standard supersymmetry, our model is a constrained system. Here, we employ the
Dirac-Bergman method for constrained systems. The constraints are given by

ϕξ = pξ − iξ̄, ϕξ̄ = pξ̄, ϕη = pη − iη̄, ϕη̄ = pη̄. (3.14)
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The Hamiltonian and the total Hamiltonian involving the constraints are defined by

H =
∑

q

pqq̇ − L =
1
2

(p2
00 + p2

11) + 2W2
00 + 2W2

11 − 2(η̄ξ + ξ̄η)∂00W11 −
(
[ξ̄, ξ] + [η̄, η]

)
∂00W00 (3.15)

and
HT := H + αξϕξ + αξ̄ϕξ̄ + αηϕη + αη̄ϕη̄, (3.16)

where the Lagrange multiplier αq has the same degree as q. The Hamilton’s equations of motion
equivalent to the Euler-Lagrange Eq (3.11) are given by

q̇ =
−→
∂ pqH , ṗq = −H

←−
∂ q. (3.17)

The Hamiltonian (3.15) is, of course, identical to the conserved Noether charge H in (3.8). The
supercharges in complex notations split into two parts:

Q10 = Q10 + Q̄10, Q01 = Q01 + Q̄01 (3.18)

with

Q10 =
1
√

2

(
(p00 − 2iW00)ξ − (p11 − 2iW11)η

)
,

Q̄10 =
1
√

2

(
(p00 + 2iW00)ξ̄ + (p11 + 2iW11)η̄

)
,

Q01 =
1
√

2

(
(p00 − 2iW00)η − (p11 − 2iW11)ξ

)
,

Q̄01 =
1
√

2

(
(p00 + 2iW00)η̄ + (p11 + 2iW11)ξ̄

)
. (3.19)

Now we introduce the Z2
2-version of the Poisson bracket

{A, B}PB := AΓ̂B − (−1)a⃗·⃗bBΓ̂A, Γ̂ :=
∑

q

←−
∂ q
−→
∂ pq , a⃗ := deg A. (3.20)

It is straightforward to verify that the Poisson bracket satisfies the following relations:

{A, B}PB = −(−1)a⃗·⃗b{B, A}PB,

{A, BC}PB = {A, B}PBC + (−1)a⃗·⃗bB{A,C}PB,

{A, {B,C}PB}PB = {{A, B}PB,C}PB + (−1)a⃗·⃗b{B, {A,C}PB}PB. (3.21)

The constraints (3.14) are the second class as there exist nonvanishing Poisson brackets:

{ϕξ, ϕξ̄}PB = {ϕη, ϕη̄}PB = −i. (3.22)

The time evolution of the constraints determined by the equation ϕ̇q = {ϕq,HT }PB is summarized as

(ϕ̇ξ, ϕ̇ξ̄, ϕ̇η, ϕ̇η̄) = ({ϕξ,H}PB, {ϕξ̄,H}PB, {ϕη,H}PB, {ϕη̄,H}PB) + (αξ, αξ̄, αη, αη̄)∆ = 0, (3.23)
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where

∆ :=


−{ϕξ, ϕξ}PB −{ϕξ̄, ϕξ}PB {ϕη, ϕξ}PB {ϕη̄, ϕξ}PB

−{ϕξ, ϕξ̄}PB −{ϕξ̄, ϕξ̄}PB {ϕη, ϕξ̄}PB {ϕη̄, ϕξ̄}PB

{ϕξ, ϕη}PB {ϕξ̄, ϕη}PB −{ϕη, ϕη}PB −{ϕη̄, ϕη}PB

{ϕξ, ϕη̄}PB {ϕξ̄, ϕη̄}PB −{ϕη, ϕη̄}PB −{ϕη̄, ϕη̄}PB

 = i
(
σ1 0
0 σ1

)
. (3.24)

This relation determines the Lagrange multiplier

(αξ, αξ̄, αη, αη̄) = −({ϕξ,H}PB, {ϕξ̄,H}PB, {ϕη,H}PB, {ϕη̄,H}PB)∆−1

= i({ϕξ̄,H}PB, {ϕξ,H}PB, {ϕη̄,H}PB, {ϕη,H}PB). (3.25)

More explicitly, we have the expressions:

αξ = −2iη ∂00W11 − 2iξ ∂00W00,

αξ̄ = −2iη̄ ∂00W11 + 2iξ̄ ∂00W00 = αξ,

αη = −2iξ ∂00W11 − 2iη ∂00W00,

αη̄ = −2iξ̄ ∂00W11 + 2iη̄ ∂00W00 = αη. (3.26)

With this data, one may define a Z2
2-version of the Dirac bracket by

{A, B}DB := {A, B}PB +
∑
q,q′
{A, ϕq}PB ∆

−1
qq′ {ϕq′ , B}PB

= {A, B}PB − i{A, ϕξ}PB{ϕξ̄, B}PB − i{A, ϕξ̄}PB{ϕξ, B}PB

− i{A, ϕη}PB{ϕη̄, B}PB − i{A, ϕη̄}PB{ϕη, B}PB. (3.27)

It is not difficult to verify that the Dirac bracket satisfies the same relations in (3.21) as the Z2
2-Poisson

bracket.
One may easily find that the nonvanishing Dirac brackets for the canonical variables are the

following
{φ00, p00}DB = {φ11, p11}DB = {ξ, pξ}DB = {η, pη}DB = 1. (3.28)

Using (3.13), the Dirac brackets for the fermionic variables are converted into the form:

{ξ, ξ̄}DB = {η, η̄}DB = −i. (3.29)

We introduce the quantity of Z2
2-degree (1, 1):

Z = −p00 p11 − 4W00W11 + 2∂00W00(ξ̄η + η̄ξ) + ∂00W11([ξ̄, ξ] + [η̄, η]). (3.30)

One may verify that H ,Qa, Q̄a,Z close in the N = 2 extended Z2
2-supersymmetry algebra whose

nonvanishing Dirac brackets are given by

{Q10, Q̄10}DB = {Q01, Q̄01}DB = −iH ,

{Q̄10,Q01}DB = −{Q10, Q̄01}DB = iZ. (3.31)

The combinedN = 1 supercharges (3.18) satisfy theN = 1 Z2
2-supersymmetry algebra with vanishing

Z:
{Q10,Q10}DB = {Q01,Q01}DB = −2iH , {Q10,Q01}DB = 0. (3.32)
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4. N = 2 Z2
2-supersymmetric quantum mechanics

We quantize the system discussed in Section 3.2, which means that the Dirac bracket is replaced
with the Z2

2-Lie bracket (ℏ = 1):

{A, B}DB →
1
i
JA, BK (4.1)

This gives the following nonvanishing (anti) commutators

[φ00, p00] = [φ11, p11] = i, {ξ, ξ†} = {η, η†} = 1, (4.2)

and all the following vanishes:

{ξ, ξ}, {ξ†, ξ†}, {η, η}, {η†, η†},

[ξ, η], [ξ, η†], [ξ†, η], [ξ†, η†],
{c11, ξ}, {c11, η}, {c11, ξ

†}, {c11, η
†}, c11 = φ11, p11, (4.3)

where and in what follows, we use “dagger” instead of “bar” for the hermitian conjugation of the
quantum operators.

By using the real representation of the Clifford algebra Cl (4, 2) [44–46], the relations (4.2) and (4.3)
are realized by matrix differential operators. In this realization, the Z2

2-grading is carried by the matrices
which means that if there are nonzero entries in one of the following blocks, the matrix has the indicated
Z2

2-degree: 
(0, 0) (1, 1) (1, 0) (0, 1)
(1, 1) (0, 0) (0, 1) (1, 0)
(1, 0) (0, 1) (0, 0) (1, 1)
(0, 1) (1, 0) (1, 1) (0, 0)

 . (4.4)

The Clifford algebra Cl (4, 2) is generated by γi, i = 1, 2, . . . 6, which is subject to the relations

{γi, γ j} = 2ηi j, η = diag(1, 1, 1, 1,−1,−1). (4.5)

We introduce the anti-commuting matrices X,Y, A and the identity matrix I:

I :=
(
1 0
0 1

)
, X :=

(
1 0
0 −1

)
, Y :=

(
0 1
1 0

)
, A :=

(
0 1
−1 0

)
, (4.6)

then the real irrep of Cl (4, 2) is given by

γ1 = XII, (0, 0), γ2 = YII, (1, 0), γ3 = AAI, (0, 1),
γ4 = AYA, (0, 1), γ5 = AXI, (1, 0), γ6 = AYX, (0, 1), (4.7)

where a word consisting of these matrices is understood as the tensor product, e.g.,

XYA = X ⊗ Y ⊗ A,

and the Z2
2-degree of γi is also indicated. With this eight-dimensional irrep, the Z2

2-graeded quantum
operators are realized as:

φ00 =x0I8, p00 = − i∂x0 I8, (4.8)
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φ11 =x1Γ, p11 = − i∂x1Γ, (4.9)

ξ =
i
2

(γ1γ5 + iγ3γ4γ5), ξ† = −
i
2

(γ1γ5 − iγ3γ4γ5), (4.10)

η =
1
2

(γ3 + iγ4), η† =
1
2

(γ3 − iγ4), (4.11)

where
I8 = III, Γ = −γ3γ4γ5γ6,

and x0, x1 ∈ R. The degree (1, 1) function W11 is also realized by the matrix Γ and the constraints (3.6)
read as follows:

W11 = W̃00(x0, x1)Γ, ∂x0W00 = ∂x1W̃00, ∂x1W00 = ∂x0W̃00, (4.12)

where W̃00 is a degree (0, 0) function. Therefore, we get the two-dimensional or two-particle (same
mass) quantum mechanical system in this realization.

The quantized N = 2 supercharges (3.19) are given by

Q10 = aξ − bΓη, Q
†

10 = a†ξ† + b†Γη†, (4.13)

Q01 = aη − bΓξ, Q
†

01 = a†η† + b†Γξ†, (4.14)

where
a :=

1
√

2
(−i∂x0 − 2iW00)

and
b :=

1
√

2
(−i∂x1 − 2iW̃00).

We introduce the new operators

A :=
1
√

2
(a + b), B :=

1
√

2
(a − b), (4.15)

and the unitary matrix which diagonalize the Hamiltonian (3.15)

U =



1 0
0 1

0 1
1 0

i
√

2
− i
√

2
1
√

2
1
√

2
− i
√

2
i
√

2
1
√

2
1
√

2


. (4.16)

We then have N = 2 Z2
2-SQM:

H̃ := U†HU = diag(H1,H2,H1,H2,H3,H4,H3,H4), (4.17)
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where

H1 =AA† + B†B, H2 =A†A + BB†,

H3 =AA† + BB†, H4 =A†A + B†B (4.18)

with the supercharges

Q̃10 :=U†Q10U =



0 A
0 iB

0 −iA
0 B

B iA
0 0

−iB A
0 0


, (4.19)

Q̃01 :=U†Q01U =



0 iA
0 B

0 −A
0 iB

−B iA
0 0

iB A
0 0


, (4.20)

and their hermitian conjugation. Furthermore, we have the nonvanishing degree (1, 1) operator (3.30)

Z̃ :=U†ZU =



Z1

Z2

Z†1
Z†2

Z3

Z4

Z†3
Z†4


, (4.21)

where

Z1 = − AA† + B†B = Z†1 , Z2 = − A†A + BB† = Z†2 ,

Z3 =i(AA† − BB†) = −Z†3 , Z4 = − i(A†A − B†B) = −Z†4 . (4.22)

The products of A, A† and B, B† are given by

A†A = −
1
4

(∂x0 + ∂x1)
2 +W2

00 + W̃2
00 − ∂x0W00 − ∂x0W̃00 + 2W00W̃00,

AA† = A†A + 2∂x0W00 + 2∂x0W̃00, (4.23)
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and

B†B = −
1
4

(∂x0 − ∂x1)
2 +W2

00 + W̃2
00 − ∂x0W00 + ∂x0W̃00 − 2W00W̃00,

BB† = B†B + 2∂x0W00 − 2∂x0W̃00, (4.24)

where we used (4.12) to have these formulae. The relations (4.12) are also used to see that the
nonvanishing commutation relations among A†, A, B†, B are the following:

[A, A†] =2∂x0W00 + 2∂x0W̃00, [B, B†] =2∂x0W00 − 2∂x0W̃00. (4.25)

It is not difficult to verify that H̃ , Q̃a, Q̃
†
a and Z̃ forms the N = 2 Z2

2-supersymmetry algebra whose
nonvanishing relations are given by

{Q̃10, Q̃
†

10} = {Q̃01, Q̃
†

01} = H̃ , [Q̃10, Q̃
†

01] = −[Q̃†10, Q̃01] = Z̃. (4.26)

It is also immediate that the combinedN = 1 supercharges (3.18) satisfy theN = 1 Z2
2-supersymmetry

algebra with vanishing Z:

{Q10,Q10} = {Q01,Q01} = 2H , [Q10,Q01] = 0. (4.27)

One may also see from (4.17) and (4.21) that Z̃2 , H̃2. This is the sharp contrast to the Z2
2-SQMs

discussed in the literature [4, 7, 11] where one always observes that Z2 = H2. The relation Z̃2 , H̃2

implies that our Z2
2-SQM is a quantum mechanical realization of an eight-dimensional irrep of N = 2

Z2
2-supersymmetry algebra. In [12], it is shown that irreps of theN = 2 Z2

2-supersymmetry algebra are
four-dimensional if Z̃2 = H̃2, but eight-dimensional otherwise. Our Z2

2-SQM is the first example of
the physical realization of eight-dimensional irrep of the Z2

2-supersymmetry algebra.
The formulae (4.23) and (4.24) suggest the introduction of the light cone coordinates

x+ := x0 + x1, x− := x0 − x1. (4.28)

The constraints in (4.12) become

∂+W00(x+, x−) =∂+W̃00(x+, x−), (4.29)
∂−W00(x+, x−) = − ∂−W̃00(x+, x−), (4.30)

and these differential equations may be solved to give the separation of left and right movers

W00(x+, x−) =
1
2

(
W ′
+(x+) +W ′

−(x−)
)
, (4.31)

W̃00(x+, x−) =
1
2

(
W ′
+(x+) −W ′

−(x−)
)
, (4.32)

where the prime stands for the derivative. The operators (4.15) in the light cone coordinates yield the
standard ones in the SQM:

A = −i∂+ − iW ′
+, B = −i∂− − iW ′

−, (4.33)
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which give the following:

A†A = −∂2
+ + (W ′

+)
2 −W ′′

+ , AA† = −∂2
+ + (W ′

+)
2 +W ′′

+ , (4.34)
B†B = −∂2

− + (W ′
−)

2 −W ′′
− , BB† = −∂2

− + (W ′
−)

2 +W ′′
− .

The Hilbert space of our Z2
2-SQM is H = L2(R) ⊗ C8, and the space is also Z2

2-graded:

H = H(0,0) ⊕ H(1,1) ⊕ H(1,0) ⊕ H(0,1). (4.35)

The algebra (4.26) implies that the Hamilotonian H̃ (4.17) is positive semi-definite. This is also seen
from the component Hamiltonian Hk (4.18), all of which are also positive semi-definite. The zero
energy ground state Ψ0 of H̃ is determined by

Q̃aΨ0 = Q̃
†
aΨ0 = 0. (4.36)

This is equivalent to finding the zero energy states of the component Hamiltonian Hkψ
(k)
0 = 0. More

explicitly, ψ(k)
0 are solutions of the equations

A†ψ(1)
0 = Bψ(1)

0 = 0, Aψ(2)
0 = B†ψ(2)

0 = 0,

A†ψ(3)
0 = B†ψ(3)

0 = 0, Aψ(4)
0 = Bψ(4)

0 = 0. (4.37)

It is easy to solve these equations:

ψ(1)
0 = exp (W+) exp (−W−) , ψ(2)

0 = exp (−W+) exp (W−) ,

ψ(3)
0 = exp (W+) exp (W−) , ψ(4)

0 = exp (−W+) exp (−W−) . (4.38)

It is also easy to see that only one of them is normalizable. For instance, if ψ(1)
0 is normalizable, all other

functions are not normalizable. Therefore, the possible ground state is one of the following (c ∈ C is a
constant):

(ψ(1)
0 , 0, cψ(1)

0 , 0, 0, 0, 0, 0) ∈ H(0,0) ⊕ H(1,1),

(0, ψ(2)
0 , 0, cψ(2)

0 , 0, 0, 0, 0) ∈ H(0,0) ⊕ H(1,1),

(0, 0, 0, 0, ψ(3)
0 , 0, cψ(3)

0 , 0) ∈ H(1,0) ⊕ H(0,1),

(0, 0, 0, 0, 0, ψ(4)
0 , 0, cψ(4)

0 ) ∈ H(1,0) ⊕ H(0,1). (4.39)

Therefore, the ground state is either nonexistent or two-fold degenerate and belongs to H(0,0) ⊕H(1,1)

or H(1,0) ⊕ H(0,1).

5. Conclusions

In order to investigate a quantum theory which is relating to the N = 1 Z2
2-supersymmetric

Lagrangian (2.5), we studied the Z2
2-SQM obtained from the Lagrangian by dimensional reduction.

The dimensional reduction increases the supersymmetry from N = 1 to N = 2, and we employed the
Z2

2-extended Dirac-Bargmann method to quantize the system. The Z2
2-SQM obtained is a

two-dimensional or two-particle quantum system in which the right and left movers are separated. It
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is also a quantum mechanical realization of the eight-dimensional irrep of N = 2 Z2
2-supersymmetry

algebra discussed in [12]. Moreover, it is the first Z2
2-SQM with Z̃2 , H̃2.

There is a large freedom of choice of the super potential W±(x±). The simplest but interesting
choice is the harmonic oscillator, since we may have a larger symmetry. In [47], it is shown that the
largest spectrum generating algebra of the supersymmetric harmonic oscillator is the semidirect sum
of osp(2|2) and 1D Heisenberg superalgebra. However, one may easily verify that the operators in
the article also close in a Z2

2-graded Lie superalgebra. If we consider the Z2
2-supersymmetric harmonic

oscillator, then the largest spectrum generating algebra will be higher graded than the Z2
2-grading.

Another interesting choice is the Calogero type potential, which will give a conformal extension of the
present Z2

2-SQM. This potential is also interesting from the viewpoint of representations since it will
give a representation of Z2

2-osp(1|2) [48].
As seen in Section 4, the Hamiltonian of our Z2

2-SQM is a sum of factorized operators. This implies
that the Z2

2-SQM is related to some solvable potentials. Recall that many solvable potential is a 1D
single particle problem, but our Hamiltonian is 2D (or two-particle), so we expect there are some
solvable quantum models that have not yet been recognized. The search of such models will be an
interesting future work.

Use of AI tools declaration

The authors declare they have not used Artificial Intelligence (AI) tools in the creation of this article.

Acknowledgments

Naruhiko Aizawa is supported by JSPS KAKENHI Grant Number JP23K03217.

Conflict of interest

All authors declare no conflicts of interest in this pape.

References

1. N. Aizawa, R. Ito, T. Tanaka, Z2
2-graded supersymmetry via superfield on minimal Z2

2-superspace,
ArXiv, 2023.

2. A. J. Bruce, On a Zn
2-graded version of supersymmetry, Symmetry, 11 (2019), 116.

https://doi.org/10.3390/sym11010116

3. A. J. Bruce, Is the Z2 × Z2-graded sine-Gordon equation integrable? Nucl. Phys. B, 971 (2021),
115514. https://doi.org/10.1016/j.nuclphysb.2021.115514

4. A. J. Bruce, S. Duplij, Double-graded supersymmetric quantum mechanics, J. Math. Phys., 61
(2020), 063503. https://doi.org/10.1063/1.5118302

5. F. Toppan, Z2×Z2-graded parastatics in multiparticle quantum Hamiltonians, J. Phys. A, 54 (2021),
115203. https://doi.org/10.1088/1751-8121/abe2f2

AIMS Mathematics Volume 9, Issue 5, 10494–10510.

http://dx.doi.org/https://doi.org/10.3390/sym11010116
http://dx.doi.org/https://doi.org/10.1016/j.nuclphysb.2021.115514
http://dx.doi.org/https://doi.org/10.1063/1.5118302
http://dx.doi.org/https://doi.org/10.1088/1751-8121/abe2f2


10508

6. F. Toppan, Inequivalent quantizations from gradings and Z2×Z2 parabosons, J. Phys. A, 54 (2021),
355202. https://doi.org/10.1088/1751-8121/ac17a5

7. N. Aizawa, K. Amakawa, S. Doi, N-extension of double-graded supersymmetric and
superconformal quantum mechanics, J. Phys. A, 53 (2020), 065205. https://doi.org/10.1088/1751-
8121/ab661c

8. N. Aizawa, K. Amakawa, S. Doi, Zn
2-graded extensions of supersymmetric quantum mechanics via

Clifford algebras, J. Math. Phys., 61 (2020), 052105. https://doi.org/10.1063/1.5144325

9. S. Doi, N. Aizawa, Z3
2-Graded extensions of Lie superalgebras and superconformal quantum

mechanics, Symmetry Integr. Geom., 17 (2021), 071. https://doi.org/10.3842/SIGMA.2021.071

10. N. Aizawa, Z. Kuznetsova, F. Toppan, Z2 × Z2-graded mechanics: the classical theory, Eur. Phys.
J. C, 80 (2020), 668. https://doi.org/10.1140/epjc/s10052-020-8242-x

11. N. Aizawa, Z. Kuznetsova, F. Toppan, Z2 × Z2-graded mechanics: the quantization, Nucl. Phys. B,
967 (2021), 115426. https://doi.org/10.1016/j.nuclphysb.2021.115426

12. N. Aizawa, S. Doi, Irreducible representations of Z2
2-graded N = 2 supersymmetry algebra and

Z2
2-graded supermechanics, J. Math. Phys., 63 (2022), 091704. https://doi.org/10.1063/5.0100182

13. G. Junker, Supersymmetric methods in quantum and statistical mechanics, Springer, 1996.
https://doi.org/10.1007/978-3-642-61194-0

14. B. Bagchi, Supersymmetry in quantum and classical mechanics, Chapman & Hall/CRC, 2001.
https://doi.org/10.1201/9780367801670

15. S. H. Dong, Factorization method in quantum mechanics, Springer, 2007.
https://doi.org/10.1007/978-1-4020-5796-0

16. J. Beckers, N. Debergh, On colour superalgebras in parasupersymmetric quantum mechanics, J.
Phys. A, 24 (1991), L597. https://doi.org/10.1088/0305-4470/24/11/005

17. N. Aizawa, Z. Kuznetsova, H. Tanaka, F. Toppan, Z2 × Z2-graded Lie symmetries
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