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was presented. Under the hypotheses that the third and fourth order derivatives of nonlinear function
were bounded, the local convergence of a new fourth-order method was studied. The error estimate, the
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1. Introduction

In this paper, we are concerned with the problem of approximating a solution s∗ of the equation

p′(x) = 0, (1.1)

where the differentiable function p is defined in a convex subset N in real space R.
The above issue plays an important role in many applications, particularly in function

optimization [1–4]. The K-T (Kuhn-Tucker) condition [5] for the no restriction optimal problem

min p(x), (1.2)

claims that if p is a sufficiently differentiable function, the optimal solution for (1.2) must be a solution
of (1.1). The solutions of Eq (1.1) can only be not found in the closed form in certain cases. Therefore,
iterative methods can often be used to solve such problems.
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The majority of iterative methods for solving (1.1) are Newton-like methods [6–8]. Iterative
methods have many different properties [9, 10]. Newton’s method is defined by

sn+1 = sn −
p′(sn+1)
p′′(sn)

(n ≥ 0) (s0 ∈ N). (1.3)

Newton’s method has quadratic convergence. Under the Lipschitz condition,

|p′(s∗)−1(p′(s) − p′(t))| ≤ K|s − t| (s, t ∈ N)(K > 0),

the radius of the convergence ball of Newton’s method is r = 2
3K for finding a zero of function [11].

However, it needs to compute the second-order derivative, and this is frequently difficult to calculate
in some cases. To avoid this, one can use the secant method instead

sn+1 = sn −
sn − sn−1

p′(sn) − p′(sn−1)
p′(sn) (n ≥ 0) (s0, s−1 ∈ N). (1.4)

The order of convergence of the secant method is 1.618. . .. Under the Lipschitz condition,

|p′′(s∗)−1(p′′(s) − p′′(t))| ≤ K|s − t| (s, t ∈ N)(K > 0),

the radius of the convergence ball of the secant method is r = 2
3K , at least for finding a zero of

derivatives [12]. In addition, Müller’s method is a generalization of the secant method [13]. Under
the conditions

|p′(s∗)−1 p′′(s)| ≤ F (s ∈ N)(F > 0), |p′(s∗)−1 p′′′(s)| ≤ M (s ∈ N)(M > 0), 1215F2 ≤ 32M,

the radius of the convergence ball of Müller’s method is r =

√
6

5M , at least for finding a zero
of functions.

In order to avoid calculating second-order derivatives and maintaining the order of convergence as
two, Wang [14] proposed an iterative method. Wang’s method is defined by

sn+1 = sn −
p′(sn)

δ(p; sn, sn−1)
(n ≥ 0) (s0, s−1 ∈ N), (1.5)

where

δ(p; s, t) =
1

s − t
(4p′(s) − 6

p(s) − p(t)
s − t

+ 2p′(t)). (1.6)

The convergence analysis for Wang’s method was given under different conditions. Under
the conditions,

|p′′(s∗)−1 p′′′(s)| ≤ X (s ∈ N, X > 0), (1.7)

and
|p′′(s∗)−1 p(IV)(s)| ≤ Y (s ∈ N,Y > 0). (1.8)

The radius of the convergence ball of Wang’s method is r = 12
√

81X2+96Y+9X
, at least for finding a zero of

derivatives [15].
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In this paper, based on Wang’s method, a new four-order method is presented for analyzing a zero
of a derivative. This new method is defined for s0, s−1 ∈ N, and all n = 0, 1, 2, . . . as follows:

tn = sn −
p′(sn)

δ(p; sn, sn−1)
,

sn+1 = tn −
p′(tn)

δ(p; sn, tn)
.

(1.9)

Under the conditions (1.7) and (1.8), the radius of the convergence ball of the new method (1.9)
is studied.

The rest part of this paper is laid out as follows: Section 2 is devoted to the convergence ball and
error analysis of the new method (1.9) under assumptions that the third and fourth order derivatives of
function p are bounded. Also, Herzberger’s matrix method is used to obtain the convergence order of
the new method to four. In Section 3, two examples are given. By comparing the new method with
Wang’s method, numerical illustrations show that the new method has a higher order of convergence
and accuracy. Finally, conclusions appear in Section 4.

2. Local convergence

This section deals with the convergence ball, error analysis, and the convergence order for the new
method (1.9).

Theorem 2.1. Suppose s∗ is a solution of Eq (1.1), p′′(s∗) , 0, and the conditions (1.7) and (1.8)
hold. Denote

R =
12

√
81X2 + 96Y + 9X

.

If B(s∗,R) ⊆ N, starting from any initial points s0, s−1 ∈ B(s∗,R), our method (1.9) generates the
sequence {sn}, which is well-defined, and converges to its unique solution s∗ in B(s∗, 2

X ) ∩ N. B(s∗,R)
remains in B(s∗, 2

X ) ∩ N. Furthermore, we get the following error estimate

|s∗ − sn| ≤ R(
|s∗ − s1|

R
)2Fn(
|s∗ − s0|

R
)Fn−1 , (n ≥ 1), (2.1)

where Fn is the Fibonacci sequence, which is defined by F0 = F1 = 1, Fn+1 = Fn + Fn−1(n ≥ 1).
Proof. According to the conditions (1.7) and (1.8) and initial points s0, s−1 ∈ B(s∗,R), we can obtain
|s∗ − s0| < R, |s∗ − s−1| < R. Suppose that sn, sn−1, tn ∈ B(s∗,R) are defined by our method (1.9).

By (1.6) and Lemma 2 in [16], for n ≥ 0, we obtain

δ(p; sn, sn−1) = p′′(sn) − (sn − sn−1)2
∫ 1

0
p(IV)(sn−1 + x(sn − sn−1))x2(1 − x)dx, (2.2)

and

δ(p; sn, tn) = p′′(sn) − (sn − tn)2
∫ 1

0
p(IV)(tn + x(sn − tn))x2(1 − x)dx. (2.3)

According to the properties of divided differences (see [17]), we have

(s∗ − sn)p′′(sn) + p′(sn) = (s∗ − sn)p′′(sn) + p′(sn) − p′(s∗)
= (s∗ − sn)p′[sn, sn] + (s∗ − sn)p′[sn, s∗] = −(s∗ − sn)2 p′[sn, sn, s∗],

(2.4)
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where p[., .] and p[., ., .] are first-order and second-order divided differences.
Using (1.9), (2.2), and (2.4), we have

s∗ − tn = s∗ − sn +
p′(sn)

δ(p; sn, sn−1)

=
(s∗ − sn)p′′(sn) − (s∗ − sn)(sn − sn−1)2

∫ 1

0
f (IV)(tn + x(sn − tn))x2(1 − x)dx + p′(sn)

δ(p; sn, sn−1)

=
−(s∗ − sn)2 p′[sn, sn, s∗] − (s∗ − sn)(sn − sn−1)2

∫ 1

0
f (IV)(tn + x(sn − tn))x2(1 − x)dx

δ(p; sn, sn−1)
.

(2.5)

Using (1.4) and (2.2), we have

|1 − p′′(s∗)−1δ(p; sn, sn−1)|

= |p′′(s∗)−1(p′′(s∗) − p′′(sn) + (sn − sn−1)2
∫ 1

0
f (IV)(sn−1 + x(sn − sn−1))x2(1 − x)dx)|

= |p′′(s∗)−1((s∗ − sn)p′′[s∗, sn] + (sn − sn−1)2
∫ 1

0
f (IV)(sn−1 + x(sn − sn−1))x2(1 − x)dx)|.

(2.6)

Using (1.9), (2.1), and (2.2), we have

s∗ − sn+1 = s∗ − tn +
p′(tn)

δ(p; sn, tn)

=
(s∗ − tn)p′′(tn) − (s∗ − tn)(sn − tn)2

∫ 1

0
f (IV)(tn + x(sn − tn))x2(1 − x)dx + p′(tn)

δ(p; sn, tn)

=
−(s∗ − tn)2 p′[tn, tn, s∗] − (s∗ − tn)(sn − tn)2

∫ 1

0
f (IV)(tn + x(sn − tn))x2(1 − x)dx

δ(p; sn, tn)
.

(2.7)

Using (1.4) and (2.2), we have

|1 − p′′(s∗)−1δ(p; sn, tn)|

= |p′′(s∗)−1(p′′(s∗) − p′′(sn) + (sn − tn)2
∫ 1

0
f (IV)(tn + x(sn − tn))x2(1 − x)dx)|

= |p′′(s∗)−1((s∗ − sn)p′′[s∗, sn] + (sn − tn)2
∫ 1

0
f (IV)(tn + x(sn − tn))x2(1 − x)dx)|.

(2.8)

According to the definition of R, R = 12
√

81X2+96Y+9X
is easily proved that it is the unique positive solution

of the equation
XR
2

+
YR2

3
− (1 − (XR +

Y
3

R2)) = 0,

which ensures that all iteration points hold in the convergence ball. Under the conditions (1.7)
and (1.8), p′′(s∗) , 0, the definition of R, and (2.4), we obtain

|1 − p′′(s∗)−1δ(p; sn, sn−1)| ≤ X|s∗ − sn| +
Y
12
|sn − sn−1|

2

< XR +
Y
3

R2 < 1.
(2.9)
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Thus, we see that δ(p; sn, sn−1) , 0 by the Banach lemma, and sn+1 is defined. In addition, we have

|δ(p; sn, sn−1)−1 p′′(s∗)| ≤
1

1 − (X|s∗ − sn| +
Y
12 |sn − sn−1|

2)
<

1
1 − (XR + Y

3 R2)
. (2.10)

Using (2.5), (2.10), and the definition of R, we have

|s∗ − tn| ≤

X
2 |s∗ − sn|

2 + Y
12 |s∗ − sn||sn − sn−1|

2

1 − (X|s∗ − sn| +
Y
12 |sn − sn−1|

2)
≤

XR
2 + YR2

3

1 − (XR + Y
3 R2)
|s∗ − sn| = |s∗ − sn| < R. (2.11)

So, we obtain tn ∈ B(s∗,R).
By the similar method to that of (2.10), we have

|δ(p; sn, tn)−1 p′′(s∗)| ≤
1

1 − (X|s∗ − tn| +
Y
12 |sn − tn|

2)
<

1
1 − (XR + Y

3 R2)
. (2.12)

Using (2.7), (2.12), and the definition of R, we have

|s∗ − sn+1| ≤

X
2 |s∗ − tn|

2 + Y
12 |s∗ − tn||sn − tn|

2

1 − (X|s∗ − tn| +
Y
12 |sn − tn|

2)
≤

XR
2 + YR2

3

1 − (XR + Y
3 R2)
|s∗ − tn| = |s∗ − tn| < R. (2.13)

So, we obtain sn+1 ∈ B(s∗,R). Thus, by induction hypotheses, starting from any initial points s0, s−1 ∈

B(s∗,R), the sequence {sn} generated by our method (1.9) is defined, sn ∈ B(s∗,R), so

|s∗ − sn| < R, (n ≥ 0). (2.14)

Denote εn = s∗ − sn, εn,t = s∗ − tn, (n ≥ 0). By (2.11), we have

|εn,t| ≤

X
2 |εn|

2 + Y
12 |εn||εn − εn−1|

2

1 − (X|εn| +
Y
12 |εn − εn−1|

2)
. (2.15)

|εn+1| ≤

X
2 |εn|

2 + Y
12 |εn||εn − εn,t|

2

1 − (X|εn| +
Y
12 |εn − εn,t|

2)
. (2.16)

So, we have
|εn| ≤ |εn−1|, |εn+1| ≤ |εn,t|, (n ≥ 1). (2.17)

Using (2.15) and (2.17), we get

|εn,t| ≤

X
2 |εn|

2 + Y
12 |εn||εn − εn−1|

2

1 − (X|εn| +
Y
12 |εn − εn−1|

2)
≤

X
2 |εn||εn−1| +

YR
3 |εn||εn−1|

1 − (XR + Y
3 R2)

≤

XR
2 + YR

3

1 − XR − Y
3 R2
|εn||εn−1|, (n ≥ 1).

(2.18)

Using (2.16) and (2.17), we get

|εn+1| ≤

X
2 |εn|

2 + Y
12 |εn||εn − εn,t|

2

1 − (X|εn| +
Y
12 |εn − εn,t|

2)
≤

X
2 |εn||εn,t| +

YR
3 |εn||εn,t|

1 − (XR + Y
3 R2)

≤

XR
2 + YR

3

1 − XR − Y
3 R2
|εn||εn,t| ≤

( XR
2 + YR

3 )2

(1 − XR − Y
3 R2)2

|εn|
2|εn−1|, (n ≥ 1).

(2.19)
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Denote ρn = |s∗−sn |

R (n ≥ 0). Using the definition of R, we have

|εn,t|

R
≤

( XR
2 + YR

3 )R

1 − XR − Y
3 R2

|εn|

R
|εn−1|

R
, (n ≥ 1), (2.20)

and
|εn+1|

R
≤
|εn|

R
|εn,t|

R
≤
|εn|

2

R2

|εn−1|

R
, (n ≥ 1). (2.21)

Then, we obtain
ρn+1 ≤ ρ

2
nρn−1, (n ≥ 1). (2.22)

Using (2.22), by induction hypotheses, we easily obtain that

ρn ≤ ρ
2Fn
1 ρFn−1

0 , (n ≥ 1), (2.23)

where Fn is the Fibonacci sequence, and F0 = F1 = 1, Fn+1 = Fn + Fn+1(n ≥ 1). By (2.23), we can
prove that the error Eq (2.1) holds.

Finally, to prove the uniqueness of the solution s∗, suppose there exists a second solution y∗ ∈
B(s∗, 2

X ), then p(y∗) = 0. Denote Q = p′[y∗, s∗]. Since Q(y∗ − s∗) = p′(y∗) − p′(s∗) = 0, if Q is
invertible, then y∗ = s∗. In fact, according to |p′′(s∗)−1 p′′′(s)| ≤ X(s ∈ N), we obtain

|1 − p′′(s∗)−1Q| = |p′′(s∗)−1
∫ 1

0
(p′′(s∗) − p′′(xs∗ + (1 − x)y∗))dx|

≤ X
∫ 1

0
(1 − x)|s∗ − y∗|dx =

X
2
|s∗ − y∗| < 1.

(2.24)

Thus, we ensure that the operator Q is invertible by the Banach Lemma. According to the definition
of R, we deduce that the ball B(s∗, 2

X )
⋂

N is larger than the convergence ball B(s∗,R).

Theorem 2.2. The new method (1.9) has convergence order of at least ρ(A(2)) = 4, where
ρ(A(2)) is the spectral radius of the matrix

A(2) =

[
3 2
1 2

]
.

Proof. We will use Herzberger’s matrix method [18] to analyze convergence order. Denote the lower
bound of order of a single step s-point method sk = G(sk−1, sk−2, . . . , sk−s) as the spectral radius of the
matrix A(s) = (ai j), related to this method with the elements:

a1, j = amount of information required at point sk− j( j = 1, 2, . . . , s),
ai,i−1 = 1(i = 2, 3, . . . , s),
ai, j = 0 otherwise.

(2.25)

Additionally, the lower bound of order of an s-step method G = G1 ◦G2 ◦ · · · ◦Gs is the spectral radius
of the product of matrices

A(s) = A1 · A2 · · · As.
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According to our method (1.9), the respective matrices are formed,

A1 =

[
1 2
1 0

]
, A2 =

[
1 2
1 0

]
.

Therefore,

A(2) = A1 · A2 =

[
1 2
1 0

]
·

[
1 2
1 0

]
=

[
3 2
1 2

]
.

The characteristic polynomial of the matrix A(2) is

P2(λ) = λ2 − 5λ + 4. (2.26)

So, its roots are 1, 4; thus, the spectral radius of the matrix A(2) is ρ(A(2)) = 4, which gives the lower
bound of order of our method.
Remark 2.3. Whether the error estimation of our method (1.9) matches its convergence order remains
to be further studied.
Remark 2.4. Whether the estimate radius R of the convergence ball of our method (1.9) is optimal
remains to be further studied.

3. Numerical examples

In this section, we apply the following two numerical examples to compute the above convergence
ball result, then our method (1.9) is compared with Wang’s method (1.5) and fourth-order method (3.1)
by numerical experiments.

Wang et al. in [19] proposed the following fourth-order method:
tn = sn −

1
B

f (sn),

sn+1 = tn − (3 −
2
B

f [sn, tn])
1
B

f (tn),
(3.1)

where B = f [wn, vn],wn = sn + f (sn), vn = sn − f (sn).
Example 3.1. Let N = [−π2 ,

π
2 ]. Define the function p1 on N by

p1(x) = sin(x) − x2 − x. (3.2)

Additionally, a root of p′1(x) = 0 is s∗ = 0 in N. Since

p′1(x) = cos(x) − 2x − 1, p′′1 (x) = −sin(x) − 2, p′′′1 (x) = −cos(x), p(IV)
1 (x) = sin(x), p′′1 (s∗) = −2,

(3.3)
for all x ∈ N, we have

|p′′1 (s∗)−1 p′′′1 (x)| ≤
1
2
, |p′′1 (s∗)−1 p(IV)

1 (x)| ≤
1
2
. (3.4)

So, X = 1
2 ,Y = 1

2 . By applying Theorem 2.1, the radius of the convergence ball of our method is

R =
12

√
81X2 + 96Y + 9X

≈ 0.9403.
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Example 3.2. Let N = [−1, 1]. Define the function p2 on N by

p2(x) = ex + x2 − x. (3.5)

Additionally, a root of p′2(x) = 0 is s∗ = 0 in N. Since

p′2(x) = ex + 2x − 1, p′′2 (x) = ex + 2, p′′′2 (x) = ex, p(IV)
2 (x) = ex, p′′2 (s∗) = 3, (3.6)

for all x ∈ N, we have
|p′′2 (s∗)−1 p′′′2 (x)| ≤

e
3
, |p′′2 (s∗)−1 p(IV)

2 (x)| ≤
e
3
. (3.7)

So, X = e
3 ,Y = e

3 . By applying Theorem 2.1, the radius of the convergence ball of our method is

R =
12

√
81X2 + 96Y + 9X

≈ 0.5841.

Applying the above two functions, Wang’s method (1.5), fourth-order method (3.1), and our
method (1.9) are compared by numerical experiments. In Table 1, the absolute errors |sn − s∗| and
initial point s0 are shown. The number of iterations for methods (1.5), (3.1), and (1.9) are five. CPU is
the computational time and ρ is the order of computational convergence.

Table 1. Numerical results of methods (1.5), (3.1), and (1.9).

Method Function s0 iter |sn − s∗| CPU ρ

(1.5) f1 0.3 5 3.81105e − 80 0.3125 2.0
(3.1) f1 0.3 5 2.43616e − 957 0.5000 4.0
(1.9) f1 0.3 5 4.84331e − 1179 0.5938 4.0
(1.5) f2 0.5 5 8.08287e − 85 0.3438 2.0
(3.1) f2 0.5 5 4.40115e − 749 0.5313 4.0
(1.9) f2 0.5 5 6.63462e − 1202 0.5313 4.0

In Table 1, our method (1.9) has the same initial point and the number of iterations as methods (1.5)
and (3.1). Our method (1.9) has roughly the same CPU time as the same order method (3.1). However,
our method has a higher order of convergence and higher accuracy.

4. Conclusions

In this paper, the convergence ball of a new fourth-order method for finding a zero of a derivative
was studied by using hypotheses that the third-order and fourth-order derivatives of function p were
bounded. The error estimate, order of convergence, and uniqueness of the solution were also discussed.
In addition, Herzberger’s matrix method was used to obtain the convergence order of our method
to four. Finally, the convergence criteria was verified by two numerical examples, and our method
was compared with Wang’s method and the fourth-order method by numerical experiments. The
experimental results showed that our method has the higher order of convergence and higher accuracy,
so our method is finer.
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