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Abstract: Mathematical formulations are crucial in understanding the dynamics of disease
spread within a community. The objective of this research is to investigate the SEIR model of SARS-
COVID-19 (C-19) with the inclusion of vaccinated effects for low immune individuals. A mathematical
model is developed by incorporating vaccination individuals based on a proposed hypothesis. The
fractal-fractional operator (FFO) is then used to convert this model into a fractional order. The newly
developed SEVIR system is examined in both a qualitative and quantitative manner to determine its
stable state. The boundedness and uniqueness of the model are examined to ensure reliable findings,
which are essential properties of epidemic models. The global derivative is demonstrated to verify the
positivity with linear growth and Lipschitz conditions for the rate of effects in each sub-compartment.
The system is investigated for global stability using Lyapunov first derivative functions to assess the
overall impact of vaccination. In fractal-fractional operators, fractal represents the dimensions of
the spread of the disease, and fractional represents the fractional ordered derivative operator. We
use combine operators to see real behavior of spread as well as control of COVID-19 with different
dimensions and continuous monitoring. Simulations are conducted to observe the symptomatic and
asymptomatic effects of the corona virus disease with vaccinated measures for low immune individuals,
providing insights into the actual behavior of the disease control under vaccination effects. Such
investigations are valuable for understanding the spread of the virus and developing effective control
strategies based on justified outcomes.
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1. Introduction

Mathematics was initially utilized in biology in the 13th century by Fibonacci, who developed the
famed Fibonacci series to explain an increasing population. Daniel Bernoulli utilized mathematics
to describe the impact on tiny shapes. Johannes Reinke coined the phrase “bio maths” in 1901.
Biomathematics involves the theoretical examination of mathematical models to understand the
principles governing the formation and functioning of biological systems.

Mathematical models are utilized to investigate specific questions related to the studied disease.
For example, epidemiological models are important for predicting how infectious diseases spread,
and help to control them by identifying important factors in the community. In this case, we want
to analyze a particular model to understand how the COVID-19 virus behaves. This virus appeared
in late 2019, and continues to be a global challenge. To gain a deeper insight into the underlying
physical processes, we delve into the realm of fractional calculus. Previous literature has introduced
various operators through the framework of fractional calculus [1, 2]. In the field of Cη-Calculus,
Golmankhaneh et al. [3] provided an explanation of the Sumudu transform and Laplace transform.
Additionally, in 2019, Goyal [4] proposed a fractional model that demonstrated the potential to manage
the Lassa hemorrhagic fever disease.

Advancements in technology have led to significant progress in the field of epidemiology, enabling
the examination of various infectious diseases for treatment, control, and cure [5]. It is essential
to underscore that mathematical biology plays a pivotal role in investigating numerous diseases.
Significant strides have been taken in the mathematical modeling of infectious diseases in recent
decades, as evidenced by various studies [6, 7]. Over the last thirty years, mathematical modeling
has gained prominence in research, making substantial contributions to the development of effective
public health strategies for disease control [8, 9]. Mathematical models serve as invaluable tools
for analyzing spatiotemporal patterns and the dynamic behavior of infections. Acknowledging their
significance, researchers have approached the study of COVID-19 from diverse perspectives in the last
three years [10, 11].

Various methodologies have been employed by researchers in this field to devise successful
techniques for managing this condition, with recent studies offering additional insights [12, 13]. For
example, a recent investigation utilized a mathematical model to evaluate the impacts of immunization
in nursing homes [14]. Furthermore, researchers have explored mathematical modeling and effective
intervention strategies for controlling the COVID-19 outbreak [15]. Additionally, some studies have
delved into COVID-19 mathematical models using stochastic differential equations and environmental
white noise [16].

In 2019, China experienced a notable outbreak of the coronavirus disease 2019 (COVID-19),
prompting concerns about its potential to escalate into a worldwide pandemic [17]. Researchers from
China, particularly Zhao et al., made significant contributions in addressing the challenges posed
by COVID-19. This disease is attributed to the severe acute respiratory syndrome coronavirus 2
(SARS-CoV-2), a viral infection. The initial verified case was documented in Wuhan, China, in
December 2019 [18]. The infection rapidly spread worldwide, leading to the declaration of a COVID-
19 pandemic.

Transmission occurs through various means, including respiratory droplets from coughing,
sneezing, close contact, and touching contaminated surfaces. Key preventive measures include
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consistent mask usage, frequent hand washing, and maintaining safe interpersonal distances [19].
Effective interventions and real-time data play a crucial role in managing the coronavirus outbreak [20].
Prior studies have employed real-time analysis to comprehend the transmission of the virus among
individuals, the severity of the disease, and the early stages of the pathogen, particularly in the initial
week of the outbreak [21].

In December 2019, an outbreak of pneumonia cases was reported in Wuhan, initially with
unidentified origins. Some cases were associated with exposure to wet markets and seafood. Chinese
health authorities, in collaboration with the Chinese Center for Disease Control and Prevention (China
CDC), initiated an investigation into the cause and spread of the disease on December 31, 2019 [22].
We conducted an analysis of temporal changes in the outbreak by examining the time interval between
hospital admission dates and fatalities. Clinical studies on COVID-19 have indicated that symptoms
typically manifest around 7 days after the onset of illness [23]. It is important to consider the
duration between hospitalization and death in order to accurately assess the risk of mortality [24].
The information regarding the incubation period of COVID-19 and epidemiological data was sourced
from publicly available records of confirmed cases [25].

An established method for the fractional-order model is elaborated upon in [26]. Recent
contributions include various fractional models related to COVID-19, such as the analysis by Atangana
and Khan focusing on the pandemic’s impact on China [27]. Additionally, the COVID-19 model’s
dynamical aspects were explored using fuzzy Caputo and ABC derivatives, as demonstrated in [28]. A
similar type of approach using fractional operator techniques are given in [29–31]. Different author’s
have investigated the transmission of different infectious disease like COVID-19 with symptomatic and
asymptomatic effects in the community by using the fractal-fractional definition [32, 33].

In light of the aforementioned significance, we aim is to address fundamental issues by
concentrating on the distinctive challenges posed by the dynamics of COVID-19. To achieve this, we
employ a model tailored to accurately capture the characteristics of COVID-19 dynamics and account
for the limitations in our response to the pandemic. Initially, we examine the epidemic dynamics
within a specific community characterized by a unique social pattern. For this analysis, we adopt a
conventional SEIR design that accommodates prolonged incubation periods.

Here, the previous model is given in [34] as follows:

dS
dt
= a −

ρ1S I
1 + γI

− (δ + ρ)S ,

dE
dt
= ρS − δE − ρ2αEI, (1.1)

dI
dt
=

ρ1S I
1 + γI

+ ρ2 α EI − (δ + µ0 + ω − b) I,

dR
dt
= ωI − δR.

Initial conditions corresponds to the aforementioned system:

S 0(t) = S 0, E0(t) = E0, I0(t) = I0, R0(t) = R0.

The primary goal of this research is to employ novel fractional derivatives within mathematical
analysis and simulation to enhance the COVID-19 model. COVID-19 is a highly dangerous disease that
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presents a significant risk to human life. Verification of the existence and distinct characteristics of the
solution system is undertaken, coupled with a qualitative assessment of the system. So, we introduce
vaccination measures for low immune individuals. We developed new mathematical model by taking
vaccination measures which helps to control COVID-19 early which we shall observe on simulation
easily. The research involves confirming the presence of a solution system with unique characteristics
and conducting a qualitative evaluation of this system. Furthermore, the fractal-fractional derivative
is utilized to investigate the real-world behavior of the newly developed mathematical model. Finally,
numerical simulations are used to reinforce and authenticate the biological findings.

Definition 1.1. If 0 < ξ ≤ 1 and 0 < λ ≤ 1, then the Riemann-Liouville operator for the fractal-
fractional Operator (FFO) with a Mittag-Leffler (ML) kernel is defined as U(t) [35].

FFM
0 Dξ,λ

t U(t) =
AB(ξ)
1 − ξ

∫ t

0
Eξ

d U(Ω)
dtλ

[
−

ξ

1 − ξ
(t −Ω)ξ

]
dΩ ,

involving 0 < ξ, λ ≤ 1, and AB(ξ) = 1 − ξ + ξ

Γ(ξ) .

Therefore, the function U(t), which has an order of (ξ, λ) and a Mittag-Leffler (ML) kernel, is given
as follows:

FFM
0 Dξ,λ

t U(t) =
λ(1 − ξ)tλ−1U(t)

AB(ξ)
+

ξλ

AB(ξ)

∫ t

0
Ωξ−1(t −Ω)U(Ω)dΩ .

2. Formulation of the SEVIR model

A newly developed model for SARS-COVID-19 includes the vaccinated effect, whereas the
previous model used the SEIR framework. In this new model, we introduce a new variable called
“Vaccinated.” With the addition of Vaccinated, the new model is referred to as SEVIR, where “S”
represents the Susceptible class, “E” represents the Exposed class, “V” represents the Vaccinated class,
“I” represents the Infected class, and “R” represents the Recovered class.

We define several parameters in this model: “a” represents the recruitment rate, “δ” represents the
death rate due to natural causes, “ρ + ρ1” represents the contact rate from the Susceptible class to the
Exposed class, “ρ2” represents the vaccination rate, “α” represents the rate at which the infection is
reducing due to vaccination effects, “µ0” represents the infection death rate, “ω” represents the rate at
which an individual recovers from vaccination and becomes recovered, “b” represents the recruitment
rate to the Vaccinated class, “ϕ” represents the contact rate from the Vaccinated class to the Infected
class, and “ψ” represents the recovery rate.

We want to investigate spread of the SEIR model for SARS-COVID-19 with the vaccinated effect.

So, the flow chart for newly developed model SEVIR is given as Figure 1.
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Figure 1. The flow chart illustrates the newly developed model.

The model that was developed based on the generalized hypothesis with the vaccinated effect is
presented as follows:

dS
dt
= a − (δ + ρ + ρ1)S ,

dE
dt
= (ρ + ρ1)S − δE − ρ2αEV,

dV
dt
= ρ2αEV − (δ + µ0 + ω − b + ϕ)V, (2.1)

dI
dt
= ϕV − (µ0 + δ + ψ)I,

dR
dt
= ωV + ψI − δR.

The following are initial conditions linked with the described system:

S 0(t) = S 0, E0(t) = E0, V0(t) = V0, I0(t) = I0, R0(t) = R0.

Using the fractal-fractional order (FFO) with a Mittag-Leffler (ML) definition, the above model
becomes

FFM
0 Dξ,λ

t S (t) = a − (δ + ρ + ρ1)S ,
FFM
0 Dξ,λ

t E(t) = (ρ + ρ1)S − δE − ρ2αEV,
FFM
0 Dξ,λ

t V(t) = ρ2αEV − (δ + µ0 + ω − b + ϕ)V, (2.2)
FFM
0 Dξ,λ

t I(t) = ϕV − (µ0 + δ + ψ)I,
FFM
0 Dξ,λ

t R(t) = ωV + ψI − δR.

Here, FFM
0 Dξ,λ

t is the fractal-fractional operator with Mittag-Leffler (ML), where 0 < ξ ≤ 1 and 0 <

λ ≤ 1.
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The following are initial conditions linked with the described system:

S 0(t) = S 0, E0(t) = E0, V0(t) = V0, I0(t) = I0, R0(t) = R0.

Parameter descriptions are given in the following table.

Parameters Representation Reference
a contact rate from the susceptible to the exposed class [34]
δ death rate due to natural causes [34]
ρ + ρ1 contact rate from the susceptible to the exposed class [34]
α rate at which the infection is reducing due to vaccination [34]
ρ2 vaccination rate [34]
µ0 death rate due to infection [34]
ω rate at which an individuals becomes recovered [34]
b recruitment rate to the vaccinated class [34]
ϕ contact rate from the vaccinated to the infected class Assumed
ψ recovery rate Assumed

2.1. Equilibrium point and reproductive number

For this model, the point of equilibrium without disease (disease free) is

D1(S , E, V, I, R) =
(

a
δ + ρ + ρ1

,
a(ρ + ρ1)

δ(δ + ρ + ρ1)
, 0, 0, 0

)
,

as well as the endemic points of equilibrium D2(S ∗, E∗,V∗, I∗,R∗), where

S ∗ =
a

δ + ρ + ρ1
,

E∗ =
−b + δ + ϕ + ω + µ0

αρ2
,

V∗ =
(δ + ψ + µ0)A − bδρ1 + δ

2ρ1 + δϕρ1 + δωρ1 + δµ0ρ1 − aαρρ2 − aαρ1ρ2

αϕ(b − δ − ϕ − ω − µ0)(δ + ρ + ρ1)ρ2
,

I∗ = ϕ

(
A − bδρ1 + δ

2ρ1 + δϕρ1 + δωρ1 + δµ0ρ1 − aαρρ2 − aαρ1ρ2

α(b − δ − ϕ − ω − µ0)(δ + ρ + ρ1)ρ2

)
,

R∗ =
(
ϕψ + δω + ψω + ωµ0

)
×

(
A − bδρ1 + δ

2ρ1 + δϕρ1 + δωρ1 + δµ0ρ1 − aαρρ2 − aαρ1ρ2

αδϕ(δ + ψ + µ0)(b − δ − ϕ − ω − µ0)(δ + ρ + ρ1)ρ2

)
,

where

A = −bδ2 + δ3 − bδρ + δ2ρ + δ2ϕ + δρϕ + δ2ω + δρω + δ2µ0 + δρµ0.

The reproductive number for the newly developed system by using the next generation method is

R0 =
bδ(δ + ρ + ρ1) + aαρ2(ρ + ρ1)
δ(δ + ρ + ρ1)(δ + ϕ + ω + µ0)

.
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3. Bounded and positive solutions

In this section, we demonstrate the boundedness and positivity of the developed model.

Theorem 3.1. The considered initial condition is

{S 0, E0,V0, I0,R0} ⊂ Υ,

and therefore the solutions {S , E,V, I,R} will be positive ∀ t ≥ 0.

Proof. We will begin the primary analysis to show the improved quality of the solutions. These
solutions effectively address real-world issues and have positive outcomes. We will follow the
methodology provided in references [36–38]. In this segment, we will examine the conditions required
to ensure positive outcomes from the proposed model. To accomplish this, we will establish a standard.

∥ β ∥∞= sup
t∈Dβ

| β(t) |,

where “Dβ” represents the β domain. Now, we continue with S (t).

FFM
0 Dξ,λ

t S (t) = a − (δ + ρ + ρ1)S , ∀t ≥ 0,
≥ − (δ + ρ + ρ1) S , ∀t ≥ 0.

This yield

S (t) ≥ S (0)Eξ

[
−

c1−λξ(δ + ρ + ρ1)tξ

AB(ξ) − (1 − ξ)(δ + ρ + ρ1)

]
, ∀t ≥ 0,

where “c” represents the time element. This demonstrates that the S (t) individuals must be positive
∀ t ≥ 0. Now, we have the E(t) individuals as follows:

FFM
0 Dξ,λ

t E(t) = (ρ + ρ1)S − δE − ρ2αEV, ∀ t ≥ 0,
≥ −(δ + ρ2α | V |)E, ∀ t ≥ 0,
≥ −(δ + ρ2α sup

t∈DV

| V |)E, ∀ t ≥ 0,

≥ −(δ + ρ2α ∥ V ∥∞)E, ∀ t ≥ 0.

This yield

E(t) ≥ E(0)Eξ

[
−

c1−λξ(δ + ρ2α ∥ V ∥∞)tξ

AB(ξ) − (1 − ξ)(δ + ρ2α ∥ V ∥∞)

]
, ∀ t ≥ 0,

where “c” represents the time element. This demonstrates that the E(t) individuals must be positive
∀ t ≥ 0. Now, we have the V(t) individuals as follows:

FFM
0 Dξ,λ

t V(t) = ρ2αEI − (δ + µ0 + ω − b + ϕ)V, ∀t ≥ 0,
≥ −(−ρ2α | E | +µ0 + δ + ω − b + ϕ)V, ∀t ≥ 0,
≥ −(−ρ2α sup

t∈DE

| E | +µ0 + δ + ω − b + ϕ)V, ∀t ≥ 0,

≥ −(−ρ2α ∥ E ∥∞ +µ0 + δ + ω − b + ϕ)V, ∀t ≥ 0.
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This yield

V(t) ≥ V(0)Eξ

[
−

c1−λξ(−ρ2α ∥ E ∥∞ +µ0 + δ + ω − b + ϕ)tξ

AB(ξ) − (1 − ξ) (−ρ2α ∥ E ∥∞ +µ0 + δ + ω − b + ϕ)

]
, ∀t ≥ 0,

where “c” represents the time element. This demonstrates that the V(t) individuals must be positive
∀ t ≥ 0. Now, we have the I(t) individuals as follows:

FFM
0 Dξ,λ

t I(t) = ϕV − (µ0 + δ + ψ)I, ∀t ≥ 0,
≥ −(µ0 + δ + ψ)I(t), ∀t ≥ 0.

This yield

I(t) ≥ I(0)Eξ

[
−

c1−λξ(µ0 + δ + ψ)tξ

AB(ξ) − (1 − ξ)(µ0 + δ + ψ)

]
, ∀t ≥ 0,

where “c” represents the time element. This demonstrates that the I(t) individuals must be positive
∀ t ≥ 0. Now, we have the R(t) individuals as follows:

FFM
0 Dξ,λ

t R(t) = ωV + ψI − δR, ∀ t ≥ 0,
≥ −(δ)R(t), ∀ t ≥ 0.

This yield

R(t) ≥ R(0)Eξ

[
−

c1−λξ(δ)tξ

AB(ξ) − (1 − ξ)(δ)

]
, ∀t ≥ 0,

where “c” represents the time element. This demonstrates that the R(t) individuals must be positive
∀ t ≥ 0.

Theorem 3.2. Solutions of our developed model given in Eq (2.2) with positive initial values are all
bounded.

Proof. The above theorem demonstrates that the solutions of our developed model must be positive
∀ t ≥ 0, and the strategies are described in [39]. Because X = S + E + V , then

FFM
0 Dξ,λ

t X(t) = a − δX − (µ0 + ω − b + ϕ)V.

We achieved as follows:

Ψp = {S , E, V ∈ R3
+ | S + V ≤ X} ∀ t ≥ 0.

Further we have Xυ=I+R. So, we have

FFM
0 Dξ,λ

t Xυ(t) = (ϕ + ω)V − µ0I − Xυδ.

Upon solving the above equation and taking t → ∞ ,we get

Xυ ≤
(ϕ + ω)V − µ0I

δ
.
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Thus,

Ψυ =

{
I, R ∈ R2

+ | Xυ ≤
(ϕ + ω)I − µ0Q

δ

}
∀ t ≥ 0.

The model’s mathematical solutions (2.2) are confined to the region Ψ.

Ψ =

{
S , E, V, I, R ∈ R5

+ | S + V ≤ X, Xυ ≤
(ϕ + ω)V − µ0I

δ

}
∀ t ≥ 0.

This demonstrates that for every t ≥ 0, all solutions remain positive, consistent with the provided initial
conditions in the domain Ψ.

Theorem 3.3. The proposed coronavirus model (2.2) in R5
+ has positive invariant solutions, in addition

to the initial conditions.

Proof. In this particular scenario, we applied the procedure described in [40]. We have

FFM
0 Dξ,λ

t (S (t))S=0 = a ≥ 0,
FFM
0 Dξ,λ

t (E(t))E=0 = (ρ + ρ1)S ≥ 0,
FFM
0 Dξ,λ

t (V(t))V=0 = ρ2αEV + bV ≥ 0, (3.1)
FFM
0 Dξ,λ

t (I(t))I=0 = ϕV ≥ 0,
FFM
0 Dξ,λ

t (R(t))R=0 = ωV + ψI ≥ 0.

If (S 0, E0,V0, I0,R0) ∈ R5
+, then our obtained solution is unable to escape from the hyperplane, as stated

in Eq (3.1). This proves that the R5
+ domain is positive invariant.

4. Impact of global derivatives for uniqueness and existence of solutions

The Riemann-Stieltjes integral has been widely recognized in the literature as the most commonly
used integral. If

Y(x) =
∫

y(x)dx,

then the Riemann-Stieltjes integral is given as follows:

Yw(x) =
∫

y(x)dw(x),

where the y(x) global derivative with respect to w(x) is

Dwy(x) = lim
h→0

y(x + h) − y(x)
w(x + h) − w(x)

.

If the above function’s numerator and denominator are differentiated, we get

Dwy(x) =
y
′

(x)
w′(x)

,

AIMS Mathematics Volume 9, Issue 4, 10208–10234.



10217

assuming that w
′

(x) , 0, ∀x ∈ Dw′ . Now, we will test the impact on the coronavirus by using the
global derivative instead of the classical derivative:

DwS = a − (δ + ρ + ρ1)S ,
DwE = (ρ + ρ1)S − δE − ρ2αEV,

DwV = ρ2αEV − (δ + µ0 + ω − b + ϕ)V,
DwI = ϕV − (µ0 + δ + ψ)I,
DwR = ωV + ψI − δR.

For the sake of clean notation, we shall suppose that w is differentiable.

S
′

= w
′

[a − (δ + ρ + ρ1)S ],
E
′

= w
′

[(ρ + ρ1)S − δE − ρ2αEV],
V
′

= w
′

[ρ2αEV − (δ + µ0 + ω − b + ϕ)V],
I
′

= w
′

[ϕV − (µ0 + δ + ψ)I],
R
′

= w
′

[ωV + ψI − δR].

An appropriate choice of the function w(t) will lead to a specific outcome. For instance, if w(t) =
tα, where α is a real number, we will observe fractal movement. We had to take action due to the
circumstances that

∥ w
′

∥∞= sup
t∈Dw′

| w
′

(t) |< N.

The below example demonstrates the unique solution for the developed system:

S
′

= w
′

[a − (δ + ρ + ρ1)S ] = Z1(t, S ,G),
E
′

= w
′

[(ρ + ρ1)S − δE − ρ2αEV] = Z2(t, S ,G),
V
′

= w
′

[ρ2αEV − (δ + µ0 + ω − b + ϕ)V] = Z3(t, S ,G),
I
′

= w
′

[ϕV − (µ0 + δ + ψ)I] = Z4(t, S ,G),
R
′

= w
′

[ωV + ψI − δR] = Z5(t, S ,G),

where G = E,V, I,R.
We need to confirm the first two requirements as follows:

(1) | Z(t, S ,G) |2< K(1+ | S |2,
(2) ∀ S 1, S 2, we have, ∥ Z(t, S 1,G) − Z(t, S 2,G) ∥2< K̄ ∥ S 1 − S 2 ∥

2
∞.

Initially,

| Z1(t, S ,G) |2 = | w
′[

a − (δ + ρ + ρ1)S
]
|2,

= | w
′[

a + (−δ − ρ − ρ1) S
]
|2,

≤ 2 | w
′

|2
(
a2+ | (−δ − ρ − ρ1)S |2

)
,

≤ 2 sup
t∈Dw′

| w
′

|2 a2 + 6 sup
t∈Dw′

| w
′

|2
(
ρ2 + δ2 + ρ1

)
| S |2,
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≤ 2 ∥ w
′

∥2∞ a2 + 6 ∥ w
′

∥2∞

(
ρ2 + δ2 + ρ2

1

)
| S |2,

≤ 2 ∥ w
′

∥2∞ a2
(
1 +

3
a2 (ρ2 + δ2 + ρ2

1) | S |2
)
,

≤ K1(1+ | S |2),

under the condition

3
a2 (ρ2 + δ2 + ρ2

1) < 1,

involving

K1 = 2 ∥ w
′

∥2∞ a2.

| Z2(t, S ,G) |2 = | w
′[

(ρ + ρ1)S − δE − ρ2αEV
]
|2,

= | w
′[

(ρ + ρ1)S + (−δ − ρ2αV)E
]
|2,

≤ 2 | w
′

|2
(
| (ρ + ρ1)S |2 +(−δ − ρ2αV)E |2

)
,

≤ 4 sup
t∈Dw′

| w
′

|2 (ρ2 + ρ2
1) sup

t∈DS

| S |2 +4 sup
t∈Dw′

| w
′

|2 (δ2 + ρ2
2α

2 sup
t∈DV

| V |2) | E |2,

≤ 4 ∥ w
′

∥2∞ (ρ2 + ρ2
1) ∥ S ∥2∞ +4 ∥ w

′

∥2∞ (δ2 + ρ2
2α

2 ∥ V ∥2∞) | E |2,

≤ 4 ∥ w
′

∥2∞ (ρ2 + ρ2
1) ∥ S ∥2∞

(
1 +

(δ2 + ρ2
2α

2 ∥ V ∥2∞) | E |2

(ρ2 + ρ2
1) ∥ S ∥2∞

)
,

≤ K2(1+ | E |2),

under the condition

(δ2 + ρ2
2α

2 ∥ V ∥2∞)
(ρ2 + ρ2

1) ∥ S ∥2∞
< 1,

where

K2 = 2 ∥ w
′

∥2∞ (ρ2 + ρ2
1) ∥ S ∥2∞ .

| Z3(t, S ,G) |2 = | w
′[
ρ2αEV − (δ + µ0 + ω − b + ϕ)V

]
|2,

= | w
′[
ρ2αEV + bV + (−δ − µ0 − ω − ϕ)V

]
|2,

≤ 2 | w
′

|2
(
| ρ2αE + b |2 + | (−δ − µ0 − ω − ϕ) |2

)
| V |2,

≤ 4 sup
t∈Dw′

| w
′

|2
[
(ρ2

2α
2 sup

t∈DE

| E |2 +b2) + 2(δ2 + µ2
0 + ω

2 + ϕ2)
]
| V |2,

≤ 4 ∥| w
′

∥2∞

[
(ρ2

2α
2 ∥ E ∥2∞ +b2) + 2(δ2 + µ2

0 + ω
2 + ϕ2)

]
| V |2,

≤ 4 ∥| w
′

∥2∞ (ρ2
2α

2 ∥ E ∥2∞ +b2)
[
1 +

2(δ2 + µ2
0 + ω

2 + ϕ2)(
ρ2

2α
2 ∥ E ∥2∞ +b2

) ]
| V |2,

≤ K3(2 | V |2),
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under the condition

2(δ2 + µ2
0 + ω

2 + ϕ2)(
ρ2

2α
2 ∥ E ∥2∞ +b2

) ≤ 1,

where

K3 = 4 ∥| w
′

∥2∞ (ρ2
2α

2 ∥ E ∥2∞ +b2).

| Z4(t, S ,G) |2 = | w
′[
ϕV − (µ0 + δ + ψ)I

]
|2,

= | w
′[
ϕV + (−µ0 − δ − ψ)I

]
|2,

≤ 2 | w
′

|2
(
| ϕV |2 + | (−µ0 − δ − ψ)I |2

)
,

≤ 2 sup
t∈Dw′

| w
′

|2 ϕ2 sup
t∈DV

| V |2 +6 sup
t∈Dw′

| w
′

|2 (µ2
0 + δ

2 + ψ2) | I |2,

≤ 2 ∥ w
′

∥2∞ ϕ
2 ∥ V ∥2∞ +6 ∥ w

′

∥2∞ (µ2
0 + δ

2 + ψ2) | I |2,

≤ 2 ∥ w
′

∥2∞ ϕ
2 ∥ I ∥2∞

(
1 +

3(µ2
0 + δ

2 + ψ2) | I |2

ϕ2 ∥ I ∥2∞

)
,

≤ K4(1+ | I |2),

under the condition

3(µ2
0 + δ

2 + ψ2)
ϕ2 ∥ V ∥2∞

< 1,

where

K4 = 2 ∥ w
′

∥2∞ ϕ
2 ∥ V ∥2∞ .

| Z5(t, S ,G) |2 = | w
′[
ωV + ψI − δR

]
|2,

= | w
′[

(ωV + ψI) + (−δR)
]
|2,

≤ 2 | w
′

|2
(
| (ωV + ψI) |2 + | −δR |2

)
,

≤ 4 sup
t∈Dw′

| w
′

|2
(
ω2 sup

t∈DV

| V |2 +ψ sup
t∈DI

| I |2
)
+ 2 sup

t∈Dw′

| w
′

|2 δ2 | R |2,

≤ 4 ∥ w
′

∥2∞

(
ω2 ∥ V ∥2∞ +ψ ∥ I ∥2∞

)
+ 2 ∥ w

′

∥2∞ δ
2 | R |2),

≤ 4 ∥ w
′

∥2∞ (ω2 ∥ V ∥2∞ +ψ
2 ∥ I ∥2∞)

(
1 +

δ2 | R |2

2(ω2 ∥ V ∥2∞ +ψ2 ∥ I ∥2∞)

)
,

≤ K5(1+ | R |2),

under the condition

δ2

2(ω2 ∥ V ∥2∞ +ψ2 ∥ I ∥2∞)
< 1,
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where

K5 = 4 ∥ w
′

∥2∞ (ω2 ∥ V ∥2∞ +ψ
2 ∥ I ∥2∞).

Hence the linear growth condition is satisfied.
Further, we validate the Lipschitz condition.
If

| Z1(t, S 1,G) − Z1(t, S 2,G) |2 = | w
′

(−δ − ρ − ρ1)(S 1 − S 2) |2,
| Z1(t, S 1,G) − Z1(t, S 2,G) |2 ≤ | w

′

|2 (3δ2 + 3ρ2 + 3ρ2
1) | S 1 − S 2 |

2,

sup
t∈DS

| Z1(t, S 1,G) − Z1(t, S 2,G) |2 ≤ sup
t∈Dw′

| w
′

|2
(
3δ2 + 3ρ2 + 3ρ2

1

)
sup
t∈DS

| S 1 − S 2 |
2,

∥ Z1(t, S 1,G) − Z1(t, S 2,G) ∥2∞ ≤ ∥ w
′

∥2∞ (3δ2 + 3ρ2 + 3ρ2
1) ∥ S 1 − S 2 ∥

2
∞,

∥ Z1(t, S 1,G) − Z1(t, S 2,G) ∥2∞ ≤ K̄1 ∥ S 1 − S 2 ∥
2
∞,

where

K̄1 =∥ w
′

∥2∞

(
3δ2 + 3ρ2 + 3ρ2

1

)
.

If

| Z2(t, S , E1, V, I, R) − Z2(t, S , E2, V, I, R) |2 = | w
′

(−δ − ρ2αV)(E1 − E2) |2,
| Z2(t, S , E1, V, I, R) − Z2(t, S , E2, V, I, R) |2 ≤ | w

′

|2 (2δ2 + 2ρ2
2α

2 | V |2) | E1 − E2 |
2,

sup
t∈DE

| Z2(t, S , E1, V, I, R) − Z2(t, S , E2, V, I, R) |2 ≤ sup
t∈Dw′

| w
′

|2 (2δ2 + 2ρ2
2α

2 sup
t∈DV

| V |2) sup
t∈DE

× | E1 − E2 |
2,

∥ Z2(t, S , E1, V, I, R) − Z2(t, S , E2, V, I, R) ∥2∞ ≤ ∥ w
′

∥2∞ (2δ2 + 2ρ2
2α

2 ∥ V ∥2∞), ∥ E1 − E2 ∥
2
∞,

∥ Z2(t, S , E1, V, I, R) − Z2(t, S , E2, V, I, R) ∥2∞ ≤ K̄2 ∥ E1 − E2 ∥
2
∞,

where

K̄2 =∥ w
′

∥2∞ (2δ2 + 2ρ2
2α

2 ∥ V ∥2∞).

If

| Z3(t, S , E, V1, I, R) − Z3(t, S , E, V2, I, R) |2

= | w
′

(ρ2αE + b + (−δ − µ0 − ω − ϕ)) (V1 − V2) |2,

| Z3(t, S , E, V1, I, R) − Z3(t, S , E, V2, I, R) |2

≤ 2 | w
′

|2
(
| ρ2αE + b |2 + | (−δ − µ0 − ω − ϕ) |2

)
× | V1 − V2 |

2,
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sup
t∈DV

| Z3(t, S , E, V1, I, R) − Z3(t, S , E, V2, I, R) |2 ≤ 4 sup
t∈Dw′

| w
′

|2
(
ρ2

2α
2 sup

t∈DE

| E |2 +b2

+2(δ2 + µ2
0 + ω

2 + ϕ2)
)

sup
t∈DV

| V1 − V2 |
2,

∥ Z3(t, S , E, V1, I, R) − Z3(t, S , E, V2, I, R) ∥2∞ ≤ 4 ∥ w
′

∥2∞

(
ρ2

2α
2 ∥ E ∥2∞ +b2

+2(δ2 + µ2
0 + ω

2 + ϕ2)
)
∥ V1 − V2 ∥

2
∞,

∥ Z3(t, S , E, V1, I, R) − Z3(t, S , E, V2, I, R) ∥2∞ ≤ K̄3 ∥ V1 − V2 ∥
2
∞,

where

K̄3 = 4 ∥ w
′

∥2∞

(
ρ2

2α
2 ∥ E ∥2∞ +b2 + 2(δ2 + µ2

0 + ω
2 + ϕ2)

)
.

If

| Z4(t, S , E, V, I1, R) − Z4(t, S , E, V, I2, R) |2 = | w
′

(−µ0 − δ − ψ)
]
(Q1 − Q2) |2,

| Z4(t, S , E, V, I1, R) − Z4(t, S , E, V, I2, R) |2 = | w
′

|2 (3µ2
0 + 3δ2 + 3ψ2) | I1 − I2 |

2,

sup
t∈DI

Z4(t, S , E, V, I1, R) − Z4(t, S , E, V, I2, R) |2 = sup
t∈Dw′

| w
′

|2 (3µ2
0 + 3δ2 + 3ψ2) sup

t∈DI

| I1 − I2 |
2,

∥ Z4(t, S , E, V, I1, R) − Z4(t, S , E, V, I2, R) ∥2∞ ≤ ∥ w
′

∥2∞ (3µ2
0 + 3δ2 + 3ψ2) ∥ I1 − I2 ∥

2
∞,

∥ Z4(t, S , E, V, I1, R) − Z4(t, S , E, V, I2, R) ∥2∞ ≤ K̄4 ∥ I1 − I2 ∥
2
∞,

where

K̄4 =∥ w
′

∥2∞ (3µ2
0 + 3δ2 + 3ψ2).

If

| Z5(t, S , E, V, I, R1) − Z5(t, S , E, V, I, R2) |2 = | w
′

(−δ)(R1 − R2) |2,
| Z5(t, S , E, V, I, R1) − Z5(t, S , E, V, I, R2) |2 ≤ | w

′

|2 δ2 | (R1 − R2) |2,
sup
t∈DR

| Z5(t, S , E, V, I, R1) − Z5(t, S , E, V, I, R2) |2 ≤ sup
t∈Dw′

| w
′

|2 δ2 sup
t∈DR

| R1 − R2 |
2,

∥ Z5(t, S , E, V, I, R1) − Z5(t, S , E, V, I, R2) ∥2∞ ≤ ∥ w
′

∥2∞ δ
2 ∥ R1 − R2 ∥

2
∞,

∥ Z5(t, S , E, V, I, R1) − Z5(t, S , E, V, I, R2) ∥2∞ ≤ K̄5 ∥ R1 − R2 ∥
2
∞,

involving

K̄5 =∥ w
′

∥2∞ δ
2.

Then, given the condition, system (2.2) has a particular solution.

max
[ 3
a2 (ρ2 + δ2 + ρ2

1),
(δ2 + ρ2

2α
2 ∥ V ∥2∞)

(ρ2 + ρ2
1) ∥ S ∥2∞

,
2(δ2 + µ2

0 + ω
2 + ϕ2)(

ρ2
2α

2 ∥ E ∥2∞ +b2
) , 3(µ2

0 + δ
2 + ψ2)

ϕ2 ∥ V ∥2∞
,

δ2

2(ω2 ∥ V ∥2∞ +ψ2 ∥ I ∥2∞)

]
< 1.
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5. Global stability for developed system

We use Lyapunov’s approach and LaSalle’s concept of invariance to analyze global stability and
determine the conditions for eliminating diseases.

5.1. Lyapunov’s first derivative

Theorem 5.1. [41] When the reproductive number R0 > 1, the endemic equilibrium points of the
SEVIR model are globally asymptotically stable.

Proof. The Lyapunov function can be expressed in the following manner:

L(S ∗, E∗,V∗, I∗,R∗) =
(
S − S ∗ − S ∗ log

S
S ∗

)
+

(
E − E∗ − E∗ log

E
E∗

)
+

(
V − V∗ − V∗ log

V
V∗

)
+

(
I − I∗ − I∗ log

I
I∗

)
+

(
R − R∗ − R∗ log

R
R∗

)
.

By applying a derivative on both sides,

Dξ,λ
t L = L̇ =

(
S − S ∗

S

)
Dξ,λ

t S +
(

E − E∗

E

)
Dξ,λ

t E +
(
V − V∗

V

)
Dξ,λ

t V +
(

I − I∗

I

)
Dξ,λ

t I +
(
R − R∗

R

)
Dξ,λ

t R,

we get

Dξ,λ
t L =

(
S − S ∗

S

)
(a − (δ + ρ + ρ1)S ) +

(
E − E∗

E

)
((ρ + ρ1)S − δE − ρ2αEV) +

(
V − V∗

V

)
× (ρ2αEV − (δ + µ0 + ω − b + ϕ)V) +

(
I − I∗

I

)
(ϕV − (µ0 + δ + ψ)I) +

(
R − R∗

R

)
× (ωV + ψI − δR) ,

and setting S = S − S ∗, E = E − E∗,V = V − V∗, I = I − I∗ and R = R − R∗ results in

Dξ,λ
t L = a − a

S ∗

S
− (δ + ρ + ρ1)

(S − S ∗)2

S
+ (ρ + ρ1)S − (ρ + ρ1)S ∗ − (ρ + ρ1)S

E∗

E
+ (ρ + ρ1)S ∗

E∗

E

−δ
(E − E∗)2

E
− ρ2αV

(E − E∗)2

E
+ ρ2αV∗

(E − E∗)2

E
+ ρ2αE

(V − V∗)2

V
− ρ2αE∗

(V − V∗)2

V

+b
(V − V∗)2

V
− (δ + µ0 + ω + ϕ)

(V − V∗)2

V
+ ϕV − ϕV∗ − ϕV

I∗

I
+ ϕV∗

I∗

I

−(µ0 + δ + ψ)
(I − I∗)2

I
+ ωV − ωV∗ − ωV

R∗

R
+ ωV∗

R∗

R
+ ψI − ψI∗

−ψI
R∗

R
+ ψI∗

R∗

R
− δ

(R − R∗)2

R
.

We can write Dξ,λ
t L = Σ −Ω, where

Σ = a + (ρ + ρ1)S + (ρ + ρ1)S ∗
E∗

E
+ ρ2αV∗

(E − E∗)2

E
+ ρ2αE

(V − V∗)2

V
+ b

(V − V∗)2

V
+ ϕV

+ϕV∗
I∗

I
+ ωV + ωV∗

R∗

R
+ ψI + ψI∗

R∗

R
,
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and

Ω = a
S ∗

S
+ (δ + ρ + ρ1)

(S − S ∗)2

S
+ (ρ + ρ1)S ∗ + (ρ + ρ1)S

E∗

E
+ δ

(E − E∗)2

E
+ ρ2αV

(E − E∗)2

E

+ρ2αE∗
(V − V∗)2

V
+ (δ + µ0 + ω + ϕ)

(V − V∗)2

V
+ ϕV∗ + ϕV

I∗

I
+ (µ0 + δ + ψ)

(I − I∗)2

I
+ ωV∗

+ωV
R∗

R
+ ψV∗ + ψI

R∗

R
+ δ

(R − R∗)2

R
.

We conclude that if Σ < Ω, this yields Dξ,λ
t L < 0, however when S = S ∗, E = E∗,V = V∗, I = I∗ and

R = R∗, Σ −Ω = 0 ⇒ Dξ,λ
t L = 0.

We can observe that
{
(S ∗, E∗,V∗, I∗,R∗) ∈ Γ : Dξ,λ

t L = 0
}

represents the point D2 for the developed
model.

According to Lasalles’ concept of invariance, D2 is globally uniformly stable in Γ if Σ −Ω = 0.

6. Solutions by fractal-fractional operator

Now, we will develop a solution using a numerical approach for our newly developed model given
in Eq (2.2). We use the ML kernel in the current scenario instead of the classical derivative operator.

Furthermore, we will use the variable order version.

FFM
0 Dξ,λ

t S (t) = a − (δ + ρ + ρ1)S ,
FFM
0 Dξ,λ

t E(t) = (ρ + ρ1)S − δE − ρ2αEV,
FFM
0 Dξ,λ

t V(t) = ρ2αEV − (δ + µ0 + ω − b + ϕ)V,
FFM
0 Dξ,λ

t I(t) = ϕV − (µ0 + δ + ψ)I,
FFM
0 Dξ,λ

t R(t) = ωV + ψI − δR.

For clarity, we express the above equation as follows:

FFM
0 Dξ,λ

t S (t) = S 1(t, S ,G),
FFM
0 Dξ,λ

t E(t) = E1(t, S ,G),
FFM
0 Dξ,λ

t V(t) = V1(t, S ,G),
FFM
0 Dξ,λ

t I(t) = I1(t, S ,G),
FFM
0 Dξ,λ

t R(t) = R1(t, S ,G).

Where

S 1(t, S ,G) = a − (δ + ρ + ρ1)S ,
E1(t, S ,G) = (ρ + ρ1)S − δE − ρ2αEV,

V1(t, S ,G) = ρ2αEV − (δ + µ0 + ω − b + ϕ)V,
I1(t, S ,G) = ϕV − (µ0 + δ + ψ)I,

R1(t, S ,G) = ωV + ψI − δR.
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After using the fractal-fractional integral with the ML kernel, we obtain the following results:

S (tη + 1) =
λ(1 − ξ)
AB(ξ)

tλ−1
η S 1

(
tη, S (tη),G(tη)

)
+

ξλ

AB(ξ)Γ(ξ)

η∑
ν=2

∫ tν+1

tν
S 1(t, S ,G)τξ−1(tη+1 − τ)ξ−1dτ,

E(tη + 1) =
λ(1 − ξ)
AB(ξ)

tλ−1
η E1

(
tη, S (tη),G(tη)

)
+

ξλ

AB(ξ)Γ(ξ)

η∑
ν=2

∫ tν+1

tν
E1(t, S ,G)τξ−1(tη+1 − τ)ξ−1dτ,

V(tη + 1) =
λ(1 − ξ)
AB(ξ)

tλ−1
η V1

(
tη, S (tη),G(tη)

)
+

ξλ

AB(ξ)Γ(ξ)

η∑
ν=2

∫ tν+1

tν
V1(t, S ,G)τξ−1(tη+1 − τ)ξ−1dτ, (6.1)

I(tη + 1) =
λ(1 − ξ)
AB(ξ)

tλ−1
η I1

(
tη, S (tη),G(tη)

)
+

ξλ

AB(ξ)Γ(ξ)

η∑
ν=2

∫ tν+1

tν
I1(t, S ,G)τξ−1(tη+1 − τ)ξ−1dτ,

R(tη + 1) =
λ(1 − ξ)
AB(ξ)

tλ−1
η R1

(
tη, S (tη),G(tη)

)
+

ξλ

AB(ξ)Γ(ξ)

η∑
ν=2

∫ tν+1

tν
R1(t, S ,G)τξ−1(tη+1 − τ)ξ−1dτ,

where G(tη) = E(tη), V(tη), I(tη), R(tη).
Remember that the Newton polynomial can be obtained by using the Newton interpolation formula.

N(t, S ,G) ≃ N(tη−2, S η−2,Gη−2) +
1
∆t

[
N(tη−1, S η−1,Gη−1)

− N(tη−2, S η−2,Gη−2)
] (
τ − tη−2

)
+

1
2∆t2

[
N(tη, S η, Eη, Iη,Qη,Rη)

− 2N(tη−1, S η−1,Gη−1) − N(tη−2, S η−2,Gη−2)
] (
τ − tη−2

) (
τ − tη−1

)
,

where Gη−2 = Eη−2,Vη−2, Iη−2,Rη−2, Gη−1 = Eη−1,Vη−1, Iη−1,Rη−1.
When we substitute the Newton polynomial into the system of Eqs (6.1), we obtain the following:

S η+1 =
λ(1 − ξ)
AB(ξ)

tλ−1
η S 1(tη, S (tη),G(tη)) +

ξλ

AB(ξ)Γ(ξ)

η∑
ν=2

S 1(tν−2, S ν−2,Gν−2)

×tλ−1
ν−2

∫ tν+1

tν
(tη+1 − τ)ξ−1dτ +

ξλ

AB(ξ)Γ(ξ)

η∑
ν=2

1
∆t

[
tλ−1
ν−1 S 1(tν−1, S ν−1,Gν−1)

−tλ−1
ν−2 S 1(tν−2, S ν−2,Gν−2)

] ∫ tν+1

tν
(τ − tν−2)(tη+1 − τ)ξ−1dτ
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+
ξλ

AB(ξ)Γ(ξ)

η∑
ν=2

1
2∆t2

[
tλ−1
ν S 1(tν, S ν,Gν) − 2tλ−1

ν−1 S 1(tν−1, S ν−1,Gν−1)

+tλ−1
ν−2 S 1(tν−2, S ν−2,Gν−2)

] ∫ tν+1

tν
(τ − tν−2)(τ − tν−1)(tη+1 − τ)ξ−1dτ.

Eη+1 =
λ(1 − ξ)
AB(ξ)

tλ−1
η E1(tη, S (tη),G(tη)) +

ξλ

AB(ξ)Γ(ξ)

η∑
ν=2

E1(tν−2, S ν−2,Gν−2)

×tλ−1
ν−2

∫ tν+1

tν
(tη+1 − τ)ξ−1dτ +

ξλ

AB(ξ)Γ(ξ)

η∑
ν=2

1
∆t

[
tλ−1
ν−1 E1(tν−1, S ν−1,Gν−1)

−tλ−1
ν−2 E1(tν−2, S ν−2,Gν−2)

] ∫ tν+1

tν
(τ − tν−2)(tη+1 − τ)ξ−1dτ

+
ξλ

AB(ξ)Γ(ξ)

η∑
ν=2

1
2∆t2

[
tλ−1
ν E1(tν, S ν,Gν) − 2tλ−1

ν−1 E1(tν−1, S ν−1,Gν−1)

+tλ−1
ν−2 E1(tν−2, S ν−2,Gν−2)

] ∫ tν+1

tν
(τ − tν−2)(τ − tν−1)(tη+1 − τ)ξ−1dτ.

Vη+1 =
λ(1 − ξ)
AB(ξ)

tλ−1
η V1(tη, S (tη),G(tη)) +

ξλ

AB(ξ)Γ(ξ)

η∑
ν=2

V1(tν−2, S ν−2,Gν−2)

×tλ−1
ν−2

∫ tν+1

tν
(tη+1 − τ)ξ−1dτ +

ξλ

AB(ξ)Γ(ξ)

η∑
ν=2

1
∆t

[
tλ−1
ν−1 V1(tν−1, S ν−1,Gν−1)

−tλ−1
ν−2 V1(tν−2, S ν−2,Gν−2)

] ∫ tν+1

tν
(τ − tν−2)(tη+1 − τ)ξ−1dτ

+
ξλ

AB(ξ)Γ(ξ)

η∑
ν=2

1
2∆t2

[
tλ−1
ν V1(tν, S ν,Gν) − 2tλ−1

ν−1 V1(tν−1, S ν−1,Gν−1)

+tλ−1
ν−2 V1(tν−2, S ν−2,Gν−2)

] ∫ tν+1

tν
(τ − tν−2)(τ − tν−1)(tη+1 − τ)ξ−1dτ. (6.2)

Iη+1 =
λ(1 − ξ)
AB(ξ)

tλ−1
η I1(tη, S (tη),G(tη)) +

ξλ

AB(ξ)Γ(ξ)

η∑
ν=2

I1(tν−2, S ν−2,Gν−2)

×tλ−1
ν−2

∫ tν+1

tν
(tη+1 − τ)ξ−1dτ +

ξλ

AB(ξ)Γ(ξ)

η∑
ν=2

1
∆t

[
tλ−1
ν−1 I1(tν−1, S ν−1,Gν−1)

−tλ−1
ν−2 I1(tν−2, S ν−2,Gν−2)

] ∫ tν+1

tν
(τ − tν−2)(tη+1 − τ)ξ−1dτ

+
ξλ

AB(ξ)Γ(ξ)

η∑
ν=2

1
2∆t2

[
tλ−1
ν I1(tν, S ν,Gν) − 2tλ−1

ν−1 Q1(tν−1, S ν−1,Gν−1)

+tλ−1
ν−2 I1(tν−2, S ν−2,Gν−2)

] ∫ tν+1

tν
(τ − tν−2)(τ − tν−1)(tη+1 − τ)ξ−1dτ.
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Rη+1 =
λ(1 − ξ)
AB(ξ)

tλ−1
η R1(tη, S (tη),G(tη)) +

ξλ

AB(ξ)Γ(ξ)

η∑
ν=2

R1(tν−2, S ν−2,Gν−2)

×tλ−1
ν−2

∫ tν+1

tν
(tη+1 − τ)ξ−1dτ +

ξλ

AB(ξ)Γ(ξ)

η∑
ν=2

1
∆t

[
tλ−1
ν−1 R1(tν−1, S ν−1,Gν−1)

−tλ−1
ν−2 R1(tν−2, S ν−2,Gν−2)

] ∫ tν+1

tν
(τ − tν−2)(tη+1 − τ)ξ−1dτ

+
ξλ

AB(ξ)Γ(ξ)

η∑
ν=2

1
2∆t2

[
tλ−1
ν R1(tν, S ν,Gν) − 2tλ−1

ν−1 R1(tν−1, S ν−1,Gν−1)

+tλ−1
ν−2 R1(tν−2, S ν−2,Gν−2)

] ∫ tν+1

tν
(τ − tν−2)(τ − tν−1)(tη+1 − τ)ξ−1dτ,

where Gν−2 = Eν−2,Vν−2, Iν−2,Rν−2, Gν−1 = Eν−1,Vν−1, Iν−1,Rν−1, Gν = Eν,Vν, Iν,Rν, and G(tη) =
E(tη),V(tη), I(tη),R(tη).

We can perform the following calculations for the integral in Eq (6.2):∫ tν+1

tν
(tη+1 − τ)ξ−1dτ =

(∆t)ξ

ξ

[
(η − ν + 1)ξ − (η − ν)ξ

]
,∫ tν+1

tν
(τ − tν−2)(tη+1 − τ)ξ−1dτ =

(∆t)ξ+1

ξ(ξ + 1)

[
(η − ν + 1)ξ

×(η − ν + 3 + 2ξ) − (η − ν)ξ(η − ν + 3 + 3ξ)
]
. (6.3)∫ tν+1

tν
(τ − tν−2)(τ − tν−1)(tη+1 − τ)ξ−1dτ =

(∆t)ξ+2

ξ(ξ + 1)(ξ + 2)

[
(η − ν + 1)ξ

{
2(η − ν)2 + (3ξ + 10)

×(η − ν) + 2ξ2 + 9ξ + 12
}
− (η − ν)ξ

{
2(η − ν)2

+(5ξ + 10)(η − ν) + 6ξ2 + 18ξ + 12
}]
,

substituting integral calculation values into Eq (6.2).
We acquire the numerical solutions S (t), E(t),V(t), I(t) and R(t):

S η+1 =
λ(1 − ξ)
AB(ξ)

tλ−1
η S 1(tη, S (tη),G(tη)) +

ξλ(∆t)ξ

AB(ξ)Γ(ξ + 1)

η∑
ν=2

S 1(tν−2, S ν−2,Gν−2)

×tλ−1
ν−2

[
(η − ν + 1)ξ − (η − ν)ξ

]
+

ξλ(∆t)ξ

AB(ξ)Γ(ξ + 2)

η∑
ν=2

[
tλ−1
ν−1 S 1(tν−1, S ν−1,Gν−1)

−tλ−1
ν−2 S 1(tν−2, S ν−2,Gν−2)

][
(η − ν + 1)ξ(η − ν + 3 + 2ξ) − (η − ν)ξ(η − ν + 3 + 3ξ)

]
+

ξλ(∆t)ξ

2AB(ξ)Γ(ξ + 3)

η∑
ν=2

[
tλ−1
ν S 1(tν, S ν,Gν) − 2tλ−1

ν−1 S 1(tν−1, S ν−1,Gν−1)

+tλ−1
ν−2 S 1(tν−2, S ν−2,Gν−2)

][
(η − ν + 1)ξ

{
2(η − ν)2 + (3ξ + 10)(η − ν) + 2ξ2 + 9ξ + 12

}
−(η − ν)ξ ×

{
2(η − ν)2 + (5ξ + 10)(η − ν) + 6ξ2 + 18ξ + 12

}]
,
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Eη+1 =
λ(1 − ξ)
AB(ξ)

tλ−1
η E1(tη, S (tη),G(tη)) +

ξλ(∆t)ξ

AB(ξ)Γ(ξ + 1)

η∑
ν=2

E1(tν−2, S ν−2,Gν−2)

×tλ−1
ν−2

[
(η − ν + 1)ξ − (η − ν)ξ

]
+

ξλ(∆t)ξ

AB(ξ)Γ(ξ + 2)

η∑
ν=2

[
tλ−1
ν−1 E1(tν−1, S ν−1,Gν−1)

−tλ−1
ν−2 E1(tν−2, S ν−2,Gν−2)

][
(η − ν + 1)ξ(η − ν + 3 + 2ξ) − (η − ν)ξ(η − ν + 3 + 3ξ)

]
+

ξλ(∆t)ξ

2AB(ξ)Γ(ξ + 3)

η∑
ν=2

[
tλ−1
ν E1(tν, S ν,Gν) − 2tλ−1

ν−1 E1(tν−1, S ν−1,Gν−1)

+tλ−1
ν−2 E1(tν−2, S ν−2,Gν−2)

][
(η − ν + 1)ξ

{
2(η − ν)2 + (3ξ + 10)(η − ν) + 2ξ2 + 9ξ + 12

}
−(η − ν)ξ ×

{
2(η − ν)2 + (5ξ + 10)(η − ν) + 6ξ2 + 18ξ + 12

}]
,

Vη+1 =
λ(1 − ξ)
AB(ξ)

tλ−1
η V1(tη, S (tη),G(tη)) +

ξλ(∆t)ξ

AB(ξ)Γ(ξ + 1)

η∑
ν=2

V1(tν−2, S ν−2,Gν−2)

×tλ−1
ν−2

[
(η − ν + 1)ξ − (η − ν)ξ

]
+

ξλ(∆t)ξ

AB(ξ)Γ(ξ + 2)

η∑
ν=2

[
tλ−1
ν−1 V1(tν−1, S ν−1,Gν−1)

−tλ−1
ν−2 V1(tν−2, S ν−2,Gν−2)

][
(η − ν + 1)ξ(η − ν + 3 + 2ξ) − (η − ν)ξ(η − ν + 3 + 3ξ)

]
+

ξλ(∆t)ξ

2AB(ξ)Γ(ξ + 3)

η∑
ν=2

[
tλ−1
ν V1(tν, S ν,Gν) − 2tλ−1

ν−1 V1(tν−1, S ν−1,Gν−1)

+tλ−1
ν−2 V1(tν−2, S ν−2,Gν−2)

][
(η − ν + 1)ξ

{
2(η − ν)2 + (3ξ + 10)(η − ν) + 2ξ2 + 9ξ + 12

}
−(η − ν)ξ ×

{
2(η − ν)2 + (5ξ + 10)(η − ν) + 6ξ2 + 18ξ + 12

}]
,

Iη+1 =
λ(1 − ξ)
AB(ξ)

tλ−1
η I1(tη, S (tη),G(tη)) +

ξλ(∆t)ξ

AB(ξ)Γ(ξ + 1)

η∑
ν=2

I1(tν−2, S ν−2,Gν−2)

×tλ−1
ν−2

[
(η − ν + 1)ξ − (η − ν)ξ

]
+

ξλ(∆t)ξ

AB(ξ)Γ(ξ + 2)

η∑
ν=2

[
tλ−1
ν−1 I1(tν−1, S ν−1,Gν−1)

−tλ−1
ν−2 I1(tν−2, S ν−2,Gν−2)

][
(η − ν + 1)ξ(η − ν + 3 + 2ξ) − (η − ν)ξ(η − ν + 3 + 3ξ)

]
+

ξλ(∆t)ξ

2AB(ξ)Γ(ξ + 3)

η∑
ν=2

[
tλ−1
ν I1(tν, S ν,Gν) − 2tλ−1

ν−1 I1(tν−1, S ν−1,Gν−1)

+tλ−1
ν−2 I1(tν−2, S ν−2,Gν−2)

][
(η − ν + 1)ξ

{
2(η − ν)2 + (3ξ + 10)(η − ν) + 2ξ2 + 9ξ + 12

}
−(η − ν)ξ ×

{
2(η − ν)2 + (5ξ + 10)(η − ν) + 6ξ2 + 18ξ + 12

}]
,

Rη+1 =
λ(1 − ξ)
AB(ξ)

tλ−1
η R1(tη, S (tη),G(tη)) +

ξλ(∆t)ξ

AB(ξ)Γ(ξ + 1)

η∑
ν=2

R1(tν−2, S ν−2,Gν−2)

×tλ−1
ν−2

[
(η − ν + 1)ξ − (η − ν)ξ

]
+

ξλ(∆t)ξ

AB(ξ)Γ(ξ + 2)

η∑
ν=2

[
tλ−1
ν−1 R1(tν−1, S ν−1,Gν−1)

−tλ−1
ν−2 R1(tν−2, S ν−2,Gν−2)

][
(η − ν + 1)ξ(η − ν + 3 + 2ξ) − (η − ν)ξ(η − ν + 3 + 3ξ)

]
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+
ξλ(∆t)ξ

2AB(ξ)Γ(ξ + 3)

η∑
ν=2

[
tλ−1
ν R1(tν, S ν,Gν) − 2tλ−1

ν−1 R1(tν−1, S ν−1,Gν−1)

+tλ−1
ν−2 R1(tν−2, S ν−2,Gν−2)

][
(η − ν + 1)ξ

{
2(η − ν)2 + (3ξ + 10)(η − ν) + 2ξ2 + 9ξ + 12

}
−(η − ν)ξ ×

{
2(η − ν)2 + (5ξ + 10)(η − ν) + 6ξ2 + 18ξ + 12

}]
.

7. Simulation explanation

In this section, we utilized an advanced technique to obtain theoretical outcomes and assess
their effectiveness. The newly developed SEVIR system was analyzed through simulation. By applying
non-integer parametric values in the SARS-COVID-19 model, we obtained interesting findings.
Figures 2–6 display the solutions for S (t), E(t), V(t), I(t), and R(t) by reducing the fractional values
to the desired level. To validate the efficiency of the theoretical outcomes, we provide the following
examples. Numerical simulations for the SARS-COVID-19 model were performed using MATLAB.
The initial conditions used in the newly developed model are S (0) = 217.342565, E(0) = 100,V(0) =
1.386348, I(0) = 1.1 and R(0) = 1.271087. The parameter values used in the developed system are
as follows: a = 1.43, δ = 0.000065, ρ = 0.45, ρ1 = 0.10, ρ2 = 0.020, α = 0.0008601, µ0 = 0.19,
ω = 0.98, b = 0.135, ϕ = 0.0001, and ψ = 0.0001. Figures 2, 4, and 5 illustrate the changes
in susceptible, vaccinated, and infected individuals respectively, showing a sharp decrease before
reaching a stable position. Meanwhile, Figures 3 and 6 demonstrate the dynamics of exposed and
recovered individuals respectively at different fractional orders in which both individuals increases and
after certain time the number of individuals approaches stable state using different dimensions. The
research predicts future infection rates and suggests ways to decrease the spread of infection units more
effectively. By utilizing a fractal-fractional approach, the study yields reliable and accurate results
for all compartments at non-integer order derivatives, which are more trustworthy when fractional
values are reduced as well a by reducing its dimensions. The findings suggest that the number of
infected individuals decreases significantly due to vaccination measures, while the number of recovered
individuals increases due to a decline in infected individuals and the effect of vaccination.

0 50 100 150
0

50

100

150

200

250
Developed Method

t

S
(t

)

 

 
ξ=1.0
ξ=0.95
ξ=0.90
ξ=0.85

(a) with dimension 0.8

0 50 100 150
0

50

100

150

200

250
Developed Method

t

S
(t

)

 

 
ξ=1.0
ξ=0.95
ξ=0.90
ξ=0.85

(b) with dimension 0.5

Figure 2. The value of S (t) using the fractal-fractional operator with various fractional values
at different dimensions.
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Figure 3. The value of E(t) using the fractal-fractional operator with various fractional values
at different dimensions.
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Figure 4. The value of V(t) using the fractal-fractional operator with various fractional values
at different dimensions.
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Figure 5. The value of I(t) using the fractal-fractional operator with various fractional values
at different dimensions.
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Figure 6. The value of R(t) using the fractal-fractional operator with various fractional values
at different dimensions.

8. Conclusions

This article employs a fractional order SEVIR model for SARS-COVID-19 with vaccinated
effects using an FFO to find reliable solutions. We provide advice on controlling this virus to
help our community overcome the pandemic by implementing vaccinated measures for low immune
individuals. We analyze the dangerous coronavirus disease with the effect of vaccination to understand
its real impact on the community. Qualitative and quantitative analyses are conducted to verify its
stable position in a continuous dynamical system. We also verify that the fractional order coronavirus
disease model has bounded and unique solutions. We examine the impact of global measures to control
the spread of the coronavirus disease. Also, analyses are performed to see how the rate of infection
changes after the implementation of vaccination measures. We ensure that our findings are reliable
and realistic. FFO is used for continuously monitoring the spread as well as control of the disease in
society after vaccination measures. It was observed that infected individuals recover quickly due to
the vaccinated strategy. The fractal-fractional operator (FFO) is used for continuously monitoring for
the spread of the diseases using different fractional values as well as reliable solutions. In fractal-
fractional operators, fractal represents the dimensions of the spread of the disease, and fractional
represents the fractional ordered derivative operator which provides the real behavior of the spread
as well as control of COVID-19 with different dimensions and continuous monitoring, which can be
observed in simulation. We conduct numerical simulations to observe how the disease controlled in
the community after the implementation of vaccination measures using different fractional values with
different dimensions. Additionally, future estimates are provided based on our findings, which can help
in mitigating the risk of the disease spreading in the environment.
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