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1. Introduction

Let {X, Xn, n ≥ 1} be a sequence of independent and identically distributed (i.i.d., for short) random
variables and set S n =

∑n
i=1 Xi. Hsu and Robbins [1] proved that if EX2 < ∞ and EX = µ, then for all

ϵ > 0,
∞∑

n=1

P(|n−1S n − µ| > ϵ) < ∞.

The aforementioned result is the well-known complete convergence, which can derive that S n/n → 0
almost surely (a.s., for short) by the Borel-Cantelli lemma. For a sequence {X, Xn, n ≥ 1} of i.i.d.
random variables with zero mean, Baum and Katz [2] proved that for all ϵ > 0,

∞∑
n=1

nr−2P


∣∣∣∣∣∣∣

n∑
i=1

Xi

∣∣∣∣∣∣∣ > ϵn1/p

 < ∞
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if, and only if, E|X|rp < ∞, where r > 1 and 1 ≤ p < 2. For p = 2, Lai [3] proved that for any
ε >
√

r − 1,
∞∑

n=1

nr−2P


∣∣∣∣∣∣∣

n∑
i=1

Xi

∣∣∣∣∣∣∣ > ε√2n log n

 < ∞
if EX = 0, EX2 = 1 and E(X2/ log |X|)r < ∞. This result is called the law of the single logarithm.
Chen and Wang [4] showed that the series is divergent if ε <

√
r − 1 and, recently, Chen and Sung [5]

proved the sufficiency part for negatively orthant dependent (NOD) random variables by applying a
Bernstein type inequality for unbounded NOD random variables.

It is known that many useful linear statistics, such as least squares estimator, nonparametric
regression function estimator, and jackknife estimator, are the form of weighted sums, i.e.,

∑n
i=1 aniXi,

where ani, 1 ≤ i ≤ n, n ≥ 1 are called the weights and {Xn, n ≥ 1} is a sequence of random variables.
Therefore, it is of great interest to extend the law of the single logarithm for partial sums to weighted
sums. Bai et al. [6] proved that

lim sup
n→∞

|
∑n

i=1 aniXi|√
2n log n

≤
√

EX2 lim sup
n→∞

√∑n
i=1 a2

ni

n
a.s.,

where {X, Xn, n ≥ 1} is a sequence of i.i.d. random variables with EX = 0, E|X|β < ∞, and {ani, 1 ≤ i ≤
n, n ≥ 1} is an array of constants satisfying

∑n
i=1 |ani|

α = O(n) for α > 0, β > 0, and 1/α + 1/β = 1/2.
Chen and Gan [7] pointed out that the moment condition in Bai et al. [6] is nonoptimal and they
proved that the necessary condition is E(|X|/ log1/2

|X|)β < ∞. Sung [8] extended the result of Chen
and Gan [7] from classical probability space to Banach space. Chen et al. [9] extended the result of
Chen and Gan [7] to a more general case. More recently, Liu et al. [10] also extended the result of
Lai [3] for partial sums to weighted sums.

The randomly weighted sums also play an essential role in various theoretical problems and
practical applications. For example, in the field of queueing theory, the randomly weighted sum∑n

i=1 AniXi represents the total output for a customer being served by n machines, where the Ani is the
service time in the i-th machine and Xi is the output from the i-th machine. In a linear-time-invariant
system, the convergence analysis of the state observers will reduce to the persistent excitation
condition and the randomly weighted sums if the sampling time sequence is a random process; In
statistics, the random weighting estimate of sample mean, bootstrap sample mean, and the least
squares estimators in a simple linear regression model with random design are all the form of
randomly weighted sums. The nonrandomly weighted sums can be regarded as a special case of
randomly weighted sums, but not vice versa. The study on randomly weighted sums seems much
more meaningful, but what followed is the increase in the difficulty of proofs. In comparison to the
study on nonrandomly weighted sums, there are not so many investigations on the law of the single
logarithm for randomly weighted sums. Cuzick [11] proved the law of single logarithm

lim sup
n→∞

|
∑n

i=1 AniXi|√
2n log n

= 1 a.s.

for randomly weighted sums providing that Ani, 1 ≤ i ≤ n, n ≥ 1 is an array of independent Rademacher
random variables, and EX2 = 1. Chen et al. [12] investigated the law of single logarithm in the sense
of almost sure convergence for randomly weighted sums of NOD random variables.
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In this paper, we will further investigate the law of single logarithm in the sense of complete
convergence for randomly weighted sums of widely orthant dependent (WOD) random variables,
while the weights are also assumed to be WOD.

Let us recall the concept of WOD random variables, which was raised by Wang et al. [13] as follows.

Definition 1.1. A sequence {Xn, n ≥ 1} of random variables is said to be widely upper orthant
dependent (WUOD) if there exists a finite sequence {gU(n), n ≥ 1} of positive numbers such that for
each n ≥ 1 and for all xi ∈ (−∞,∞), 1 ≤ i ≤ n,

P (X1 > x1, X2 > x2, · · · , Xn > xn) ≤ gU(n)
n∏

i=1

P(Xi > xi).

A sequence {Xn, n ≥ 1} of random variables is said to be widely lower orthant dependent (WLOD) if
there exists a finite sequence {gL(n), n ≥ 1} of positive numbers such that for each n ≥ 1 and for all
xi ∈ (−∞,∞), 1 ≤ i ≤ n,

P (X1 ≤ x1, X2 ≤ x2, · · · , Xn ≤ xn) ≤ gL(n)
n∏

i=1

P (Xi ≤ xi) .

If {Xn, n ≥ 1} is both WUOD and WLOD, then it is said to be WOD with dominating coefficients
g(n) = max{gU(n), gL(n)}.

By letting xi → −∞ in the former inequality or xi → ∞ in the latter one above, for all 1 ≤ i ≤ n, it
is easy to see that g(n) ≥ 1. Wang et al. [13] gave some examples to show that WOD random
variables contain negatively associated (NA) random variables, negatively supper-additive
dependent (NSD) random variables, NOD random variables, and extended negatively
dependent (END) random variables, the concepts of which were introduced by Alam and Saxena [14],
Hu [15], Lehmann [16], and Liu [17], respectively. Wang et al. [13] further presented examples to
show that WOD random variables also include some positively dependent random variables.
Therefore, it is of interest to investigate the limiting behaviors of random variables processing this
dependence structure.

In this paper, the law of the single logarithm for randomly weighted sums of WOD random variables
is studied. The result improves and generalizes some corresponding ones in the literature. As an
application, the rate of complete convergence for random weighting estimation with WOD samples
is obtained under general assumptions. We also carry out some numerical simulations to support the
theoretical results.

Throughout the paper, let C be a positive constant, which may vary in different places. Let log x =
ln max(x, e). Define x+ = xI(x ≥ 0) and x− = −xI(x < 0), where I(A) is the indicator function of event
A. an = O(bn) stands for an ≤ Cbn, and an = o(bn) means an/bn → 0 as n → ∞, where {an, n ≥ 1}
and {bn, n ≥ 1} are two sequences of positive numbers. Let {ξn, n ≥ 1} be a sequence of random
variables. If

∑∞
n=1 P(|ξn|/an > M) < ∞ for some M > 0, we abbreviate it to |ξn| = Oa.c.(an).

AIMS Mathematics Volume 9, Issue 4, 10141–10156.



10144

2. Main results and an application

2.1. Main results

For an array {Ani, 1 ≤ i ≤ n, n ≥ 1} of random variables, denote

ρ = inf

η :
∞∑

n=1

nr+τ1+τ2−1 exp
{
−
ηn log n∑n

i=1 EA2
ni

}
< ∞

 . (2.1)

It follows that if
∑n

i=1 E|Ani|
2 = O(n), then

ρ ∈

(r + τ1 + τ2) lim inf
n→∞

1
n

n∑
i=1

EA2
ni, (r + τ1 + τ2) lim sup

n→∞

1
n

n∑
i=1

EA2
ni

 ⊂ [0,∞),

and

ρ = (r + τ1 + τ2) lim
n→∞

1
n

n∑
i=1

EA2
ni

if the limit above exists. Particularly, we have ρ = r + τ1 + τ2 if Ani ≡ 1 for each 1 ≤ i ≤ n.
We now state our main result as follows.

Theorem 2.1. Let r > 0. Let {X; Xn, n ≥ 1} be a sequence of identically distributed WOD random
variables with g1(n) = O(nτ1) for some τ1 ≥ 0, and let {Ani, 1 ≤ i ≤ n, n ≥ 1} be an array of WOD
random variables with g2(n) = O(nτ2) for some τ2 ≥ 0. Suppose that {Ani, 1 ≤ i ≤ n, n ≥ 1} is
independent of {X; Xn, n ≥ 1} and

n∑
i=1

E|Ani|
α = O(n) (2.2)

for some α ≥ 2(r + 1 + τ1 + τ2). If EX = 0 and
E

(
|X|

log1/2 |X|

)2(r+1+τ1+τ2)
log |X| < ∞, for α = 2(r + 1 + τ1 + τ2),

E
(
|X|

log1/2 |X|

)2(r+1+τ1+τ2)
< ∞, for α > 2(r + 1 + τ1 + τ2),

(2.3)

then for any ε >
√

2ρEX2,

∞∑
n=1

nr−1P


∣∣∣∣∣∣∣

n∑
i=1

AniXi

∣∣∣∣∣∣∣ > 4ε
√

n log n

 < ∞. (2.4)

Remark 2.1. We point out that if {X; Xn, n ≥ 1} is a sequence of i.i.d. random variables and {Ani, 1 ≤
i ≤ n, n ≥ 1} is an array of independent random variables, then (2.4) can be replaced with

∞∑
n=1

nr−1P


∣∣∣∣∣∣∣

n∑
i=1

AniXi

∣∣∣∣∣∣∣ > ε√n log n

 < ∞.
If we further take EX2 = 1 and replace {Ani, 1 ≤ i ≤ n, n ≥ 1} with an array {ani, 1 ≤ i ≤ n, n ≥ 1}
of constants, Theorem 2.1 degenerates to the convergence part of Theorem 1.1 in Liu et al. [10] when
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α ≥ 2(r + 1). Furthermore, for α = 2(r + 1), the moment condition E|X|2(r+1) < ∞ in Liu et al. [10] is
weakened to E(|X|/ log1/2

|X|)2(r+1) log |X| < ∞.
By taking r = 1 in Theorem 2.1, we can obtain the following result.

Corollary 2.1. Let {X; Xn, n ≥ 1} be a sequence of identically distributed WOD random variables
with g1(n) = O(nτ1) for some τ1 ≥ 0, and let {Ani, 1 ≤ i ≤ n, n ≥ 1} be an array of WOD random
variables with g2(n) = O(nτ2) for some τ2 ≥ 0. Suppose that {Ani, 1 ≤ i ≤ n, n ≥ 1} is independent
of {X; Xn, n ≥ 1} and satisfies (2.2) for some α ≥ 2(2 + τ1 + τ2). If EX = 0 and

E
(
|X|

log1/2 |X|

)2(2+τ1+τ2)
log |X| < ∞, for α = 2(2 + τ1 + τ2),

E
(
|X|

log1/2 |X|

)2(2+τ1+τ2)
< ∞, for α > 2(2 + τ1 + τ2),

then for any ε >
√

2ρEX2,

∞∑
n=1

P


∣∣∣∣∣∣∣

n∑
i=1

AniXi

∣∣∣∣∣∣∣ > 4ε
√

n log n

 < ∞,
and thus

lim sup
n→∞

|
∑n

i=1 AniXi|√
n log n

≤ 4
√

2ρEX2 a.s..

Remark 2.2. If {X; Xn, n ≥ 1} is a sequence of identically distributed NOD random variables
and {Ani, 1 ≤ i ≤ n, n ≥ 1} is an array of NOD random variables, Corollary 2.1 exhibits the same rate
as Theorem 2 in Chen et al. [12] for α > 4. Under this circumstance, g1(n) = g2(n) = 1. Moreover, the
case α = 4 was not considered in Chen et al. [12]. Note that the complete convergence in
Corollary 2.1 is stronger than almost sure convergence in Chen et al. [12]. Therefore, our result
improves and extends the corresponding one in Chen et al. [12] from the NOD setting to the WOD
setting.

2.2. Application to the random weighting estimation of sample mean

Random weighting is an emerging computational method which pocesses many advantages such
as the simplicity in computation, the suitability for large samples, and there is no need to know the
distribution function. Assume that X1, X2, · · · , Xn are identically distributed random variables, and the
corresponding sample mean is defined as X̄n = n−1 ∑n

i=1 Xi. The random weighting estimation (RWE)
of X̄n can be defined as

Hn =

n∑
i=1

WniXi,

where Wni’s are independent of Xi’s and the random vector W = (Wn1, · · · ,Wnn) obeys the Dirichlet
distribution. In general, (Wn1, · · · ,Wnn) ∼ D(1, · · · , 1), namely,

∑n
i=1 Wni = 1 and the joint density of

W is fW(wn1, · · · ,wnn) = Γ(n), where (Wn1, · · · ,Wnn) ∈ Dn−1 and Dn−1 = {(Wn1, · · · ,Wnn) : Wni ≥ 0, i =
1, · · · , n − 1,

∑n−1
i=1 Wni ≤ 1}. The asymptotic behavior of RWE has been investigated by some authors.

Since the RWE was introduced by Zheng [18], some meaningful results have been investigated. For
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more details, we refer to Gao et al. [19], Xue and Zhu [20], Gao and Zhong [21], Roozegar and
Soltani [22], and the references therein.

As an application of our main result, we obtain the rate of complete convergence for the RWE of
the WOD sample mean as follows.
Theorem 2.2. Let {X; Xn, n ≥ 1} be a sequence of identically distributed WOD random variables with

g1(n) = O(nτ1) for some τ1 ≥ 0 and E
(
|X|

log1/2 |X|

)2(2+τ1)
< ∞, then

Hn − X̄n = Oa.c.


√

log n
n

 .
Remark 2.3. For i.i.d. samples, Gao et al. [19] obtained that

P
(
sup
n≥N
|Hn − X̄n| > ϵ

)
→ 0 as N → ∞, for any ϵ > 0,

i.e., Hn − X̄n → 0 a.s., as n → ∞ under the moment condition E|X|1+θ < ∞, where 0 < θ < 1 . The
result of Gao et al. [19] does not reveal the convergence rate. Hence, Theorem 2.2 complements and
improves the corresponding result of Gao et al. [19] from an independent setting to a WOD setting.

2.3. Numerical simulation

In this subsection, we will carry out some simulations to study the numerical performance of the
RWE of the WOD sample mean. For fixed n, we generate Xi, 1 ≤ i ≤ n under the following two cases.
Case 1: WOD sample. The marginal distributions of X1, · · · , Xn are the uniform distribution on [0, 1],
while (X1, X2), (X3, X4), · · · , (X2m−1, X2m), · · · respectively follow a joint distribution of the Farlie-
Gumbel-Morgenstern (FGM) copula

Cθn(u, v) = uv + θnuv(1 − u)(1 − v), (u, v) ∈ [0, 1] × [0, 1]

with the parameter θn = n−1. It follows from Wang et al. [13] that {Xn, n ≥ 1} is a sequence of identically
distributed WOD random variables with the dominating coefficients g(n) = O(n).
Case 2: NA sample. For any fixed n ≥ 3, let (X1, X2, · · · , Xn) ∼ N(0,Σ), where 0 represents zero
vector and

Σ =



1 + ν2 −ν 0 · · · 0 0 0
−ν 1 + ν2 −ν · · · 0 0 0
0 −ν 1 + ν2 · · · 0 0 0
...

...
...

...
...

...

0 0 0 · · · 1 + ν2 −ν 0
0 0 0 · · · −ν 1 + ν2 −ν

0 0 0 · · · 0 −ν 1 + ν2


n×n

,

where 0 < ν < 1. In this paper, without specified, we will take ν = 0.1, 0.5, 0.8 to show how this
parameter will affect the performance. By Joag-Dev and Proschan [23], it can be seen
that (X1, X2, · · · , Xn) is an NA vector and is thus WOD.

AIMS Mathematics Volume 9, Issue 4, 10141–10156.



10147

We carry out a simulation to confirm the consistency for RWE of the WOD sample mean that we
established in Theorem 2.2. The random weights satisfy that (Wn1, · · · ,Wnn) ∼ D(1, . . . , 1). For the
two cases above, by choosing the sample size n = 200, 500, 1000, 2000, respectively, we adopt the R
software to compute

√
n/ log n(Hn−X̄n) for 1000 times and present the boxplots in Figure 1 to Figure 4.
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Figure 1. Boxplots of
√

n/ log n(Hn − X̄n) for WOD samples.
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Figure 2. Boxplots of
√

n/ log n(Hn − X̄n) for NA samples with ν = 0.1.
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Figure 3. Boxplots of
√

n/ log n(Hn − X̄n) for NA samples with ν = 0.5.
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Figure 4. Boxplots of
√

n/ log n(Hn − X̄n) for NA samples with ν = 0.8

From Figure 1 to Figure 4, we can see that the values of
√

n/ log n(Hn − X̄n) are bounded for each
sample size, no matter if the samples are NA or WOD. Moreover, there is no obvious difference for
the RWE of the WOD sample mean with different values of ν. This implies that Hn − X̄n is convergent
with the rate O(

√
log n/n) completely, which is consistent with what we have proved in Section 2.2.
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3. Some important lemmas

To prove the main results of the paper, we need the following important lemmas. The first one is a
basic property for WOD random variables, which was presented by Wang et al. [24].
Lemma 3.1. Let {Xn, n ≥ 1} be a sequence of WOD random variables. If { fn(·), n ≥ 1} are all
nondecreasing (or nonincreasing), then { fn(Xn), n ≥ 1} are still WOD.

The following important conclusion for WOD random variables can be found in Wu et al. [25].
Lemma 3.2. Let {Xn, n ≥ 1} be a nonnegative sequence of WOD random variables with the dominating
coefficients g1(n), and let {Yn, n ≥ 1} also be a nonnegative sequence of WOD random variables with the
dominating coefficients g2(n). Assume that {Xn, n ≥ 1} is independent of {Yn, n ≥ 1}, then {XnYn, n ≥ 1}
is still a sequence of WOD random variables with the dominating coefficients g1(n)g2(n).

The next lemma concerning the Bernstein inequality for unbounded WOD random variables was
proved in Deng and Wang [26].
Lemma 3.3. Let X1, X2, · · · , Xn be WOD random variables with the dominating coefficients g(n) and
EXi = 0, E|Xi|

s < ∞ for each 1 ≤ i ≤ n, where s ≥ 2. Set B2
n =

∑n
i=1 EX2

i , then for any ε > 0 and
δ > 0,

P


∣∣∣∣∣∣∣

n∑
i=1

Xi

∣∣∣∣∣∣∣ > ε
 ≤ 2g(n) exp

{
−

ε2

(2 + δ)B2
n

}
+Cδ,sg(n)

n∑
i=1

E|Xi|
s/εs,

where Cδ,s > 0, depending only on δ and s.
Lemma 3.4. Let r > 0, τ ≥ 0, and α ≥ 2(r + 1 + τ). Let {X; Xn, n ≥ 1} be a sequence of identically
distributed random variables and {Ani, 1 ≤ i ≤ n, n ≥ 1} be an array of random variables independent
of {X; Xn, n ≥ 1}. If

∑n
i=1 E|Ani|

α = O(n), then

∞∑
n=1

nr+τ−1
n∑

i=1

P
(
|AniXi| >

√
n log n

)
≤


CE

(
|X|

log1/2 |X|

)2(r+1+τ)
log |X|, for α = 2(r + 1 + τ),

CE
(
|X|

log1/2 |X|

)2(r+1+τ)
, for α > 2(r + 1 + τ).

Proof. It follows from Jensen’s inequality and Hölder’s inequality that for any 0 < α′ < α,

n∑
i=1

E|Ani|
α′ ≤

n∑
i=1

(E|Ani|
α)α

′/α
≤

 n∑
i=1

E|Ani|
α

α
′/α  n∑

i=1

1

1−α′/α

= O(n). (3.1)

It is easy to check that

P
(
|AniXi| >

√
n log n

)
= P

(
|AniXi| >

√
n log n, |Xi| >

√
n log n

)
+P

(
|AniXi| >

√
n log n, |Xi| ≤

√
n log n

)
≤ P

(
|Xi| >

√
n log n

)
+

(
n log n

)−α/2 E|Ani|
αE|Xi|

αI
(
|Xi| ≤

√
n log n

)
. (3.2)

On one hand, we can obtain by (3.1) and some standard calculation that
∞∑

n=1

nr+τ−1
n∑

i=1

P(|Xi| >
√

n log n)
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=

∞∑
n=1

nr+τ
∞∑
j=n

P
( √

j log j < |X| ≤
√

( j + 1) log( j + 1)
)

≤ C
∞∑
j=1

jr+1+τP
( √

j log j < |X| ≤
√

( j + 1) log( j + 1)
)

≤ CE
(
|X|

log1/2
|X|

)2(r+1+τ)

. (3.3)

On the other hand, we also obtain that
∞∑

n=1

nr+τ−1(n log n)−α/2
n∑

i=1

E|Ani|
αE|Xi|

αI
(
|Xi| ≤

√
n log n

)
≤ C

∞∑
n=1

nr+τ−α/2 (
log n

)−α/2 n∑
j=1

E|X|αI
( √

( j − 1) log( j − 1) < |X| ≤
√

j log j
)

= C
∞∑
j=1

E|X|αI
( √

( j − 1) log( j − 1) < |X| ≤
√

j log j
) ∞∑

n= j

nr+τ−α/2(log n)−α/2.

Hence, if α = 2(r + 1 + τ), we have
∞∑

n=1

nr+τ−1(n log n)−α/2
n∑

i=1

E|Ani|
αE|Xi|

αI
(
|Xi| ≤

√
n log n

)
≤ C

∞∑
j=1

(log j)−r−τE|X|αI
( √

( j − 1) log( j − 1) < |X| ≤
√

j log j
)

≤ CE
(
|X|

log1/2
|X|

)2(r+1+τ)

log |X|; (3.4)

and if α > 2 (r + 1 + τ),
∞∑

n=1

nr+τ−1(n log n)−α/2
n∑

i=1

E|Ani|
αE|Xi|

αI
(
|Xi| ≤

√
n log n

)
≤ C

∞∑
j=1

jr+1+τ−α/2(log j)−α/2E|X|αI
( √

( j − 1) log( j − 1) < |X| ≤
√

j log j
)

≤ CE
(
|X|

log1/2
|X|

)2(r+1+τ)

. (3.5)

A combination of (3.2)–(3.5) derives the desired result immediately. The proof of the lemma is
completed.

Lemma 3.5. Let r > 0, τ ≥ 0, and α ≥ 2(r + 1 + τ). Let {X; Xn, n ≥ 1} be a sequence of identically
distributed random variables and let {Ani, 1 ≤ i ≤ n, n ≥ 1} be an array of random variables
independent of {X; Xn, n ≥ 1}. If

∑n
i=1 E|Ani|

α = O(n), then for any s ≥ α,
∞∑

n=1

nr+τ−1(n log n)−s/2
n∑

i=1

E|AniXi|
sI

(
|AniXi| ≤

√
n log n

)
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≤


CE

(
|X|

log1/2 |X|

)2(r+1+τ)
log |X|, for α = 2(r + 1 + τ),

CE
(
|X|

log1/2 |X|

)2(r+1+τ)
, for α > 2(r + 1 + τ).

Proof. Similar to the procedure of Lemma 3.4, we also have

(n log n)−s/2E|AniXi|
sI

(
|AniXi| ≤

√
n log n

)
= (n log n)−s/2E|AniXi|

sI
(
|AniXi| ≤

√
n log n, |Xi| >

√
n log n

)
+(n log n)−s/2E|AniXi|

sI
(
|AniXi| ≤

√
n log n, |Xi| ≤

√
n log n

)
≤ P

(
|Xi| >

√
n log n

)
+(n log n)−α/2E|Ani|

αE|Xi|
αI

(
|Xi| ≤

√
n log n

)
,

which, together with (3.3)–(3.5), completes the proof of the lemma.

4. Proofs of the main results

Proof of Theorem 2.1. By virtue of EX = 0 and the independence of {Ani, 1 ≤ i ≤ n, n ≥ 1}
and {X; Xn, n ≥ 1}, we have that

n∑
i=1

AniXi =

n∑
i=1

(AniXi − EAniXi)

=

n∑
i=1

(
A+niX

+
i − EA+niX

+
i
)
−

n∑
i=1

(
A+niX

−
i − EA+niX

−
i
)

−

n∑
i=1

(
A−niX

+
i − EA−niX

+
i
)
+

n∑
i=1

(
A−niX

−
i − EA−niX

−
i
)
,

and, hence,

∞∑
n=1

nr−1P


∣∣∣∣∣∣∣

n∑
i=1

AniXi

∣∣∣∣∣∣∣ > 4ε
√

n log n


≤

∞∑
n=1

nr−1P


∣∣∣∣∣∣∣

n∑
i=1

(
A+niX

+
i − EA+niX

+
i
)∣∣∣∣∣∣∣ > ε√n log n


+

∞∑
n=1

nr−1P


∣∣∣∣∣∣∣

n∑
i=1

(A+niX
−
i − EA+niX

−
i )

∣∣∣∣∣∣∣ > ε√n log n


+

∞∑
n=1

nr−1P


∣∣∣∣∣∣∣

n∑
i=1

(A−niX
+
i − EA−niX

+
i )

∣∣∣∣∣∣∣ > ε√n log n


+

∞∑
n=1

nr−1P


∣∣∣∣∣∣∣

n∑
i=1

(A−niX
−
i − EA−niX

−
i )

∣∣∣∣∣∣∣ > ε√n log n

 .
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Therefore, in order to prove (2.4), we only need to show

∞∑
n=1

nr−1P


∣∣∣∣∣∣∣

n∑
i=1

(AniXi − EAniXi)

∣∣∣∣∣∣∣ > ε√n log n

 < ∞, (4.1)

with Ani ≥ 0 and Xi ≥ 0 for each 1 ≤ i ≤ n, n ≥ 1. For the given 1 ≤ i ≤ n, n ≥ 1 define

Yni = AniXiI
(
AniXi ≤

√
n log n

)
+

√
n log nI

(
AniXi >

√
n log n

)
.

It follows from Lemmas 3.1 and 3.2 successively that {Yni, 1 ≤ i ≤ n, n ≥ 1} is still an array of row-wise
WOD random variables with dominating coefficients g1(n)g2(n) = O(nτ1+τ2). Note by (3.1) that

(n log n)−1/2

∣∣∣∣∣∣∣
n∑

i=1

(EYni − EAniXi)

∣∣∣∣∣∣∣ ≤ (n log n)−1/2
n∑

i=1

EAniXiI
(
AniXi >

√
n log n

)
≤ (n log n)−1

n∑
i=1

EA2
niEX2

≤ C(log n)−1 → 0 as n→ ∞. (4.2)

Moreover, for any ε >
√

2ρEX2, there exist ε1 >
√

2ρEX2 and ε2 > 0 such that ε = ε1+ ε2. Therefore,
by virtue of (4.2), we have that for all n large enough,∣∣∣∣∣∣∣

n∑
i=1

(EYni − EAniXi)

∣∣∣∣∣∣∣ ≤ ε2

√
n log n,

which implies

∞∑
n=1

nr−1P


∣∣∣∣∣∣∣

n∑
i=1

(AniXi − EAniXi)

∣∣∣∣∣∣∣ > ε√n log n


≤

∞∑
n=1

nr−1P
(
max
1≤i≤n

AniXi >
√

n log n
)
+

∞∑
n=1

nr−1P


∣∣∣∣∣∣∣

n∑
i=1

(Yni − EYni)

∣∣∣∣∣∣∣ > ε1

√
n log n


=: I1 + I2.

It follows from τ1 ≥ 0, τ2 ≥ 0, and Lemma 3.4 that

I1 ≤

∞∑
n=1

nr−1P

 n⋃
i=1

{AniXi >
√

n log n}


≤

∞∑
n=1

nr+τ1+τ2−1
n∑

i=1

P
(
|AniXi| >

√
n log n

)
< ∞.

It remains to deal with I2 < ∞. Since ε1 >
√

2ρEX2, we can take δ > 0 sufficiently small such that
ϱ =: ε2

1/[(2 + δ)EX2] > ρ. Hence, taking s ≥ α, we obtain by Lemmas 3.3–3.5 and (2.1) that

I2 ≤ C
∞∑

n=1

nr−1nτ1+τ2 exp
{
−

ε2
1n log n

(2 + δ)
∑n

i=1 EY2
ni

}
+C

∞∑
n=1

nr−1nτ1+τ2
n∑

i=1

E|Yni|
s

(n log n)s/2
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≤ C
∞∑

n=1

nr+τ1+τ2−1 exp
{
−

ε2
1n log n

(2 + δ)EX2 ∑n
i=1 EA2

ni

}
+C

∞∑
n=1

nr+τ1+τ2−1(n log n)−s/2
n∑

i=1

E|AniXi|
sI

(
|AniXi| ≤

√
n log n

)
+C

∞∑
n=1

nr+τ1+τ2−1
n∑

i=1

P
(
|AniXi| >

√
n log n

)
≤ C +C

∞∑
n=1

nr+τ1+τ2−1 exp
{
−
ϱn log n∑n

i=1 EA2
ni

}
< ∞.

The proof is completed.

Proof of Theorem 2.2. We first estimate EWq
ni, where q > 0. Without loss of generality, we only need

to estimate EWq
n1 for some n large enough. By some standard calculation, we obtain that

EWq
n1 = Γ(n)

∫ 1

0
wq

1dw1

∫ 1−w1

0
dw2 · · ·

∫ 1−
∑n−2

i=1 wi

0
dwn−1

= Γ(n)
∫ 1

0
wq

1dw1

∫ 1−w1

0
dw2 · · ·

∫ 1−
∑n−3

i=1 wi

0

1 − n−2∑
i=1

wi

 dwn−2

= Γ(n)
∫ 1

0
wq

1dw1

∫ 1−w1

0
dw2 · · ·

∫ 1

0

1 − n−3∑
i=1

wi

2

(1 − yn−2)dyn−2

(
by letting yn−2 =

wn−2

1 −
∑n−3

i=1 wi

)

=
Γ(n)
2!

∫ 1

0
wq

1dw1

∫ 1−w1

0
dw2 · · ·

∫ 1−
∑n−4

i=1 wi

0

1 − n−3∑
i=1

wi

2

dwn−3

= · · · =
Γ(n)

(n − 3)!

∫ 1

0
wq

1dw1

∫ 1−w1

0
(1 − w1 − w2)n−3dw2

=
Γ(n)

(n − 3)!

∫ 1

0
wq

1dw1

∫ 1

0
(1 − w1)n−2(1 − y2)n−3dy2

(
by letting y2 =

w2

1 − w1

)
=
Γ(n)Γ(1 + q)
Γ(n + q)

.

By Stirling’s approximation and the formula above, we have that for each 1 ≤ i ≤ n, when n is large
enough,

EWq
ni ≈ Γ(1 + q) ·

√
2π(n − 1)

(
n−1

e

)n−1

√
2π(n + q − 1)

(
n+q−1

e

)n+q−1 ≤ C
(

n − 1
n + q − 1

)n−1

n−q ≤ Cn−q. (4.3)

Note that for any ε >
√

2ρEX2, where ρ satisfies (2.1) with r = 1 and τ2 = 0,

∞∑
n=1

P
(∣∣∣∣∣∣

√
n

log n
(Hn − X̄n)

∣∣∣∣∣∣ > 8ε
)
≤

∞∑
n=1

P


∣∣∣∣∣∣∣

n∑
i=1

nWni(Xi − EX)

∣∣∣∣∣∣∣ > 4ε
√

n log n


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+

∞∑
n=1

P


∣∣∣∣∣∣∣

n∑
i=1

(Xi − EX)

∣∣∣∣∣∣∣ > 4ε
√

n log n

 . (4.4)

The second term in the righthand of the formula above converges by applying Corollary 2.1 with
α > 2(2 + τ1) and Ani = 1 for each 1 ≤ i ≤ n. On the other hand, it follows from Example 4.3 of
Hu [15] that (Wn1,Wn2, · · · ,Wnn) are NSD, and hence , WOD with τ2 = 0. Taking Ani = nWni for each
1 ≤ i ≤ n, n ≥ 1 in Corollary 2.1, it is easy to obtain by (4.3) that for all α > 2(2 + τ1),

n∑
i=1

EAαni = nα
n∑

i=1

EWα
ni = O(n).

Therefore, the first series in (4.4) also converges and, thus, (4.4) has been proved to be finite. This
completes the proof of the theorem.

5. Conclusions

In this paper, the law of the single logarithm for randomly weighted sums of widely orthant
dependent random variables is investigated. The result improves and generalizes some existing ones.
A new result on the rate of complete convergence for random weighting estimation with widely
orthant dependent samples is further obtained as an application. Some simulation studies are provided
to confirm the theoretical results. In future study, we will further investigate more meaningful
outcomes and applications on the topic.
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