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Abstract: In nature, aquifers are usually composed of distinct kinds of media, i.e., heterogeneous 

domains rather than homogeneous domains. Groundwater level and flow changes in such domains are 

more complicated than those in homogeneous domains; thus, building a mathematical model for 

addressing groundwater flow in heterogeneous aquifers is the present research goal. In conventional 

research on similar topics, many one-dimensional (1D) analytical models have been presented, but it 

is challenging to simulate real-world scenarios. This study develops a two-dimensional (2D) analytical 

model for modeling groundwater flow in a conceptual sloping heterogeneous domain imposed by 

variable recharge. This model can consider distinct slope angles, medium heterogeneity, and any type 

of lateral recharge for a semi-infinite domain. The results indicate that groundwater level and flow 

discharge are greatly affected by the abovementioned factors. The recharge intensity significantly 

affects the peak of the groundwater level. For example, when the recharge rate increases by 30%, the 

peak water level increases by 50% as the groundwater flows from the sandy loam zone to the loam 

zone. The loops delineating the relationship between discharge and groundwater level for different 

bottom slopes cannot become close for heterogeneous aquifers. The presented 2D analytical model 

can simulate and better predict results of groundwater changes than previous 1D analytical models. 

Further, this model can simultaneously consider the effect of varying recharge over time and space on 

groundwater level change. 

Keywords: 2D Boussinesq equation; heterogeneity; semi-infinite domain; groundwater recharge; 

anisotropy 

Mathematics Subject Classification: 76S05 

 



10122 

AIMS Mathematics  Volume 9, Issue 4, 10121–10140. 

1. Introduction 

Groundwater is one of the important water resources in the world. Groundwater is reserved in 

aquifers with many different sources, like block mountain recharge, direct infiltration of meteoric water, 

diffuse infiltration, and so on. All the water recharge will result in the variation of groundwater level 

and flow discharge in the aquifer. In general, it is not easy to observe and realize the distribution of 

groundwater flow in aquifers. The interaction between surface recharge and groundwater flow is also 

difficult to understand. Therefore, it is helpful to simulate the variations of groundwater level and flow 

discharge at any time and any location by using a mathematical model based on the hydraulic theory 

of groundwater under different hypothetical scenarios. 

In many early studies, groundwater problems are usually investigated in homogeneous and 

isotropic aquifers. Anderson [1] developed an analytical solution and used it to examine the interaction 

of groundwater and surface water in streams, developing explicit analytical solutions for complex 

recharge situations. Lee et al. [2] used the principle of mass conservation combined with base flow 

records and steady base flow analysis to estimate the long-term average annual groundwater recharge 

in Taiwan. Their proposed model did not require complex hydrogeological data, vegetation cover, and 

detailed land use information. The resulting contours of mean annual runoff, groundwater recharge, 

and recharge rate fields closely match the topographic distribution of Taiwan. Ke [3] proposed that a 

combination of soil and water assessment tools and modular three-dimensional groundwater flow 

model can be employed to solve the multi-aquifer groundwater flow problem of the Jhuoshuei alluvial 

fan in Taiwan. The model determined monthly recharge rates for several aquifers so that daily water 

flows could be properly simulated. The results showed that the mixed model performed better than 

each single model and presented a spatial and temporal distribution of groundwater, providing insights 

for authorities to manage groundwater resources. Kong et al. [4] studied groundwater level variations 

in unconfined aquifers under the influence of finite-thickness vadose zones. A semi-analytical solution 

considering the effect of land cover was derived to calculate seepage. Due to the presence of vadose 

zones, the average height of the groundwater table and the amount of exchange between surface water 

and groundwater were reduced. Zomlot et al. [5] estimated average long-term groundwater recharge 

in aquifers using a spatially distributed water balance model. How to accurately assess the dominant 

variables of the groundwater recharge is critical in their study. Finally, multiple linear regression 

analysis was performed to evaluate the effect of watershed characteristics on recharge. Águila et al. [6] 

estimated groundwater recharge from discrete precipitation events in unconfined aquifers via the 

observed groundwater level records in shallow wells. Such recharge estimates are prone to uncertainty 

when the recharge response is not instantaneous and groundwater seepage is present. Numerical 

analysis of uncertainties explains the effect of non-instantaneous recharge on groundwater level 

changes and the effect of water level changes in rivers adjacent to unconfined aquifers. Mahdavi [7] 

analyzed the dynamic changes of groundwater mounds in aquifers under time-varying recharge. The 

calculated water mounds seemed to agree well with the numerical results obtained by a finite element 

method. Furthermore, the factors affecting each component of the groundwater budget were identified 

with the help of a sensitivity analysis. Kar et al. modeled hydraulic head using geological and 

hydrological data such as alluvium depth, hydraulic conductivity, piezometric measurements, and 

pumping well information and pointed out that large groundwater withdrawals increase the risk of land 

subsidence [8]. The comprehensive results could be applied to the safe exploitation of groundwater 

resources. Sedghi and Zhan [9] presented an analytical solution for groundwater dynamics in aquifers 

under time-varying recharge. Considering the lateral boundary recharge from a constant water head, 

the groundwater level change was greatly affected. 
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Recently, Pastore et al. [10] analyzed the dynamics of groundwater level changes in aquifers due 

to intermittent rainfall supplies. The developed model analyzed immediate response of groundwater 

under rainfall events and was validated by using time-series rainfall data and groundwater levels 

obtained from monitoring stations. Xin et al. [11] proposed a piecewise linear approximation based on 

a conceptual model of riparian aquifer systems to describe river level fluctuations. The mathematical 

model was verified by the observational data of the river water level in the study area. Wu and Hsieh 

developed a complete analytical solution to simulate the impact of any type of recharge distribution 

on groundwater flow in sloping unconfined aquifers [12]. The proposed analytical solution was 

verified by previous research results, and the practicability of the analytical solution was validated by 

the data of the groundwater station in Taichung City, Taiwan, in 2012 and 2013. Zheng et al. [13] used 

the Fourier transform method to derive an analytical solution for a horizontal two-dimensional (2D) 

groundwater flow problem under Dupuit-Forchheimer assumptions. A numerical model further 

verified the accuracy of the analytical solution, showing that for larger aquifer thicknesses, nonlinear 

effects can be neglected. Their analytical solution extended the theoretical understanding of 

groundwater dynamics under rainfall. Hassan et al. [14] stated that under the influence of global 

warming and climate change, rising temperatures and fluctuating rainfall will exacerbate the shortage 

of different water resources and the deterioration of water quality. In their study, the impact of future 

global warming and climate change on the natural recharge of groundwater in desert unconfined 

aquifers was assessed using the modeling tool WetSpass. Tao et al. [15] presented integrated models 

of rainfall, interception, and infiltration under vegetation cover. Their study introduced a novel 

simulation approach to investigate the relationship between rainfall and recharge that enhances our 

knowledge about rainfall production and concentration over complex slope conditions. Hsieh and Wu 

derived an analytical solution to the nonlinear Boussinesq equation by a perturbation method [16]. The 

groundwater level in an unconfined aquifer adjacent to a river was affected by rainfall recharge and 

river water level simultaneously. They also considered Horton’s infiltration law to estimate the 

groundwater recharge for the simulation of groundwater flow. 

On the other hand, recent research about groundwater flow is focused on aquifer heterogeneity 

and anisotropy. Heterogeneous sloping aquifers are widely found in alluvial plain areas, in which the 

storage of groundwater is generally large. Because the distribution of surface recharge varies with time 

and space, it is feasible to apply mathematical models to predict or estimate the spatiotemporal 

variation of groundwater. Serrano [17] proposed a new analytical model for an unsteady restricted 

radial flow in aquifers with heterogeneity. In the analysis, the Theis solution was used as the initial 

condition, and the decomposition method was adopted instead of using the complicated perturbation 

method. The mean and root mean square error of the heterogeneous hydraulic conductivity were 

estimated. Scheibe and Yabusaki [18] presented synthetic hydraulic conductivity fields for numerical 

simulations of 3D subsurface flow and transport processes considering geological changes in aquifers. 

The results showed that groundwater transport is mainly affected by hydraulic conductivity. Meier 

et al. [19] developed a numerical model to study the effect of aquifer heterogeneity on the relationship 

between specific yield and hydraulic conductivity. The hydraulic tests in heterogeneous media showed 

the underestimation of the geometric means of hydraulic conductivities obtained in short- and medium-

term tests. Winter and Tartakovsky [20] improved the estimation of hydraulic head by introducing a 

model of water flow through heterogeneous composite porous media. In composite media, the 

hydraulic conductivity is given by a random distribution. Hemker and Bakker [21] derived analytical 

solutions for groundwater flow in heterogeneous aquifers and found the streamlines are straight for 

isotropic aquifers, whereas the streamlines appear in a helical shape for anisotropic aquifers. Further, 

if the aquifer is multi-layered and heterogeneous, multiple groups of groundwater eddies will be 
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generated, and adjacent eddies rotate in opposite directions. Sanchez-Vila et al. [22] reported that 

heterogeneity is the most prominent feature of hydrogeology and estimated the representative 

hydraulic conductivity of an aquifer. Numerical results have shown that traditional hydraulic tests yield 

hydraulic conductivity closely correlated with the effective hydraulic conductivity. Huysmans and 

Dassargues [23] found that complex depositional processes lead to heterogeneity of hydrogeological 

conditions. The research demonstrated the multipoint geostatistics to real-world applications to 

determine the impact of complex geological heterogeneity on groundwater flow and transport. The 

results showed that heterogeneity leads to spatial uncertainty of hydraulic conductivity distribution in 

an aquifer, resulting in significant uncertainty in groundwater-related calculations. Chuang et al. [24] 

divided the leaky aquifer system into several horizontal layers such as the heterogeneous aquitard and 

the underlying aquifer. A one-dimensional (1D) analytical model was then developed to describe 

hydraulic head fluctuations in such a heterogeneous leaky aquifer system. They found that the length 

and location of the discontinuous aquitard have a significant effect on the magnitude of hydraulic head 

fluctuations in the lower aquifer. Zlotnik et al. [25] considered the effect of anisotropy and proposed a 

general 2D solution for calculating terrain-driven groundwater flow, including both small- and large-

scale hydraulic conductivity. The large-scale anisotropy is caused by changes in hydraulic conductivity 

with depth. This solution can be applied to a variety of systems with arbitrary hydraulic head 

distribution and irregular geometric boundaries. The interaction between small- and large-scale 

anisotropy controls overall groundwater flow and should be incorporated into the analysis of terrain-

driven flow. Liang and Zhang [26] derived analytical solutions for the groundwater levels in a 1D 

heterogeneous unconfined aquifer with time-varying water sources and fluctuating river levels. The 

heterogeneity of the aquifer significantly increases the spatial variability of the aquifer and changes 

the groundwater level gradient, whereas the impact of river water level changes on groundwater flow 

are less significant. Das et al. [27] proposed a transient semi-analytical solution of the linearized 

Boussinesq equation describing the development of groundwater mounds in a 2D finite heterogeneous 

aquifer under vertical recharge. The aquifer consists of two rectangular basins that share a common 

impermeable or permeable boundary at the midplane. The regional development of groundwater 

mounds showed that the effect of heterogeneity becomes significant in the short term but not in the 

long term. Wang et al. [28] pointed out that in alluvial aquifers, hydraulic conductivity is usually 

inhomogeneous, claiming that finer sediments are deposited preferentially in the downstream direction. 

They found that aquifer heterogeneity may lead to groundwater flow instability, representing an 

inconsistent relationship between theoretically calculated head decay and hysteresis. Lately, Hsieh and 

Lee [29] proposed an analytical model considering groundwater flow variability in an unconfined 

aquifer system with multiple vertical soil zones. The model can simulate any vertically multi-layered 

soil stratification problem under temporally varying recharge. 

The aquifer heterogeneity has a significant impact on hydrological balance [30]. Current large-

scale hydrological models fail to adequately explain this subsurface heterogeneity. Research findings 

suggest that management strategies in these areas cannot rely on most current predictions of 

groundwater recharge, as spatial variability and concentration of recharge lead to estimation errors up 

to fourfold. Joshi et al. [31] studied detailed spatiotemporal variations in groundwater storage in 

northwestern India. By analyzing historical groundwater level data from the field, significant spatial 

heterogeneity in groundwater level and storage variations was observed. It was also found that the 

heterogeneity of the aquifer system is highly correlated with patterns of groundwater level variations. 

Wang et al. [32] proposed an approach to address groundwater flow problems in heterogeneous 

aquifers by using the finite element method. Using stochastic variables to parameterize the uncertainty 

of groundwater flow medium characteristics, extensive program training is required to solve the 
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problem and obtain statistically meaningful results. The proposed method was rigorously performed 

in the study, and numerous numerical examples were provided to demonstrate the accuracy and 

efficiency of the local-global analysis approach. 

Based on the above survey, most current analytical models are built based on 1D governing 

equation, which cannot be applicable extensively. Therefore, this study aims to develop a 2D 

groundwater model considering heterogeneity and anisotropy in a sloping aquifer with a semi-infinite 

domain under any type of surface recharge. Various factors, complex recharge distributions, and 

distinct medium combinations that affect groundwater flow variability in aquifers are demonstrated. 

The recharge patterns can be various in time and space. The recharge is represented by a series of unit 

step functions, capable of expressing any form of recharge in real-world scenarios. Multiple 

simulations are conducted to demonstrate the effects of heterogeneity and recharge patterns on 

groundwater flow variations. The present 2D analytical solutions are beneficial to realize the extent 

and shape of groundwater mounds in heterogeneous and anisotropic unconfined aquifers, providing 

insights into the impact for each hydrologic and hydrogeologic factor. 

2. Methodology 

A conceptual semi-infinite rectangular domain illustrated in Figure 1 is presented for the 

simulation of groundwater in a heterogeneous semi-infinite unconfined aquifer with the thickness 𝑑 

and anisotropic hydraulic conductivity 𝐾𝑥  and 𝐾𝑦  in the 𝑥  and 𝑦  directions, respectively. The 

interface is at 𝑥 = 𝐿𝑠, and the initial water depth  ℎ0 is constant in the whole aquifer. Presumably, 

the water level at the boundary 𝑥 → ∞ is constant head ℎ0 and no-flow condition occurs at 𝑦 = 𝐿𝑦. 

The surface recharge 𝑟(𝑥, 𝑡) varies with time and space. Under the Dupuit-Forchheimer assumptions, 

the streamlines closely align with the sloping impervious bed, and the discharge rate per unit width 𝑞𝑥 

[L2/T] of the aquifer along the x-axis can be estimated using the following equations [33]: 

𝑞1𝑥(𝑥, 𝑦, 𝑡) = −𝐾1𝑥ℎ cos
2 𝜃𝑥

𝜕ℎ𝑠

𝜕𝑥
, 0 < 𝑥 < 𝐿𝑠, 0 < 𝑦 < 𝐿𝑦,    (1) 

𝑞2𝑥(𝑥, 𝑦, 𝑡) = −𝐾2𝑥ℎ cos
2 𝜃𝑥

𝜕ℎ𝑠

𝜕𝑥
, 𝐿𝑠 < 𝑥 < ∞, 0 < 𝑦 < 𝐿𝑦,    (2) 

where ℎ𝑠  represents the variable height of the water head measured vertically from a horizontal 

reference point [L], ℎ  represents the vertical measurement of water head height from the sloping 

impermeable bed [L]; the subscripts 1 and 2 denotes zones 1 and 2, respectively. 𝜃𝑥 is slope angle in 

the 𝑥 direction; 𝑡 is time. 

 

Figure 1. Groundwater level change in a conceptual sloping heterogeneous aquifer with a 

semi-infinite domain under spatiotemporal varied recharge. 
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According to the research hypothesis ℎ𝑠 = ℎ + 𝑥tan𝜃𝑥, the seepage fluxes per unit width 𝑞𝑥 

and 𝑞𝑦 [L2/T] in the 2D heterogeneous aquifer become 

𝑞1𝑥(𝑥, 𝑦, 𝑡) = −𝐾1𝑥 cos
2 𝜃𝑥 [ℎ

𝜕

𝜕𝑥
(ℎ + 𝑥tan𝜃𝑥)] , 0 < 𝑥 < 𝐿𝑠, 0 < 𝑦 < 𝐿𝑦,  (3) 

𝑞2𝑥(𝑥, 𝑦, 𝑡) = −𝐾2𝑥 cos
2 𝜃𝑥 [ℎ

𝜕

𝜕𝑥
(ℎ + 𝑥tan𝜃𝑥)] , 𝐿𝑠 < 𝑥 < ∞, 0 < 𝑦 < 𝐿𝑦,  (4) 

𝑞1𝑦 = −𝐾1𝑦ℎ
𝜕ℎ

𝜕𝑦
, 0 < 𝑥 < 𝐿𝑠, 0 < 𝑦 < 𝐿𝑦,       (5) 

𝑞2𝑦 = −𝐾2𝑦ℎ
𝜕ℎ

𝜕𝑦
, 𝐿𝑠 < 𝑥 < ∞, 0 < 𝑦 < 𝐿𝑦.      (6) 

Considering the inflow and outflow through the aquifer with recharge, the continuity equation can be 

written as 

𝜕𝑞1𝑥

𝜕𝑥
+
𝜕𝑞1𝑦

𝜕𝑦
+ 𝑆𝑦1

𝜕ℎ

𝜕𝑡
= 𝑟(𝑥, 𝑡),        (7) 

𝜕𝑞2𝑥

𝜕𝑥
+
𝜕𝑞2𝑦

𝜕𝑦
+ 𝑆𝑦2

𝜕ℎ

𝜕𝑡
= 𝑟(𝑥, 𝑡),        (8) 

where 𝑆𝑦 is specific yield. The recharge 𝑟(𝑥, 𝑡) can be expressed as follows: 

𝑟(𝑥, 𝑡) = ∑ ∑ [𝑢(𝑥 − 𝑥𝑖−1) − 𝑢(𝑥 − 𝑥𝑖)][𝑢(𝑡 − 𝑡𝑘−1) − 𝑢(𝑡 − 𝑡𝑘)]
𝑃
𝑘=1

𝑀
𝑖=1 ,   (9) 

where 𝑢(-) denotes the Heaviside function. 𝑀 denotes the total number of increments in space; 𝑃 

denotes the total number of increments in time. 

The 2D nonlinear Boussinesq equation for groundwater flow in heterogeneous aquifers can be 

obtained by substituting (3)–(6) into (7) and (8). 

𝐾1𝑥 cos
2 𝜃𝑥 (ℎ

𝜕2ℎ

𝜕𝑥2
+ (

𝜕ℎ

𝜕𝑥
)2 + tan𝜃𝑥

𝜕ℎ

𝜕𝑥
) + 𝐾1𝑦ℎ

𝜕2ℎ

𝜕𝑦2
+ (

𝜕ℎ

𝜕𝑦
)2 + 𝑟(𝑥, 𝑡) = 𝑆𝑦1

𝜕ℎ

𝜕𝑡
,  (10) 

𝐾2𝑥 cos
2 𝜃𝑥 (ℎ

𝜕2ℎ

𝜕𝑥2
+ (

𝜕ℎ

𝜕𝑥
)2 + tan𝜃𝑥

𝜕ℎ

𝜕𝑥
) + 𝐾2𝑦ℎ

𝜕2ℎ

𝜕𝑦2
+ (

𝜕ℎ

𝜕𝑦
)2 + 𝑟(𝑥, 𝑡) = 𝑆𝑦2

𝜕ℎ

𝜕𝑡
.  (11) 

Bansal [34] refers to the work of Marino [35] to successively approximate the mean groundwater 

saturation depth ℎ̅ of an aquifer using the iterative formula 

ℎ̅ =
ℎ0+ℎ𝑡

2
, 

where ℎ𝑡  is the height of the groundwater table at the end of time 𝑡 . Therefore, the linearized 

Boussinesq equation and associated boundary conditions [34] can be expressed as 

𝐾1𝑥 cos
2 𝜃𝑥 (ℎ̅

𝜕2ℎ

𝜕𝑥2
+ tan𝜃𝑥

𝜕ℎ

𝜕𝑥
) + 𝐾1𝑦ℎ̅

𝜕2ℎ

𝜕𝑦2
+ 𝑟(𝑥, 𝑡) = 𝑆𝑦1

𝜕ℎ

𝜕𝑡
,    (12) 

𝐾2𝑥 cos
2 𝜃𝑥 (ℎ̅

𝜕2ℎ

𝜕𝑥2
+ tan𝜃𝑥

𝜕ℎ

𝜕𝑥
) + 𝐾2𝑦ℎ̅

𝜕2ℎ

𝜕𝑦2
+ 𝑟(𝑥, 𝑡) = 𝑆𝑦2

𝜕ℎ

𝜕𝑡
.    (13) 

Initial condition: 

ℎ = ℎ0, 0 < 𝑥 < ∞, 0 < 𝑦 < 𝐿𝑦, 𝑡 = 0.      (14) 

Boundary conditions: 

ℎ = ℎ0, 𝑥 = 0, 𝑦 > 0, 𝑡 > 0,        (15) 
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ℎ(𝑥 = 𝐿𝑠
−) = ℎ(𝑥 = 𝐿𝑠

+), 𝑦 > 0, 𝑡 > 0,       (16) 

𝐾1𝑥
𝜕ℎ

𝜕𝑥
|𝑥=𝐿𝑠− = 𝐾2𝑥

𝜕ℎ

𝜕𝑥
|𝑥=𝐿𝑠+ , 𝑦 > 0, 𝑡 > 0,      (17) 

ℎ = ℎ0, 𝑥 → ∞, 𝑦 > 0, 𝑡 > 0,        (18) 

ℎ = ℎ0, 𝑥 > 0, 𝑦 = 0, 𝑡 > 0,        (19) 

𝜕ℎ

𝜕𝑦
= 0, 𝑥 > 0, 𝑦 = 𝐿𝑦, 𝑡 > 0.        (20) 

Introducing the dimensionless variables 

𝑋 =
𝑥

𝐿𝑠
, 𝑌 =

𝑦

𝐿𝑦
, 𝐻 =

ℎ−ℎ0

ℎ0
, 𝑅 =

𝑡𝐷

𝑑
𝑟, 𝑇 =

𝑡

𝑡𝐷
 (𝑡𝐷 is the duration of recharge) 

into (12)–(20) yields 

𝐾1𝑥ℎ̅𝑡𝐷

𝑆𝑦1𝐿𝑠
2 cos

2 𝜃𝑥
𝜕2𝐻

𝜕𝑋2
+
𝐾1𝑦ℎ̅𝑡𝐷

𝑆𝑦1𝐿𝑦
2

𝜕2𝐻

𝜕𝑌2
+
𝐾1𝑥𝑡𝐷

𝑆𝑦1𝐿𝑠
cos2 𝜃𝑥 tan 𝜃𝑥

𝜕𝐻

𝜕𝑋
+

𝑑

ℎ0𝑆𝑦1
𝑅(𝑋, 𝑇) =

𝜕𝐻

𝜕𝑇
 ,  (21) 

𝐾2𝑥ℎ̅𝑡𝐷

𝑆𝑦2𝐿𝑠
2 cos

2 𝜃𝑥
𝜕2𝐻

𝜕𝑋2
+
𝐾2𝑦ℎ̅𝑡𝐷

𝑆𝑦2𝐿𝑦
2

𝜕2𝐻

𝜕𝑌2
+
𝐾2𝑥𝑡𝐷

𝑆𝑦2𝐿𝑠
cos2 𝜃𝑥 tan 𝜃𝑥

𝜕𝐻

𝜕𝑋
+

𝑑

ℎ0𝑆𝑦2
𝑅(𝑋, 𝑇) =

𝜕𝐻

𝜕𝑇
 .  (22) 

Initial condition: 

𝐻 = 0, 0 < 𝑋 < ∞, 0 < 𝑌 < 1, 𝑇 = 0.       (23) 

Boundary conditions: 

𝐻 = 0, 𝑋 = 0, 𝑌 > 0, 𝑇 > 0,        (24) 

𝐻(𝑋 = 1−) = 𝐻(𝑋 = 1+), 𝑌 > 0, 𝑇 > 0,       (25) 

𝐾1𝑥
𝜕𝐻

𝜕𝑋
|𝑋=1− = 𝐾2𝑥

𝜕𝐻

𝜕𝑋
|𝑋=1+ , 𝑌 > 0, 𝑇 > 0,     (26) 

𝐻 = 0, 𝑋 → ∞, 𝑌 > 0, 𝑇 > 0,        (27) 

𝐻 = 0, 𝑋 > 0, 𝑌 = 0, 𝑇 > 0,        (28) 

𝜕𝐻

𝜕𝑌
= 0, 𝑋 > 0, 𝑌 = 1, 𝑇 > 0.        (29) 

Equations (21) and (22) associated with initial and boundary conditions (23)–(29) can be solved 

analytically by distinct techniques (e.g., Laplace transform, Fourier transform, etc.). In this study, the 

advective terms in (21) and (22) can be eliminated by the following substitution: 

𝐻(𝑋, 𝑌, 𝑇) = 𝑒−𝑉𝑥𝑋𝑒−𝑉1𝑡𝑇𝐻𝑣(𝑋, 𝑌, 𝑇),0 < 𝑋 < 1, 0 < 𝑌 < 1, 𝑇 > 0,   (30) 

𝐻(𝑋, 𝑌, 𝑇) = 𝑒−𝑉𝑥𝑋𝑒−𝑉2𝑡𝑇𝐻𝑣(𝑋, 𝑌, 𝑇), 1 < 𝑋 < ∞, 0 < 𝑌 < 1, 𝑇 > 0,   (31) 

with 

𝑉𝑥 =
𝐿𝑠 tan𝜃𝑥

2ℎ̅
, 𝑉1𝑡 =

𝐾1𝑥𝑡𝐷 sin
2 𝜃𝑥

4ℎ̅𝑆𝑦1
, 𝑉2𝑡 =

𝐾2𝑥𝑡𝐷 sin
2 𝜃𝑥

4ℎ̅𝑆𝑦2
. 

Equations (21)–(29) become 

𝜕𝐻𝑣

𝜕𝑇
= 𝐴1𝑥

𝜕2𝐻𝑣

𝜕𝑋2
+ 𝐴1𝑥𝐷1𝑦

𝜕2𝐻𝑣

𝜕𝑌2
+ 𝐴1𝑥𝐷1𝑟𝑒

𝑉1𝑥𝑋𝑒𝑉1𝑡𝑇𝑅(𝑋, 𝑇),     (32) 
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𝜕𝐻𝑣

𝜕𝑇
= 𝐴2𝑥

𝜕2𝐻𝑣

𝜕𝑋2
+ 𝐴2𝑥𝐷2𝑦

𝜕2𝐻𝑣

𝜕𝑌2
+ 𝐴2𝑥𝐷2𝑟𝑒

𝑉2𝑥𝑋𝑒𝑉2𝑡𝑇𝑅(𝑋, 𝑇),     (33) 

Initial condition: 

𝐻𝑣 = 0, 0 < 𝑋 < ∞, 0 < 𝑌 < 1, 𝑇 = 0,      (34) 

Boundary conditions: 

𝐻𝑣 = 0, 𝑋 = 0, 𝑌 > 0, 𝑇 > 0,        (35) 

𝐻𝑣(𝑋 = 1
−) = 𝑒𝑇(𝑉1𝑡−𝑉2𝑡)𝐻𝑣(𝑋 = 1

+), 𝑌 > 0, 𝑇 > 0,     (36) 

𝐾1𝑥𝑒
−𝑉1𝑡𝑇

𝜕𝐻𝑣

𝜕𝑋
|𝑋=1− = 𝐾2𝑥𝑒

−𝑉2𝑡𝑇
𝜕𝐻𝑣

𝜕𝑋
|𝑋=1+,𝑌 > 0, 𝑇 > 0,    (37) 

𝐻𝑣 = 0, 𝑋 → ∞, 𝑌 > 0, 𝑇 > 0,       (38) 

𝐻𝑣 = 0, 𝑋 > 0, 𝑌 = 0, 𝑇 > 0,        (39) 

𝜕𝐻𝑣

𝜕𝑌
= 0, 𝑋 > 0, 𝑌 = 1, 𝑇 > 0,       (40) 

where 

𝐴1𝑥 =
𝐾1𝑥ℎ̅𝑡𝐷

𝑆𝑦1𝐿𝑠
2 cos

2 𝜃𝑥, 𝐴2𝑥 =
𝐾2𝑥ℎ̅𝑡𝐷

𝑆𝑦2𝐿𝑠
2 cos

2 𝜃𝑥, 𝐷1𝑦 =
𝐾1𝑦𝐿𝑥

2

𝐾1𝑥𝐿𝑦
2 cos2 𝜃𝑥

, 

𝐷2𝑦 =
𝐾2𝑦𝐿𝑥

2

𝐾2𝑥𝐿𝑦
2 cos2 𝜃𝑥

, 𝐷1𝑟 =
𝑑𝐿𝑠

2

𝐾1𝑥ℎ0 cos
2 𝜃𝑥ℎ̅𝑡𝐷

, 𝐷2𝑟 =
𝑑𝐿𝑠

2

𝐾2𝑥ℎ0 cos
2 𝜃𝑥ℎ̅𝑡𝐷

. 

Expressing 𝐻𝑣 as the multiplication of the spatial terms 𝜙(𝑋)𝜓(𝑌) and the time term 𝛤(𝑇) 

by the method of separation of variables results in 

𝐻𝑣(𝑋, 𝑌, 𝑇) = 𝜙(𝑋)𝜓(𝑌)𝛤(𝑇),        (41) 

which satisfies the following eigenvalue problem 

{
 
 

 
 𝐴1𝑥

𝑑2𝜙

𝑑𝑋2
+ 𝛼2𝜙 = 0,

𝐴1𝑥𝐷1𝑦
𝑑2𝜓

𝑑𝑌2
+ 𝛽2𝜓 = 0

𝑑Γ

𝑑𝑇
− (𝛼2 + 𝛽2)𝛤 = 0,

, 0 ≤ 𝑋 ≤ 1, 0 ≤ 𝑌 ≤ 1,     (42) 

{
 
 

 
 𝐴2𝑥

𝑑2𝜙

𝑑𝑋2
+ 𝛼2𝜙 = 0,

𝐴2𝑥𝐷2𝑦
𝑑2𝜓

𝑑𝑌2
+ 𝛽2𝜓 = 0

𝑑Γ

𝑑𝑇
− (𝛼2 + 𝛽2)𝛤 = 0,

, 1 ≤ 𝑋 < ∞, 0 ≤ 𝑌 ≤ 1,     (43) 

𝜙(𝑋) = 0, 𝑋 = 0, 𝑇 > 0,         (44) 

𝜙(𝑋 = 1−) = 𝜙(𝑋 = 1+), 𝑇 > 0,        (45) 

𝑑𝜙

𝑑𝑋
|𝑋=1− =

𝐾2𝑥

𝐾1𝑥

𝑑𝜙

𝑑𝑋
|𝑋=1+ , 𝑇 > 0,       (46) 

𝜙(𝑋) = 0, 𝑋 → ∞, 𝑇 > 0,        (47) 

𝜓(𝑌) = 0, 𝑌 = 0, 𝑇 > 0,         (48) 
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𝑑𝜓(𝑌)

𝑑𝑌
= 0, 𝑌 = 1, 𝑇 > 0.         (49) 

The general solution of (42) and (43) in the 𝑥 direction is 

𝜙(𝑋) = 𝑐1 sin(𝛼𝑋) + 𝑐2 cos(𝛼𝑋) , 0 ≤ 𝑋 ≤ 1,      (50) 

𝜙(𝑋) = 𝑐3 sin(𝛼𝑋) + 𝑐4 cos(𝛼𝑋) , 1 ≤ 𝑋 < ∞ .     (51) 

Substituting (50) and (51) into (44)–(46) yields 

𝑐2 = 0,           (52) 

𝑐1 sin(𝛼) = [𝑐3 sin(𝛼) + 𝑐4 cos(𝛼)],       (53) 

𝑐1𝛼 cos(𝛼) =
𝐾2𝑥

𝐾1𝑥
[−𝑐3𝛼 cos(𝛼) + 𝑐4𝛼 sin(𝛼)].      (54) 

Setting 𝑐1 sin(𝛼) and 𝑐1𝛼 cos(𝛼) as 𝑢 and 𝑣, respectively, (53) as (54) can be rewritten as 

𝑢 = [𝑐3 sin(𝛼) + 𝑐4 cos(𝛼)],        (55) 

𝑣 =
𝐾2𝑥

𝐾1𝑥
[−𝑐3𝛼 cos(𝛼) + 𝑐4𝛼 sin(𝛼)].       (56) 

Solving (55) and (56) for 𝑐3 and 𝑐4, we have 

𝑐3 =
1

2
[𝑢𝛼 cos(𝛼) −

𝐾1𝑥

𝐾2𝑥
𝑣sin(𝛼)],       (57) 

𝑐4 =
1

2
[
𝐾1𝑥

𝐾2𝑥
𝑣cos(𝛼) + 𝑢𝛼 sin(𝛼)].       (58) 

Substituting (57) and (58) into (50) and (51), the eigen functions become 

𝜙(𝑋) = 𝑐1 sin(𝛼𝑋),        (59) 

𝜙(𝑋) =
1

2
{[𝑢𝛼 cos(𝛼) −

𝐾1𝑥

𝐾2𝑥
𝑣sin(𝛼)] sin(𝛼𝑋) + [

𝐾1𝑥

𝐾2𝑥
𝑣cos(𝛼) + 𝑢𝛼 sin(𝛼)] cos(𝛼𝑋)}, (60) 

where 1 ≤ 𝑋 ≤ ∞. 

The eigenfunction in the 𝑦 direction can be easily found as 

𝜓𝑛(𝑌) ≡ 𝜓(𝑌, 𝛽𝑛) = √2 sin 𝛽𝑛𝑌        (61) 

with eigenvalue 𝛽𝑛 =
𝑛𝜋

2
, and 𝑛 is a natural number. 

After expanding 𝑅(𝑋, 𝑌, 𝑇) and 𝐻𝑣(𝑋, 𝑌) by the eigenfunctions 𝜙(𝑋), 𝜓𝑛(𝑌), and 𝑅𝑛
∗(𝑇), 

we get 

𝑅(𝑋, 𝑌, 𝑇) = ∑ 𝜙(𝑋)𝜓𝑛(𝑌)𝑅𝑛
∗(𝑇)∞

𝑛=1 ,      (62) 

where 

𝑅𝑛
∗(𝑇) = {

1

𝑁
∫ ∫ 𝑒𝑉𝑥𝑋𝑒𝑉1𝑡𝑇𝑅(𝑋, 𝑌, 𝑇)𝜙(𝑋)

1

𝑋=0
𝜓𝑛(𝑌)

1

0
𝑑𝑋𝑑𝑌,

1

𝑁
∫ ∫ 𝑒𝑉𝑥𝑋𝑒𝑉2𝑡𝑇𝑅(𝑋, 𝑌, 𝑇)𝜙(𝑋)𝜓𝑛(𝑌)

∞

𝑋=1

1

0
𝑑𝑋𝑑𝑌,

    (63) 

in which 
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𝑁 ≡ 𝑁(𝛼, 𝛽𝑛) = {
∑ ∫ ∫ 𝜙2(𝑋)𝜓𝑛

2(𝑌)
1

𝑋=0
𝑑𝑋𝑑𝑌,

1

0
∞
𝑛

∑ ∫ ∫ 𝜙2(𝑋)𝜓𝑛
2(𝑌)

∞

𝑋=1
𝑑𝑋𝑑𝑌.

1

0
∞
𝑛

       (64) 

Substituting (62)–(64) into (42) and (43) results in 

𝛤𝜓𝑛𝐴1𝑥
𝑑2𝜙

𝑑𝑋2
+ 𝛤𝜙𝐴1𝑥𝐷1𝑦

𝑑2𝜓𝑛

𝑑𝑌2
+ 𝜙𝜓𝑛𝐴1𝑥𝐷1𝑟𝑅𝑛

∗(𝑇) = 𝜙𝜓𝑛
𝑑Γ

𝑑𝑇
, 0 ≤ 𝑋 ≤ 1,   (65) 

𝛤𝜓𝑛𝐴2𝑥
𝑑2𝜙

𝑑𝑋2
+ 𝛤𝜙𝐴2𝑥𝐷2𝑦

𝑑2𝜓𝑛

𝑑𝑌2
+ 𝜙𝜓𝑛𝐴2𝑥𝐷2𝑟𝑅𝑛

∗(𝑇) = 𝜙𝜓𝑛
𝑑Γ

𝑑𝑇
, 1 ≤ 𝑋 ≤ ∞,  (66) 

where 

𝐴1𝑥
𝑑2𝜙(𝑋)

𝑑𝑋2
, 𝐴2𝑥

𝑑2𝜙(𝑋)

𝑑𝑋2
, 𝐴1𝑥𝐷1𝑦

𝑑2𝜓𝑛(𝑌)

𝑑𝑌2
 and 𝐴2𝑥𝐷2𝑦

𝑑2𝜓𝑛(𝑌)

𝑑𝑌2
 

can be replaced by −𝛼2𝜙 and −𝛽𝑛
2𝜓, respectively, so (65) and (66) can be rewritten as 

𝑑Γ

𝑑𝑇
+ (𝛼2 + 𝛽𝑛

2)Γ − 𝐴1𝑥𝐷1𝑟𝑅𝑛
∗(𝑇) = 0, 0 ≤ 𝑋 ≤ 1,     (67) 

𝑑Γ

𝑑𝑇
+ (𝛼2 + 𝛽𝑛

2)Γ − 𝐴2𝑥𝐷2𝑟𝑅𝑛
∗(𝑇) = 0, 1 ≤ 𝑋 ≤ ∞.     (68) 

Equations (67) and (68) were solved as follows: 

𝛤(𝑇) = {
∫ 𝑒−(𝛼

2+𝛽𝑛
2)𝑇 ∫ 𝑒(𝛼

2+𝛽𝑛
2)𝑇′𝑅𝑛

∗𝑇

0
(𝑇′)𝑑𝑇′𝑑𝛼

∞

0
, 0 ≤ 𝑋 ≤ 1,

∫ 𝑒−(𝛼
2+𝛽𝑛

2)𝑇 ∫ 𝑒(𝛼
2+𝛽𝑛

2)𝑇′𝑅𝑛
∗𝑇

0
(𝑇′)𝑑𝑇′𝑑𝛼

∞

0
, 1 ≤ 𝑋 ≤ ∞.

   (69) 

Substituting (59)–(61) and (69) into (41) results in 

𝐻𝑣(𝑋, 𝑌, 𝑇) = {
∫ ∑ 𝑒−(𝛼

2+𝛽𝑛
2)𝑇𝜙(𝑋)𝜓

𝑛
(𝑌) ∫ 𝑒(𝛼

2+𝛽𝑛
2)𝑇′𝑅𝑛

∗𝑇

0
(𝑇′)𝑑𝑇′𝑑𝛼, 0∞

𝑛=1

∞

0
≤ 𝑋 ≤ 1,

∫ ∑ 𝑒−(𝛼
2+𝛽𝑛

2)𝑇𝜙(𝑋)𝜓
𝑛
(𝑌) ∫ 𝑒(𝛼

2+𝛽𝑛
2)𝑇′𝑅𝑛

∗𝑇

0
(𝑇′)𝑑𝑇′𝑑𝛼, 1 ≤ 𝑋 ≤ ∞.∞

𝑛=1

∞

0

} (70) 

Substituting (70) into (30) and (31), we can obtain the 2D groundwater level 𝐻(𝑋, 𝑌, 𝑇). 

The convergence of analytical solutions obtained by the method of separation of variables 

depends on the specific characteristics of the discussed differential equation and the imposed boundary 

conditions. The convergence of all analytical solutions was examined by reaching the accuracy 10−3 

(dimensionless), and the required number of the eigenvalues varied slightly with the given parameters, 

typically around 50. 

3. Results and discussion 

In the previous studies, some researchers employed the Laplace transformation method and 

different linearization techniques to derive the analytical solutions to the nonlinear Boussinesq 

equation (see [35–39]). After performing numerical experiments with varying space discretization Δ𝑥, 

Δ𝑦 and time discretization Δ𝑡, the results show that the calculation scheme is stable if the following 

criteria are met: 

𝐾𝑥

𝑆𝑦

Δ𝑡

(Δ𝑥)2
≤ 0.03,         (71) 

𝐾𝑦

𝑆𝑦

Δ𝑡

(Δ𝑦)2
≤ 0.05.         (72) 
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The present solution was verified with the analytical solution presented by [34] and the nonlinear 

numerical solution proposed by ourselves using the finite difference method. The adopted parameters 

are ℎ0 = 3 m , 𝐾𝑥 = 𝐾𝑦 = 1.5 m/d , 𝑆𝑦 = 0.18 , 𝑑 = 10 m , 𝑡 = 𝑡𝑑 = 1 d , and 𝑟 = 30 mm/d  for 

𝜃𝑥 = 0° and 5° in Figure 2. In Figure 2, there exists discrepancy of the water level changes among 

the three solutions. The difference between the analytical solutions and the numerical solution was 

conjectured to be due to the linearization of the nonlinear term in the governing equations. For further 

discussion, an error analysis was performed as shown in Figure 3. Figure 3 reveals that both the 

analytical solutions are not consistent with the numerical solution, but the L2 norms of both analytical 

solutions are below 0.05, indicating an insignificant difference between the analytical solutions and 

the numerical solution. We attributed the discrepancy mainly to the distinct versions of the governing 

equations besides the linearization. Both the analytical solutions are for the linearized Boussinesq 

equation, whereas the numerical solution is for the original nonlinear Boussinesq equation. The 

convergence and stability of the numerical solution must adhere to the constraints outlined in Eqs (71) 

and (72). Moreover, these equations suggest that smaller 𝐾  and larger 𝑆𝑦  may enhance the 

simulation accuracy, though achieving this in real-world scenarios is challenging. Bansal et al. [34] 

analytically solved the Boussinesq equation and found the L2 norm of the solutions exceeding 0.174 

in certain cases owing to the linearization technique used. 

 

Figure 2. Verification of the present analytical solution with that of Bansal [34] and the 

numerical solution for groundwater level changes in a homogeneous aquifer: (a) 𝜃𝑥 = 0°; 
(b) 𝜃𝑥 = 5° (ℎ0 = 3 m, 𝐾𝑥 = 𝐾𝑦 = 1.5 m/d, 𝑆𝑦 = 0.18, 𝑑 = 10 m, 𝑡 = 𝑡𝑑 = 1 d, and 

𝑟 = 30 mm/d). 

  

Figure 3. L2 norm analysis for the analytical solutions of groundwater level changes in 

Figure 2: (a) L2 norm (𝜃𝑥 = 0°); (b) L2 norm 𝜃𝑥 = 5°. 

When the aquifer configuration is not uniformly distributed, the recharge rate infiltrating into the 
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aquifer is distinct for different properties. Figure 4 shows the distribution of groundwater level in two 

aquifers with different compositions. The discrepancy arising from the nonlinear effect between the 

analytical and numerical solutions at the interface is more significant, but the overall water level 

distribution is similar. According to the analysis of L2 norm, the difference for the heterogeneous case 

(see Figure 4) is smaller than the homogeneous case (see Figure 2). Furthermore, the discrepancy 

between the analytical solution and the numerical solution is more obvious near the interface (𝑋 = 1) 

of the heterogeneous aquifer, with the overall L2 norm lower than 0.03. Figure 5 also shows that the 

gap is smaller for the zone of higher permeability, but it becomes larger for the zone of lower 

permeability. 

  

Figure 4. Comparison between the analytical and numerical solutions in a heterogeneous 

aquifer: (a) 𝐾1𝑥 = 3.2 m/d , 𝑆𝑦1 = 0.32 , 𝐾2𝑥 = 2.5 m/d , 𝑆𝑦2 = 0.23 , 𝜃𝑥 = 0° , 𝐿𝑠 =

100 m, 𝑟 = 20
mm

d
 ; (b) 𝐾1𝑥 = 2.5

m

d
 , 𝑆𝑦1 = 0.23 , 𝐾2𝑥 = 3.2 m/d , 𝑆𝑦2 = 0.32, 𝜃𝑥 =

5°, 𝐿𝑠 = 100 m, 𝑟 = 30 mm/d. 

  

Figure 5. L2 norm analysis for the present analytical solution of groundwater level changes 

in Figure 4: (a)  𝐾1𝑥 = 3.2 m/d , 𝑆𝑦1 = 0.32 , 𝐾2𝑥 = 2.5 m/d , 𝑆𝑦2 = 0.23 , 𝜃𝑥 = 0° , 

𝐿𝑠 = 100 m, 𝑟 = 20 mm/d ; (b) 𝐾1𝑥 = 2.5 m/d , 𝑆𝑦1 = 0.23 , 𝐾2𝑥 = 3.2 m/d , 𝑆𝑦2 =

0.32, 𝜃𝑥 = 5°, 𝐿𝑠 = 100 m, 𝑟 = 30 mm/d. 

In general, it is difficult to directly observe the variation of groundwater flow through the interface. 

Figure 6 illustrates the distribution of groundwater levels in the 𝑋  direction over time across the 

interface. The parameters for the simulation are ℎ0 = 3 m , 𝐾1𝑥 = 𝐾1𝑦 = 2.5 m/d , 𝐾2𝑥 = 𝐾2𝑦 =

1.5 m/d , 𝑆𝑦1 = 0.28 , 𝑆𝑦2 = 0.18 , 𝑑 = 10 m , 𝑟 = 30 mm/d , 𝑌 = 0.5 , and 𝐿𝑠 = 150  m. The 

contours are relatively dense along the interface, indicating that the hydraulic gradient is large, and the 

water level changes greatly. Further, due to the influence of the aquifer slope, groundwater flows 
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toward the boundary 𝑋 = 0, and thus water level rises over there. The rate of water level rise increases 

with the slope in the whole region. In addition, T=1 indicates the end of recharge, and when T>1, 

groundwater level near the downstream area (X=0) rises to the peak for a while and then gradually 

declines as expected. 

 

Figure 6. Top view of spatiotemporal variation of groundwater level 𝐻 in heterogeneous 

aquifers for different bottom slopes: (a) 𝜃𝑥 = 0°; (b) 𝜃𝑥 = 5° (𝑌 = 0.5). 

In heterogeneous aquifers, permeability varies with distinct composition of soils, and the flow 

rates in the aquifers become non-uniform, resulting in distinct variations of water levels. Further, the 

fluctuation of groundwater level is largely influenced by surface recharge patterns. Figure 7 

demonstrates the effects of two recharge patterns, unimodal recharge and multimodal recharge, with a 

total amount of 300 mm on the groundwater level. In Figure 7, the groundwater level fluctuates with 

different recharge modes over time, but the water level gradually rises in zone 2 because of the lower 

permeability. The average groundwater level in zone 1 is about 61% of that in zone 2, as shown in 

Figure 7a. Groundwater level changes under multi-peak recharge patterns appear to be greater than 

those under unimodal recharge patterns. The second peak recharge is 30% of the first peak one, and 

the second peak water level is about 50% of the first peak one, as shown in Figure 7b. The average 

groundwater level in Zone 1 is about 55% of that in zone 2. 

Figure 8a indicates that the average groundwater level in zone 2 is about 91% of that in zone 1. 

This is due to the different textures of the soil within the aquifer, which causes the change of the flow 

discharge of groundwater in the sloping heterogeneous aquifer. In Figure 8a, because of the low 

permeability in zone 1, the groundwater in zone 2 will slow down and accumulate slightly at the 

interface when it enters zone 1. Changes in surface recharge patterns and soil configuration in 

heterogeneous aquifers can both affect groundwater level fluctuations. In Figure 8b, the average 

groundwater level in zone 2 is about 93% of that in zone 1. The fluctuations in groundwater levels 

over time are clearly caused by changes in surface recharge. The recharge rate also directly affects the 

peak of the groundwater level. When the recharge rate increases by 30%, the peak water level increases 

by 50%. 



10134 

AIMS Mathematics  Volume 9, Issue 4, 10121–10140. 

 

 

Figure 7. Variations of groundwater level changes when groundwater flows from the loam 

zone to the sandy loam zone of the aquifer under different recharge patterns: (a) unimodal 

recharge; (b) multimodal recharge (𝐾1𝑥 = 𝐾1𝑦 = 12.9m d⁄ , 𝑆y1 = 0.25; 𝐾2𝑥 = 𝐾2𝑦 =

8.53 m/d, 𝑆y2 = 0.21, 𝑌 = 0.5, 𝐿𝑠 = 100 m, 𝜃𝑥 = 5°). 

 

 

Figure 8. Variations of groundwater level when groundwater flows from the sandy loam 

zone to the loam zone in the aquifer under different recharge patterns: (a) unimodal 

recharge; (b) multimodal recharge (𝐾1𝑥 = 𝐾1𝑦 = 8.53m d⁄ , 𝑆y1 = 0.21; 𝐾2𝑥 = 𝐾2𝑦 =

12.9m d⁄ , 𝑆y2 = 0.25, 𝑌 = 0.5, 𝐿𝑠 = 100 m, 𝜃𝑥 = 5°). 
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In Figure 8, only the time effect of recharge patterns on groundwater level change was considered. 

This study intends to consider the effect of recharge patterns varying in both space and time 

simultaneously. Figure 9 shows the effect on the groundwater level change under the spatiotemporally 

variable recharge patterns. When the recharge areas are relatively dispersed, the groundwater level 

changes are more consistent with the time-varying recharge. If the recharge in different areas is 

relatively concentrated in space, the groundwater level will become higher overall due to the 

superposition effect. The results indicate that the varying recharge over time and space has a significant 

impact on groundwater flow. 

 

Figure 9. Top view of changes in groundwater levels for different spatiotemporally 

distributed recharging areas: (a) The recharge areas are 𝑋 = 0 − 0.25  and 𝑋 = 0.5 −
0.75 ; (b) The recharge areas are 𝑋 = 0.25 − 0.50  and 𝑋 = 0.5 − 0.75  (𝐾𝑥 = 𝐾𝑦 =

5m d⁄ , 𝑆y = 0.21, 𝑌 = 0.5, 𝜃𝑥 = 0°). 

Except for the bottom slope of the aquifer, groundwater flow is greatly affected by aquifer 

anisotropy, as shown in Figure 10. Considering different hydraulic conductivities in 𝑋  and 𝑌 

directions, respectively, the effect of anisotropy of an aquifer on groundwater flow can be realized. 

The groundwater flow has no preferential direction in Figure 10a because of the aquifer isotropy. When 

𝐾𝑥 > 𝐾𝑦  in Figure 10b, the flow rate in the 𝑋  direction is larger as expected than that in the 𝑌 

direction, i.e., the flow in the 𝑋 direction suppresses that in the 𝑌 direction. If the effect of slope is 

also considered, the flow moves much faster in the 𝑋 direction. 
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Figure 10. Effect of anisotropy in a homogeneous aquifer on flow discharge over space 

for: (a) isotropic aquifer 𝐾𝑥 = 15 m/d, 𝐾𝑦 = 15 m/d ; (b) anisotropic aquifer 𝐾𝑥 =

15 m/d, 𝐾𝑦 = 3 m/d (𝑆y = 0.21, 𝐿 = 100 m, 𝜃𝑥 = 5°). 

When 𝜃𝑥 = 5° as shown in Figure 11a, groundwater gradually flows towards 𝑋 = 0. The flow 

discharge is defined as “negative”, i.e., groundwater flows from zone 2 (sandy loam) to zone 1 (loam). 

Because the aquifer permeability in zone 1 is lower than that in zone 2, the discharge will be diminished 

before passing the interface, and the discharge becomes the lowest near 𝑋 = 1.2. After passing the 

interface, the discharge gradually increases and the flow accelerates rapidly near 𝑋 = 0.65 . The 

phenomenon is especially obvious at the mid-section (𝑌 = 0.5) because of no boundary effect. When 

𝜃𝑥 = −5°  as shown in Figure 11b, the flow discharge is defined as “positive”. The groundwater 

steadily flows in zone 1 until it passes the interface into zone 2. The discharge in zone 2 slows down 

slightly near 𝑋 = 1.0 − 1.3, and then enhances quickly because of higher permeability. 

 

 

Figure 11. Variation of groundwater flow in a heterogeneous aquifer for different bed 

slopes: (a) 𝜃𝑥 = 5° ; (b) 𝜃𝑥 = −5°  (𝐾1𝑥 = 𝐾1𝑦 = 2.5 m/d , 𝐾2𝑥 = 𝐾2𝑦 = 1.5 m/d , 

𝑆𝑦1 = 0.28, 𝑆𝑦2 = 0.18, 𝑑 = 10 m, 𝑟 = 30 mm/d, 𝑌 = 0.5, and 𝐿𝑠 = 100 m). 



10137 

AIMS Mathematics  Volume 9, Issue 4, 10121–10140. 

In the exploration and planning of various water resources, it is indispensable to realize the 

relationship between groundwater level and flow discharge. Once the water level is observed, the 

corresponding discharge can be found. Figure 12 can be used to estimate the flow change via the known 

water level change. The change of groundwater level decreases with the increasing slope, whereas the 

flow rate increases with the increasing slope. Such figures can be set up for different compositions of 

aquifers. The figure also indicates that the loops cannot become close for heterogeneous aquifers. Near 

the interface, the water table will increase more rapidly due to the groundwater flow from the high-

permeability zone (zone 1) to low-permeability zone (zone 2). The flow rate of groundwater flow 

increases with the water level in zone 1. When the groundwater flow reaches the interface between 

different soil zones in the heterogeneous aquifer, the flow rate does not change, but the water level 

suddenly rises. After the groundwater flow passes the interface, the flow rate synchronously decreases 

with decreasing water level in zone 2, but the water level does not decrease as much as it rises in zone 1. 

 

Figure 12. The relationship between flow discharge and water level changes in a 

heterogeneous aquifer (𝐾1𝑥 = 𝐾1𝑦 = 1.0 m/d , 𝐾2𝑥 = 𝐾2𝑦 = 0.6
m

d
 , 𝑆𝑦1 = 0.15 , 𝑆𝑦2 =

0.12, 𝑑 = 10 m, 𝑟 = 30 mm/d, 𝑌 = 0.5, and 𝐿𝑠 = 100 m). 

4. Conclusions 

This study presents an analytical model for the simulation of 2D groundwater flow through a 

conceptual rectangular semi-infinite domain. The variations of groundwater level and flow discharge 

are closely related to surface recharge, bed slope, and aquifer configuration. This study investigated 

the effect of variable lateral sources on groundwater flow in a heterogeneous semi-infinite domain. 

The 2D analytical mathematical model for groundwater was constructed, using the change-of-variable 

technique, the separation of variables method, and the integral transform. 

The verification of the analytical solution with the numerical solution showed the agreement 

between them, and the discrepancy was conjectured to arise from the linearization of the nonlinear 

term in the Boussinesq equation. The number of eigenvalues required for the convergence of the 

analytical solution to reach an accuracy of 10-3 is about 40–60, depending on the influencing factors, 

indicating a fast convergence speed. 

The medium heterogeneity including the alignment greatly influences the distribution of 

groundwater level as well as discharge and flow direction, indicating the importance of consideration 
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of heterogeneity. In heterogeneous aquifers, soil composition alters permeability, leading to non-

uniform flow rates and substantive water level changes. As the slope increases, groundwater level 

decreases, but the flow rate increases. Surface recharge patterns strongly influence groundwater level 

fluctuations. Groundwater levels greatly respond to varying recharge over time and space. We also 

found that the loops delineating the relationship between discharge and groundwater level for different 

bottom slopes cannot become close for heterogeneous aquifers. Additionally, setting up the 

relationship between flow discharge and water level for different media can facilitate our exploration 

and planning of groundwater resources. The loops of discharge and groundwater level curves appear 

unclosed for heterogeneous media rather than closed for homogeneous media. 

Use of AI tools declaration 

The authors declare they have not used artificial intelligence (AI) tools in the creation of this 

article. 

Acknowledgments 

This study was financially supported by the National Science and Technology Council of Taiwan 

under Grant No. MOST 111-2313-B-005-037. 

Conflict of interest 

The authors declare no competing interests. 

References 

1. E. I. Anderson, An analytical solution representing groundwater-surface water interaction, Water 

Resour. Res., 39 (2003), 1071. https://doi.org/10.1029/2002WR001536 

2. C. H. Lee, W. P. Chen, R. H. Lee, Estimation of groundwater recharge using water balance coupled 

with base-flow-record estimation and stable-base-flow analysis, Environ. Geol., 51 (2006), 73–

82. https://doi.org/10.1007/s00254-006-0305-2 

3. K. Y. Ke, Application of an integrated surface water‐groundwater model to multi‐aquifers 

modeling in Choushui River alluvial fan, Taiwan, Hydrol. Process., 28 (2014), 1409–1421. 

https://doi.org/10.1002/hyp.9678 

4. J. Kong, P. Xin, G. F. Hua, Z. Y. Luo, C. J. Shen, D. Chen, et al., Effects of vadose zone on 

groundwater table fluctuations in unconfined aquifers, J. Hydrol., 528 (2015), 397–407. 

https://doi.org/10.1016/j.jhydrol.2015.06.045 

5. Z. Zomlot, B. Verbeiren, M. Huysmans, O. Batelaan, Spatial distribution of groundwater recharge 

and base flow: assessment of controlling factors, J. Hydrol., 4 (2015), 349–368. 

https://doi.org/10.1016/j.ejrh.2015.07.005 

6. J. F. Águila, J. Samper, B. Pisani, Parametric and numerical analysis of the estimation of 

groundwater recharge from water-table fluctuations in heterogeneous unconfined aquifers, 

Hydrogeol. J., 27 (2019), 1309–1328. https://doi.org/10.1007/s10040-018-1908-x 

7. A. Mahdavi, Response of triangular-shaped leaky aquifers to rainfall-induced groundwater 

recharge: an analytical study, Water Resour. Manage., 33 (2019), 2153–2173. 

https://doi.org/10.1007/s11269-019-02234-7 

https://doi.org/10.1029/2002WR001536
https://doi.org/10.1007/s00254-006-0305-2
https://doi.org/10.1002/hyp.9678
https://doi.org/10.1016/j.jhydrol.2015.06.045
https://doi.org/10.1016/j.ejrh.2015.07.005
https://doi.org/10.1007/s10040-018-1908-x
https://doi.org/10.1007/s11269-019-02234-7


10139 

AIMS Mathematics  Volume 9, Issue 4, 10121–10140. 

8. S. Kar, J. P. Maity, J. S. Jean, C. C. Liu, B. Nath, H. J. Yang, et al., Arsenic-enriched aquifers: 

occurrences and mobilization of arsenic in groundwater of Ganges Delta Plain, Barasat, West 

Bengal, India, Appl. Geochem., 25 (2010), 1805–1814. 

https://doi.org/10.1016/j.apgeochem.2010.09.007 

9. M. M. Sedghi, H. Zhan, Groundwater dynamics due to general stream fluctuations in an 

unconfined single or dual-porosity aquifer subjected to general areal recharge, J. Hydrol., 574 

(2019), 436–449. https://doi.org/10.1016/j.jhydrol.2019.04.052 

10. N. Pastore, C. Cherubini, A. Doglioni, C. I. Giasi, V. Simeone, A novel approach to model the 

hydrodynamic response of the surficial level of the Ionian multilayered aquifer during episodic 

rainfall events, Water, 12 (2020), 2916. https://doi.org/10.3390/w12102916 

11. Y. Xin, Z. Zhou, M. Li, C. Zhuang, Analytical solutions for unsteady groundwater flow in an 

unconfined aquifer under complex boundary conditions, Water, 12 (2020), 75. 

https://doi.org/10.3390/w12010075 

12. M. C. Wu, P. C. Hsieh, Variation of groundwater flow caused by any spatiotemporally varied 

recharge, Water, 12 (2020), 287. https://doi.org/10.3390/w12010287 

13. Y. Zheng, M. Yang, H. Liu, Horizontal two-dimensional groundwater-level fluctuations in 

response to the combined actions of tide and rainfall in an unconfined coastal aquifer, Hydrogeol. 

J., 30 (2022), 2509–2518. https://doi.org/10.1007/s10040-022-02564-8 

14. W. H. Hassan, H. H. Hussein, B. K. Nile, The effect of climate change on groundwater recharge 

in unconfined aquifers in the western desert of Iraq, Groundwater Sustainable Dev., 16 (2022), 

100700. https://doi.org/10.1016/j.gsd.2021.100700 

15. W. Tao, F. Shao, L. Su, Q. Wang, B. Zhou, Y. Sun, An analytical model for simulating the rainfall-

interception-infiltration-runoff process with non-uniform rainfall, J. Environ. Manage., 344 

(2023), 118490. https://doi.org/10.1016/j.jenvman.2023.118490 

16. P. C. Hsieh, M. C. Wu, Changes in groundwater flow in an unconfined aquifer adjacent to a river 

under surface recharge, Hydrol. Sci. J., 68 (2023), 920–937. 

https://doi.org/10.1080/02626667.2023.2193295 

17. S. E. Serrano, The Theis solution in heterogeneous aquifers, Groundwater, 35 (1997), 463–467. 

https://doi.org/10.1111/j.1745-6584.1997.tb00106.x 

18. T. Scheibe, S. Yabusaki, Scaling of flow and transport behavior in heterogeneous groundwater 

systems, Adv. Water Resour., 22 (1998), 223–238. https://doi.org/10.1016/S0309-1708(98)00014-1 

19. P. M. Meier, J. Carrera, X. Sanchez‐Vila, A numerical study on the relationship between 

transmissivity and specific capacity in heterogeneous aquifers, Groundwater, 37 (1999), 611–617. 

https://doi.org/10.1111/j.1745-6584.1999.tb01149.x 

20. C. L. Winter, D. M. Tartakovsky, Groundwater flow in heterogeneous composite aquifers, Water 

Resour. Res., 38 (2002), 23-1-23-11. https://doi.org/10.1029/2001WR000450 

21. K. Hemker, M. Bakker, Analytical solutions for whirling groundwater flow in two‐dimensional 

heterogeneous anisotropic aquifers, Water Resour. Res., 42 (2006), W12419. 

https://doi.org/10.1029/2006WR004901 

22. X. Sanchez‐Vila, A. Guadagnini, J. Carrera, Representative hydraulic conductivities in saturated 

groundwater flow, Rev. Geophys., 44 (2006), RG3002. https://doi.org/10.1029/2005RG000169 

23. M. Huysmans, A. Dassargues, Application of multiple-point geostatistics on modelling 

groundwater flow and transport in a cross-bedded aquifer, In: P. Atkinson, C. D. Lloyd, geoENV 

VII-Geostatistics for environmental applications, Springer, 16 (2010), 135–190. 

https://doi.org/10.1007/978-90-481-2322-3_13 

24. M. H. Chuang, C. S. Huang, G. H. Li, H. D. Yeh, Groundwater fluctuations in heterogeneous 

coastal leaky aquifer systems, Hydrol. Earth Syst. Sci., 14 (2010), 1819–1826. 

https://doi.org/10.5194/hess-14-1819-2010 

https://doi.org/10.1016/j.apgeochem.2010.09.007
https://doi.org/10.1016/j.jhydrol.2019.04.052
https://doi.org/10.3390/w12102916
https://doi.org/10.3390/w12010075
https://doi.org/10.3390/w12010287
https://doi.org/10.1007/s10040-022-02564-8
https://doi.org/10.1016/j.gsd.2021.100700
https://doi.org/10.1016/j.jenvman.2023.118490
https://doi.org/10.1080/02626667.2023.2193295
https://doi.org/10.1111/j.1745-6584.1997.tb00106.x
https://doi.org/10.1016/S0309-1708(98)00014-1
https://doi.org/10.1111/j.1745-6584.1999.tb01149.x
https://doi.org/10.1029/2001WR000450
https://doi.org/10.1029/2006WR004901
https://doi.org/10.1029/2005RG000169
https://doi.org/10.1007/978-90-481-2322-3_13
https://doi.org/10.5194/hess-14-1819-2010


10140 

AIMS Mathematics  Volume 9, Issue 4, 10121–10140. 

25. V. A. Zlotnik, M. B. Cardenas, D. Toundykov, Effects of multiscale anisotropy on basin and 

hyporheic groundwater flow, Groundwater, 49 (2011), 576–583. https://doi.org/10.1111/j.1745-

6584.2010.00775.x 

26. X. Liang, Y. K. Zhang, Analytic solutions to transient groundwater flow under time-dependent 

sources in a heterogeneous aquifer bounded by fluctuating river stage, Adv. Water Resour., 58 

(2013), 1–9. https://doi.org/10.1016/j.advwatres.2013.03.010 

27. S. K. Das, S. J. Ganesh, T. S. Lundström, Modeling of a groundwater mound in a two-dimensional 

heterogeneous unconfined aquifer in response to precipitation recharge, J. Hydrol. Eng., 20 (2015), 

04014081. https://doi.org/10.1061/(ASCE)HE.1943-5584.0001071 

28. Q. Wang, H. Zhan, Z. Tang, Two‐dimensional flow response to tidal fluctuation in a heterogeneous 

aquifer‐aquitard system, Hydrol. Process., 29 (2015), 927–935. https://doi.org/10.1002/hyp.10207 

29. P. C. Hsieh, P. C. Lee, Analytical modeling of groundwater flow of vertically multilayered soil 

stratification in response to temporally varied rainfall recharge, Appl. Math. Modell., 96 (2021), 

584–597. https://doi.org/10.1016/j.apm.2021.03.030 

30. A. Hartmann, T. Gleeson, Y. Wada, T. Wagener, Enhanced groundwater recharge rates and altered 

recharge sensitivity to climate variability through subsurface heterogeneity, Proc. Natl. Acad. Sci., 

114 (2017), 2842–2847. https://doi.org/10.1073/pnas.1614941114 

31. S. K. Joshi, S. Gupta, R. Sinha, A. L. Densmore, S. P. Rai, S. Shekhar, et al., Strongly 

heterogeneous patterns of groundwater depletion in Northwestern India. J. Hydrol., 598 (2021) 

126492. https://doi.org/10.1016/j.jhydrol.2021.126492 

32. L. Wang, C. Dai, L. Xue, A semianalytical model for pumping tests in finite heterogeneous 

confined aquifers with arbitrarily shaped boundary, Water Resour. Res., 54 (2018), 3207–3216. 

https://doi.org/10.1002/2017WR022217 

33. T. G. Chapman, Modeling groundwater flow over sloping beds, Water Resour. Res., 16 (1980), 

1114–1118. https://doi.org/10.1029/WR016i006p01114 

34. R. K. Bansal, Groundwater flow in sloping aquifer under localized transient recharge: analytical 

study, J. Hydraul. Eng., 139 (2013), 1165–1174. https://doi.org/10.1061/(ASCE)HY.1943-

7900.0000784 

35. M. A. Marino, Water-table fluctuation in semipervious stream-unconfined aquifer systems, J. 

Hydrol., 19 (1973), 43–52. https://doi.org/10.1016/0022-1694(73)90092-9 

36. N. E. Verhoest, P. A. Troch, Some analytical solutions of the linearized Boussinesq equation with 

recharge for a sloping aquifer, Water Resour. Res., 36 (2000), 793–800. 

https://doi.org/10.1029/1999WR900317 

37. P. A. Troch, E. van Loon, A. Hilberts, Analytical solutions to a hillslope-storage kinematic wave 

equation for subsurface flow, Adv. Water Resour., 25 (2002), 637–649. 

https://doi.org/10.1016/S0309-1708(02)00017-9 

38. R. K. Bansal, S. K. Das, Analytical study of water table fluctuation in unconfined aquifers due to 

varying bed slopes and spatial location of the recharge basin, J. Hydrol. Eng., 15 (2010), 909–917. 

https://doi.org/10.1061/(ASCE)HE.1943-5584.0000267 

39. R. K. Bansal, Groundwater fluctuations in sloping aquifers induced by time-varying 

replenishment and seepage from a uniformly rising stream, Transp. Porous Media, 94 (2012), 

817–836. https://doi.org/10.1007/s11242-012-0026-9 

© 2024 the Author(s), licensee AIMS Press. This is an open access 

article distributed under the terms of the Creative Commons 

Attribution License (http://creativecommons.org/licenses/by/4.0). 

https://doi.org/10.1111/j.1745-6584.2010.00775.x
https://doi.org/10.1111/j.1745-6584.2010.00775.x
https://doi.org/10.1016/j.advwatres.2013.03.010
https://doi.org/10.1061/(ASCE)HE.1943-5584.0001071
https://doi.org/10.1002/hyp.10207
https://doi.org/10.1016/j.apm.2021.03.030
https://doi.org/10.1073/pnas.1614941114
https://doi.org/10.1016/j.jhydrol.2021.126492
https://doi.org/10.1002/2017WR022217
https://doi.org/10.1029/WR016i006p01114
https://doi.org/10.1061/(ASCE)HY.1943-7900.0000784
https://doi.org/10.1061/(ASCE)HY.1943-7900.0000784
https://doi.org/10.1016/0022-1694(73)90092-9
https://doi.org/10.1029/1999WR900317
https://doi.org/10.1016/S0309-1708(02)00017-9
https://doi.org/10.1061/(ASCE)HE.1943-5584.0000267
https://doi.org/10.1007/s11242-012-0026-9
http://creativecommons.org/licenses/by/4.0

