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Abstract: A new metaheuristic called the Walrus Optimizer (WO) is inspired by the ways in which 

walruses move, roost, feed, spawn, gather, and flee in response to important cues (safety and danger 

signals). In this work, the WO was used to address the economic load dispatch (ELD) issue, which is 

one of the essential parts of a power system. One type of ELD was designed to reduce fuel consumption 

expenses. A variety of methodologies were used to compare the WO’s performance in order to determine 

its reliability. These methods included rime-ice algorithm (RIME), moth search algorithm (MSA), the 

snow ablation algorithm (SAO), and chimp optimization algorithm (ChOA) for the identical case study. 

We employed six scenarios: Six generators operating at two loads of 700 and 1000 MW each were 

employed in the first two cases for the ELD problem. For the ELD problem, the second two scenarios 

involved ten generators operating at two loads of 2000 MW and 1000 MW. Twenty generators 

operating at a 3000 MW load were the five cases for the ELD issue. Thirty generators operating at 

a 5000 MW load were the six cases for the ELD issue. The power mismatch factor was the main cause 

of ELD problems. The ideal value of this component should be close to zero. Using the WO approach, 

the ideal power mismatch values of 4.1922E−13 and 4.5119E−13 were found for six generator units 

at demand loads of 700 MW and 1000 MW, respectively. Using metrics for the minimum, mean, 

maximum, and standard deviation of fitness function, the procedures were evaluated over thirty 
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separate runs. The WO outperformed all other algorithms, as seen by the results generated for the six 

ELD case studies. 

Keywords: Walrus optimizer; economic load dispatch; power system 

Mathematics Subject Classification: 68R99 

 

1. Introduction 

In power systems, economic load dispatch, or ELD, the aim is to distribute power extracted from 

producing units as economically as possible while meeting operational demands, maintaining supply-

demand equilibrium, and figuring out how to cut down on emissions and power generation costs to 

help address global warming. There is a lack of coal despite an increase in the need for electricity [1,2]. 

It is important to note that the fuel consumption curve has a wavy shape due to the valve-point effects. 

The economic load dispatch problem is therefore a large-scale, highly nonlinear, and constrained 

optimization problem. Considerable cost reductions can be obtained by optimizing the unit output 

schedule. With fuel prices rising daily, maximizing the output power from each producing unit is 

necessary to reduce total fuel expenditures. Mathematical and metaheuristic optimization techniques 

can be used to achieve this [3]. 

The linear programming approach was used to determine the electrical producing system’s actual 

and reactive power; however, these methods require a large amount of calculation time and often 

cannot provide a global answer for large data sets. A number of optimization strategies have been 

created in this application or another problem with the aim of improving the efficacy of solving the 

ELD issue [4–8]. The outline search method was proposed as a way to find the best solution for the 

ELD problem, taking into consideration the impacts of valve loading. A range of test data were 

employed to evaluate the strategy and compare it to existing optimization techniques in order to bolster 

the findings [9]. This method was applied to four distinct ELD test systems, ranging in size from small 

too big and with different degrees of complexity, utilizing the BBO (biogeography-based optimization) 

method [10]. By solving them using the modified differential evolution approach, several test cases of 

the ELD were discovered [11]. The authors used the search and rescue optimization technique (SAR) 

to determine the best strategy for the ELD. According to the study findings, the SAR was the best 

course of action in every instance of ELD [12]. 

Six generation units employed the Harris Hawks optimizer technique [13] to address ELD 

concerns, and the heat transfer search algorithm [14] was utilized to explain the difficult ELD problem 

after wind energy was added. To address ELD problems, the authors suggested using a multi-strategy 

ensemble BBO (MSEBBO). The no free lunch theory is used by the MEEBBO to support the three 

BBO pillars. To comply with the many ELD problem restrictions, a robust repair procedure is also 

advised [15]. Six real-world generator examples had the ELD problem resolved using the memetic 

sine-cosine approach [16]. However, as a remedy for ELD problems, the greedy sine-cosine 

nonhierarchical grey wolf optimizer (G-SCNHGWO) was presented by the authors. In total, there 

are 40, 15, 10, and 140 power generators in these four power systems, and each has a distinct valuation 

time [17]. The ant lion optimization algorithm (ALO) was used to fix problems with the ideal ELD. 

Applying the ALO method to all three circumstances yielded superior results than alternative solutions 

for the problem, convergence velocity, and stability [18]. The ED problem can be resolved very well 
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using a fully decentralized approach (DA) technique that appropriately accounts for transmission 

losses in a fully decentralized way. We examined three case studies [19]. 

In ELD circumstances, the exchange market algorithm (EMA) is a dependable and effective way 

to identify the best choice for worldwide optimization. Furthermore, it was created utilizing four test 

systems with convex and non-convex cost functions in four distinct dimensional units [20]. The non-

convex ELD problem was solved using the modified crow search algorithm (MCSA), and the results 

were applied to five popular test systems [21]. In contrast, four ELD with generator counts of 15, 6, 

80, and 40 were examined using the hybrid grey wolf optimizer (HGWO) [22]. The modified symbiotic 

organisms search algorithm (MSOS) was tested on five systems with varying features, restrictions, and 

dimensions [23]. To address the non-convex ELD issue with valve-point effects and emissions, the 

enhanced moth-flame optimizer (EMFO) technique was applied to three sample test systems with 6, 

40, and a large-scale 80 producing units that had non-convex fuel cost functions [24]. The method of 

using the one rank cuckoo search algorithm (ORCSA) to solve ELD problems proved effective [25]. 

By employing the adaptive charged system search (ACSS) technique for both large- and small -scale 

issue [26]. The artificial cooperative search algorithm (ACS) was introduced with the complicated 

ELD problem [27]. To extract the best solution for the ELD problem, the efficient distributed auction 

optimization algorithm (DAOA) was applied [28]. The ELD problems were resolved by a new firefly 

algorithm (FA) [29]. 

The authors solved an ELD problem using modified krill herd algorithm (MKH). When compared 

to other metaheuristics, the MKH was found to function fairly well, and adjusting its settings was not 

too difficult [30]. The ELD problem was solved using the oppositional pigeon-inspired optimizer (OPIO) 

algorithm [31]. On five valve-point affected generating systems, the evolutionary simplex adaptive 

Hooke-Jeeves algorithm’s (ESAHJ) performance was evaluated. The suggested technique's test results 

showed good convergence properties and low generating costs, which made them incredibly appealing 

and successful [32]. Teaching-learning-based optimization (TLBO) was applied to address ELD problems 

while accounting for gearbox losses. This method explores the solution space around the global 

optimum point [33]. The traditional IEEE 30 bus was tested for non-convex CEED concerns [34]. With 

a number of restrictions, the hybrid Nelder-Mead approach can manage non-convex ED problems 

with ease. Several traditional test systems were simulated, each with a variable number of generating 

units [35]. The non-convex ELD problem, which has many limitations such as the valve-point loading 

impact, a broad range of fuel alternatives, and restricted operating zones, was addressed using the 

distributed auction-based technique [36]. To solve the ELD and CEED issues, the writers created the 

turbulent flow of water optimization (TFWO) method [37]. Intelligent optimization techniques known 

as metaheuristic algorithms guide the search process by employing exploitation and exploration. The 

development of increasingly metaheuristic algorithms has been spurred by the growing complexity of 

real-world optimization problems. The actions of walruses, which decide to migrate, roost, breed, 

gather, feed, and flee in response to critical cues (danger signals and safety signals), served as the 

model for the Walrus Optimizer (WO) [38]. 

The following illustrations show the primary goals and contributions of this work: 

• The ELD issue is covered in four network studies, one for each of the following generator 

unit counts: thirty, twenty, ten, and six generators. 

• The Walrus Optimizer (WO), a novel metaheuristic technique, is used to resolve the ELD 

case study. 

• For the case studies of six units, ten units, twenty and thirty units, the suggested WO method 
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is assessed using chimp optimization algorithm (ChOA), moth search algorithm (MSA), 

snow ablation optimization (SAO), and the rime-ice algorithm (RIME). 

• Based on the convergence and robustness statistics, all algorithms are evaluated over thirty 

runs. 

• The disparity in power between the unit’s generated power and the load demand determines 

how well the WO and all other methods are evaluated. 

The following is the manuscript’s order: In Section 2, the ELD analysis is discussed. Section 3 

provides clarification on the WO technique. Section 4 provides an explanation of the findings. Section 

five provides a description of the conclusions and future work. 

2. Analysis of ELD problem 

ELD is one of the issues with power systems’ functionality. The main obstacle is fixing the ELD 

problem and maximizing the financial benefit for power plants is reducing fuel consumption expenses. 

The resource distribution vector in the ELD issue that maximizes extracted power is defined by the 

primary variable. Below is an explanation of ELD analysis. 

The mathematical analysis for ELD can be described using the following notations. The following 

phrase will be used to compute the cost of fuel used to run n generators: 

Min(F) = F1(P1) + ⋯Fn(Pn).         (1) 

F is the net cost, Fn is the cost of the nth generator, and F1 is the cost of the first generator. The 

following techniques will be used to obtain the petrol cost function in quadratic equation: 

Min(F) = ∑ Fi(Pi) = ∑ akPk
2n

k=1
n
k=1 + bkPk + ck,     (2) 

where the weight constants are a, b, and c. Moreover, Eqs (3) and (5) can be used to modify the 

generator limits. 

∑ 𝑃𝑘 − 𝑃𝐷
𝑛
𝑘=1 − 𝑃𝐿 = 0.         (3) 

If PL represents the losses of networks, which are calculated as follows, and PD is the demand 

networks. 

𝑃𝐿 = ∑ ∑ 𝑃𝑖𝐵𝑖𝑗𝑃𝑗
𝑛
𝑗=1

𝑛
𝑖=1 ,         (4) 

where the power extracted at the ith generator is indicated by P𝑖, the power extracted at the jth 

generator by Pj , and the factor of loss is indicated by Bij. 

𝑃𝑘
𝑚𝑖𝑛 ≤ 𝑃𝑘 ≤ 𝑃𝑘

𝑚𝑎𝑥.          (5) 

3. Walrus optimizer 

The Walrus Optimizer (WO) mathematical framework will be addressed in this section [38]. 

3.1. Initialization 

Equation (6) shows how a set of randomly generated candidate keys (X) serves as the starting 
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point for the optimization process. 

𝑋 = 𝐿𝐵 + rand (𝑈𝐵 − 𝐿𝐵),        (6) 

where LB and UB represent the lower and upper bounds of the problem parameters, and rand is a 

uniform random vector in the range of 0 to 1. 

The term “walrus” refers to the agents that perform the optimization process. They change their 

positions continuously during iterations. 

X =

[
 
 
 
 
𝑋1,1𝑋1,2 ⋯𝑋1,𝑑

𝑋2,1𝑋2,2 ⋯𝑋2,𝑑

⋮⋮⋮
⋮⋮⋮

𝑋𝑛,1𝑋𝑛,2 ⋯𝑋𝑛,𝑑]
 
 
 
 

𝑛×𝑑

,        (7) 

where 𝑛 is the size of population and 𝑑 is the variables dimension. 

The matched fitness values of each search agent are retained as follows: 

F =

[
 
 
 
 
 
(𝑓1,1𝑓1,2 ⋯𝑓1,𝑑)

(𝑓2,1𝑓2,2 ⋯𝑓2,𝑑)

⋮⋮⋮
⋮⋮⋮

(𝑓𝑛,1𝑓𝑛,2 ⋯𝑓𝑛𝑑)]
 
 
 
 
 

𝑛×𝑑

.        (8) 

90% and 10% of the overall walrus population is made up of adult and juvenile populations, 

respectively. In adult walruses, the male to female ratio is 1:1. 

3.2. Safety and danger signals 

Foraging and roosting need walruses to be highly watchful. As protectors, a walrus or two will 

patrol the area, sounding warning signals as soon as they notice any unexpected activity. The meaning 

of the danger and safety signals in WO is as follows: 

𝐷𝑎𝑛𝑔𝑒𝑟 𝑠𝑖𝑔𝑛𝑎𝑙 = 𝐴 ∗ 𝑅,         (9) 

𝛼 = 1 − 𝑡/𝑇,          (10) 

𝐴 = 2 × 𝛼,           (11) 

𝑅 = 2 × 𝑟1 − 1,          (12) 

where α decreases from 1 to 0 with the number of iterations t, T is the maximum iteration, and A and 

R are danger factors. 

The safety signal in WO that correlates to the danger signal is defined as follows: 

𝑆𝑎𝑓𝑒𝑡𝑦 𝑠𝑖𝑔𝑛𝑎𝑙 = 𝑟2,         (13) 

where, 𝑟2 and 𝑟1 are random values that fall between (0,1). 

 



10100 

AIMS Mathematics  Volume 9, Issue 4, 10095–10120. 

3.3. Migration 

When risks become too large, walrus herds will relocate to areas more conducive to population 

survival. In this phase, the position of the walrus is updated as follows: 

𝑋𝑖,𝑗
𝑡+1 = 𝑋𝑖,𝑗

𝑡 + migratin step,       (14) 

𝑚𝑖𝑔𝑟𝑎𝑡𝑖𝑜𝑛 𝑠𝑡𝑒𝑝 = (𝑋𝑚
𝑡 − 𝑋𝑛

𝑡) ∙ 𝛽 ∙ 𝑟3
2,     (15) 

𝛽 = 1 −
1

1+exp (−
𝑡−

𝑇
2

𝑇
×10)

,        (16) 

where 𝑋𝑖,𝑗
𝑡  represents the i th walrus's current location on the j thension, and 𝑋𝑖,𝑗

𝑡+1 represents its new 

position. The step size of the walrus movement is called migration_step, two vigilantes are randomly 

selected from the population so that their positions match 𝑋𝑚
𝑡  and 𝑋𝑛

𝑡 , the control factor for migration 

steps is called 𝛽, it evolves iteratively as a smooth curve, and 𝑟3 is a random value between 0 and 1. 

3.4. Reproduction 

Walrus herds usually do not migrate, instead, they reproduce in currents when danger factors are 

minimal. The position update of female walruses indicates that the lead walrus (𝑋best
𝑡 ) and the male 

walrus (Male𝑖,𝑗
𝑡 ) impact the female walrus during reproduction. As the iteration progresses, the female 

walrus starts to rely more on the leader and less on her mate. 

Female𝑖,𝑗
𝑡+1 = Female𝑖,𝑗

𝑡 + 𝛼 ∙ (Male𝑖,𝑗
𝑡 − Female𝑖,𝑗

𝑡 ) + (1 − 𝛼) ∙ (𝑋best
𝑡 − Female𝑖,𝑗

𝑡 ), (17) 

where Male𝑖,𝑗
𝑡  and Female𝑖,𝑗

𝑡  are the positions of the 𝑖 th male and female walruses on the 𝑗 th 

dimension, and Female𝑖,𝑗
𝑡+1 is the new position for the 𝑖 th female walrus on the 𝑗 th dimension. 

Then, juvenile walruses are often hunted by polar bears and killer whales close to the population’s 

edge. Because of this, young walruses have to get used to their new location in order to avoid predators. 

Juvenile𝑖,𝑗
𝑡+1 = (𝑂 −Juvenile𝑖,𝑗

𝑡 ) ∙ 𝑃,       (18) 

𝑂 = 𝑋best
𝑡 + Juvenile𝑖,𝑗

𝑡 ∙ 𝐿𝐹,        (19) 

where O is the reference safety position, Juvenile𝑖,𝑗
𝑡+1 is the new position for the i th juvenile walrus 

on the j th dimension, and P is the juvenile walrus’s distress coefficient, a random number between 0 

and 1. Based on the Lévy distribution, LF is a vector of random values that represent Lévy movement. 

Levy (𝑎) = 0.05 ×
𝑥

|𝑦|
1
𝑎

，         (20) 

where 𝑦 and 𝑥 are two normally distributed parameters, 𝑥 N(0, 𝜎𝑥
2), 𝑦 N(0, 𝜎𝑦

2). 
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𝜎𝑥 = [
Γ(1+𝛼)sin (

𝜋𝛼

2
)

Γ(
1+𝛼

2
)𝛼2

(𝛼−1)
2

]

1

𝛼

, 𝜎𝑦 = 1, 𝛼 = 1.5,     (21) 

where, 𝜎𝑦 and 𝜎𝑥 are the standard deviations, Γ(𝑥) = (𝑥 + 1)!. 

When walruses dive for food, they are also a target for natural predators, and when their 

companions alert them to danger, the animals will leave the area where they are now active. The late 

WO iteration demonstrates this behavior, and some population disturbance helps walruses in their 

quest for global exploration. 

𝜎𝑥 = [
Γ(1+𝛼)sin (

𝜋𝛼

2
)

Γ(
1+𝛼

2
)𝛼2

(𝛼−1)
2

]

1

𝛼

, 𝜎𝑦 = 1, 𝛼 = 1.5,     (22) 

where the distance between the best and current walrus is shown by the symbol |𝑋𝑏𝑒𝑠𝑡
𝑡 − 𝑋𝑖,𝑗

𝑡 |, and𝑟4 

is a random value between 1 and 0. 

Furthermore, walruses can cooperate to move and forage dependent on the whereabouts of other 

walruses in the group as part of their social gathering behavior. Walruses have the ability to help the 

entire herd find regions of the sea with more food by exchanging location data. 

𝑋𝑖,𝑗
𝑡+1 = (𝑋1 + 𝑋2)/2,         (23) 

{
𝑋1 = 𝑋best

𝑡 − 𝑎1 × 𝑏1 × |𝑋best 
𝑡 − 𝑋𝑖,𝑗

𝑡 |

𝑋2 = 𝑋second
𝑡 − 𝑎2 × 𝑏2 × |𝑋second 

𝑡 − 𝑋𝑖,𝑗
𝑡 |

,     (24) 

𝑎 = 𝛽 × 𝑟5 − 𝛽,          (25) 

𝑏 = tan (𝜃)          (26) 

where 𝑎 𝑎𝑛𝑑 𝑏 are the gathering coefficients, 𝑋1 and 𝑋2 are two weights influencing the walrus's 

gathering behaviour, and 𝑋second
𝑡  reflects the position of the second walrus in the current iteration. 

|𝑋second
𝑡 − 𝑋𝑖,𝑗

𝑡 | indicates the distance between the current walrus and the second walrus. Whereas the 

values of θ range from 0 to π, the random integer 𝑟5 is between 0 and 1. 

3.5. WO flow chart 

The flowchart of WO is described in detail in Figure 1. 
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Figure 1. Flow chart of WO algorithm. 

4. Results of ELD cases 

The ELD receives a donation of the WO performance. The moth search algorithm (MSA) [39], 

the snow ablation optimization (SAO) [40], the chimp optimization algorithm (ChOA) [41], and the 

rime-ice algorithm (RIME) [42] were used to evaluate the suggested WO method. The ELD issue was 

used in the following case studies: 

• Six generators operating at two distinct loads (1000 and 700 MW) comprise the first case study. 

• There are 10 generators in the second case study with two different loads (1000 and 2000 MW). 

• The five-case study has 20 generators operating at 3000 MW loads. 

• The six-case study included 30 generators operating at 5000 MW loads. 

4.1. Results of six generators 

In order to test the ELD issue, a case study with six generators operating at two loads is donated. 

A variety of techniques were used, including the WO, RIME, SAO, MSA, and ChOA algorithms. 

Thirty different runs were used to assess each competing strategy’s efficacy. The mean, maximum, 

minimum, and standard deviation values were documented as statistical information for each load 

using these runs, as shown in Table 1. Using this data, the WO determines the optimal standard 

deviation and the best objective function. For ELD, the WO algorithm is therefore the most accurate 

and reliable. Table 2 displays the ideal fuel cost for each situation. Table 3, which was developed using 

the best objective function among all approaches, displays the ideal power provided by each unit for a 

load requirement of 700 MW. Table 4 which was generated on the best objective function across all 

techniques, displays the optimal power provided by each unit to recover load requirement of 1000 MW. 

The robustness curve determines the fitness function value for each run based on the results of all 

techniques recorded over the course of the 30 runs.  
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Table 1. Statistical data of all methods in ($/h) for six generators. 

Load (MW) Algorithm Minimum SD Mean Maximum 

700 WO 8400.997136 196.5147708 8662.170541 9139.212021 

SAO 8465.975761 197.2010827 8753.891609 9155.235854 

ChOA 39475.15105 1415165.954 1594567.940 4960872.827 

MSA 8427.541921 163.3349358 8716.009085 9032.640980 

RIME 154035.3045 78735556.03 64584338.77 348563546.7 

1000 WO 12120.25084 131.2152977 12270.39366 12615.36259 

SAO 12141.46728 128.4638379 12318.57722 12643.00452 

ChOA 35568.69974 859586.3590 789710.3604 3975199.582 

MSA 12196.59431 89.66107262 12335.59750 12552.83025 

RIME 2696415.881 84144505.04 76815454.04 279959787.1 

Table 2. The optimal fuel usage costs ($/h) for six generators. 

Method 700 MW 1000 MW 

WO 8400.996922 12120.24203 

SAO 8465.925401 12136.61857 

ChOA 8995.251114 12330.14858 

MSA 9794.135519 14034.62198 

RIME 8648.886480 12206.03121 

Table 3. The best distribution of power (MW) among six generators for a demand of 700 MW. 

WO SAO ChOA MSA RIME 

281.8419643 259.8161060 100 56.03971489 186.8762755 

50.50407930 54.58630261 52.35878389 69.97467027 62.88659606 

192.6399883 159.3362502 257.1559643 72.80852851 279.7127278 

50.02267017 58.20871339 50 103.0726077 51.47179647 

78.64437068 94.60440179 200 103.7752893 70.08507476 

58.16395368 85.58268340 56.51473367 305.2492779 62.78030728 

Table 4. The best distribution of power (MW) among six generators for a demand of 1000 MW. 

WO SAO ChOA MSA RIME 

418.8719894 374.5651735 500 54.48410890 462.2467195 

118.4807842 173.0458359 176.9449449 79.19002879 142.3428705 

207.6997509 210.9436951 116.0761643 124.3800484 226.2392259 

87.95314532 77.57138608 86.42470161 155.7910172 50.00204391 

139.8294433 132.5356769 62.15523186 246.3641047 50 

50.59678231 55.14492812 79.69065610 365.0459344 91.25167800 

The robustness curve properties for each case on the system with six units are displayed in 

Figures 2 and 3. Based on the recorded outcomes from each of the top 30 runs that yield the best 

fitness function, the convergence curve describes the quickest approach that meets the goal function. 

The characteristics of the convergence curve for the system with six units at each load level are shown 
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in Figures 4 and 5. Using the convergence and robustness properties as a guide, the WO finds the 

optimal global solution. Tables 5 and 6 clarify the estimated sharing power from all units over the 

thirty runs for six units based on the WO method. 

 

Figure 2. Six generators’ robustness curves at a 700 MW load. 

 

Figure 3. Six generators’ robustness curves at a 1000 MW load. 
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Figure 4. Six generators’ convergence curves at a 700 MW load. 

 

Figure 5. Six generators’ convergence curves at a 1000 MW load. 

Table 5. The estimated sharing power from all units over the thirty runs for six units based 

on the WO method at 700 MW. 

Unit 1 Unit 2 Unit 3 Unit 4 Unit 5 Unit 6 

102.4803134 98.90858263 146.5974124 57.05988267 199.9998093 109.9802472 

252.0493973 88.14888891 144.6226086 86.19141850 78.69709537 61.97854274 

217.1549197 98.80989745 143.4855378 75.38821598 116.6628773 60.83235654 

100 200 80 58.07392804 199.7337076 76.81948039 

127.1120581 52.58933520 178.9286417 100.8793515 178.6835637 76.58050636 

171.2244733 193.7244687 134.8106730 52.13909507 99.90726427 60.85348710 

303.3576528 89.67226612 110.0581270 80.08162413 61.72363427 66.07303450 

152.3377111 135.9783145 146.2957426 132.4204045 57.71403532 88.13135753 

Continued on next page 
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Unit 1 Unit 2 Unit 3 Unit 4 Unit 5 Unit 6 

272.1414685 127.9969590 127.5023324 75.40811217 50 58.06615553 

242.3004371 76.5465688 155.8124437 50.43508027 129.8969541 57.36082528 

158.0997819 68.39168686 136.5241416 120.3722600 171.8359666 58.78901335 

188.1262448 115.8998675 113.4359860 87.19074785 118.9889349 89.14564073 

198.5167438 105.0685979 240.4188648 54.73838761 50.89307970 63.11961272 

207.4749216 121.7413134 149.1441977 77.26002026 103.6364154 52.96163304 

124.0668650 90.92339930 249.1107843 54.05206681 90.69455487 105.4528787 

158.8493266 150.8833468 80 85.19020735 183.8349391 54.90617341 

245.2819280 83.65885527 149.1188361 52.40031462 107.4175349 74.22420733 

250.5707815 132.2436871 107.0744415 93.33921683 75.77756745 52.51220603 

100.2306225 75.89233881 261.0982595 126.1334462 79.42216520 71.86777543 

154.0799986 59.35882146 187.5369360 106.2150155 134.8700152 71.79567099 

237.8466632 91.53005291 159.3975559 56.00072280 80.97575690 86.27944518 

177.6241311 65.73269041 294.1448464 55.61023583 67.27121818 53.70427278 

140.7040655 123.5236114 97.96158459 85.70199318 196.2508439 69.98467789 

281.8419643 50.50407930 192.6399883 50.02267017 78.64437068 58.16395368 

138.2306531 92.01201083 137.1201323 99.63543302 185.3094505 61.83791201 

120.1891075 165.0697700 176.0335154 149.5190604 50.95775454 51.47374498 

162.7158423 131.8547034 166.5554811 90.71884640 103.3414511 57.59958377 

239.5906960 147.6249374 99.59586416 71.95502938 90.85440986 62.14291823 

222.4746072 96.56678798 114.6609715 78.22236349 114.0120391 86.46675339 

217.8622484 95.40899320 147.2814524 82.06577941 95.45064912 74.16733930 

Table 6. The estimated sharing power from all units over the thirty runs for six units based 

on the WO method at 1000 MW. 

Unit 1 Unit 2 Unit 3 Unit 4 Unit 5 Unit 6 

341.3981624 140.9413161 198.2286577 110.6886852 140.6813018 92.81221650 

284.1819988 143.7225151 210.2178285 97.30437360 179.8132314 111.1492323 

309.7621619 117.0385621 246.3548164 107.4187872 152.8137221 92.46722036 

344.2115321 131.0580592 211.3389364 100.1877574 148.0912579 89.99270845 

266.5532907 173.4169070 186.7969442 139.8422806 190.8918946 68.91202388 

366.1897574 115.5512483 219.4230681 95.09084517 122.7059296 105.5195606 

476.9243509 54.21667175 187.2306249 68.02355672 125.2463485 111.6764112 

336.5581280 138.7634309 221.5640531 104.2301337 142.8800824 80.87432334 

311.6684933 157.2394350 220.4660037 113.0076546 128.1239647 94.57957665 

357.4839710 152.4713473 230.4426551 62.25645741 125.7710309 96.01873016 

326.8077345 149.1901841 235.2728939 73.89699066 135.9788826 103.9965005 

375.4374685 197.9903023 97.54151456 54.84573108 179.6313230 119.6729541 

310.5525430 200 228.4033442 131.5740260 64.71385590 89.25542297 

198.3478713 121.0773544 296.9073980 100.1264281 200 112.5644537 

364.5289296 116.8251593 215.8054688 61.26854929 184.5750177 82.22239739 

343.2550109 138.7541221 183.5203179 113.6092577 158.6660371 87.11194786 

231.2846259 171.2273378 299.9999969 65.36650287 181.4682842 78.30160867 

Continued on next page 
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Unit 1 Unit 2 Unit 3 Unit 4 Unit 5 Unit 6 

334.0385473 140.8650324 217.1734714 105.0756383 144.9430579 82.81971939 

344.0653060 138.7780745 208.6015833 107.2240187 139.1283197 86.88806222 

493.0435454 169.1438687 82.45797790 131.6592578 52.40150981 93.07448376 

347.6552919 123.7009673 290.5128504 73.74211351 95.65015628 93.71152034 

500 182.2766504 80 149.9880007 59.31734212 50 

418.8719894 118.4807842 207.6997509 87.95314532 139.8294433 50.59678231 

415.2861783 160.6555421 218.3004690 81.13067886 93.20998978 54.21886616 

315.4930839 187.8881017 236.6649001 107.9465190 59.40055137 117.2313561 

346.2844095 159.9314812 139.6791036 126.9515242 136.3862798 115.5694083 

435.8349834 146.8766561 186.0508011 69.62593103 102.9392750 81.32075210 

382.4916920 182.5880896 174.2718067 50 140.8667595 93.75208220 

366.9104058 126.1658610 248.4103510 63.15425596 139.9832928 80.01889125 

308.1807194 122.1205565 298.0516559 50.56191778 155.8335116 91.75587284 

4.2. Results of ten generators 

In order to test the ELD issue, a case study with ten generators operating at two loads is donated. 

A variety of techniques were used, including the WO, RIME, SAO, MSA, and ChOA algorithms. 

Thirty different runs were used to assess each competing strategy’s efficacy. The mean, maximum, 

minimum, and standard deviation values were documented as statistical information for each load 

using these runs, as shown in Table 7. Using this data, the WO determines the optimal standard 

deviation and the best objective function. For ELD, the WO algorithm is therefore the most accurate 

and reliable. Table 8 displays the ideal fuel cost for each situation. Table 9, which was developed using 

the best objective function among all approaches, displays the ideal power provided by each unit for a 

load requirement of 1000 MW. Table 10, which was generated on the best objective function across all 

techniques, displays the optimal power provided by each unit to recover load requirement of 2000 MW.  

Table 7. Statistics data of all methods in ($/h) for ten generators. 

Load (MW) Algorithm Minimum SD Mean Maximum 

1000 WO 99172455.07 22083746.37 125028621.9 204189415.1 

SAO 91025531.85 47461035.30 135774959.0 278926971.6 

ChOA 96169315.81 9092193.300 110754717.8 134377790.8 

MSA 90206604.16 23733842.24 119742282.7 171657419.9 

RIME 96981916.42 77022779.49 187450044.4 394817673.1 

2000 WO 475068075.3 40792448.60 533415296.7 617012683.9 

SAO 459517895.5 43408269.26 575882737.8 635659941.4 

ChOA 432244579.1 39158317.85 501777836.9 583106906.4 

MSA 472373206.1 40398057.93 592236498.7 639339146.9 

RIME 465555201.9 71077574.92 576425864.7 777638652.5 
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Table 8. The optimal fuel usage costs ($/h) for ten generators. 

Method 1000 MW 2000 MW 

WO 99172455.07 475068075.2 

SAO 88057595.74 459419310.3 

ChOA 94849826.08 416417404.5 

MSA 71535847.32 349536183.6 

RIME 94886247.04 459186431.8 

Table 9. The best distribution of power (MW) among ten generators for a demand of 1000 MW. 

WO SAO ChOA MSA RIME 

189.9585506 162.2053566 154.3329761 12.33748823 174.1680447 

137.8622921 135.2619336 135 44.01184975 135 

105.6144183 137.8238444 73 66.25826943 115.6444194 

60.46282183 125.1864930 97.81644810 68.77385114 128.2000558 

120.3049668 79.00989904 198.1933143 117.8098698 153.3188340 

148.0244135 82.28033061 140.7465156 126.1331838 117.8700572 

38.22264078 91.22832092 79.42576608 135.0403635 25.56604190 

105.1471066 91.97426679 96.67066137 143.4200038 68.71055217 

49.81657885 77.85222711 26.78146665 146.6648195 80 

54.62738077 26.43244080 10 150.0006410 12.19912388 

Table 10. The best distribution of power (MW) among ten generators for a demand of 2000 MW. 

WO SAO ChOA MSA RIME 

412.2313307 416.1371402 395.8661795 26.65588505 418.1936554 

354.1194035 317.6418237 269.9925437 45.93059863 322.4049869 

297.3361751 330.0870262 340 119.9951250 332.5336200 

299.4981562 290.3535755 300 124.2309670 277.6069160 

209.7173057 224.5346635 243 159.9953976 220.4361023 

159.9999989 160 111.8960325 242.9999999 129.0094100 

81.48722139 120.7940973 130 256.3870356 128.5908911 

112.9551673 99.61729215 120 299.9996923 103.1062452 

68.12411680 42.42283454 80 302.2501288 70.52565350 

47.17968826 40.10417154 47.55800085 465.4640164 39.03613209 

The robustness curve determines the fitness function value for each run based on the results of all 

techniques recorded over the course of the 30 runs. The robustness curve properties for each case on 

the system with ten units are displayed in Figures 6 and 7. Based on the recorded outcomes from each 

of the top 30 runs that yield the best fitness function, the convergence curve describes the quickest 

approach that meets the goal function. The characteristics of the convergence curve for the system with 

ten units at each load level are shown in Figures 8 and 9. Using the convergence and robustness 

properties as a guide, the WO finds the optimal global solution. Tables 11 and 12 clarify the estimated 

sharing power from all units over the thirty runs for ten units based on the WO method. 



10109 

AIMS Mathematics  Volume 9, Issue 4, 10095–10120. 

 

Figure 6. Ten generators’ robustness curves at a 1000 MW load. 

 

Figure 7. Ten generators’ robustness curves at a 2000 MW load. 

 

Figure 8. Ten generators’ convergence curves at a 1000 MW load. 
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Figure 9. Ten generators’ convergence curves at a 2000 MW load. 

Table 11. The estimated sharing power from all units over the thirty runs for ten units based 

on the WO method at 1000 MW. 

Unit 1 Unit 2 Unit 3 Unit 4 Unit 5 Unit 6 Unit 7 Unit 8 Unit 9 Unit 10 

159.2159925 205.1542627 77.35307172 175.9486537 166.5926449 92.35376392 34.40883372 47.5618075 21.04762987 33.99557635 

160.1030938 162.0074058 182.6936501 64.84722692 96.90956346 75.28673255 97.85111033 56.37649123 59.78357786 55 

231.6370454 172.9971196 124.0327942 138.1810285 120.4438399 76.83609233 43.21498018 54.0797019 27.50471812 22.34660415 

297.0510775 138.7638412 111.2012504 107.3178205 77.78582904 104.4015475 46.37748384 58.52670653 20.10876075 50.40279529 

154.1313930 135 214.1969545 92.19856823 165.9868429 66.18561734 86.30825998 55.9262042 28.66518161 12.22339933 

222.348739 139.4559695 100.8188328 186.7052467 79.14978809 76.18654879 81.03239416 48.48638539 61.25889537 15.88444985 

175.4413944 135.0226018 89.64707499 267.7728138 73 127.2842840 30.12195729 78.93259336 25.29184388 10.00000005 

235.2670748 158.3604452 176.9214304 77.94781019 75.05940957 159.9043481 33.26798728 47.03480229 35.43235191 12.61601629 

222.2455874 198.9585264 133.2846076 114.6020956 106.2140985 75.1981615 46.26249066 60.96494526 31.71475946 21.85463807 

222.7335791 185.3936952 168.1266204 114.470871 75.55692084 64.09124533 87.60568621 47.79453443 24.50415781 20.85087625 

241.2563633 168.4369199 172.9156304 60.80558564 78.03386632 57.54671684 20.00685788 103.6024601 77.65784392 28.23306747 

188.1525628 194.451753 116.7529253 87.14449367 118.0462450 111.9303454 36.11260949 66.97493347 74.43932201 17.23178485 

180.2933015 148.2087336 182.5790718 98.90030204 96.72667057 76.26538453 45.87469691 74.66056189 74.66528952 30.87468895 

213.6771494 172.0073669 110.4307990 60 129.0649219 90.46599244 22.83272537 120 78.14464174 13.00750412 

209.5248331 162.3583379 82.39817875 180.7584185 145.7144409 57 64.38812327 65.54054761 33.0194012 11.37312312 

154.9925692 173.6751037 112.0207399 211.3494988 121.3415918 110.25215 24.15834555 58.48033319 22.51364093 23.11060133 

236.400897 165.3637865 100.5876852 143.0854971 101.1048065 98.2583874 28.32240061 74.39012859 22.4737011 41.45500504 

290.9903704 180.1161077 111.1939527 89.44872095 124.0632478 73.6829613 34.3507097 56.23315767 37.14807602 15.51345443 

212.5603041 208.9283893 134.4543464 107.6806232 94.95230511 75.58137433 37.10654997 66.16773945 55.13999334 18.44545653 

158.2374826 345.6263731 73.16475215 71.45397246 152.2656396 59.85089507 62.8970225 53.76695369 27.49964172 14.07082341 

189.9585506 137.8622921 105.6144183 60.46282183 120.3049668 148.0244135 38.22264078 105.1471066 49.81657885 54.62738077 

197.6620039 186.9874661 135.826066 107.5450569 87.00044521 109.816946 71.79764467 65.41337606 34.52665800 14.51310919 

235.8701998 138.9810028 129.3330681 69.23232825 223.2848184 61.04359029 28.61580145 69.10500022 23.78682105 32.85745335 

181.1324307 184.9282264 153.1808598 108.5734387 114.8465169 66.11002425 85.34879155 63.51312899 37.49681069 15.75990624 

233.6393711 139.5236933 84.22606041 60.5875545 115.8070188 158.9289702 79.24832213 76.29601522 29.2076877 34.39384127 

322.6035983 140.3409282 131.2363100 77.0150188 73.28499122 83.94471891 66.87240103 47.1032357 37.75253618 32.45997671 

Continued on next page 
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Unit 1 Unit 2 Unit 3 Unit 4 Unit 5 Unit 6 Unit 7 Unit 8 Unit 9 Unit 10 

180.2520248 185.4205927 94.11881173 264.0011458 75.4327111 57 69.84014218 49.4514016 23.85295787 13.07985644 

267.5710745 135 93.19580244 153.9877712 78.57795601 60.62471705 62.78212018 59.37321338 79.99944159 20.57353603 

150.0500502 280.2883568 99.04657934 92.92107204 94.65560650 140.9116580 29.94288849 74.00109769 27.42179229 25.32489640 

150.0440645 284.8799976 73.00000058 223.5071776 74.69581295 62.25644561 46.55371377 47 20.16888136 33.88947346 

Table 12. The estimated sharing power from all units over the thirty runs for ten units 

based on the WO method at 2000 MW. 

Unit 1 Unit 2 Unit 3 Unit 4 Unit 5 Unit 6 Unit 7 Unit 8 Unit 9 Unit 10 

428.0982723 417.7643835 290.7395516 285.9557676 170.8925859 134.5408063 121.2784259 94.59391201 53.54997275 49.80925878 

388.1017765 446.1179611 269.6210476 265.3121883 194.5587579 147.1267506 107.5622969 105.7971318 75.60553088 48.57343027 

419.9645588 458.1691315 275.7242539 252.0763891 190.0235745 152.6207006 122.3828213 100.4709633 34.89703043 43.96784911 

470 446.72697 339.8623129 299.9806668 82.99905601 159.4956349 29.54956098 119.8265272 52.42093001 44.14627465 

450.1496196 335.2756905 304.3891891 294.4576684 229.4492262 114.3338339 95.61309569 103.6951507 75.52527954 39.65895347 

372.71844 398.4222273 308.3259975 262.9682916 193.9403648 158.8206066 119.5484443 112.7696192 70.72483215 46.28807342 

444.5795722 419.9636507 238.966268 285.881978 224.2082906 125.3142064 97.39351277 82.61953498 76.50259923 54.8422977 

384.5500323 413.8709687 265.3486526 299.8081442 231.9730852 154.1573168 104.0949083 76.83479117 70.5213366 47.2983988 

406.1802318 459.8603496 333.4903322 242.8711336 231.6858442 151.6981355 85.33452909 92.71106967 20.08637784 24.39942245 

467.9679976 428.3309168 296.3827596 299.5874475 101.2616463 143.0174477 129.900161 110.7717226 20.47073827 50.1455135 

414.5919729 408.2329251 297.3225483 262.5842117 205.0380753 133.2135416 111.6110689 103.5565033 66.16902266 43.53730963 

465.3926078 455.0110264 330.6164285 298.9217218 83.02290621 60.19747039 129.9709871 119.8934767 75.81215309 28.03921375 

457.3085445 341.6409802 324.1213944 299.7258376 195.3717413 141.2953509 49.37406341 99.41533932 79.99973381 53.44677173 

387.6028351 403.7838295 301.1756945 251.572342 239.1790535 140.31152 110.1653136 108.1416534 67.3268931 36.27017624 

394.6879332 423.9236727 289.2115421 252.6339103 224.8741427 143.7732071 90.88320764 109.6978583 73.16231506 43.43877876 

468.4662924 427.911449 306.6047926 201.7387548 242.644638 82.16221703 97.3784371 103.4339958 68.53126331 49.5647736 

426.6172538 406.7945802 262.0453947 272.5524587 206.1571276 147.4071999 102.6374548 104.2898131 71.50860007 47.1176062 

424.884686 343.5060783 314.1299114 297.3862956 240.5331876 104.9658907 82.22764731 117.7593807 63.70287415 52.38247512 

382.6193821 450.9885973 293.6944731 300 209.3489807 159.9678292 47.80446207 97.99045294 75.95010153 28.52894728 

383.6260834 442.241986 275.3078995 288.3220013 216.4277126 151.5372682 105.4972441 72.70620601 74.21427914 39.5823027 

437.9366298 416.0085116 318.8706489 228.2631104 173.905161 154.3336904 109.0310292 105.8461975 61.8623995 39.76218428 

469.4466025 459.9999637 340 150.2114857 208.2614235 91.5986107 130 108.3645804 42.01877182 50.79978166 

432.8995631 404.4758705 327.7598376 277.7123065 185.4334227 156.4713072 86.30860545 111.6608485 28.68140535 32.71694383 

403.5274754 405.6548252 308.1246595 253.4877107 203.2876437 138.3456277 110.4757841 97.90411147 71.85980287 52.96546268 

412.2313307 354.1194035 297.3361751 299.4981562 209.7173057 159.9999989 81.48722139 112.9551673 68.1241168 47.17968826 

431.268416 396.176757 307.5683835 256.6920566 185.7613956 133.519391 112.4859199 101.1797122 71.54351032 48.91764929 

401.5443966 424.3925779 319.1914116 253.0436952 228.9338026 151.2061905 37.82310017 98.12292274 80 50.92031943 

371.0873022 382.6125425 338.884372 242.4323102 230.8253159 145.3676986 107.1052479 103.2482867 68.16686284 54.03182796 

419.1885618 390.0135451 286.854260 260.6994848 212.2401164 148.6285556 114.4061915 103.2356786 68.87548786 41.46820991 

376.6740049 459.9832529 313.6472886 263.762858 237.0071809 147.171602 20 110.9244507 67.46366796 49.75691359 

4.3. Results of twenty generators 

In order to test the ELD issue, a case study with twenty generators operating at 3000 MW load is 

donated. A variety of techniques were used including the WO, RIME, SAO, MSA, and ChOA 

algorithms. Thirty different runs were used to assess each competing strategy's efficacy. The mean, 
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maximum, minimum, and standard deviation values were documented as statistical information for 

each load using these runs, as shown in Table 13. Using this data, the WO determines the optimal 

standard deviation and the best objective function. For ELD, the WO algorithm is therefore the most 

accurate and reliable. Table 14 displays the ideal fuel cost. Table 15, which was developed using the 

best objective function among all approaches, displays the ideal power provided by each unit for a load 

requirement of 3000 MW. The robustness curve determines the fitness function value for each run 

based on the results of all techniques recorded over the course of the 30 runs. The robustness curve 

properties for the system with twenty units is displayed in Figure 10. Based on the recorded outcomes 

from each of the top 30 runs that yield the best fitness function, the convergence curve describes the 

quickest approach that meets the goal function. The characteristics of the convergence curve for the 

system with twenty units is shown in Figure 11. Using the convergence and robustness properties as a 

guide, the WO finds the optimal global solution.  

Table 13. Statistics data of all methods in ($/h) for twenty generators. 

Load (MW) Method Minimum SD  Mean Maximum 

3000 WO 464390784.6 80385278.05 601882926.3 781664638.0 

SAO 386134352.9 93352458.10 647520789.4 837732536.6 

ChOA 378479313.7 62470909.71 508890772.8 674400824.9 

MSA 474920850.4 62784168.97 587293620.1 706048241.3 

RIME 492737490 112461311.7 703071978.6 999229765.2 

Table 14. The optimal fuel usage costs ($/h) for twenty generators. 

Method 3000 MW 

WO 464390784.6 

SAO 382573772.5 

ChOA 377610655.8 

MSA 382886269.5 

RIME 453827249.1 

Table 15. The best distribution of power (MW) among twenty generators for a demand of 3000 MW. 

WO SAO ChOA MSA RIME 

395.8114381 151.6528541 189.1359163 27.67575842 289.6249510 

135 184.2648197 151.4504418 36.49556758 189.5337518 

273.1416448 190.7183576 209.1384204 38.00643724 209.1991579 

194.9170343 300 273.7818598 48.00263656 296.5966165 

215.7882232 221.9169631 188.7549064 49.00183238 113.8978953 

121.2980218 156.1339232 160 69.00346450 160 

71.60958816 130 94.57254207 86.99422477 50.97508515 

84.48652671 47.29866951 112.7781839 115.0102537 47.02325440 

68.96129708 80 20 143.6024661 57.67211139 

29.73786810 34.40590622 41.68599962 153.1579086 13.74646693 

225.5746355 211.8911419 163.8029810 174.9828705 246.0582500 

Continued on next page 
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WO SAO ChOA MSA RIME 

203.6821211 179.8235087 136.9346654 180.0031293 233.0110822 

188.0154112 283.2667993 335.6229908 180.9930170 174.9402437 

240.0733159 223.3191179 300 184.0201986 277.3906292 

195.9195348 137.2674686 177.1829979 193.0178273 198.0835046 

104.0455988 159.8454509 160 205.0149350 156.9012038 

72.67502373 119.0941065 64.86963812 212.0163116 78.02459914 

76.59300054 114.2839665 112.3046859 253.0011000 118.9234432 

64.06909787 64.58733512 65.54825073 319.9601154 40.53005757 

38.60061834 10.22996721 42.44420644 330.0399455 47.87158727 

 

Figure 10. Twenty generators’ robustness curves at a 3000 MW load. 

 

Figure 11. Twenty generators’ convergence curves at a 3000 MW load. 

4.4. Results of thirty generators 

In order to test the ELD issue, a case study with thirty generators operating at 3000 MW load is 

donated. A variety of techniques were used including the WO, RIME, SAO, MSA, and ChOA 



10114 

AIMS Mathematics  Volume 9, Issue 4, 10095–10120. 

algorithms. Thirty different runs were used to assess each competing strategy's efficacy. The mean, 

maximum, minimum, and standard deviation values were documented as statistical information for 

each load using these runs, as shown in Table 16. Using this data, the WO determines the optimal 

standard deviation and the best objective function. For ELD, the WO algorithm is therefore the most 

accurate and reliable. Table 17 displays the ideal fuel cost. Table 18, which was developed using the 

best objective function among all approaches, displays the ideal power provided by each unit for a load 

requirement of 5000 MW. The robustness curve determines the fitness function value for each run 

based on the results of all techniques recorded over the course of the 30 runs. The robustness curve 

properties for the system with thirty units is displayed in Figure 12. Based on the recorded outcomes 

from each of the top 30 runs that yield the best fitness function, the convergence curve describes the 

quickest approach that meets the goal function. The characteristics of the convergence curve for the 

system with thirty units is shown in Figure 13. Using the convergence and robustness properties as a 

guide, the WO finds the optimal global solution. 

Table 16. Statistics data of all methods in ($/h) for thirty generators. 

Load (MW) Method Minimum  SD  Mean Maximum 

5000 WO 982540947.5 91938497.93 1156733522 1336706848 

SAO 908558160.8 143278429.4 1211191850 1513082334 

ChOA 801191500.7 99936778.88 1007797884 1207996618 

RIME 1037852896 159765617.6 1253663161 1617847664 

Table 17. The optimal fuel usage costs ($/h) for thirty generators. 

Method 3000 MW 

WO 982529390 

SAO 904975533.8 

ChOA 787860293.7 

RIME 1012965738 

Table 18. The best distribution of power (MW) among twenty generators for a demand of 3000 MW. 

WO SAO ChOA RIME 

361.7630873 168.0622420 205.4777664 399.2227256 

286.4259419 305.2577836 239.8677456 248.9833745 

217.4959595 274.3045256 340 181.6597908 

201.1152074 259.3996384 208.6892241 277.8493217 

179.0307835 242.9886794 118.1445066 183.6734269 

119.9338007 103.2976540 160 118.7190545 

81.03038860 23.58266429 78.83205900 35.43137407 

97.99971207 119.0761287 120 107.3780597 

52.00113619 72.59531050 62.56425338 33.81402317 

34.57432282 47.68354245 55 49.59621356 

306.8486138 187.2472111 175.9067214 393.0652103 

338.7023182 252.4448604 261.7622078 302.1274649 

Continued on next page 
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WO SAO ChOA RIME 

238.4998547 316.2628216 268.3381195 280.9736853 

223.3491903 299.3864879 207.1881123 85.59393119 

180.5191017 218.6818710 243 230.2698858 

126.9556699 154.6733846 94.46223648 137.8008438 

109.8918576 129.9483846 97.66863888 60.35154872 

87.51357368 59.94573212 120 120 

63.94496690 22.39995053 55.02037904 36.08305683 

38.23076929 10 50.45341015 46.60655867 

357.4468090 449.0518667 332.6299565 234.7062162 

296.4047702 139.3053811 162.8862309 337.5808507 

234.5334060 317.9662357 340 274.3350697 

219.2973389 299.9910290 300 238.5976231 

185.8148553 241.8390582 222.6389246 242.1331374 

114.0038275 58.80668289 160 107.6366599 

64.37558862 102.8953648 130 68.95720026 

92.47625889 47.00006457 80.31172714 68.00115191 

53.81758571 21.03713721 80 73.10745947 

36.00330252 54.86794885 29.29109226 25.74259255 

 

Figure 12. Thirty generators’ robustness curves at a 5000 MW load. 

4.5. Discussion 

The main factor contributing to ELD problems is the power mismatch value, the precise 

difference between the units of power generated and the entire demand plus transmission losses. The 

power mismatch value is nearly zero, hence the high-performance methods is employed to get it. 

Table 19 explains the importance of this component for ELD. In addition to the five methods used in 

the run, the proposed WO algorithm is contrasted with other methods found in the literature, such as 

the monarch butterfly optimization (MBO), the grey wolf optimization (GWO), Earth Worm Algorithm 

(EWA), Elephant herding optimization (EHO), and Sine cosine algorithm (SCA) [9,43,44]. 
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Figure 13. Thirty generators’ convergence curves at a 5000 MW load. 

Table 19. the power mismatch for all unit generators based on all algorithms. 

Case Technique 700 MW 1000 MW 

6 generators WO 4.1922E−13 4.51195E−13 

SAO 5.03597E−12 4.85414E−10 

ChOA 0.000304799 0.000232386 

MSA 7.850121146 12.80174784 

RIME 0.0000145386 0.000268421 

MBO [44] 8.624894662 10.11850299 

GWO [44] 0.000067 0.0000136 

SCA [43] 0.00076719 0.000182 

EWA [43] 5.71 20.1 

EHO [9] 2.239431602 9.904979361 

SMA [9] 5.61E−9 4.18E−9 

20 generators Technique 3000 MW 

WO 9.09495E−13 

SAO 0.000356058 

ChOA 0.00868658 

MSA 4.47608E−9 

RIME 0.003891024 

30 generators Technique 4000 MW 

WO 1.15575E−6 

SAO 0.000358263 

ChOA 0.133312071 

MSA 0.002488716 

RIME 1.15575E−6 

5. Conclusions 

The walrus optimizer (WO), a novel metaheuristic method, mimics how walruses migrate, roost, 
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feed, spawn, gather, and run away in response to crucial cues (safety and danger signals). Moreover, 

the effectiveness of four distinct algorithms was compared with that of the WO. Economic load dispatch 

(ELD) is a crucial problem that this work employs the WO to solve. ELD specifically helps to lower the 

cost of petrol. The fuel cost is the main factor to consider when optimizing the ELD problem. The WO 

aims to minimize this cost while maximizing the economic value of the power system. The primary 

variable of ELD issue reflects the unit-specific allocation vector that determines the best outcome for 

each system. The WO’s performance was compared to other algorithms, including the rime-ice algorithm 

(RIME), moth search algorithm (MSA), snow ablation optimization (SAO), and chimp optimization 

algorithm (ChOA). Using the WO approach, the ideal power mismatch values of 4.1922E−13 and 

4.5119E−13 are found for six generator units at demand loads of 700 MW and 1000 MW, 

respectively. Using the WO approach, the ideal power mismatch values of 4.5474E−13 and 

1.05729E−11 are found for ten generator units at demand loads of 1000 MW and 2000 MW, respectively. 

Using the WO approach, the ideal power mismatch values of 9.09495E−13 is found for twenty 

generator units at demand load of 4000 MW. Using the WO approach, the ideal power mismatch values 

of 1.15575E−6 is found for thirty generator units at demand load of 5000 MW. Ultimately, results 

verified that the WO was effective in lowering the fuel expenses for every ELD cases when compared to 

the alternatives. Additional major, practical optimization issues relating to solar energy, ELD of renewable 

energy sources, and power systems may be resolved in the future using the WO technique. 
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