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Abstract: The paper focused on the distributed tracking problem for a specific class of
multi-agent systems, characterized by bandwidth constraint and dead zone actuators, where the
bandwidth limitations exist in neighbor agents and the dead zone nonlinearity refers to a generalized
mathematical model. Initially, a series of event-triggered mechanisms with relative thresholds
were established for neighbor agents, ensuring that control signals were transmitted only when
necessary. Next, the generalized dead zone models were decomposed into two parts: indefinite
terms with control coefficients and disturbance-like terms, resulting in unpredictability and damaging
effects. Subsequently, based on the backstepping procedure, final consensus controllers with multiple
polynomial compensators were constructed. These controllers offset the coupling coefficients caused
by event-triggered mechanisms and dead zone non-smooth. Stability analysis was given to substantiate
the theoretical correctness of this method and support the claim of Zeno behavior avoidance. Finally,
simulation studies were performed for the feasibility of our proposed methodology.
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1. Introduction

The event-triggered approach has attracted considerable attention because it provides an alternative
solution for updates or operations based on specific events or conditions, rather than relying on fixed
time intervals. Originally, the event-triggered strategy was regarded as an optimal control problem [1],
and there were studies investigating the input constraints problem of unknown nonlinear systems [2]
or switched nonlinear systems [3]. These investigated problems involve the implementation of a
nominal system and a discounted cost function, but ignore how to guarantee system performance
simultaneously. In recent years, event triggering has emerged as a pivotal concept in the realm of
control systems. The fundamental idea behind control system based on event triggering was to update
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control input only when specific triggering conditions were met, thereby optimizing the use of system
resources [4]. The result performed how to keep balance between communication wastage and system
performance, and this index has been noticed by more researchers [5]. For example, an adaptive
neural network control scheme based on event-triggering [6] was developed for nonlinear systems
characterized by sensor faults, input saturation, unknown control directions, and external disturbances.
The study [7] proposed a method to set up periodically updated event-triggered conditions, leading
the controller and parameter estimator to trigger events simultaneously. This research assures the
asymptotic convergence of the calming error, effectively avoiding Zeno behavior. Separately, another
study [8] introduced an adaptive event-triggered tracking approach based on a backstepping algorithm
for a class of non-strict feedback nonlinear systems. This method combined intelligent technology
for modeling unknown nonlinearities, and the event-triggering mechanism conserved communication
resources through the transmission of discrete signals. Particularly, the results are further expanded to
deal with multi-agent systems carrying with triggering control input [9]. For the multi-agent system
with directed graphs, the research [10] introduced a new adaptive event-based protocol to tackle the
consensus problem in linear quality. Furthermore, a novel dynamic control approach based on event
triggering was introduced to address the consensus problem [11]. Further research [12] designed a
new event-triggering mechanism suitable for the leader and an asynchronous edge event-triggering
mechanism applicable to all edges. Combining with backstepping techniques, another article [13]
proposed an adaptive scheme for fuzzy-based event-triggered containment control. The mentioned
scheme is designed to update conditionally at specific sampling times for random nonlinear multi-
agent systems with unidentified Bouc-Wen hysteresis inputs. All the approaches aim at conserving
limited resources and reducing communication burdens. However, it is worth noting that nearly all
the results have not accounted for bandwidth constraints associated with signal transmission between
neighbor agents, let alone consider non-smooth actuator constraints additionally.

In the study of multi-agent systems, nonlinearities emerge as pivotal elements that profoundly
influence system performance. Particularly, the occurrence of actuator dead zones are a pretty common
phenomenon that cannot be overlooked. A dead zone is delineated by a specific region of input signal
values where the actuator’s output response is either zero or approaches zero. This phenomenon
can lead to instability in the system, reducing control precision and production efficiency [14–17].
Therefore, research on actuator dead zones is essential for ensuring the stable operation and high
performance of multi-agent systems. Some compensated methods have been used in the fields of
industrial application. For example, the result in [18] proposed a new adaptive Fault Tolerant Control
(FTC) method, in which the adaptive law estimated the effective gain and dead zone breakpoint
of the actuator, effectively solving the dead zone phenomena in the robotic manipulator. Besides,
the authors designed a compensator to mitigate the detrimental effects of dead zones on the control
signal, successfully transforming the dead zone function into a linear form [19]. Additionally, another
approach [20] proposed an innovative adaptive active FTC scheme specifically for wheeled robot
systems. This scheme effectively compensated for actuator faults and dead zones, significantly
enhancing the system’s resistance to stability threats caused by dead zone phenomena. A novel
distributed control strategy was advanced to effectively resolve complex game problems in the presence
of actuator dead zones [21]. For intelligent control purpose, a fuzzy logic-based compensation method
in [22] was set out to overcome the nonlinear challenges of actuator dead zones. This strategy avoids
reliance on traditional dead zone inverse functions, instead using fuzzy rules to introduce offsets into
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the control input. The fuzzy-based scheme was further applied to handle the problem posed by input
dead zones in nonlinear systems [23], or addressed the nonlinear estimation and compensation issues
caused by quantization and dead zones [24]. Another intelligent approach, named the Radial Basis
Function Neural Networks, was utilized in [25], where an adaptive consistency control strategy was
introduced, accomplishing comprehensive compensation for both input dead zones and actuator faults.
Actually, the challenges posed by dead zone nonlinearites and network communication resources have
been investigated in [26]. This study proposed an efficient designated tracking performance control
method for Steer-by-Wire systems. This method not only compensates for the impacts of actuator
faults and dead zones, but also achieves resource savings in network communication between actuators.
However, despite the insights gained from the review of the aforementioned references, it is observed
that there is a notable absence of research that concurrently considers dead zone phenomena of non-
smooth actuators and neighbor communication constraints for multi-agent systems.

To fill this gap, this paper concentrates on the distributed control problem for multi-agent systems,
taking into account the constraints on neighbor communication bandwidth and generalized dead zone
inputs. The main contributions of this study are outlined as follows.

1. The existing literature has scarcely addressed the constraints imposed on neighbor
communication bandwidth in multi-agent systems. In this context, we propose a more nuanced
approach to construct neighbor event-triggered mechanisms, which feature a more adaptable structure
for relative thresholds.

2. A novel compensatory strategy is presented to address the coupling model posed by generalized
dead zone inputs and event-triggered coefficients. Moreover, the potential Zeno behavior can be
avoided.

3. The majority of studies focus on event-triggered strategies to make the sacrifice of system
performance achieve higher communication rates, but in this paper, stable performance in terms
of consensus tracking errors are guaranteed to asymptotically converge to zero, while transient
performance is also established.

The outline of this paper is as follows. Section 2 introduces the prerequisite knowledge and systems
modeling. Controller designed procedure and stability analysis are given in section 3. Simulation
study is shown to verify the effectiveness of the proposed method in section 4. Finally, section 5 gives
a conclusion of this paper.

2. System modeling and background

2.1. Graph theory

By combining the principles of algebraic graph theory, we can abstract the communication networks
of multi-agent systems. In this abstraction, the agents are represented as nodes, and the communication
links are represented as edges. Depending on the nature of communication, the graph can be classified
into different types. If the communication between any two nodes is mutual, it is referred to as a
bidirectional graph. On the other hand, if the communication is unidirectional, the graph is called a
directed graph, or simply an undirected graph. For a directed communication graph with M nodes, the
set of all nodes is denoted as: V = v1, v2, ..., vM. Each edge connecting two nodes vi and v j can be
represented as ei, j = (vi, v j). The collection of all edges is denoted as E. If node vi passes information
to node v j, we consider v j as a neighbor of vi. Additionally, there may be information incoming from
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Figure 1. Dead zone model.

other nodes, forming the neighborhood set of vi, which is also known as the in-degree of vi. To account
for the amplification or attenuation of information transmission, a weight coefficient ai j is assigned to
each edge. The weight coefficients of all edges form an adjacency matrix, where if (vi, v j) ∈ E, then
ai j > 0; otherwise, ai j = 0 equals 0. A directed path from node i to node j is a sequence of nodes
starting from i and ending at j such that each consecutive pair of nodes in the sequence corresponds to
a directed edge in the graph.

2.2. Multi-agents model

In this study, we introduce a class of nonlinear multi-agent systems that are preceded by dead zone
inputs.

ẋi, j = xi, j+1 + φ
T
i, j(Xi, j)θi

ẋi,n = φi,0(Xi,n) + φT
n (Xi,n)θi + Di(ui)

yi = xi,1

(2.1)

In this representation, the term i = 1, 2, ...,m denotes the ith subagent, and j = 1, 2, ..., n specifies
the sequential order of each agent. The vector Xi, j = [xi,1, ..., xi, j]T , which belongs to R j, is defined
as the variable vector, while the output of the ith agent is stated as yi. The nonlinear functions φi,0

and φi, j are known to be elements of R and Rn, respectively, and are characterized by their smoothness
and continuity. Conversely, the parameter vector θi, also an element of Rn, remains unidentified and
inaccessible. The input of the normal system corresponding to the ith subagent is signified by ui,
which is constrained by the dead zone nonlinearity expressed as Di(ui). As illustrated in Figure 1, it is
important to note that the model under examination includes mth dead zone models, and the dead zone
constraints are encapsulated within a generalized structure detailed as follows:

Di(ui) =


ρi,r(ti,r)(ui − bi,r) ui ≥ bi,r

0 bi,l < ui < bi,r

ρi,l(ti,l)(ui − bi,l) ui ≤ bi,l

(2.2)
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Here, ρi1 and ρi2 represent bounded functions defined by the derivatives of the outputs of the ith
dead zone model at specific instants, where ρi1 =

∂di,r(ui)
∂ui

∣∣∣
ui(t)=ui(ti,r)

and ρi2 =
∂di,l(ui)
∂ui

∣∣∣
ui(t)=ui(ti,l)

. For the
purpose of designing the controller, it is requisite to transform the dead zone model into a decomposed
form:

Di(ui) = ρi(ui)ui + ϵi(ui) (2.3)

where control coefficients are defined by ρi(ui) and bounded disturbance-like terms by ϵi(ui) as
indicated below:

ρi(ui) =


ρi,r(ti,r) ui ≥ bi,r

0 bi,l < ui < bi,r

ρi,l(ti,l) ui ≤ bi,l

(2.4)

ϵi(ui) =


−ρi,r(ti,r)bi,r ui ≥ bi,r

0 bi,l < ui < bi,r

−ρi,l(ti,l)bi,l ui ≤ bi,l

(2.5)

for these two terms, which satisfy that

0 < ρ
i
≤ ρi(ui) ≤ ρ̄i < +∞, ρi

= min{ρi,r, ρi,l}, ρ̄i = max{ρi,r, ρi,l} (2.6)

|ϵi(ui)| ≤ max{ρi,rbi,r,−ρi,lbi,l} = ϵ̄i (2.7)

in which the limits are yet-undetermined positive constants. The control objectives of the present study
are delineated as follows:
(a) The objective is to ensure that the outputs from all agents, denoted by yi, can synchronously track
the output signal of the leader, yr.
(b) Another goal is to guarantee that all closed-loop signals remain cooperatively semi-globally
uniformly ultimately bounded (CSUUB). In order to achieve these objectives, we establish the
following assumptions:

Assumption 1. The information transmission graph G is fixed and connected. The output signal of
the leader yr is sufficiently smooth, bounded, and continuous, while its first nth derivative is available
for its neighbor agents.

Assumption 2. The functions di,r(ui), di,l(ui) are smooth, and there exist unknown positive
constants bi,r, bi,l, such that 0 < ρi,r(ti,r) < +∞, ∀ui ∈ [bi,r,+∞) and 0 < ρi,l(ti,l) < +∞, ∀ui ∈ (−∞, bi,l].

2.3. Neighbor event-triggered mechanism

In the domain of event-triggered control, two predominant methodologies are employed for
designing triggering mechanisms: the fixed threshold strategy and the relative threshold strategy.

The fixed threshold strategy is predicated on the establishment of a constant threshold. The criterion
for event initiation is the attainment or breach of this threshold by the state change of the system under
control. Typically, this threshold is predetermined and remains invariant to fluctuations in the state of
the system. Nonetheless, this strategy may be susceptible to detection lapses and false alarms when
processing voluminous datasets. Such pitfalls occur particularly when there are substantial shifts in
data patterns, rendering the preset thresholds unsuitable and leading to erroneous triggerings.
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Figure 2. System model.

To mitigate these dilemmas, the relative threshold strategy is conceptualized. Distinct from its fixed
counterpart, the relative threshold strategy adapts the triggering conditions dynamically in response
to variations in the system state. Its core tenet is that if the system’s state diverges from a set
threshold by a specific margin for a given duration, an event trigger is deemed to have occurred,
necessitating subsequent action. The usage of relative thresholds fortifies the system’s stability and
curtails superfluous energy expenditure and potential system volatility due to excessive event triggers.

Within the scope of this article, the relative threshold strategy is articulated through its application
to inter-agent signal relay, particularly when the state variation surpasses a designated boundary. The
neighbor control signal for the ith agent from its jth neighbor at time t is defined as ŭ j(t), which complies
with the following equation:

ŭ j(t) = u j(t)
tk+1 = inf{t ∈ R||et(t)| ≥ δ|u j(t)| + m j}

(2.8)

where 0 < δ < 1 and m j > 0 are predetermined constants. The term et(t) represents the error threshold
between u j(t) and ŭ j(t). When et(t) surpasses the relative threshold as defined by δ|u j(t)|+m, the control
signal ŭ j(t) is propagated to the neighboring agent.This nuanced approach is instrumental in achieving
a balance between sensitivity and stability in event-triggered control systems.
Remark 1. Contrary to the existing literature by constructing event-triggered mechanisms for single
agents, this paper works on solving the challenge of neighbor communication bandwidth constraints,
and develops a more flexible relative threshold structure, where the system model is shown by Figure 2.

3. Distributed adaptive control design

In this section, we endeavor to amalgamate an event-triggering strategy with an adaptive control
framework, refined by backstepping techniques, to fulfill our control objectives. The design process of
the controller necessitates attention not only to the imperative of sustaining system stability but also to
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the judicious use of bandwidth during communication between adjacent agents.

3.1. Controllers and adaptive laws design

The controller design unfolds through a recursive procedure, comprehensively described from step
1 through step n. As a preliminary to the design process, we introduce the definition of consensus
errors. These errors will serve as pivotal variables in the development of our control laws and will
inform the calculation of feedback signals necessary to drive the system toward the desired consensus
state.

ei = bi(yi − yr) +
m∑

j=1

ai, j(yi − y j) (3.1)

where the connection coefficients bi, di and ai, j are all known, and j ∈ Ni represents the neighbor agent
of the ith agent. The variables are further given as

zi,1 = ei, i = 1, 2, ...,m
zi,l = xi,l − αi,l−1, l = 2, ..., n

(3.2)

Step 1: Following (2.1), żi,1 is shown as

żi,1 =ėi

=(di + bi)(zi,2 + φ
T
i,1θi + αi,1) −

m∑
j=1

ai, j ẋ j,1 − biẏr

=(di + bi)
(
zi,2 + φ

T
i,1θi + αi,1

)
− biẏr −

∑
j∈Ni

ai, jx j,2 −
∑
j∈Ni

ai, jφ
T
j,1θ j

(3.3)

where the first virtual controller αi,1 is set by

αi,1 =
1

di + bi
(−ci,1zi,1 + biẏr +

∑
j∈Ni

ai, jx j,2 +
∑
j∈Ni

ai, jω
T
j,1θ̂ j) − ωT

i,1θ̂i (3.4)

where ωi,1 = φ
T
i,1(Xi,1) and ω j,1 = φ

T
j,1(X j,1). The including coefficient ci,1 is a positive user-defined

parameter, while θ̂i and θ̂ j are the estimators of θi and θ j, respectively.
Set a Lyapunov candidate as

Vi,1 =
1
2

z2
i,1 (3.5)

whose derivative is computed as

V̇i,1 =zi,1

(
(di + bi)

(
zi,2 + φ

T
i,1θi + αi,1

)
− biẏr −

∑
j∈Ni

ai, jx j,2 −
∑
j∈Ni

ai, jφ
T
j,1θ j

)
=(di + bi)zi,1zi,2 − ci,1z2

i,1 + (di + bi)τi,1θ̃i −
∑
j∈Ni

ai, jτ
T
j,1θ̃ j

(3.6)

where the tuning functions τi,1 and τi j,1 are expressed by

τi,1 = ωi,1zi,1

τ j,1 = ω j,1zi,1
(3.7)
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Step 2: From the definition of (2.1) and (3.3), ż2 can be expressed as

żi,2 = zi,3 + αi,2 + φ
T
i,2θi − α̇i,1 (3.8)

where

α̇i,1 =
∂αi,1

∂xi,1
(xi,2 + φ

T
i,2θi) +

2∑
j=1

∂αi,1

∂y( j−1)
r

y( j)
r +
∂αi,1

∂θ̂i

˙̂θi +
∑
j∈Ni

2∑
l=1

∂αi,1

∂x j,l
ẋ j,l +

∑
j∈Ni

∂αi,1

∂θ̂ j

˙̂θ j (3.9)

Set the virtual controller αi,2 by

αi,2 = − (di + bi)zi,1 − ci,2zi,2 − ωi,2θ̂i +
∂αi,1

∂xi,1
xi,2 +

2∑
j=1

∂αi,1

∂y( j−1)
r

y( j)
r

+
∑
j∈Ni

2∑
l=1

∂αi,1

∂x j,l
x j,l+1 +

∑
j∈Ni

ω j,2θ̂ j + Γ1
∂αi,1

∂θ̂i
τi,2 − Γ2

∑
j∈Ni

∂α j,1

∂θ̂ j
τ j,2

(3.10)

where Γ1 and Γ2 are user-defined symmetric positive matrices, and the tuning functions are given as

τi,2 = (di + bi)τi,1 + ωi,2zi,2

τ j,2 = ai, jτ j,1 + ω j,1zi,1
(3.11)

accompanied by ωi,2 = φ
T
i,2 −

∂αi,1

∂xi,1
φT

i,1 and ω j,2 =
2∑

l=1

∂αi,1

∂x j,l
φT

j,l.

Choose the Lyapunov candidate Vi,2 as

Vi,2 =
1
2

2∑
l=1

z2
i,l (3.12)

With the previous definitions, one has

V̇i,2 =(di + bi)zi,1zi,2 − ci,1z2
i,1 + (di + bi)τi,1θ̃i −

∑
j∈Ni

ai, jτ
T
j,1θ̃ j + zi,2żi,2

= −

2∑
l=1

ci,lz2
i,l + zi,2zi,3 +

[
(di + bi)τi,1 + ωi,2zi,2

]
θ̃i + zi,2

∂αi,1

∂θ̂i
(Γ1τi,2 −

˙̂θi)

−
∑
j∈Ni

[
ai, jτi,1 +

2∑
l=1

∂αi,1

∂xi,l
φT

j,lzi,1
]
θ̃ j − zi,2

∑
j∈Ni

∂αi,1

∂θ̂ j
(Γ2τ j,2 +

˙̂θ j)

= −

2∑
l=1

ci,lz2
i,l + zi,2zi,3 + τi,2θ̃i + zi,2

∂αi,1

∂θ̂i
(Γ1τi,2 −

˙̂θi)

−
∑
j∈Ni

τ j,2θ̃ j − zi,2

∑
j∈Ni

∂αi,1

∂θ̂ j
(Γ2τ j,2 +

˙̂θ j)

(3.13)

Step l (l=3,...,n-1): The following steps can be summarized as

żi,l = zi,l+1 + αi,l + φi,l(Xi,l)θi − α̇i,l−1 (3.14)
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where

α̇i,l =

l−1∑
k=1

∂αi,l−1

∂xi,k
(xi,k+1 + φ

T
i,kθi) +

l∑
k=1

∂αi,l−1

∂y(k−1)
r

y(k)
r +
∂αi,l−1

∂θ̂i

˙̂θi +
∑
j∈Ni

∂αi,l−1

∂θ̂ j

˙̂θ j

+
∑
j∈Ni

l∑
k=1

∂αi,l−1

∂x j,l
ẋ j,l

(3.15)

The lth virtual controller is designed as

αi,l = − ci,lzi,l − zi,l − ωi,lθ̂i +

l−1∑
k

∂αi,l−1

∂xi,k
xi,k+1 +

l∑
k=1

∂αi,l−1

∂y(k−1)
r

y(k)
r

+
∑
j∈Ni

l∑
k=1

∂αi,l−1

∂x j,k
x j,k+1 +

∑
j∈Ni

ω j,lθ̂ j + Γ1
∂αi,l−1

∂θ̂i
τi,l − Γ2

∑
j∈Ni

∂α j,l−1

∂θ̂ j
τ j,l

+

l−1∑
k=2

zi,k
∂αi,k−1

∂θ̂i
Γ1ωi,l +

∑
j∈Ni

l−1∑
k=2

zi,k
∂α j,k−1

∂θ̂ j
Γ2ω j,l

(3.16)

where

τi,l = τi,l−1 + ωi,lzi,l

τ j,l = τ j,l−1 + ω j,lzi,l
(3.17)

with ωi,l = φ
T
i,l −

l−1∑
k=1

∂αi,l−1

∂xi,k
φT

i,k and ω j,l =
l∑

k=1

∂αi,l−1

∂x j,k
φT

j,k.

The Lyapunov candidate is set as

Vi,l =
1
2

l∑
k=1

z2
i,k (3.18)

then its derivative is expressed by

V̇i,l =zi,lżi,l + V̇i,l−1

=zi,l(zi,l+1 + αi,l + φi,lθi − α̇i,l−1) −
l−1∑
k=1

ci,kz2
i,k + zi,l−1zi,l + τi,l−1θ̃i −

∑
j∈Ni

τ j,l−1θ̃ j

+

l−1∑
k=2

zi,k
∂αi,k−1

∂θ̂i
(Γ1τi,l−1 −

˙̂θi) −
∑
j∈Ni

l−1∑
k=2

zi,k
∂α j,k−1

∂θ̂ j
(Γ2τ j,l−1 +

˙̂θ j)

= −

l∑
k=1

ci,kz2
i,k + zi,lzi,l+1 + τi,lθ̃i +

l∑
k=2

zi,k
∂αi,k−1

∂θ̂i
(Γ1τi,l −

˙̂θi)

−
∑
j∈Ni

τ j,lθ̃ j −
∑
j∈Ni

l∑
k=2

zi,k
∂α j,k−1

∂θ̂ j
(Γ2τ j,l +

˙̂θ j)

(3.19)
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Step n: In this final step, the event-triggered mechanisms, consensus controllers and adaptive laws will
be designed, respectively.

żi,n =φi,0 + φi,nθi + Di(ui) − α̇i,n−1

=φi,0 + φi,nθi + Di(ui) −
n−1∑
k=1

∂αi,n−1

∂xi,k
(xi,k+1 + φ

T
i,kθi) −

n∑
k=1

∂αi,n−1

∂y(k−1)
r

y(k)
r −
∂αi,n−1

∂θ̂i

˙̂θi

−
∑
j∈Ni

∂αi,n−1

∂θ̂ j

˙̂θ j −
∑
j∈Ni

n−1∑
k=1

∂αi,n−1

∂x j,k
ẋ j,k −

∑
j∈Ni

∂αi,n−1

∂x j,n
(φ j,0 + φ j,nθi + ŭ j)

(3.20)

The neighbor control signals ŭ j are transmitted if the designed events are triggered. As discussed in
the result [27], ŭ j(t) is able to be rewritten as

ŭ j,k(t) =
u j,k(t)

1 + λ1(t)δ
−
λ2(t)m j

1 + λ1(t)δ
(3.21)

where λ1(t), λ2(t) are continuous parameters, satisfying λ∗k(t) = 0, λ∗k+1(t) = ±1 and |λ∗(t)| ≤ 1, and
tk(k ∈ Z+) is the controller update time. The neighbor control signals contain the control coefficient
terms and the unknown conventional constant terms. The virtual controller αi,n is designed as

αi,n = − ci,nzi,n − zi,n − ωi,nθ̂i +

n−1∑
k

∂αi,n−1

∂xi,k
xi,k+1 +

n∑
k=1

∂αi,n−1

∂y(k−1)
r

y(k)
r

+
∑
j∈Ni

n−1∑
k=1

∂αi,n−1

∂x j,k
x j,k+1 +

∑
j∈Ni

ω j,nθ̂ j +
∂αi,n−1

∂θ̂i
Γ1τi,n −

∑
j∈Ni

∂α j,n−1

∂θ̂ j
Γ2τ j,n

+

n−1∑
k=2

zi,k
∂αi,k−1

∂θ̂i
Γ1ωi,n +

∑
j∈Ni

n−1∑
k=2

zi,k
∂α j,k−1

∂θ̂ j
Γ2ω j,n

(3.22)

where

τi,n = τi,n−1 + ωi,nzi,n

τ j,n = τ j,n−1 + ω j,nzi,n
(3.23)

with ωi,n = φ
T
i,n −

n−1∑
k=1

∂αi,n−1

∂xi,k
φT

i,k and ω j,n =
n∑

k=1

∂αi,n−1

∂x j,k
φT

j,k.

The final controller ui is designed as
ui = ϱ̂

T
i νi (3.24)

where ϱ̂i = [ϱ̂i1, ϱ̂i2, ϱ̂i3, ϱ̂i4]T is the estimate of ϱi = [ 1
ρ

i
, ϵ̄i
ρ

i
, 1
ρ

i
(1−δ) ,

1
ρ

i
(1−δ) ]

T , accompanied by the update
laws

˙̂ϱi = −Γϱνizi,n (3.25)

where Γϱ is a user defined symmetric positive matrix. It is noted that ˙̂ϱi(t) ≥ 0 can be held. The term
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νi = [νi1, νi2, νi3, νi4]T is defined as

νi1 = −
zi,nq2

i1√
z2

i,nq2
i1 + ε1(t)2

, qi1 = φi,0 −
∑
j∈Ni

∂αi,n−1

∂x j,k
φ j,0 − αi,n

νi2 = −
zi,n√

z2
i,n + ε2(t)2

νi3 = −
zi,nq2

i3√
z2

i,nq2
i3 + ε3(t)2

, qi3 = −
∑
j∈Ni

∂αi,n−1

∂x j,n
u j

νi4 = −
zi,nq2

i4√
z2

i,nq2
i4 + ε4(t)2

, qi4 =
∑
j∈Ni

∂αi,n−1

∂x j,n
m j

(3.26)

It is worthy to point out that zi,nϱ̂
T
i νi ≤ 0 can be always held if the initial values are chosen by

ϱ̂i(0) > 0 for i = 1, 2, 3, 4. The update laws for θ̂i and θ̂ j are given as

˙̂θi = Γ1τi,n (3.27)

˙̂θ j = −Γ2τ j,n, j ∈ Ni (3.28)

3.2. Stability analysis

Theorem 1. Consider the nonlinear MASs (2.1) with generated dead zone inputs (2.3), consisting
of neighbor event-triggered mechanisms (2.8), consensus controllers (3.24) and adaptive update laws
(3.27)–(3.28), under Assumptions 1–2. With any initial condition V(0) < C, the considered systems
satisfy these characteristics:

a. All the closed-loop signals of the MASs are CSUUB.

b. The consensus errors asymptotically converge to zero.

c. Zeno behavior is able to be avoided.

Proof. Set the final Lyapunov function as

V =
m∑

i=1

(Vi,n +
ρ

i

2
ϱ̃T

i Γ
−1
ϱ ϱ̃i +

1
2
θ̃Ti Γ

−1
1 θ̃i +

1
2

∑
j∈Ni

θ̃Tj Γ
−1
2 θ̃ j) (3.29)
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Via derivation operation, V̇i,n can be expressed as

V̇i,n =zi,nżi,n + V̇i,n−1

=zi,n
(
φi,0 + φi,nθi + Di(ui) − α̇i,n−1

)
−

n−1∑
k=1

ci,kz2
i,k + zi,n−1zi,n + τi,n−1θ̃i −

∑
j∈Ni

τ j,n−1θ̃ j

+

n−1∑
k=2

zi,k
∂αi,k−1

∂θ̂i
(Γ1τi,n−1 −

˙̂θi) −
∑
j∈Ni

n−1∑
k=2

zi,k
∂α j,k−1

∂θ̂ j
(Γ2τ j,n−1 +

˙̂θ j)

=zi,n
[
qi1 + ρi(ui)ϱ̂T

i νi + ϵi(ui) −
∑
j∈Ni

∂αi,n−1

∂x j,n
ŭ j
]
−

n∑
k=1

ci,kz2
i,k + τi,nθ̃i

+

n∑
k=2

zi,k
∂αi,k−1

∂θ̂i
(Γ1τi,n −

˙̂θi) −
∑
j∈Ni

τ j,nθ̃ j −
∑
j∈Ni

n∑
k=2

zi,k
∂α j,k−1

∂θ̂ j
(Γ2τ j,n +

˙̂θ j)

(3.30)

Applying (3.21) and (3.24) to the above equation, the including terms can be expressed as

zi,n
[
qi1 + ρi(ui)ϱ̂T

i νi + ϵi(ui) −
∑
j∈Ni

∂αi,n−1

∂x j,n
ŭ j
]

=zi,n
[
qi1 + ρiϱ̂

T
i νi + ϵi(ui) −

∑
j∈Ni

∂αi,n−1

∂x j,n
(

u j(t)
1 + λ1(t)δ

−
λ2(t)m j

1 + λ1(t)δ
)
]

≤ − zi,nρi
ϱ̃T

i νi + zi,nρi
ϱT

i νi + |zi,nqi1| + ϵ̄i|zi,n| +
1

1 − δ
|zi,nqi3| +

1
1 − δ

|zi,nqi4|

= − zi,nρi
ϱ̃T

i νi + |zi,nqi1| −
z2

i,nq2
i1√

z2
i,nq2

i1 + ε
2
1

+ ϵ̄i(|zi,n| −
z2

i,n√
z2

i,n + ε
2
2

)

+
1

1 − δ
(|zi,nqi3| −

z2
i,nq2

i3√
z2

i,nq2
i3 + ε

2
3

) +
1

1 − δ
(|zi,nqi4| −

z2
i,nq2

i4√
z2

i,nq2
i4 + ε

2
4

)

(3.31)

Remark 2. As shown in Eq (3.31), the coupling model, which emerges from neighbor event-triggered
mechanisms combined with decomposition dead zone models, can be classified into three components:
the control coefficients term, the bounded disturbance-like term and the neighbor control signal term.
To effectively handle this coupling model, the controller design necessitates the incorporation of
multiple polynomial compensators, i.e., ui = ϱ̂i1νi1 + ϱ̂i2νi2 + ϱ̂i3νi3 + ϱ̂i4νi4.

With the property of 0 ≤ |z| − z2
√

z2+ε2
≤ ε, V̇i,n is rewritten by

V̇i,n ≤ − zi,nρi
ϱ̃T

i νi + ε1 + ϵ̄iε2 +
ε3

1 − δ
+
ε4

1 − δ
−

n∑
k=1

ci,kz2
i,k + θ̃iτi,n

+

n∑
k=2

zi,k
∂αi,k−1

∂θ̂i
(Γ1τi,n −

˙̂θi) −
∑
j∈Ni

θ̃ jτ j,n −
∑
j∈Ni

n∑
k=2

zi,k
∂α j,k−1

∂θ̂ j
(Γ2τ j,n +

˙̂θ j)
(3.32)
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With the aid of update laws in (3.27)–(3.28), the derivative of final Lyapunov function V is expressed
by

V̇ ≤
m∑

i=1

[
−

n∑
k=1

ci,kz2
i,k − Γ

−1
ϱ ρi
ϱ̃T

i (Γϱνizi,n + ˙̂ϱi) + θ̃iΓ−1
1 (Γ1τi,n −

˙̂θi))

− Γ−1
2

∑
j∈Ni

θ̃ j(Γ2τ j,n +
˙̂θ j)
]
+ ∆

= −

m∑
i=1

n∑
k=1

ci,kz2
i,k + ∆

(3.33)

where ∆ = m(ε1+ ϵ̄iε2+
ε3

1−δ +
ε4

1−δ ). Via integration operation, the above inequation can be computed as

V(t) ≤ V(0) + ∆ −
m∑

i=1

n∑
k=1

ci,k

∫ T

0
z2

i,kdt

≤ V(0) + ∆

(3.34)

This implies that V(0) and V(t) are bounded, accompanied by zi,k, θ̃i, θ̃ j, ϱ̃i ∈ L∞. Based on the
predefinition, yr, θi, θ j, ϱi are ensured bounded, then it is easy to obtain that xi,1, x j,1, θ̂i, θ̂ j, ϱ̂i ∈ L∞. Since
the continuous function φi, j and the virtual controller αi,1 are bounded defined, xi,2 is also bounded.
Subsequently, all the variables xi j can be proved bounded and the neighbor control signals ŭ j can be
ensured bounded.

Based on the Barbalat’s Lemma [28], the consensus tracking errors can be guaranteed to
asymptotically converge to zero with the conditions of zi,1(t) ∈ £2 and żi,1(t) ∈ £∞, i.e., limt−→∞ zi,1(t) =
0. The bound for the L2-norm of the tracking error can be expressed as

∥zi,1(t)∥2[0,T ] =

√∫ T

0
z2

i,1(t)dt

≤
1√
2ci,1

(
ρ

i
ϱ̃T

i (0)Γ−1
ϱ ϱ̃i(0) + θ̃Ti (0)Γ−1

1 θ̃i(0) +
∑
j∈Ni

θ̃Tj (0)Γ−1
2 θ̃ j(0)

+ 2∆
) 1

2

(3.35)

The Zeno phenomenon, will lead to physical unrealization, i.e., the preset events may infinitely be
triggered in finite time. To prove that the established event-triggered mechanisms are able to avoid this
issue, a lower bound of the inter-execution time t∗ > 0 satisfying the condition of {th+1 − th} is required.
Actually, et,k(t) = u j,k(t) − ŭ j,k(t),∀t ∈ [th, th+1) is bounded defined, so

d
dt
|et(t)| = sign(et)ėt ≤ |u̇ j,1| (3.36)

The function u̇i,1 contains the variable of αi,1, therefore u̇i,1 ∈ L2, i.e., |u̇i,1| ≤ ζ, where ζ is a positive
constant. Give et(th) = 0, which yields that lim

t→th+1
et(t) = |ŭ j,k(t)| + b. The following inequation is finally

given as
d
dt
|et(t)| = lim

tk→th+1

et(th+1) − et(th)
th+1 − th

≤ ζ (3.37)
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This means that the lower bound of the inter-execution time is successfully found, i.e., t∗ ≥ (|ŭ j(t)|+
b)/ζ. That is to say, all the events can avoid triggering infinite times within a finite time interval.
Remark 3. Most studies on event-triggered strategies sacrifice system performance to increase
communication rates. However, based on Theorem 1, it is observed that our method uniquely maintains
high communication rates while ensuring stable system performance, accompanied with consensus
tracking errors converging to zero asymptotically. Additionally, with the guidance of the established
transient performance inequation (3.35), a controlled system can quickly and efficiently adapt to
changes.

4. Simulation study

Figure 3. Four continuous torsional pendulum systems.

The section works on verifying feasibility of the proposed method. As discussed in [29], the four
continuous torsional pendulum models are employed for our studies, which can be expressed as

dβi

dt
= ωi

Ji
dωi

dt
= Di(ui) − Migili sin(βi) − fd,i

dβi

dt

(4.1)

where βi and ωi are treated as the angle and angular velocity for ith link, respectively. Mi, li and Ji

represent the mass, the length and the rotary inertia of ith pendulum, while the coefficients gi, fd,i are
the acceleration of gravity and the frictional factor, respectively. All these parameters are unknown and
unavailable. The motor torques of the systems contain dead zone nonlinearity, i.e., Di(ui). By giving
the definition of xi,1 = βi and xi,2 = ωi, one has the following parametric strict-feedback form.

ẋi,1 = xi,2

ẋi,2 = J−1
i Di(ui) − [sin(xi,1), xi,2]θi

(4.2)

where θi = [ Migili
Ji
,

fd,i
Ji

]T is remaining to estimate. The physical system model and the communication
topology can be graphically represented in Figure 3. From the connection graph of 4 subsystems, the
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Figure 4. The proposed scheme with neighbor event-triggered mechanisms: (a) Tracking
performances. (b) Angular velocity xi2. (c) Consensus errors ei(t). (d) Consensus controllers
ui. (e) Neighbor control signals ŭ j. (f) Triggering times of ith agent.
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Figure 5. The proposed neighbor event-triggered mechanisms with relative thresholds for
ith agent, respectively.
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values are preset as bi = 1 and ai, j = 1 only when two neighbor agents are connected, or bi = 0
and ai, j = 0. The leader’s signal is set by yr = sin(t) and the dead zone parameters are given as
ρi,r = 2, ρi,l = 2, bir = 0.1, bil = −0.2. The event-triggered neighbor control signals ŭ j(t) are defined
as (2.8), where the relative threshold is set as δ|u j(t)| + m j, δ = 0.1,m j = 0.01. Via the operator of
initialization with x1,1(0) = 0.1, x1,2(0) = 0.5, x2,1(0) = x3,1(0) = x4,1(0) = 0.8, x2,2(0) = x3,2(0) =
x4,2(0) = 0, yr(0) = 0, ui(0) = 0.1, θ̂i(0) = [0, 0]T , ϱ̂i(0) = [0, 0, 0, 0]T , and the operator of selecting
proper user-defined parameters as ci, j = 2,Γ1 = Γ2 = 5.2, εi = 0.001, for i = 1, 2, 3, 4, j = 1, 2, the
simulation results of this method can be seen from Figure 4.

The results presented in Figure 4 illustrate the following points:

• The outputs of all the subagents, represented by yi, can successfully track the leader’s trajectory,
denoted as yr, despite the presence of dead zone nonlinearities in the motor actuators.
• The consensus errors, ei, are guaranteed to asymptotically converge to zero.
• The neighbor control signals, ŭi, are discretized using the jointly designed event-triggered

mechanisms.
• Each of the triggering mechanisms is configured to avoid Zeno behavior.

Additionally, Figure 5 demonstrates the implementation of the neighbor event-triggered
mechanisms that utilize relative thresholds.

5. Conclusions

The distributed control problem for multi-agent systems with neighboring communication
bandwidth constraints and dead zone inputs is addressed in this paper. The aforementioned bandwidth
constraints are managed using the proposed event-triggered mechanisms, which are applicable
to the control signals exchanged among neighbors and feature more adaptable relative threshold
configurations. Moreover, the decomposition of the dead zone nonlinearity, when coupled with event-
triggered coefficients, is effectively neutralized by the specially designed consensus controllers. The
proposed methodology ensures closed-loop signal ultimate boundedness for all closed-loop signals,
guarantees that consensus errors asymptotically approach zero, and precludes the possibility of Zeno
behavior. Simulation results corroborate the effectiveness of our approach.
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