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1. Introduction

Applications of control engineering are typically used in nonlinear systems under the conditions
of unknown dynamics and external perturbations. Because robotic systems are nonlinear by nature,
estimating their dynamics is a difficult task. Robot manipulators [1], mobile robots [2], crane
systems [3], powered wheelchairs [4], and unmanned aerial vehicles [5] are a few examples of these
systems. These systems frequently encounter a variety of uncertainties and disturbances, all of which
may have an effect on the system’s overall performance and stability [6]. Scholars devised various
control schemes, including the sliding mode control (SMC) method [7], to tackle and resolve these
issues.

Control schemes based on models, like SMC, are frequently utilized. Since the SMC approach can
effectively handle uncertainties and disturbances, it has been broadly utilized in the field of nonlinear
controllers, increasing the robustness of the system. Nevertheless, a major obstacle to this strategy’s
implementation is its slow convergence and excessive chatter of the control input [8, 9]. Chattering
occasionally causes inadvertent disruptions to the system, which may disrupt its functionality. Over
time, advances in SMC have been made to address these issues, including terminal SMC, fast
nonsingular SMC, and finite-time SMC [10–14]. On the other hand, in the case of the finite-time
approach, the convergence is highly dependent on the initial states. Thus, a fixed-time control strategy
provides an alternative to figuring out the convergence period, irrespective of the initial conditions [15].

The finite-time SMC challenge has been resolved through the use of fixed-time SMC. Fixed-time
SMC is helpful for uncertain dynamical systems because the system can approach convergence in a set
amount of time. Leading researchers have recently emphasized their interest in studying this specific
topic. Some scholars suggest using fixed-time SMC to more effectively handle the uncertainties and
disturbances present in a nonlinear system [16]. In the realm of advanced research on uncertain
perturbed dynamics of autonomous underwater vehicles under actuator faults and input saturation,
a neural network with fixed-time SMC approach has been devised [17]. Furthermore, a fractional-
order chaotic system was successfully managed and brought under control by using a fixed-time SMC
scheme [18].

One area of mathematics that has been around since the 17th century is fractional-order calculus.
The broader application of integer-order calculus to non-integer order is known as fractional-order
calculus [19, 20]. Researchers have become interested in the use of fractional calculus in science and
engineering in the last few decades [21, 22]. Numerous fractional-order based control schemes, such
as fractional-order PID controller, fractional-order SMC (FSMC), and fractional optimal controllers,
have been proposed because it offers better flexibility to enhance control performance and efficiency
of the closed-loop system [23–25]. FSMC was developed for application in many different research
areas, such as robotic arm systems [26], multimachine power systems [27], supercavitating underwater
vehicles [28], tethered satellites [29], fractional-order chaotic systems [30], permanent magnet
synchronous generator wind turbines [31], and so forth. Moreover, a fractional-order scheme has
been implemented with the fixed SMC for the application of nonlinear robotic dynamics [6, 7].

Because the nonlinear elements in the dynamical equations require the computation of the entire
dynamic system, controllers based on robot dynamical models, such as computed torque control and
optimal control, are generally utilized [32, 33]. Additionally, intelligent control schemes have been
employed as model-free methods; although they are robust as well as adaptive, there are disadvantages
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to their use, particularly, they require very sophisticated and lengthy training to fine-tune several aspects
that significantly affect control performance [34]. Consequently, because of their complexity, neither
intelligent nor model-based approaches are appropriate for broad application.

The time-delay estimation (TDE) method is a simple replacement for the previously described
techniques [35]. If a controller has a sufficiently short sampling period, the TDE uses time-delayed
state variables and control input to estimate the current dynamics of the system. Time-delay control
(TDC) is a well-known technique that was introduced by Toumi and Ito [35], and Hsia and Gao [36].
It involves using the delayed estimated dynamics to cancel out nonlinear dynamics. Despite its simple
form, the TDC scheme is numerically efficient, model-free, and resilient. Therefore, TDE combined
with SMC can be utilized to simultaneously offer control, estimation, and robustness for unknown
uncertain nonlinear dynamics [37]. To the best of the authors’ knowledge, no literature on the TDE with
fractional fixed-time SMC scheme for robotic systems, as realized under the new fixed-time lemma,
has been developed.

This paper presents a model-free approach based on TDE with fractional-order fixed-time sliding
mode control (TDEFxFSMC) to control the unknown robotic manipulator systems under constrained
external disturbances. The main contributions of the proposed scheme are given below:

(1) The primary goals were to estimate the unknown nonlinear dynamics, improve tracking, and
achieve robustness against uncertainties of the closed-loop system.

(2) TDE has been used to estimate the unknown uncertain robotic manipulator dynamics under
external disturbances.

(3) A fractional SMC scheme has been designed to realize better tracking, convergence and transient
performances in fixed time.

(4) The stability analyses for the error and sliding manifold have been established by using the
Lyapunov approach.

This study is organized as follows. Section 2 discusses system modeling, TDE, and control design
in detail. The Lyapunov theorem is introduced in Section 3 to provide fixed-time stability. Section 4
provides numerical simulations of the proposed scheme. A discussion of the findings is presented in
Section 5. In the end, this work is concluded in Section 6.

2. TDE based scheme using fixed-time FSMC

This section begins with a study of TDE with a fixed-time fractional-order sliding surface and
nonlinear dynamical system. Next, in order to provide TDEFxFSMC for unknown dynamical systems,
a mechanism for proposed control is constructed. Consequently, the nonlinear system is described by
using the robot manipulator dynamics given by [12]

m(q)q̈ + c(q, q̇)q̇ + g(q) + f(t) + d(t) = u (2.1)

where q, q̇, and q̈ are the angular position, angular velocity, and angular acceleration, respectively.
m(q) ∈ Rn×n is the positive definite inertia matrix with 0 < mmin ≤ ‖m(q)‖ ≤ mmax, where mmin and
mmax are the eigenvalues of m(q). c(q, q̇) ∈ Rn×n denotes the coriolis and centripetal forces, g(q) ∈ Rn

represents the gravitational force, f(t) ∈ Rn and d(t) ∈ Rn express the uncertainty and unknown external
disturbances, respectively, and u ∈ Rn denotes the control torque.
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The equation given in (2.1) can be rewritten as

αq̈ +
[
m(q)q̈ − αq̈ + c(q, q̇)q̇ + g(q) + f(t) + d(t)

]
= u

⇒ q̈ + α−1 [
m(q)q̈ − αq̈ + c(q, q̇)q̇ + g(q) + f(t) + d(t)

]
= α−1u.

(2.2)

For the application of TDE, the following expression is given

q̈ = α−1
u + Y(q, q̇, q̈) (2.3)

where α > 0 and

Y(q, q̇, q̈) = −α−1 [
m(q)q̈ − αq̈ + c(q, q̇)q̇ + g(q) + f(t) + d (t)]

denotes the unknown uncertain robot manipulator dynamics with disturbance.
The tracking error can be obtained as follows:

ε̈ = α−1
u + Y(q, q̇, q̈) − q̈d (2.4)

with ε = q − qd and qd is the desired angular position.

2.1. Fractional-order fixed-time sliding manifold

The purpose of sliding surface construction is to provide nonsingularity and obtain the benefits of
fractional-order and fixed-time SMC. The recommended fixed-time surface is applied to offer precise
and rapid control performance for the robot’s uncertain dynamics. Thus, the following sliding surface
design is provided:

S = Dγe +K1D
γ−1

[
|e|λ1 sign(e)

]
+K2D

γ−1
[
|e|λ2 sign(e)

]
(2.5)

where e = ε̇ + κ1|ε|
ς1 sign(ε) + κ2|ε|

ς2 sign(ε), S is the sliding surface, and κ1, κ2, K1, K2 > 0 are known
constants. The constants of the exponent are 0 < λ1 < 1, λ2 > 1, 0 < ς1 < 1 and ς2 > 1. Additionally,
γ is a fractional-order value with the range (0,1), andDγ is the fractional derivative.

Equation (2.5) can be derived as follows:

Ṡ = Dγė +K1D
γ
[
|e|λ1 sign(e)

]
+K2D

γ
[
|e|λ2 sign(e)

]
. (2.6)

Substitution of ė in (2.6) yields

Ṡ = Dγ
[
ε̈ + κ1ς1|ε|

ς1−1ε̇ + κ2ς2|ε|
ς2−1ε̇

]
+K1D

γ
[
|e|λ1 sign(e)

]
+K2D

γ
[
|e|λ2 sign(e)

]
. (2.7)

Substitution of (2.4) into (2.7) yields

Ṡ = Dγ
[
α−1u + Y(q, q̇, q̈) − q̈d + κ1ς1|ε|

ς1−1ε̇ + κ2ς2|ε|
ς2−1ε̇

]
+K1D

γ
[
|e|λ1 sign(e)

]
+K2D

γ
[
|e|λ2 sign(e)

]
.

(2.8)

Note that
|e|λi sign(e) =

[
|e1|

λi sign(e1), |e2|
λi sign(e2), ..., |en|

λi sign(en)
]T

and
|ε|ςi−1 = diag

(
|ε1|

ςi−1, |ε2|
ςi−1, ..., |εn|

ςi−1
)
.

Now, the suggested model-free control method based on TDEFxFSMC for the unknown dynamical
robot system will be designed. Achieving strong tracking performance and model-free control will be
the goal of this.
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2.2. Design of TDEFxFSMC scheme

In order to control the unknown nonlinear robot dynamics in the presence of unknown disturbances,
the TDEFxFSMC approach is presented as

u = un + ue (2.9)

where un is the nominal control input and ue is the estimation of the unknown uncertain dynamics via
TDE.

un = −α

 −q̈d + κ1ς1|ε|
ς1−1ε̇ + κ2ς2|ε|

ς2−1ε̇

+K1

[
|e|λ1 sign(e)

]
+K2

[
|e|λ2 sign(e)

]  (2.10)

and
ue = −α

(
Ŷ(q, q̇, q̈) + K̄1D

−γ [|S|µ1 sign(S)
]
+ K̄2D

−γ [|S|µ2 sign(S)
])

(2.11)

where |ε|ς1−1 = 0 if ε = 0, and K̄1 > 0, K̄2 > 0, 0 < µ1 < 1, µ2 > 1 are known constants.
Proposed controller (2.9) is substituted in (2.8) to obtain

Ṡ = Dγ


α−1

 −α
 −q̈d + κ1ς1|ε|

ς1−1ε̇ + κ2ς2|ε|
ς2−1ε̇

+K1

[
|e|λ1 sign(e)

]
+K2

[
|e|λ2 sign(e)

] 
−α

(
Ŷ(q, q̇, q̈) + K̄1D

−γ [|S|µ1 sign(S)
]
+ K̄2D

−γ [|S|µ2 sign(S)
])


+Y(q, q̇, q̈) − q̈d + κ1ς1|ε|

ς1−1ε̇ + κ2ς2|ε|
ς2−1ε̇


+K1D

γ
[
|e|λ1 sign(e)

]
+K2D

γ
[
|e|λ2 sign(e)

]
.

(2.12)

By solving (2.12), one can obtain

Ṡ = Dγz − K̄1
[
|S|

µ1 sgn(S)
]
− K̄2

[
|S|

µ2 sgn(S)
]

(2.13)

where z = Y(q, q̇, q̈) − Ŷ(q, q̇, q̈) and Ŷ(q, q̇, q̈) represents the estimated dynamics obtained by using
the time delayed form of (2.3); thus, one can take into account the constant time delay z as follows:

Ŷ(q, q̇, q̈) = Y(q, q̇, q̈)(t−z) = q̈(t−z) − α
−1
u(t−z). (2.14)

Assumption 1. The bounded TDE error inequality can be expressed as follows:

Dγz ≤ Ξ (2.15)

where Ξ > 0 is constant.
The unknown system dynamics, uncertainty, and external disturbances will be estimated by using

TDE dynamics (2.14), and fractional-order fixed-time SMC enhances the position tracking and control
performances. Thus, the TDEFxFSMC approach effectively tracks the desired performance of the
uncertain robotic system and provides the model-free scheme for the unknown robot dynamics.
Figure 1 depicts the comprehensive model of the suggested technique. The fixed-time stability of
the proposed system will be analyzed in the following section.
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Figure 1. Proposed scheme diagram.

3. Stability analysis

By executing the necessary calculations through the use of Lyapunov analysis, this section details
how to determine the overall stability of the system. The following lemmas are important and will be
applied for the proof of stability analyses.

Lemma 1. Suppose that the appropriate continuous Lyapunov function,V, is available such that [38]

V̇ ≤ −h1V
p1 − h2V

p2 + r (3.1)

where h1, h2 > 0, 0 < p1 < 1 p2 > 1 and 0 < r < ∞. Thus, the overall dynamics are said to be
fixed-time stable, and the region of convergence is determined by

V ≤ min


(

r
h1(1 −$)

) 1
p1

,

(
r

h2(1 −$)

) 1
p2

 (3.2)

where 0 < $ < 1. And the settling time T can be computed as follows:

T ≤
1

h1$(1 − p1)
+

1
h2$(p2 − 1)

. (3.3)

Lemma 2. For the system ẏ(x) = f (x, y), y(0) = y0, taking into account the system’s fixed-time
convergence stability, the Lyapunov functionV(y) satisfies the following conditions [39, 40]:
i. V(y) = 0 ⇔ y = 0,
ii. V̇(y) ≤ −h1V

p1(y) − h2V(y)p2 for h1, h2 > 0, 0 < p1 < 1 and p2 > 1. Thus, the settling time T can
be computed as follows:

T ≤
1

h1(1 − p1)
+

1
h2(p2 − 1)

. (3.4)
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Lemma 3. The inequalities are given for φi [15]

n∑
i=1
|φi|

1+ϕ
≥

(
n∑

i=1
|φi|

2
) 1+ϕ

2

, i f 0 < ϕ < 1,

n∑
i=1
|φi|

ϕ
≥ n1−ϕ

(
n∑

i=1
|φi|

)ϕ
, i f ϕ > 1.

(3.5)

Theorem 1. The proposed sliding surface (2.5), combined with the TDEFxFSMC method (2.9) for the
unknown robotic manipulator system (2.1) under uncertainties and external disturbances, will cause
the states of the dynamical system to converge in a fixed time.

Proof. The Lyapunov functional candidateV1 is given as

V1 =
1
2

n∑
i=1

S2
i . (3.6)

The time derivative of (3.6) is given as

V̇1 =

n∑
i=1

SiṠi. (3.7)

By substituting (2.13) into (3.7), one has

V̇1(t) =

n∑
i=1

Si(t)
(
Dγzi − K̄1

[
|Si|

µ1 sgn(Si)
]
− K̄2

[
|Si|

µ2 sgn(Si)
])
. (3.8)

Using (2.15), one obtains (3.8) as follows:

V̇1(t) ≤ −K̄1

n∑
i=1

|Si|
µ1+1
− K̄2

n∑
i=1

|Si|
µ2+1 + Ξ ‖S‖ . (3.9)

Then (3.9) can be rewritten as

V̇1(t) ≤ −K̄1

n∑
i=1

(
|Si|

2
) µ1+1

2
− K̄2

n∑
i=1

(
|Si|

2
) µ2+1

2
+ k, (3.10)

where k = Ξ ‖S‖. Using Lemma 3, one can compute that

V̇1(t) ≤ −K̄1

 n∑
i=1

|Si|
2


µ1+1

2

− K̄2n
1−µ2

2

 n∑
i=1

|Si|
2


µ2+1

2

+ k. (3.11)

Equation (3.11) can be expressed as follows:

V̇1(t) ≤ −K̄12V1
µ1+1

2 − K̄2n
1−µ2

2 2V1
µ2+1

2 + k, (3.12)

V̇1(t) ≤ −K̄12
µ1+1

2 V1
µ1+1

2 − K̄2n
1−µ2

2 2
µ2+1

2 V1
µ2+1

2 + k. (3.13)
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Lemma 1 states that by choosing appropriate parameters, S converges in fixed time to a small
neighborhood. As a result, the convergence region may be expressed as follows:

V1 ≤ min


(

k

k1(1 − ω)

) 2
µ1+1

,

(
k

k2(1 − ω)

) 2
µ2+1

 , (3.14)

where k1 = K̄12
µ1+1

2 , k2 = K̄2n
1−µ2

2 2
µ2+1

2 , 0 < ω < 1. And, the settling time can be formulated as follows:

T1 ≤
2

k1ω(1 − µ1)
+

2
k2ω(µ2 − 1)

. (3.15)

Now, stability of the tracking error will be investigated. Therefore, if sliding manifold (2.5) goes to
near zero (S ≡ 0), e achieves stability in fixed time as follows:

Dγe = −K1D
γ−1

[
|e|λ1 sign(e)

]
− K2D

γ−1
[
|e|λ2 sign(e)

]
.

Theorem 2. The sliding mode has the stable dynamics described by (2.5), with its state trajectories
tending to zero in a fixed amount of time.

Proof. The suitable Lyapunov candidate can be selected as

V2 =
1
2

n∑
i=1

e2
i . (3.16)

This can further be derived as follows:

V̇2 =

n∑
i=1

eiėi =

n∑
i=1

eiD
1−γ(Dγei). (3.17)

By substitutingDγe into (3.17), we can obtain

V̇2 =

n∑
i=1

eiD
1−γ

(
−K1D

γ−1
[
|e|λ1 sign(e)

]
− K2D

γ−1
[
|e|λ2 sign(e)

])
. (3.18)

Simplification of (3.18) yields

V̇2 =

n∑
i=1

ei

(
−K1

[
|e|λ1 sign(e)

]
− K2

[
|e|λ2 sign(e)

])
. (3.19)

Equation (3.19) is given as

V̇2 = −K1

n∑
i=1

|e|λ1+1
− K2

n∑
i=1

|e|λ2+1. (3.20)

Equation (3.20) can be rewritten as

V̇2 = −K1

n∑
i=1

(
|e|2

) λ1+1
2
− K2

n∑
i=1

(
|e|2

) λ2+1
2
. (3.21)
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Using Lemma 3, (3.21) can be obtained as follows:

V̇2 ≤ −K1

 n∑
i=1

|e|2

λ1+1

2

− K2n
1−λ2

2

 n∑
i=1

|e|2

λ2+1

2

. (3.22)

Then (3.22) can be given as

V̇2 ≤ −K1(2V2)
λ1+1

2 − K2n
1−λ2

2 (2V2)
λ2+1

2 . (3.23)

Simplification of (3.23) yields

V̇2 ≤ −K12
λ1+1

2 V2
λ1+1

2 − K2n
1−λ2

2 2
λ2+1

2 V2
λ2+1

2 . (3.24)

With Lemma 2, the fixed settling time can be computed as follows:

T2 ≤
1

K̃1(1 − λ1+1
2 )

+
1

K̃2(λ2+1
2 − 1)

, (3.25)

where
K̃1 = K12

λ1+1
2 , K̃2 = K2n

1−λ2
2 2

λ2+1
2 .

Hence, the state trajectories tend toward zero in a fixed time interval.
For the stability analysis of the error dynamics, the selected Lyapunov candidate is given as

V3 =
1
2

n∑
i=1

ε2
i . (3.26)

Then its derivative is computed as follows:

V̇3 =

n∑
i=1

εiε̇i. (3.27)

Substitution of ε̇ yields

V̇3 =

n∑
i=1

εi (−κ1|ε|
ς1 sign(ε) − κ2|ε|

ς2 sign(ε)) . (3.28)

Equation (3.28) can be simplified to obtain

V̇3 = −κ1

n∑
i=1

|ε|ς1+1
− κ2

n∑
i=1

|ε|ς2+1. (3.29)

Then, (3.29) is obtained as follows:

V̇3 = −κ1

n∑
i=1

(
|ε|2

) ς1+1
2
− κ2

n∑
i=1

(
|ε|2

) ς2+1
2
. (3.30)
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Using Lemma 3, we can write

V̇3 ≤ −κ1

 n∑
i=1

|ε|2

ς1+1

2

− κ2n
1−ς2

2

 n∑
i=1

|ε|2

ς2+1

2

. (3.31)

Equation (3.31) can be given as

V̇3 ≤ −κ1(2V3)
ς1+1

2 − κ2n
1−ς2

2 (2V3)
ς2+1

2 . (3.32)

Then, it can be simplified as follows:

V̇3 ≤ −κ12
ς1+1

2 V3
ς1+1

2 − κ2n
1−ς2

2 2
ς2+1

2 V3
ς2+1

2 . (3.33)

Wtih Lemma 2, the fixed settling time is formulated as follows:

T3 ≤
1

K̄1(1 − ς1+1
2 )

+
1

K̄2( ς2+1
2 − 1)

, (3.34)

where
K̄1 = κ12

ς1+1
2 ,

K̄2 = κ2n
1−ς2

2 2
ς2+1

2 .

The settling time convergence can be obtained as T2, and then e converges to zero. In addition, the
ε dynamics are fixed-time stable if e = 0 and T3 exists. Combining T1, T2, and T3, we can obtain the
total fixed time convergence as T = T1 + T2 + T3. This expression indicates that the system’s states will
be achieved in a fixed amount of time.

4. Numerical results

Nonlinear two-degree-of-freedom (2-DOF) robotic manipulator dynamics have been utilized to
simulate and illustrate the performance of the proposed TDEFxFSMC scheme. To verify and validate
the performance of TDEFxFSMC, the proposed findings are compared with the adaptive fixed-time
SMC (AFxSMC) [41] and adaptive fractional-order SMC (AFtFoSMC) [42] schemes with and without
the uncertain dynamics. The uncertain 2-DOF manipulators are considered unknown with outside
disturbances. The system dynamics of a 2-DOF robotic manipulator are provided as follows:

m(q) =

[
m11 m12

m21 m22

]
, c(q, q̇)q̇ =

[
c1

c2

]
, g(q) =

[
g1

g2

]
, u =

[
u1

u2

]
,

qd =

[
0.35e−4t − 1.4e−t + 1.25
−0.25e−4te−t + 1.25

]
, d(t) =

[
0.5 sin(q̇1)
1.1 sin(q̇2)

]
,

f(t) =

[
1.5q̇1 + 0.5 sin(1.5q1)
1.3q̇2 + 0.8 sin(2q2)

]
,
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where

m11 = (m1 +m2)l2
1 +m2(l2

2) + 2 cos(q2)m2l1l2 + I2,

m12 = m2l2
2 + cos(q2)m2l1l2, m21 = m12, m22 = m2l2

2 + I1,

c1 = − sin(q2)m2l2l1q̇1q̇1 − 2 sin(q2)m2l2l1q̇1q̇2, c2 = sin(q2)m2l2l1q̇2q̇2,

g1 = cos(q1)(m1l1 +m2l2)g + cos(q1 + q2)m2l2g, g2 = cos(q1 + q2)m2l2g.

The robot parameters are as follows: lengths l1 = 1 m, l2 = 1 m, the masses m1 = 0.15 kg, m2 =

0.15 kg, the moment of inertia I1 = I2 = 0.5 kg.m2, and the gravity constant g = 9.8 m/s2. The
diagram of the 2-DOF manipulator is shown in Figure 2.

Figure 2. Two-DOF robotic manipulator system.

The suitable parameters of the proposed TDEFxFSMC scheme (2.9) were chosen as ς1 = 0.7,
ς2 = 1.1, λ1 = 0.7, λ2 = 1.1, µ1 = 0.9, µ2 = 1.1, K1 = 0.09, K2 = 0.09, K̄1 = 30.5, K̄2 = 30.5,
κ1 = 5.05, κ2 = 10.3, α = 0.6, and the fractional value γ = 0.01. Moreover, the initial values were set
as q1(0) = 2.1, q2(0) = 0.3, and the constant time delay was z = 0.0001.

4.1. Proposed scheme for nominal system

In order to compare the suggested approach with AFxSMC and AFtFoSMC for the nominal system,
we applied the three schemes and obtained the simulation results for joint position tracking as in
Figures 3 and 4, tracking errors as in Figures 5 and 6, and control torques as in Figures 7 and 8.

The findings for the nominal system of the robotic manipulator conclusively demonstrate the
enhanced tracking efficacy of the suggested approach with swift convergence, a steady-state response,
and chatter-free control inputs.
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Figure 3. Joint position q1.
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Figure 4. Joint position q2.
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Figure 5. Tracking error ε1.
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Figure 6. Tracking error ε2.
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Figure 7. Control input u1.

0 2 4 6 8 10 12 14 16 18 20

-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

Figure 8. Control input u2.
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4.2. Proposed scheme for system under uncertainties and disturbances

In this instance, comparisons between the suggested approach with AFxSMC and AFtFoSMC
under various disturbances and uncertainties are demonstrated here. Therefore, Figures 9–14 show
the comparable analyses of tracking errors, position tracking, and control torque under uncertainties
and disturbances. Based on the resulting simulations, Figures 9–12 show that the joint position of
the robotic manipulator accurately tracks the planned trajectory. Furthermore, the suggested method’s
good chatter-free control input performance is demonstrated in Figures 13 and 14. Therefore, the
performance of the compared method is acceptable without uncertainties and disturbances. Moreover,
the estimation of the unknown dynamics of the robotic manipulator are given in Figures 15 and 16.

Figure 9. Joint position q1 with uncertainties and disturbances.
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Figure 10. Joint position q2 with uncertainties and disturbances.
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Figure 11. Tracking error ε1 with uncertainties and disturbances.
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Figure 12. Tracking error ε2 with uncertainties and disturbances.
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Figure 13. Control inputs u1 with uncertainties and disturbances.
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Figure 14. Control inputs u2 with uncertainties and disturbances.
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Figure 15. TDE with uncertainties and disturbances, actual (Y1) and estimated (Ŷ1).
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Figure 16. TDE with uncertainties and disturbances, actual (Y2) and estimated (Ŷ2).
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Figures 7–10 demonstrate how the dynamics of a robotic manipulator are significantly affected
by uncertainty and external disturbances. On the other hand, the findings clearly demonstrate that
the suggested strategy achieves effective tracking and quick convergence capabilities while firmly
suppressing the effect of uncertain dynamics. For further analyses, the root mean square (RMS) errors
of the TDEFxFSMC scheme were calculated to be ε1RMS = 0.0042 and ε2RMS = 0.0041, RMS errors of
the AFxSMC method were determined to be e1RMS = 0.0052 and e2RMS = 0.0051, and RMS errors of the
AFtFoSMC method were calculated to be q̃1RMS = 0.0070 and q̃2RMS = 0.0068. Hence, the simulated
results and the quantitative outcomes show that the TDEFxFSMC scheme yields better performance.

5. Discussion

In this section, we discuss the results of comparing the proposed TDEFxFSMC scheme, the
AFxSMC method, and the AFtFoSMC method in detail. In addition, the limitations of the proposed
method parameters are discussed extensively.

It is clear from the simulation findings in Section 4 that, even in the presence of uncertainty
and outside disturbance, the recommended approach is model-free and robust against the unknown
unmodeled dynamics. Better position tracking, rapid convergence, and non-chatter control inputs were
observed in the simulations for the proposed TDEFxFSMC scheme. Additionally, these outcomes have
been attained by using appropriate parameters like K̄i, κi, andKi. Furthermore, the fixed time was set to
be dependent on other factors, including K̄i, µi, $, Ki, λi, κi, and ςi. By choosing the right parameters,
it is possible to achieve fixed-time stability.

Excellent performance was achieved via the TDEFxFSMC technique for the unknown uncertain
robot dynamics. This has been demonstrated by its improved tracking performance, fast convergence
speed, and non-chatter inputs. In addition, the appropriate values for the suggested approach were
determined to be within ranges like Ki > 0, K̄i > 0, κi > 0, 0 < ς1, λ1, µ1 < 1, and ς2, λ2, µ2 > 1.
Therefore, if these parameters are not selected within the given ranges, the fixed-time stability will not
be maintained in closed-loop dynamics. The results of (3.15), (3.25), and (3.34) respectively make it
clear that T1, T2 and T3 are inversely related to K̄i, Ki and κi. However, Ki, κi and K̄i are proportional
to u(t) in (2.9). Thus, in order to achieve both closed-loop system stability and fixed-time convergence
simultaneously, the proper amount of K̄i, κi, andKi must be appropriately selected. Additionally, since
the other parameters’ ranges are known such µi, ςi and λi, it is feasible to select suitable values by using
an appropriate approach.

6. Conclusions

Controlling the unknown nonlinear robotic dynamics with external disturbances and uncertainties
is the primary objective of a TDEFxFSMC. The unknown nonlinear robotic dynamics are estimated
via the TDE technique. FxSMC is used to achieve strong fixed-time error convergence performance
and stability. Additionally, fractional-order methodology has been applied to enhance the response
of the overall system. The unknown nonlinear dynamics of a 2-DOF robotic system were utilized
to demonstrate and verify the effectiveness of the suggested TDEFxFSMC technique. Moreover,
the suggested approach has been compared with AFxSMC and AFtFoSMC. The simulation results
demonstrate the effectiveness of the proposed TDEFxFSMC scheme, which provides fast convergence,
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low position error, smooth control input, and the capacity to estimate unknown nonlinear robotic
dynamics.
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2. K. K. Ayten, M. H. Çiplak, A. Dumlu, Implementation a fractional-order adaptive model-based
PID-type sliding mode speed control for wheeled mobile robot, Proceedings of the Institution of
Mechanical Engineers, Part I: Journal of Systems and Control Engineering, 233 (2019), 1067–
1084. https://doi.org/10.1177/0959651819847395

3. M. S. Zanjani, S. Mobayen, Event-triggered global sliding mode controller design
for anti-sway control of offshore container cranes, Ocean Eng., 268 (2023), 113472.
https://doi.org/10.1016/j.oceaneng.2022.113472

4. M. Bakouri, A. Alqarni, S. Alanazi, A. Alassaf, I. AlMohimeed, M. A. Aboamer, et al., Robust
dynamic control algorithm for uncertain powered wheelchairs based on sliding neural network
approach, AIMS Math., 8 (2023), 26821–26839. https://doi.org/10.3934/math.20231373

5. A. Almasoud, Jamming-aware optimization for UAV trajectory design and internet of things
devices clustering, Complex Intell. Syst., 9 (2023), 4571–4590. https://doi.org/10.1007/s40747-
023-00970-3

6. S. Ahmed, A. T. Azar, Adaptive fractional tracking control of robotic manipulator using fixed-time
method, Complex Intell. Syst., 9 (2023), 369–382. https://doi.org/10.1007/s40747-023-01164-7

7. S. Ahmed, A. T. Azar, M. Tounsi, I. K. Ibraheem, Adaptive control design for Euler-Lagrange
systems using fixed-time fractional integral sliding mode scheme, Fractal Fract., 7 (2023), 712.
https://doi.org/10.3390/fractalfract7100712

8. S. J. Gambhire, D. R. Kishore, P. S. Londhe, S. N. Pawar, Review of sliding mode based
control techniques for control system applications, Int. J. Dyn. Control, 9 (2021), 363–378.
https://doi.org/10.1007/s40435-020-00638-7

AIMS Mathematics Volume 9, Issue 4, 9989–10009.

http://dx.doi.org/https://doi.org/10.1504/IJMIC.2017.086563
http://dx.doi.org/https://doi.org/10.1177/0959651819847395
http://dx.doi.org/https://doi.org/10.1016/j.oceaneng.2022.113472
http://dx.doi.org/https://doi.org/10.3934/math.20231373
http://dx.doi.org/https://doi.org/10.1007/s40747-023-00970-3
http://dx.doi.org/https://doi.org/10.1007/s40747-023-00970-3
http://dx.doi.org/https://doi.org/10.1007/s40747-023-01164-7
http://dx.doi.org/https://doi.org/10.3390/fractalfract7100712
http://dx.doi.org/https://doi.org/10.1007/s40435-020-00638-7


10007

9. H. Yin, B. Meng, Z. Wang, Disturbance observer-based adaptive sliding mode
synchronization control for uncertain chaotic systems, AIMS Math., 8 (2023), 23655–23673.
https://doi.org/10.3934/math.20231203

10. D. Zhao, S. Li, F. Gao, A new terminal sliding mode control for robotic manipulators, Int. J.
Control, 82 (2009), 1804–1813. https://doi.org/10.1080/00207170902769928

11. Y. Feng, X. Yu, Z. Man, Non-singular terminal sliding mode control of rigid manipulators,
Automatica, 38 (2002), 2159–2167. https://doi.org/10.1016/S0005-1098(02)00147-4

12. L. Yang, J. Yang, Nonsingular fast terminal sliding-mode control for nonlinear dynamical systems,
Int. J. Robust Nonlinear Control, 21 (2011), 1865–1879. https://doi.org/10.1002/rnc.1666

13. C. Ton, C. Petersen, Continuous fixed-time sliding mode control for spacecraft with flexible
appendages, IFAC-PapersOnLine, 51 (2018), 1–5. https://doi.org/10.1016/j.ifacol.2018.07.079

14. H. Khan, S. Ahmed, J. Alzabut, A. T. Azar, J. F. Gómez-Aguilar, Nonlinear variable order system
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