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Abstract: In this study, considering the proportional fractional derivative, which is a generalization
of the conformable fractional derivative, we provided some important spectral properties such as the
reality of eigenvalues, the orthogonality of eigenfunctions, the self-adjointness of the operator, the
asymptotic estimations of eigenfunctions, and Picone’s identity for a proportional Dirac system on an
arbitrary time scale. We also presented graphics representing the eigenfunctions of the Dirac system on
a time scale, produced by taking advantage of the proportional fractional derivative with some special
cases. The main purpose of presenting these graphics was to examine the effect of the proportional
fractional derivative on the Dirac system on a time scale, as well as the effect of the eigenvalues, which
are meaningful for the subject we were studying for the solution functions.
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1. Introduction

Especially in the areas of spectral theory, quantum mechanics, and relativistic quantum field theory,
the Dirac system, also known as the Dirac operator, is a key idea in mathematical physics. In the
framework of developing a relativistic equation to describe the behavior of spin-1/2 particles like
electrons, this idea was first suggested by British scientist Paul Dirac. To comprehend how particles
with inherent angular momentum (spin) behave in relativistic conditions, it is essential to grasp how the
Dirac system works. The Dirac operator appears in spectral theory as a self-adjoint operator connected
to the Dirac equation. Understanding the behavior of relativistic quantum systems requires an in-depth
knowledge of eigenvalues and the corresponding eigenvectors of spectra for the Dirac operator.

The classical Dirac system [1–3] can be expanded to a framework that incorporates time scales
and makes use of conformable derivatives [4–14] in the Dirac system on time scales. In the study
of dynamic systems that display both continuous and discrete responses, this idea is very pertinent.
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Time scales are a generalization of real numbers that include continuous and discrete cases, including
the well-known instances of real numbers, integers, and rational numbers. Time scale T is a closed,
nonempty subset of R that is a member of the standard topology of R. One can find details about
this theory in previous studies [15–21]. Consequently, the intriguing extension of the Dirac equation
combining time scale theory, fractional calculus [22–25], and the Dirac system on time scales with
conformable derivatives offers an adaptable tool for modeling and examining systems [26, 27] with
a combination of continuous and discrete behaviors. Now, let us talk about the usage areas of the
proportional derivative and what it means.

Engineering frequently uses proportional-derivative (PD) control as a form of a control approach to
manage the behavior of dynamic systems. This technique involves determining the control action by
utilizing both the present error (proportional term) and the rate of change in error (derivative term). The
PD control technique can be modified to account for the distinct properties of time scales when used
with dynamic systems on time scales. The error in PD control on time scales refers to the difference
between the present state of the system and the desired set point. This error is calculated in a way that
fits the underlying time scale. For instance, the difference between the desired and actual values at
discrete time occurrences will be used in the error computation if the time scale is discrete (e.g., for
integers). The proportional term in PD control helps with the control action and is proportionate to the
error. As with continuous-time or discrete-time PD control, the proportional term can be calculated
on time scales depending on the error at a particular time instance. In PD control, the derivative term
considers the rate of change in error.

Applications for PD control on time scales may be found in many disciplines where systems display
a combination of continuous and discrete behaviors. This covers a variety of disciplines, including
control theory, robotics, process control, and others. PD control on time scales, for instance, can offer
efficient control methods in systems with sporadically sampled data or a combination of continuous and
discrete dynamics. PD control on time scales extends the conventional PD control strategy to dynamic
systems that function on time scales. It entails taking into account the amount and rate of error change
while modifying the proportional and derivative terms to reflect the characteristics of time scales. Let
us now discuss Picone’s identity, which is significant to oscillation theory [28].

For self-adjoint operators, Picone’s identity is a key outcome in the field of spectral theory. It
is employed to prove various eigenvalue and eigenfunction characteristics of self-adjoint differential
operators. A technique for examining the distribution and behavior of eigenvalues with regard to
certain inequalities is Picone’s identity. It is crucial to understanding the spectral behavior of many
mathematical and physical systems because it helps analyze the characteristics of the eigenvalue spectra
of differential operators. To prove conclusions concerning the distribution of eigenvalues and the
behaviors of eigenfunctions for various self-adjoint operators, which have implications in a variety
of domains including quantum mechanics, heat conduction, and elasticity theory, Picone’s identity is
utilized as a crucial step.

Let us have a look at the proportional Dirac eigenvalue problem on an arbitrary time scale

τωx(t) = λxσ(t), t ∈ [a, b] = J ∩ T, (1.1)

ηx1(a) + βx2(a) = 0, (1.2)

γx1(b) + δx2(b) = 0. (1.3)
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The explicit form of the system (1.1) in this case is

τωx(t) =

(
0 Dω

−Dω 0

) (
x1(t)
x2(t)

)
+

(
q(t) 0
0 r(t)

) (
xσ1 (t)
xσ2 (t)

)
=

(
Dωx2(t) + q(t)xσ1 (t)
−Dωx1(t) + r(t)xσ2 (t)

)
,

where T is an arbitrary time scale, Dωx is the ω-th order proportional delta derivative of x, λ > 0 is a
spectral parameter, σ is the the forward jump operator, xσ = x(σ), η2 + β2 , 0, γ2 + δ2 , 0, ω ∈

[0, 1] , and x(t) =

(
x1(t)
x2(t)

)
. We suppose that q, r : J ∩ T→ R are continuous functions and

Lω2J =

{
φ(t) :

∫ b

a

φ(t)Tφ(t)ẽ0(b, σ(t))
ẽξ(t, b)

∆ωt < ∞
}
, ξ(t) = k1(ω, t) −

k1(w, t)k0(ω, t)
k0(ω, t) + µ(t)k1(ω, t)

, (1.4)

where φ(t) =

(
φ1(t)
φ2(t)

)
and T denotes the transpose throughout the whole research.

By setting T = R and ω = 1 in (1.1), we obtain the following general classical Dirac system:

y′2(t) + (V(t) + m)y1(t) = λy1(t),
y′1(t) − (V(t) − m)y1(t) = −λy2(t), (1.5)

where q(t) = V(t) + m, r(t) = V(t) − m. This system serves as the relativistic counterpart of the
Schrödinger operator by incorporating the principles of special relativity, known as the Dirac operator
in quantum physics, into quantum mechanics:

Under the influence of external potentials or fields, m that denotes the mass of a particle controls
the motion of the particle. Within the framework of quantum mechanics, the potential function V(t)
generally denotes the potential energy that a particle experiences as a result of its interactions with
other particles or external fields. Understanding the behavior of particles depends on this interaction
potential, which is a key idea in quantum mechanics.

The spectrum of a system in quantum mechanics is the set of potential eigenvalues for certain
operators that describe observables such as energy, momentum, and angular momentum. The spectrum
properties of Dirac systems on a time scale provide valuable insights into the behavior of quantum
systems with nonclassical dynamics and aid in the determination of eigenvalues and eigenfunctions,
which are crucial for comprehending the states and energy levels of the quantum system. It also
reveals information about the evolution of the system throughout time. All of them provide insight into
the temporal behavior of the quantum system by describing how the eigenvalues alter as the system
dynamically develops. One may assess the stability of the quantum system by looking at its spectrum
characteristics.

Derivatives illustrate how a system instantly changes in relation to a variable at a particular location
in space and time in classical physics. On the other hand, nonlocal behavior, in which characteristics of
a particle are not restricted to a particular place, is possible in quantum physics. Fractional derivatives
take into account the impact of a particle’s whole history of motion or condition in addition to its
immediate state, which allows them to capture this nonlocality.
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Researching the spectrum characteristics of the Dirac system with the proportional fractional
derivatives advances the mathematical physics theory more broadly. For all of these reasons, we hope
that our research can pave the way for further interdisciplinary collaborations and discoveries, leading
to the development of new mathematical tools and techniques for analyzing complex quantum systems.

Let us briefly describe how our study is organized. We define and explain some basic notations
for proportional fractional calculus on T in Section 2. We establish a few fundamental theorems
for the proportional fractional Dirac system on T in Section 3. We obtain asymptotic estimates of
eigenfunctions and Picone’s identity for the problem (1.1)–(1.3) in Section 4 using a few techniques.
Graphics representing the eigenfunctions of the Dirac system produced by using the proportional
fractional derivative on a time scale with some special cases are presented in order to investigate
the impact of the eigenvalues on the solution functions, and the effect of the proportional fractional
derivative on the Dirac system on a time scale is given in Section 5. Conclusions are given in Section 6.

2. Preliminaries

In this section, we discuss all concepts linked to the required time scale for proportional
computations. Let us first define the classic proportional fractional derivative.

Definition 1. [29] Let ω ∈ [0, 1]. The differential operator Dω is known as a proportional derivative
if D0 is a unit operator and D1 is a standard differential operator. It is explicitly stated that only
D0h(t)=h(t) and D1h (t) =h′ (t) exist for the derivative function h=h (t), which has a proportional
operator Dω.

Remark 1. [29] Based on the use of a proportional-derivative controller with a ϑ controller output
at time t, the fundamental concept of the proportional derivative is developed. The algorithm

ϑ (t) =κpE (t) + κd
d
dt

E (t) ,

is applied by this controller, ϑ(t).

E denotes the error between the state and process variables in this case, whereas κp and κd stand for
the proportional and derivative benefits, respectively [30].

Definition 2. [29] Assume that ω ∈ [0, 1] , κ0, κ1 : [0, 1]×R→ R+
0 are continuous functions and

lim
ω→0+

κ0 (ω, t) =0, lim
ω→0+

κ1 (ω, t) =1,

lim
ω→1−

κ0 (ω, t) =1, lim
ω→1−

κ1 (ω, t) =0,

κ0 (ω, t) , 0, ω ∈ (0, 1] , κ1 (ω, t) , 0, ω ∈ [0, 1) ,

(2.1)

hold, where h is the error, κ1 is a kind of proportional gain κp, κ0 is a type of derivative gain κd, and
v=Dωh is the controller output, all of which are presented together with the differential operator Dω

defined by
D
ωh(t)=κ1 (ω, t) h(t) + κ0 (ω, t) h′(t), (2.2)

in this case.
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Now, the proportional fractional delta derivative of a function h : T → R at point t ∈ Tκ will now
be defined on a time scale T. Suppose that κ0, κ1 : [0, 1] × T → R+

0 are continuous functions, and the
condition (2.1) is provided in the following expressions.

Definition 3. [31] Let h : T → R be a function and ζ ∈ Tκ. If there is a real number Dωh (ζ) , ω ∈
[0, 1] , such that∣∣∣κ1 (ω, ζ) h (ζ) (σ (ζ) − s) + κ0 (ω, ζ)

[
h (σ (ζ)) − h (s)

]
− (Dωh) (ζ) (σ (ζ) − s)

∣∣∣ ≤ ε |σ (ζ) − s| , (2.3)

for every ε > 0, and for every s in a neighborhood U of point ζ, then that number is known as the ω-th
order proportional delta derivative of f at point ζ on T.

With
Ω (T) =

{
h : T→ R : For any t ∈ Tκ, Dωh(t) exists and is finite

}
,

the set of all proportional delta differentiable functions will be shown [31] and Crd(T) will be used to
denote the collection of h : T→ R rd-continuous functions.

Lemma 1. [31] If h, g : T → R are proportional delta differentiable at t ∈ Tκ, then the following
properties hold:

(i) Dω
[
γh + θg

]
= γDωh + θDωg, all γ, θ ∈ R;

(ii) Dω
[
hg

]
= hσDωg + gDωh − hσgκ1 (ω, .) ;

(iii) Dω
[

h
g

]
=

gσDωh−hDωg
ggσ + hσ

gσ κ1 (ω, .) , ggσ , 0.

Definition 4. [31] Let ω ∈ [0, 1]. p : T→ R is regarded as ω-regressive if the condition

1 +
p (ζ) − κ1(ω, ζ)

κ0 (ω, ζ)
µ(ζ) , 0, ∀ ζ ∈ Tκ,

is satisfied. Rω=Rω (T) represents the whole set of ω-regressive and rd-continuous functions on T.

Definition 5. [31] Let ω ∈ (0, 1] and q ∈ Rω. Assume q/κ0, κ1/κ0 are delta integrable functions on T,
then,

ẽq (t, s) = exp
[∫ t

s

1
µ(ζ)

Log
(
1 +

q(ζ) − κ1 (ω, ζ)
κ0 (ω, ζ)

µ(ζ)
)
∆ζ

]
, (2.4)

is a proportional exponential function on T for the operatorDω, where Log is basic logarithm function.
For µ(t)=0, it yields

ẽq (t, s) = exp
[∫ t

s

(
q(ζ) − κ1 (ω, ζ)

κ0 (ω, ζ)

)
∆ζ

]
. (2.5)

Lemma 2. [31] Let ω ∈ (0, 1] and q ∈ Rω. For fixed τ ∈ T,

D
ω
[
ẽq (., τ)

]
=q (s) ẽq (., τ) ,

and

ẽq(σ(s), τ) =

(
1 +

q(s) − κ1(ω, s)
κ0(ω, s)

µ(s)
)
ẽq(s, τ). (2.6)
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Definition 6. [31] Assume that h ∈ Crd (R), ω ∈ (0, 1] , and t0 ∈ T, then,∫
D
ωh(ζ)∆ωζ = h(η) + cẽ0 (η, t0) , ∀η ∈ T, c ∈ R,

signifies the indefinite proportional integral (anti-derivative) of h on [a, b]T according to (2.4), whereas∫ t

a
h(ζ)ẽ0 (t, σ(ζ)) ∆ωζ =

∫ t

a

h(ζ)ẽ0 (t, σ(ζ))
κ0 (ω, ζ)

∆ζ, ∆ωζ =
1

κ0 (ω, ζ)
∆ζ, (2.7)

defines the definite proportional integral according to Lemma 2.

Lemma 3. [31] Let ω ∈ (0, 1], h ∈ Crd (T), then,

D
ω

[∫ t

a
h(ζ)ẽ0 (t, σ(ζ)) ∆ωζ

]
= h(t). (2.8)

Lemma 4. [31] Let h, g ∈ Ω (T) .
(i)

∫ t

a
Dω

[
h(ζ)

]
ẽ0 (t, σ(ζ)) ∆ωζ =

[
h(ζ)ẽ0 (t, σ(ζ))

]t
ζ=a.

(ii)
∫ b

a
h (ζ)Dω

[
g (ζ)

]
ẽ0 (b, σ (ζ)) ∆ωζ =

[
h (ζ) g (ζ) ẽ0 (b, σ (ζ))

]b
ζ=a

−

∫ b

a
gσ(ζ)

{
D
ω [

h(ζ)
]
− κ1 (ω, ζ) h(ζ)

}
ẽ0 (b, σ(ζ)) ∆ωζ.

Theorem 5. [29] Let p ∈ Crd (T) ∩ Rω, q ∈ Crd (T) , η0 ∈ T, and x0 ∈ R. The solution of the
proportional type initial value problem

D
ωx=p (η) x+q (η) , x(η0)=x0,

is presented with

x(η)=x0ẽp (η, η0) +

∫ η

η0

q(ζ)ẽg (σ(ζ) , η)∆ωζ, η ∈ Tκ, (2.9)

where g =
(p−κ1)(µκ1−κ0)
κ0+µ(p−κ1) .

3. Main results

We present several significant outcomes for the proportional fractional Dirac system on T in this
section. It is generally known that when T = R and ω = 1, (1.1)–(1.3) has eigenfunctions that
are orthogonal and only real eigenvalues. The conclusions that follow will apply this fundamental
consequence to the proportional fractional scenario for the problem (1.1)–(1.3).

Theorem 6. For operator τω and ω ∈ (0, 1] in (1.1), we assume that

κ0(ω, t) + µ(t)κ1(ω, t) , 0.

Let φ(t) =

(
φ1(t)
φ2(t)

)
, and Φ(t) =

(
Φ1(t)
Φ2(t)

)
represents eigenfunctions of (1.1)–(1.3), then, we obtain

(φσ)TτωΦ − (τωφ)T Φσ =
κ0 + κ1µ

κ0
D
ω(W(φ,Φ)) +

κ1(κ0 − κ1µ)
κ0

W(φ,Φ), (3.1)
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and the Lagrange identity

ẽξ(t, b)Dω
(W(φ,Φ)

ẽξ(t, b)

)
= (φσ)TτωΦ − (τωφ)T Φσ, t, b ∈ Tκ, (3.2)

where W(φ,Φ) = φ2Φ
σ
1 − φ1Φ

σ
2 is the Wronskian of φ and Φ.

Proof. Using Lemma 1 (ii) and Definition 3,

D
ω(W(φ,Φ)) = (Dωφ1)Φσ

2 + φσ1D
ωΦσ

2 − κ1φ
σ
1 Φσ

2 − (DωΦ1)φσ2 − Φσ
1D

ωφσ2 + κ1Φ
σ
1φ

σ
2

= (φσ)TτωΦ − (τωφ)T Φσ − κ1Wσ(φ,Φ)

= (φσ)TτωΦ − (τωφ)T Φσ −
κ1(κ0 − κ1µ)

κ0
W(φ,Φ) −

µκ1

κ0
W(φ,Φ),

is obtained, easily. Thus,

D
ω(W(φ,Φ)) =

κ0

κ0 + µκ1
[(φσ)TτωΦ − (τωφ)T Φσ] −

κ1(κ0 − κ1µ)
κ0 + µκ1

W(φ,Φ). (3.3)

The definition of ξ(t) and Lemma 2 gives us

ẽξ
ẽσξ

=
κ0 + κ1µ

κ0
. (3.4)

On the other hand, according to Lemma 1 (iii),

ẽξDω
(W

ẽξ

)
=

ẽξ
ẽσξ

(DωW −Wξ) + κ1W. (3.5)

If (1.4), (3.3), and (3.4) are substituted into (3.5),

ẽξDω
(W

ẽξ

)
=
κ0 + µκ1

κ0

[
κ0

κ0 + κ1µ
((φσ)TτωΦ − (τωφ)T Φσ) −

κ1(κ0 − κ1µ)
κ0 + µκ1

W
]

−
κ0 + µκ1

κ0

(
κ1 −

κ1κ0

κ1µ

)
W + κ1W

= (φσ)TτωΦ − (τωφ)T Φσ,

is found. �

Definition 7. Assume that ω ∈ (0, 1] and the condition κ0(ω, t) + µ(t)κ1(ω, t) , 0 is satisfied, then (1.4)
defines ξ.

< φ,Φ >ω=

∫ b

a

φ(t)T Φ(t)ẽ0(b, σ(t))
ẽξ(t, b)

∆ωt, (3.6)

denotes the proportional inner product of the functions φ,Φ ∈ Lω2J, where φ(t) =

(
φ1(t)
φ2(t)

)
and Φ(t) =(

Φ1(t)
Φ2(t)

)
.
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Lemma 7. Consider that ω ∈ (0, 1] and the condition κ0(ω, t) + µ(t)κ1(ω, t) , 0 is held. The Green’s
formula is given with

< φ, τωΦ >ω − < τ
ωφ,Φ >ω=

W(φ,Φ)(t)ẽ0(b, t)
ẽξ(t, b)

∣∣∣∣∣b
a
. (3.7)

Proof. According to Theorem 6,

ẽξDω
(W

ẽξ

)
= (φσ)TτωΦ − (τωφ)T Φσ

is valid. If we apply the final equivalence from a to b in terms of the proportional fractional integral
of t, we get the result that∫ b

a
D
ω
(W

ẽξ

)
ẽ0(b, σ(t))∆ωt =

∫ b

a

(τωx(t))T y(t)ẽ0(b, σ(t))
ẽξ(t, b)

∆ωt.

�

Green’s identity is easily found using Lemma 4 (i).

Theorem 8. The proportional fractional Dirac operator τω is self-adjoint on Lω2J.

Proof. Let the problem (1.1)–(1.3) have solutions x(t) =

(
x1(t)
x2(t)

)
, y(t) =

(
y1(t)
y2(t)

)
. Consequently,

τωx(t) = BDω(x(t)) + Q(t)xσ(t) = λxσ(t),

τωy(t) = BDω(y(t)) + Q(t)yσ(t) = λyσ(t).

As a result of taking into account the boundary conditions and the definition of the proportional inner
product on Lω2J and Lemma 4 (ii), we arrive at

< τωx, y >ω=

∫ b

a

(τωx(t))T y(t)ẽ0(b, σ(t))
ẽξ(t, b)

∆ωt

=

∫ b

a
D
ωx2(t)

ẽ0(b, σ(t))
ẽξ(t, b)

y1(t)∆ωt −
∫ b

a
D
ωx1(t)

ẽ0(b, σ(t))
ẽξ(t, b)

y2(t)∆ωt

+

∫ b

a
[q(t)xσ1 (t)y1(t) + r(t)xσ2 (t)y2(t)]

ẽ0(b, σ(t))
ẽξ(t, b)

∆ωt

=
y1(t)

ẽξ(t, b)
x2(t) |bt=a −

∫ b

a
xσ2 (t)

(
D
ω

(
y1(t)

ẽξ(t, b)

)
− κ1(ω, t)

y1(t)
ẽξ(t, b)

)
ẽ0(b, σ(t))∆ωt

−
y2(t)

ẽξ(t, b)
x1(t) |ba −

∫ b

a
xσ1 (t)

(
D
ω

(
y2(t)

ẽξ(t, b)

)
− κ1(ω, t)

y2(t)
ẽξ(t, b)

)
ẽ0(b, σ(t))∆ωt

+

∫ b

a
[q(t)xσ1 (t)y1(t) + r(t)xσ2 (t)y2(t)]

ẽ0(b, σ(t))
ẽξ(t, b)

∆ωt

= −

∫ b

a

(
x2(t)Dωy1(t) − y1(t)ξx2(t)

ẽξ(t, b)

)
ẽ0(b, σ(t))∆ωt
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+

∫ b

a

(
x1(t)Dωy2(t) − x1(t)ξy2(t)

ẽξ(t, b)

)
ẽ0(b, σ(t))∆ωt

+

∫ b

a
[q(t)y1(t)x1(t) + r(t)y2(t)x2(t)]

ẽ0(b, σ(t))
ẽξ(t, b)

∆ωt

=< x, τωy >ω +

∫ b

a

(
y1(t)x2(t) − x1(t)y2(t)

ẽξ(t, b)

)
ξẽ0(b, σ(t))∆ωt,

where t ∈ J is right-dense. Since ξ(t) = 0,

< τx, y >ω=< x, τy >ω,

is discovered. This concludes the proof. �

Theorem 9. The problem (1.1)–(1.3) only contains real eigenvalues.

Proof. Let φ(t, λ) =

(
φ1(t, λ)
φ2(t, λ)

)
be an eigenfunction corresponding to the eigenvalue λ of the

problem (1.1)–(1.3), and let λ be a complex eigenvalue. A straightforward calculation gives us

D
ω(φ1φ

σ

2 − φ1φ
σ
2 )(t, λ) = ((Dωφ1)φ

σ

2 + φσ1D
ωφ

σ

2 )(t, λ) − (φσ1φ
σ

2 )(t, λ)κ1(ω, t)

− ((Dωφ1)φσ2 − φ
σ

1D
ωφ

σ

2 )(t, λ) + (φ
σ

1φ
σ
2 )(t, λ)κ1(ω, t)

= (−λ + r(t))(φσ2φ
σ

2 )(t, λ) + φσ1 (t, λ)(λ − q(t))φ
σ

1 (t, λ)

− κ1(ω, t)(φσ1φ
σ

1 )(t, λ) − (−λ + r(t))(φ
σ

2φ
σ
2 )(t, λ)

− φ
σ

1 (t, λ)(λ − q(t))φσ1 (t, λ) + κ1(ω, t)(φ
σ

1φ
σ
2 )(t, λ)

= (λ − λ)(φσ1φ
σ

1 + φσ2φ
σ

2 )(t, λ) + κ1(ω, t)(φ
σ

1φ
σ
2 − φ

σ
1φ

σ

2 )(t, λ)

= (λ − λ)(|φσ1 |
2 + |φσ2 |

2)(t, λ) + κ1(ω, t)(φ
σ

1φ
σ
2 − φ

σ
1φ

σ

2 )(t, λ).

If we take the final equivalence from a to b with regard to t’s ω proportional fractional integral, we
obtain ∫ b

a
D
ω(φ1φ

σ

2 − φ1φ
σ
2 )(t, λ)ẽ0(b, σ(t))∆ωt = (λ − λ)

∫ b

a
(|φσ1 |

2 + |φσ2 |
2)(t, λ)ẽ0(b, σ(t))∆ωt

+

∫ b

a
κ1(ω, t)(φ

σ

1φ
σ
2 − φ

σ
1φ

σ

2 )(t, λ)ẽ0(b, σ(t))∆ωt

= 0.

If κ1(ω, t) = 0 or (φ
σ

1φ
σ
2 − φ

σ
1φ

σ

2 )(t, λ) = 0, we arrive at λ = λ, concluding the proof. �

Theorem 10. Eigenfunctions of (1.1)–(1.3), φ(t, λ1) =

(
φ1(t, λ1)
φ2(t, λ1)

)
, and Φ(t, λ2) =

(
Φ1(t, λ2)
Φ2(t, λ2)

)
, which

correspond to distinct eigenvalues λ1 and λ2, are orthogonal on Lω2J, i.e.,∫ b

a

φT (t, λ1)Φ(t, λ2)ẽ0(b, σ(t))
ẽξ(t, b)

∆ωt = 0. (3.8)
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Proof. Since φ(t, λ1) and Φ(t, λ2) are the solutions of proportional fractional Dirac eigenvalue
problem (1.1)–(1.3),

W(φ,Φ)(t)ẽ0(b, t)
ẽξ(t, b)

∣∣∣∣∣b
a

=< φ, τωΦ >ω − < τ
ωφ,Φ >ω,

then,

< φ, τωΦ >ω − < τ
ωφ,Φ >ω= 0,

(λ1 − λ2) < φ,Φ >ω= 0,

is found by considering Green’s identity (3.7). Since λ1 , λ2, we obtain (3.8). �

4. Eigenfunction estimations for the proportional fractional Dirac system on time scales

The asymptotic estimates of the eigenfunction and Picone’s identity of the problem (1.1)–(1.3) on T
are given in this section.

Theorem 11. If φ1(t, λ) and φ2(t, λ) fulfill the equations

φ1(t, λ) = c1

(
cos 1

1+µ
(t, a) − i sin 1

1+µ
(t, a)

)
+

∫ t

a
φ(2)(s)ẽiγ+κ1(s, t)∆ws, (4.1)

φ2(t, λ) = c2

(
cos 1

1+µ
(t, a) + i sin 1

1+µ
(t, a)

)
+

∫ t

a
φ(1)(s)ẽ−iγ+κ1(s, t)∆ws, (4.2)

where

φ(1)(t, λ) = cos 1
1+µ

(t, a) − i sin 1
1+µ

(t, a) +

∫ t

a
[κ1(w, s)q(s) −Dωq(s)]ẽiγ+κ1(s, t)∆ws, (4.3)

φ(2)(t, λ) = cos 1
1+µ

(t, a) + i sin 1
1+µ

(t, a) +

∫ t

a
[Dωr(s) − κ1(w, s)r(s)]ẽ−iγ+κ1(s, t)∆ws, (4.4)

the solution to the problem (1.1)–(1.3) is the eigenfunction φ(t, λ) =

(
φ1(t, λ)
φ2(t, λ)

)
.

Proof. Let the solution to the problem (1.1)–(1.3) be φ(t, λ). Consequently, the system (1.1) is
identical to

D
ωφ1 = (−λ + r)φσ2 , (4.5)
D
ωφ2 = (λ − q)φσ1 , (4.6)

where q, r are constants. This gives us

(Dω)2φ2 = Dω((λ − q)φσ1 )
= (κ1qσ −Dωq)φσ1 + (λ − qσ)(−λ + r)φσ2 ,

and so
(Dω)2φ2 + (λ − qσ)(λ − r)φσ2 = (κ1qσ −Dωq)φσ1 . (4.7)
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When the last equation is solved by using the method in [32], the characteristic equation and its roots,

z2 + (λ − qσ)(λ − r) = 0,

z1,2 = ∓i
√

(λ − qσ)(λ − r) = ∓iγ,

are obtained, respectively. From the Eq (4.7), we get

(Dω + iγ)(Dω − iγ)φ2 = (κ1qσ − Dωq)φ1.

Let φ(1) = (Dω − iγ)φ2 and t be right-dense point. In this situation,

D
ωφ(1) = −iγφ(1) + (κ1q −Dωq)φ1,

can be obtained, and the solution of the last equation is

φ(1)(t) = cos 1
1+µ

(t, a) − i sin 1
1+µ

(t, a) +

∫ t

a
[κ1(w, s)q(s) −Dωq(s)]ẽiγ+κ1(s, t)∆ws, (4.8)

where c1 = 1. On the other hand, and it is known that

(Dω − iγ)φ2 = φ(1).

Thus, Dωφ2 − iγφ2 = φ(1), and it is derived that

φ2(t) = c2ẽiγ(t, a) +

∫ t

a
φ(1)(s)ẽ−iγ+κ1(s, t)∆ws. (4.9)

If the above method is repeated considering Eq (4.5),

(Dω)2φ1 = Dω((−λ + r)φσ2 ),

⇒ (Dω)2φ1 + (λ − rσ)(λ − q)φ1 = (Dωr − κ1rσ)φ2, (4.10)

is derived, and its characteristic equation and the roots are

z2 + (λ − rσ)(λ − q) = 0 ⇒ z = ∓iγ.

Thus, the solution of (4.10) is

φ(2)(t) = cos 1
1+µ

(t, a) + i sin 1
1+µ

(t, a) +

∫ t

a
[Dωr(s) − κ1(w, s)r(s)]ẽ−iγ+κ1(s, t)∆ws, (4.11)

where

φ1(t) = c1

(
cos 1

1+µ
(t, a) − i sin 1

1+µ
(t, a)

)
+

∫ t

a
φ(2)(s)ẽiγ+κ1(s, t)∆ws. (4.12)

�
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In the context of oscillation theory, Picone’s identity is very helpful since it enables one to examine
the oscillatory behavior of the solution of a given differential equation. One may find out information
about the number of zeros, or oscillations, of the solution in a particular interval by looking at the signs
of the various elements in the identity. Based on the signs of specific derivatives and coefficients in
the differential equation, Picone’s identity aids in determining when and where oscillations occur. We
now provide Picone’s identity for problem (1.1)–(1.3) on time scales, which is a crucial formula for
demonstrating oscillation criteria. The identification of Picone’s identity has been the subject of several
analyses in the literature [33, 34].

Theorem 12. (Picone’s identity) Let φ(t) =

(
φ1(t)
φ2(t)

)
,Φ(t) =

(
Φ1(t)
Φ2(t)

)
be the solutions of (1.1).

Thus,

−
φσ1
φσ2

[(τωΦ)Tφσ − λ(φσ)T Φσ] = Dω
(
φ1

φ2
W(φ,Φ)

)
+ κ1

φσ1
φσ2

(φσ2 Φσ
1 − φ

σ
1 Φσ

2 )

+
1

φ2φ
σ
2

[λ((φσ2 )2 + φ1φ
σ
1 ) − r(t)(φσ2 )2 − q(t)φ1φ

σ
1 ]W(φ,Φ),

D
ω
(
φ1

φ2
W(φ,Φ)

)
=

(
(−λ + r)

φσ2
φ2
− (λ − q)

φ1φ
σ
1

φ2φ
σ
2

)
W(φ,Φ)

+
φσ1
φσ2

[(−λ + rσ)Φσσ
2 φσ2 − (λ − qσ)φσ1 Φσσ

1 − κ1(φσ2 Φσ
1 − φ

σ
1 Φσ

2 )],

where W(φ,Φ) = φ2Φ
σ
1 − φ1Φ

σ
2 .

Proof. Assume that φ2φ
σ
2 (t) , 0. Considering the Lagrange’s identity, we derive that

D
ω
(
φ1

φ2
W(φ,Φ)

)
=
φσ1
φσ2
D
ω(W(φ,Φ)) +Dω

(
φ1

φ2

)
W(φ,Φ) − κ1

φσ1
φσ2

W(φ,Φ)

=

( (Dωφ1)φσ2 − φ1(Dωφ2)
φ2φ

σ
2

+ κ1
φσ1
φσ2

)
W(φ,Φ)

+
φσ1
φσ2
D
ω(W(φ,Φ)) − κ1

φσ1
φσ2

W(φ,Φ)

=
φσ1
φσ2

[(τWφ)T Φσ − (τWΦ)Tφσ − κ1(φσ2 Φσ
1 − φ

σ
1 Φσ

2 )]

+
1

φ2φ
σ
2

((−λ + r(t))(φσ2 )2φσ2 − (λ − q(t))φσ1φ1)W(φ,Φ)

=
φσ1
φσ2

[λ(φσ)T Φσ − (τWΦ)Tφσ − κ1(φσ2 Φσ
1 − φ

σ
1 Φσ

2 )]

+
1

φ2φ
σ
2

[−λ((φσ2 )2 + φ1φ
σ
1 ) + r(t)(φσ2 )2 + q(t)φ1φ

σ
1 ]W(φ,Φ)
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⇒ −
φσ1
φσ2

[(τWΦ)Tφσ − λ(φσ)T Φσ] = Dω
(
φ1

φ2
W(φ,Φ)

)
+ k1

φσ1
φσ2

(φσ2 Φσ
1 − φ

σ
1 Φσ

2 )

+
1

φ2φ
σ
2

[λ((φσ2 )2 + φ1φ
σ
1 ) − r(t)(φσ2 )2 − q(t)φ1φ

σ
1 ]W(φ,Φ).

On the other hand,

D
ω
(
φ1

φ2
W(φ,Φ)

)
=
φσ1
φσ2
D
ω(W(φ,Φ)) +

( (Dωφ1)φσ2 − φ1D
ωφ2

φ2φ
σ
2

)
W(φ,Φ)

=
φσ1
φσ2

[(Dωφ2)Φσ
1 + φσ2D

σΦσ
1 − κ1φ

σ
2 Φσ

1 − Dω(φ1)Φσ
2 − φ

σ
1D

ωΦσ
2 + κ1φ

σ
1 Φσ

2 ]

+

( (Dωφ1)φσ2 − φ1D
ωφ2

φ2φ
σ
2

)
(φ2Φ

σ
1 − φ1Φ

σ
2 )

=
φσ1
φσ2

[(λ − q)φσ1 Φσ
1 + (−λ + rσ)Φσσ

2 φσ2 − (−λ + r)φσ2 Φσ
2

− (λ − qσ)Φσσ
1 φσ1 − κ1φ

σ
2 Φσ

1 + κ1φ
σ
1 Φσ

2 ]

+

(
(−λ + r)

φσ2
φ2
− (λ − q)

φσ1φ1

φσ2φ2

)
(φ2Φ

σ
1 − φ1Φ

σ
2 )

= (−λ + r)
(
− φσ1 Φσ

2 + φσ2 Φσ
1 −

φ1φ
σ
2 Φσ

2

φ2

)
+ (−λ + rσ)φσ1 Φσσ

2

− (λ − q)
φ1φ

σ
1

φ2φ
σ
2

(
φ2Φ

σ
1 − φ1Φ

σ
2 −

(φσ1 )2Φσ
1

φσ2

)
− (λ − qσ)

(φσ1 )2Φσσ
1

φσ2

− κ1
φσ1
φσ1

(φσ2 Φσ
1 − φ

σ
1 Φσ

2 )

= (−λ + r)
(
− φσ1 Φσ

2 +
φσ2
φ2

W(φ,Φ)
)

+ (−λ + rσ)φσ1 Φσσ
2

− (λ − q)
φ1φ

σ
1

φ2φ
σ
2

(
W(φ,Φ) −

(φσ1 )2Φσ
1

φσ2

)
− (λ − qσ)

(φσ1 )2Φσσ
1

φσ2

− κ1
φσ1
φσ2

(φσ2 Φσ
1 − φ

σ
1 Φσ

2 )

=

(
(−λ + r)

φσ2
φ2
− (λ − q)

φ1φ
σ
1

φ2φ
σ
2

)
W(φ,Φ)

+
φσ1
φσ2

[(−λ + rσ)Φσσ
2 φσ2 − (λ − qσ)φσ1 Φσσ

1 − k1(φσ2 Φσ
1 − φ

σ
1 Φσ

2 )].

�

5. Visual results and discussions

This section contains graphics showing the solution functions of the Dirac system on a time scale
that is obtained by utilizing the advantages of the proportional fractional derivative. Figure 1 illustrates
the variations in the functions φ1(t, λ) and φ2(t, λ), the components of the solution φ(t, λ) of the
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problem (1.1) and (1.2), curve motion for ω = 0.8, 0.6, 0.4 (arbitrary proportional fractional order
cases), and ω = 1 (classical case).

On the other hand, it is known that the eigenvalues of the problem (1.1)–(1.3) match the roots of the
characteristic equation,

Γ(λ) = γφ1(b, λ) + δφ2(b, λ).

If we replace the asymptotic estimates (4.1) and (4.2) of the eigenfunction φ(t, λ) =

(
φ1(t, λ)
φ2(t, λ)

)
, then

we find the |λ| eigenvalues in Table 1, with special choice γ = 1, δ = 1 for arbitrary proportional
fractional orders. Figures 2 and 3 illustrate how the functions φ1(t, λ) and φ2(t, λ) vary depending on
these different values of the |λ| eigenvalues.

Figure 1. The solution curves of the functions φ1(t, λ) and φ2(t, λ) when ω = 1, 0.8, 0.6, 0.4
for the value of λ = 10 under the condition (1.2), respectively.

Figure 2. The solution curves of the functions φ1(t, λ) and φ2(t, λ) when ω = 0.5 for the
value of |λ| = 0.4963, 0.8468, 1.2053, 1.7731 under the condition (1.3), respectively.
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Figure 3. The solution curves of the functions φ1(t, λ) and φ2(t, λ) when ω = 0.5 for the
value of |λ| = 1.4346, 1.2516, 1.1368, 1.0578 under the condition (1.3), respectively.

Table 1. Eigenvalues for the problem (1.1)–(1.3).

ω Eigenvalue (|λ|) ω Eigenvalue (|λ|)

0.1 0.1987 0.6 1.4346
0.2 0.4963 0.7 1.2516
0.3 0.8468 0.8 1.1368
0.4 1.2053 0.9 1.0578
0.5 1.7731 1.0 1.0001

For all graphics and the table, it is assumed that the potential functions q(t), r(t) are constants,
a = µ = 0, and κ0(ω, t) = ω, κ1(ω, t) = 1 − ω, according to various arbitrary order values and
eigenvalues on a time scale. Therefore, the main aim of the graphics is to examine the impact of the
proportional fractional derivative on the Dirac system over time, as well as the effect of the eigenvalues,
which are significant for the issue being studied, on the solution functions. In order to examine both of
these cases independently, which are crucial to the current investigation, eigenvalues are left unchanged
in some graphics while the values of the proportional derivative are altered in an arbitrary sequence.
Likewise, eigenvalues are modified while the derivative order remains unchanged in order to see the
impact of the eigenvalues.

6. Conclusions

When compared to other local derivatives, the proportional derivative is seen to have more favorable
characteristics. It belongs to the family of local derivatives that includes arbitrary order. It holds
significant value, particularly in engineering, because it is founded on control theory. This improved
definition of the local derivative is constructed in such a way that D0 is a unit operator and D1 is a
standard differential operator. For alternative selections of the functions k0(ω, t) and k1(ω, t), multiple
special instances can be found in the formulation of the proportional derivative. This is an additional
benefit of the proportional derivative because, in practice, one may be able to get better outcomes by
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making the unique decisions required in accordance with the behavior of the problem being studied.
As a result, the proportional derivative is recommended for solving the Dirac dynamic system in this
research because of all these benefits. It should be noted that the Dirac system, which is of enormous
mathematical and physical relevance, may be addressed and examined with the use of proportional
derivatives utilized in control theory, and that doing so can significantly advance scholarship. Since
the proportional derivative is a generalization of the conformable fractional derivative, this study, in
which the proportional derivative is used in spectral theory, will make a significant contribution to
the literature. Using the asymptotic formula of the eigenfunction we obtained, the ideas acquired with
eigenfunctions in the classical case (ω = 1) can be generalized in terms of proportional fractional order
derivatives. Additionally, we think that the results obtained by substituting ω ∈ [n, n + 1] , n = 0, 1, ...
instead of ω ∈ [0, 1] may be interesting in that they can be examined over different ranges.
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