
http://www.aimspress.com/journal/Math

AIMS Mathematics, 9(4): 9884–9910.
DOI: 10.3934/math.2024484
Received: 05 January 2024
Revised: 15 February 2024
Accepted: 06 March 2024
Published: 12 March 2024

Research article

New soft rough approximations via ideals and its applications

Rehab Alharbi1, S. E. Abbas2, E. El-Sanowsy2, H. M. Khiamy2, K. A. Aldwoah3 and Ismail
Ibedou4,*

1 Department of Mathematics, College of Science, Jazan University, P.O. Box 114, Jazan 45142,
Saudi Arabia

2 Mathematics Department, Faculty of Science, Sohag University, Sohag 82524, Egypt
3 Department of Mathematics, Faculty of Science, Islamic University of Madinah, Madinah,

Saudi Arabia
4 Department of Mathematics, Faculty of Science, Benha University, Benha 13518, Egypt

* Correspondence: Email: ismail.ibedou@gmail.com, ismail.abdelaziz@fsc.bu.edu.eg;
Tel: +201104420786.
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properties of Pawlak’s model. Comparisons between our methods and previous ones are introduced.
In addition, we prove that our approaches produce a smaller boundary region and greater value of
accuracy than the corresponding defined definitions. Furthermore, two new styles of approximation
spaces related to two distinct ideals, called soft bi-ideal approximation spaces, are introduced and
studied. Analysis of the fulfilled and the non-fulfilled properties is presented, and many examples to
ensure and explain the advantages and the disadvantages between our styles and the previous ones are
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1. Introduction

Many engineers and scientists have turned their attention to ambiguity or uncertainty modeling in
order to extract the applicable information from uncertain data. Recently, scholars have presented
a number of notions concerning uncertainty, e.g., fuzzy sets [1], intuitionistic fuzzy sets [2], rough
sets [3, 4], real valued interval mathematics [5], and so on. Pawlak [3] in 1982 pioneered rough
set theory as a tool to help analyze the uncertainty in real-life problems. Generally, the objects
in rough set theory could be categorized by using an equivalence relation based on the meaning of
their properties (features). In [3], Pawlak replaced the ambiguous concept with two definite sets, i.e.,
lower approximation and upper approximation. This style of roughness of a universe set is built on
equivalence classes generated by the associated equivalence relations. Many researchers have deduced
that equivalence relations could not be used to solve real-life problems through the application of
general rough set theory such as in [6–9].

In 1999, Molodtsov [10] submitted the first article on soft sets as a new method that can deal with
uncertainties. The properties of these soft sets give a standardized framework for modeling ambiguity
problems such as in decision making problems [11, 12], diagnostic problems in medicine [13–15],
the evaluation of nutrition systems [16] and problems in information systems [17]. Soft topological
notions were defined in [18, 19]. The notion of an ideal model of this type can be seen in [20], and
there are many research studies concerned with the idealized versions of numerous rough set models.
The effect or the advantage of employing an ideal version is reduction of the ambiguity of a concept
in an uncertainty zone by shrinking the boundary region of roughness and enhancing the accuracy
measure of roughness. As a result, using an ideal model is a great way to demystify the concept and
define it precisely. Accordingly, many researchers have studied this theory by using ideals such as
those in [21–24].

Rough set theory and soft set theory are two different tools to deal with uncertainty. Apparently
there is no direct connection between these two theories; however, efforts have been made to establish
some kind of linkage [25, 26]. The major criticism of rough set theory is that it lacks parametrization
tools [27]. In order to make parametrization tools available in rough sets a major step was taken by
Feng et al. [28]. They introduced the concept of soft rough sets, where instead of equivalence classes
parametrized subsets of a set serve the purpose of finding lower and upper approximations of a subset.
In doing so, some unusual situations may occur. For example upper approximation of a non-empty set
may be empty. Upper approximation of a subset X may not contain the set X. These situations do not
occur in classical rough set theory. Moreover, the soft rough set model must be reduced to be able to
get a true decision of any real-life problem. Therefore, the authors of [29] modified the concept of soft
rough sets to solve the previous problems. In order to strengthen the concept of soft rough sets and
solve the previous problems more accurately than the method given in [29], new approaches that apply
the ideals are presented here.

In this paper, we submit two novel approaches for soft rough sets that apply the ideals, as
defined in [30]. These new approaches are extensions of soft rough sets approaches that have
been introduced in [28, 29]. The main characteristics of the recent approaches are investigated, and
comparisons between our methods and previous ones are applied. We illustrate that the soft rough
approximations [28] constitute a special case of the current approximations in the first method in
Definition 3.2, and that the soft rough approximations [29] constitute a special case of the current
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approximations in the second method in Definition 3.5. Moreover, we prove that our second method
is the best one since it produces smaller boundary regions and higher accuracy values than our first
method and those introduced in [28,29]. Therefore, this method is more applicable to real-life problems
and can be used to determine the vagueness of the data. Furthermore, new soft rough sets that were
developed by using two ideals, called soft bi-ideal rough sets, are presented. These soft approximations
are discussed from the perspective of two different methods. The properties and results of these
soft bi-ideal rough sets are provided. The relationships between these two approximations and the
previous ones are discussed. However, comparisons between the last two methods are presented and
we discuss which of them is the best. Finally, two medical applications are provided to demonstrate
the significance of adopting ideals in the current techniques. In the proposed applications, we illustrate
that our techniques reduce boundary regions and improve the accuracy measure of the sets more than
the approaches presented in [28,29], which means that the current techniques allow the medical staff to
classify patients successfully in terms of influenza infection (see [31, 32]) (first application) and heart
attacks (see [33]) (second application). That helps doctors to make the best decision.

2. Preliminaries

The aim of this section is to illustrate the basic concepts and properties of rough sets and soft sets
which are needed in the sequel.

Definition 2.1. [3] If X is a universal set of objects, R is an equivalence relation on X and rxsR
is the proposed equivalence class containing x. Then for A Ď X, the lower approximation, the upper
approximation, the boundary region and the accuracy measure of A are defined respectively, as follows:

AproxpAq “ tx P X : rxsR Ď Au,

AproxpAq “ tx P X : rxsR X A , φu,

BNDpAq “ AproxpAq ´ AproxpAq, ACCpAq “
|AproxpAq|

|AproxpAq|
, A , φ.

Clearly, 0 ď ACCpAq ď 1. A is a crisp set if AproxpAq “ AproxpAq; otherwise, A is called a rough set.

Definition 2.2. [3] The membership relations of an element x P X to a rough set A Ď X are defined by:

xPA iff x P AproxpAq and xPA iff x P AproxpAq.

Definition 2.3. [3] For two rough subsets A, B Ď X, the inclusion relations are defined as follows:

AĎB iff AproxpAq Ď AproxpBq, and AĎB iff AproxpAq Ď AproxpBq.

Proposition 2.1. [3] Let A, B be two subsets of X. The following is a list of the main characterizations
of the approximation operators defined in Definition 2.1,

pL1q AproxpAcq “ rAproxpAqsc;
pL2q AproxpXq “ X;
pL3q Aproxpφq “ φ;
pL4q AproxpAq Ď A;
pL5q A Ď B ñ AproxpAq Ď AproxpBq pAĎBq;
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pL6q AproxrAproxpAqs “ AproxpAq;
pL7q AproxpAX Bq “ AproxpAq X AproxpBq;
pL8q AproxpAq Y AproxpBq Ď AproxpAY Bq;
pL9q AproxrAproxpAqs “ AproxpAq;
pU1q AproxpAcq “ rAproxpAqsc;
pU2q AproxpXq “ X;
pU3q Aproxpφq “ φ;
pU4q A Ď AproxpAq;
pU5q A Ď B ñ AproxpAq Ď AproxpBq pAĎBq;
pU6q AproxrAproxpAqs “ AproxpAq;
pU7q AproxpAX Bq Ď AproxpAq X AproxpBq;
pU8q AproxpAq Y AproxpBq “ AproxpAY Bq;
pU9q AproxrAproxpAqs “ AproxpAq.

Definition 2.4. [10] Let X be the universal set, E , φ a family of parameters which represent attributes
or decision variables and H Ď E. A pair pF,Hq is said to be a soft set of X if F is a mapping from H to
the power set of X, i.e., F : H ÝÑ PpXq. Therefore, a soft set is a set of parameterized elements from
X. To each e P H, Fpeq is a subset of X, which is usually named the set of e-approximate elements
of pF,Hq. Also, Fpeq can be regarded as a mapping Fpeq : X ÝÑ t0, 1u, and then Fpeqpxq “ 1 is
equivalent to x P Fpeq for x P X.

Definition 2.5. [28] Let S “ pF, Eq be a soft set of a universe X. Then, P “ pX,Sq is said to be
a soft approximation space. For any subset A of X, the soft P-lower approximation, the soft P-upper
approximation and the soft P-boundary region are defined respectively, as follows:

aprpAq “ tx P X : De P E, rx P Fpeq Ď Asu

aprpAq “ tx P X : De P E, rx P Fpeq, Fpeq X A , φsu

BndaprpAq “ aprpAq ´ aprpAq.

Theorem 2.1. [28] Let P “ pX,Sq be a soft approximation space. Then, the approximations
defined in Definition 2.5 satisfy the conditions of the properties L3,L5,L6,L8,L9,U3,U5,U7, and U8

in Proposition 2.1.

Definition 2.6. [28] Let S “ pF, Eq be a soft set of X. If
Ť

ePE Fpeq “ X, then S is called a full soft set.

Definition 2.7. [28] Let S “ pF, Eq be a soft set over X. If for any e1, e2 P E, there is e3 P E such that
Fpe3q “ Fpe1qX Fpe2q whenever Fpe1qX Fpe2q , φ, then S is called an intersecting complete soft set.

Definition 2.8. [29] Let P “ pX,Sq be a soft approximation space where S “ pF, Eq is a soft set of
X, and A Ď X. Based on P, the soft lower approximation, the soft upper approximation and the soft
boundary region are defined respectively, as follows:

SRpAq “ YtFpeq, e P E : Fpeq Ď Au

SRpAq “ rSRpAc
qs

c, where Ac is the complement of A

BndSRpAq “ SRpAq ´ SRpAq.
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Definition 2.9. [29] Let P “ pX,Sq be a soft approximation space. Based on P, one can deduce that
the degree of crispness of any A Ď X is given by the rough measures AccaprpAq and AccSRpAq that are
respectively given by

AccaprpAq “
|aprpAq|

|aprpAq|
, A , φ and AccSRpAq “

|SRpAq|

|SRpAq|
, A , φ.

Obviously, 0 ď AccaprpAq ď 1 and 0 ď AccSRpAq ď 1.

Theorem 2.2. [29] Let P “ pX,Sq be a soft approximation space. Then, the approximations defined in
Definition 2.8 satisfy the conditions of the properties L1,L3–L6,L8 and U1,U2,U4–U7 in Proposition 2.1.

Definition 2.10. [29] Let S “ pF, Eq be a full soft set of X, and let P “ pX,Sq be a soft approximation
space. Then, A Ď X is referred to as follows:

(1) A totally SR-definable (SR-exact) set if SRpAq “ SRpAq “ A.

(2) An internally SR-definable set if SRpAq “ A and SRpAq , A.

(3) An externally SR-definable set if SRpAq , A and SRpAq “ A.

(4) A totally SR-rough set if SRpAq , A , SRpAq.

Definition 2.11. [29] Let P “ pX,Sq be a soft approximation space where S “ pF, Eq is a soft set of
X. Let A Ď X and x P X. The SR-membership relations, denoted by PSR, PSR are given by

x PSR A iff x P SRpAq,

x PSR A iff x P SRpAq.

Definition 2.12. [30] Let X be a universal set. Then, a non-empty family L of subsets of X is said to
be an ideal on X if it fulfills the following conditions.

(1) If A P L and B Ď A, then B P L.
(2) If A, B P L, then AY B P L.

Definition 2.13. [22] Let L1,L2 be two ideals on a non-empty set X. Then, the family of subsets from
L1,L2 is denoted as ă L1,L2 ą and defined by

ă L1,L2 ą“ tG1 YG2 : G1 P L1, G2 P L2u.

Proposition 2.2. [22] Let L1,L2 be two ideals on a non-empty set X and A, B Ď X. Then, the
collection ă L1,L2 ą has the following proprieties:

(1) ă L1,L2 ą, φ;
(2) A P ă L1,L2 ą, B Ď A ñ B P ă L1,L2 ą;
(3) A, B P ă L1,L2 ą ñ AY B P ă L1,L2 ą .

3. New types of soft rough set approximations through the use of ideals

In this section, we will generalize the soft rough set theory by using the ideal notion. Also, we will
present some properties of soft ideal rough approximation operators and introduce two new soft rough
set models based on the ideals, which constitutes an improvement of the models by Feng et al. [28]
and Alkhazaleh and Marei [29].

AIMS Mathematics Volume 9, Issue 4, 9884–9910.



9889

3.1. First style of soft rough set approximations

Definition 3.1. Let S “ pF, Eq be a soft set of a universal set X andL an ideal on X. Then, P “ pX,S,Lq
is said to be a soft ideal approximation space. For any subset A of X, the soft P-lower approximation and
the soft P-upper approximation, i.e., paprLq˚pAq and paprLq˚pAq, are defined respectively, as follows:

paprLq˚pAq “ tx P X : De P E, x P Fpeq, Fpeq X Ac
P Lu

paprLq˚pAq “ tx P X : De P E, x P Fpeq, Fpeq X A < Lu.

Proposition 3.1. Let P “ pX,S,Lq be a soft ideal approximation space and A, B Ď X. Then, the
conditions of the following properties are fulfilled.

(1) paprLq˚pφq “ YtFpeq : e P E, Fpeq P Lu and paprLq˚pφq “ φ;
(2) paprLq˚pXq “ YtFpeq, e P Eu and paprLq˚pXq “ YtFpeq : e P E, Fpeq < Lu;
(3) A Ď B ñ paprLq˚pAq Ď paprLq˚pBq;
(4) A Ď B ñ paprLq˚pAq Ď paprLq˚pBq;
(5) paprLq˚rpaprLq˚pAqs “ paprLq˚pAq;
(6) paprLq˚pAq Ď paprLq˚rpaprLq˚pAqs;
(7) paprLq˚pAq Ď paprLq˚rpaprLq˚pAqs;
(8) paprLq˚pAX Bq Ď paprLq˚pAq X paprLq˚pBq;
(9) paprLq˚pAq Y paprLq˚pBq Ď paprLq˚pAY Bq;

(10) paprLq˚pAX Bq Ď paprLq˚pAq X paprLq˚pBq;
(11) paprLq˚pAq Y paprLq˚pBq “ paprLq˚pAY Bq.

Proof. (1), (2) Straightforward from Definition 3.1.
(3) Let A Ď B and x P paprLq˚pAq “ tx P X : De P E, x P Fpeq, Fpeq X Ac P Lu. Then, x P

Fpeq, Fpeq X Ac P L for some e P E. But, A Ď B and L is an ideal, so x P Fpeq, Fpeq X Bc P L.

Thus, x P paprLq˚pBq. Hence, paprLq˚pAq Ď paprLq˚pBq.
(4) Let A Ď B and x P paprLq˚pAq “ tx P X : De P E, x P Fpeq, Fpeq X A < Lu. Then, x P

Fpeq, Fpeq X A < L for some e P E. But, A Ď B and L is an ideal, so x P Fpeq, Fpeq X Bc P L.

Therefore, paprLq˚pAq Ď paprLq˚pBq.
(5) Let x P paprLq˚pAq “ tx P X : De P E, x P Fpeq, Fpeq X Ac P Lu. Therefor for some e P

E : x P Fpeq, we have that Fpeq X Ac P L. So, Fpeq Ď paprLq˚pAq which means that Fpeq X
rpaprLq˚pAqsc “ φ P L. Hence, x P paprLq˚rpaprLq˚pAqs.
Conversely, let x < paprLq˚pAq. Then, for all e P E : x P Fpeq, we have that Fpeq X Ac <

L. Thus, Dy P Fpeq, y P Ac, tyu < L. So, y < paprLq˚pAq and tyu < L, which means that
tyu X rpaprLq˚pAqsc < L and, for all e P E : y P Fpeq, we have that Fpeq X rpaprLq˚pAqsc < L.
Hence, x < paprLq˚rpaprLq˚pAqs.

(6) Let x P paprLq˚pAq “ tx P X : De P E, x P Fpeq, Fpeq X A < Lu. Therefore, for some e P E : x P
Fpeq we have that FpeqXA < L. So, Fpeq Ď paprLq˚pAq which means that FpeqX paprLq˚pAq “
Fpeq < L. Thus, x P paprLq˚rpaprLq˚pAqs. Hence, paprLq˚pAq Ď paprLq˚rpaprLq˚pAqs.

(7) Let x < paprLq˚rpaprLq˚pAqs “ tx P X : De P E, x P Fpeq, Fpeq X rpaprLq˚pAqsc P Lu. Then, for
all e P E : x P Fpeq we have that Fpeq X rpaprLq˚pAqsc < L. Thus, Dy P Fpeq, y < paprLq˚pAq.
So, for some e P E : y P Fpeq, we have that Fpeq X A P L thus, x P Fpeq and Fpeq X A P L.
Therefore, x < paprLq˚pAq. Hence, paprLq˚pAq Ď paprLq˚rpaprLq˚pAqs.
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(8) Let x P paprLq˚pA X Bq “ tx P X : De P E, x P Fpeq, Fpeq X pAc Y Bcq P Lu. Thus, DFpeq
such that x P Fpeq and Fpeq X pAc Y Bcq P L. Therefore, x P Fpeq, Fpeq X Ac P L and x P
Fpeq, Fpeq X Bc P L. Consequently, x P paprLq˚pAq and x P paprLq˚pBq. Hence, paprLq˚pA X
Bq Ď paprLq˚pAq X paprLq˚pBq.

(9) Let, x < paprLq˚pAY Bq. Thus, @e P E : x P Fpeq, we have that FpeqX pAcX Bcq < L. Therefore,
@e P E : x P Fpeq, we have that FpeqXAc < L and FpeqXBc < L. Consequently, x < paprLq˚pAq
and x < paprLq˚pBq. Hence, paprLq˚pAq Y paprLq˚pBq Ď paprLq˚pAY Bq.

(10) Similar to part (7).
(11)

paprLq˚pAY Bq “ tx P X : De P E, x P Fpeq, Fpeq X pAY Bq < Lu

“ tx P X : De P E, x P Fpeq, pFpeq X Aq < L or pFpeq X Bq < Lu

“ tx P X : De P E, x P Fpeq, pFpeq X Aq < Lu Y

tx P X : De P E, x P Fpeq, pFpeq X Bq < Lu

“ paprLq˚pAq Y paprLq˚pBq.

�

Remark 3.1. Let P “ pX,S,Lq be a soft ideal approximation space and A, B Ď X. Then, the following
example ensures that

(1) paprLq˚pXq , X, paprLq˚pXq , X and paprLq˚pφq , φ,
(2) paprLq˚pAq * A, A * paprLq˚pAq and paprLq˚pAq * A, A * paprLq˚pAq,
(3) paprLq˚pAq Ď paprLq˚pBq; A Ď B and paprLq˚pAq Ď paprLq˚pBq; A Ď B,
(4) paprLq˚pAq , paprLq˚rpaprLq˚pAqs and paprLq˚pAq , paprLq˚rpaprLq˚pAqs,
(5) paprLq˚pAq * rpaprLq˚pAcqsc and paprLq˚pAq + rpaprLq˚pAcqsc,

(6) paprLq˚pAq * paprLq˚rpaprLq˚pAqs and paprLq˚pAq + paprLq˚rpaprLq˚pAqs,
(7) paprLq˚pAX Bq , paprLq˚pAq X paprLq˚pBq and paprLq˚pAX Bq , paprLq˚pAq X paprLq˚pBq.

Example 3.1. Let X “ tx1, x2, x3, x4, x5, x6u, E “ te1, e2, e3, e4, e5, e6, e7, e8u, F : E ÝÑ PpXq, S “
pF, Eq be a soft set over X, as given in Table 1, and L “ tφ, tx1u, tx6u, tx1, x6uu. From Table 1, we can
deduce that

Fpe1q “ tx1, x6u, Fpe2q “ φ

Fpe3q “ tx3u, Fpe4q “ tx1, x2, x3u

Fpe5q “ tx1, x2, x5u, Fpe6q “ tx1, x2, x6u

Fpe7q “ tx2, x3, x5u, Fpe8q “ tx2, x3, x6u.

Hence, we obtain the following results:

(1) From Proposition 3.1 part (2), we have that paprLq˚pXq “ paprLq˚pXq “ tx1, x2, x3, x5, x6u , X.
Also, paprLq˚pφq “ tx P X : De P E, x P Fpeq, Fpeq X X P Lu “ tx1, x6u , φ.

(2) Let A “ tx3, x4u. Then, paprLq˚pAq “ tx1, x6u. Hence, paprLq˚pAq * A and A * paprLq˚pAq.
(3) Let A “ tx1, x2, x4u; then, paprLq˚pAq “ tx P X : De P E, x P Fpeq, Fpeq X tx1, x2, x4u < Lu “

tx1, x2, x3, x5, x6u. Hence, paprLq˚pAq * A and A * paprLq˚pAq.
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(4) Let A “ tx1, x2, x5u, B “ tx1, x2, x4u. Then, paprLq˚pAq “ tx1, x2, x5, x6u and
paprLq˚pBq “ tx1, x2, x6u. So, paprLq˚pBq Ď paprLq˚pAq but B * A. Also, if A “ tx4, x5, x6u,
B “ tx3, x5, x6u. Then, paprLq˚pAq “ tx1, x2, x3, x5u and paprLq˚pBq “ tx1, x2, x3, x5, x6u. So,
paprLq˚pAq Ď paprLq˚pBq but A * B.

(5) If A “ tx4, x5u, then paprLq˚pAq “ tx1, x2, x3, x5u. So, paprLq˚rpaprLq˚pAqs “ tx1, x2, x3, x5, x6u.

Hence, paprLq˚pAq , paprLq˚rpaprLq˚pAqs. Also, paprLq˚rpaprLq˚pAqs “ tx1, x2, x3, x5, x6u.

Hence, paprLq˚pAq , paprLq˚rpaprLq˚pAqs.
(6) Let A “ tx1, x2, x3, x5, x6u. Then, paprLq˚pAq “ tx1, x2, x3, x5, x6u but

rpaprLq˚pAcqsc “ tx2, x3, x4, x5u. Therefore, paprLq˚pAq * rpaprLq˚pAcqsc and
paprLq˚pAq + rpaprLq˚pAcqsc.

(7) Let A “ tx1, x6u. Then, paprLq˚pAq “ tx1, x6u. So, paprLq˚rpaprLq˚pAqs “ φ. Hence,
paprLq˚pAq * paprLq˚rpaprLq˚pAqs. Also, if A “ tx2, x3, x4u then paprLq˚pAq “ tx1, x2, x3, x6u.
So, paprLq˚rpaprLq˚pAqs “ tx1, x2, x3, x5, x6u. Therefore, paprLq˚pAq + paprLq˚rpaprLq˚pAqs.

(8) Consider that L “ tφ, tx1u, tx5u, tx1, x5uu. If A “ tx1, x2, x3, x5u and B “ tx1, x6u, then
paprLq˚pAq X paprLq˚pBq “ tx1, x2, x3, x5u X tx1, x6u “ tx1u but paprLq˚pA X Bq “

paprLq˚ptx1uq “ φ. Also, if A “ tx2, x3u and B “ tx4, x5, x6u, then paprLq˚pAq X paprLq˚pBq “
tx1, x2, x3, x5, x6u X tx1, x2, x3, x6u “ tx1, x2, x3, x6u but paprLq˚pAX BqpaprLq˚pφq “ φ.

Table 1. Boolean tabular representation of the soft set pF, Eq.

Object e1 e2 e3 e4 e5 e6 e7 e8

x1 1 0 0 1 1 1 0 0
x2 0 0 0 1 1 1 1 1
x3 0 0 1 1 0 0 1 1
x4 0 0 0 0 0 0 0 0
x5 0 0 0 0 1 0 1 0
x6 1 0 0 0 0 1 0 1

Definition 3.2. Let S “ pF, Eq be a soft set of the universal set X and L an ideal on X. Then, P “

pX,S,Lq is said to be a soft ideal approximation space. For any subset A of X, the soft P-lower
approximation and the soft P-upper approximation, i.e., aprLpAq and aprLpAq, are defined respectively,
as follows:

aprLpAq “ AX paprLq˚pAq

aprLpAq “ AY paprLq˚pAq.

Proposition 3.2. Let P “ pX,S,Lq be a soft ideal approximation space and A, B Ď X. Then, the
following conditions of the properties are fulfilled.

(1) aprLpφq “ aprLpφq “ φ and aprLpXq “ X;
(2) aprLpAq Ď A Ď aprLpAq;
(3) A Ď B ñ aprLpAq Ď aprLpBq and aprLpAq Ď aprLpBq;
(4) aprLraprLpAqs “ aprLpAq and aprLraprLpAqs Ě aprLpAq;
(5) aprLraprLpAqs “ aprLpAq and aprLpAq Ď aprLraprLpAqs;
(6) aprLpAX Bq Ď aprLpAq X aprLpBq and aprLpAq Y aprLpBq Ď aprLpAY Bq;
(7) aprLpAX Bq Ď aprLpAq X aprLpBq and aprLpAq Y aprLpBq “ aprLpAY Bq.
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Proof. Straightforward. �

Remark 3.2. Any one can define different ideals to obtain an example that is analogous to Example 3.1
to prove that the inclusion in Proposition 3.2 parts (2) and (4)–(8) could not be changed to the equality.

Definition 3.3. Let P “ pX,S,Lq be a soft ideal approximation space and S “ pF, Eq a soft set of X;
also, let A Ď X. Then, the soft aprL-boundary region BndaprLpAq and the soft aprL-accuracy measure
AccaprLpAq are defined respectively, as follows:

BndaprLpAq “ aprLpAq ´ aprLpAq, AccaprLpAq “
|aprLpAq|

|aprLpAq|
where A , φ.

3.2. Second style of soft rough set approximations

Definition 3.4. Let P “ pX,S,Lq be a soft ideal approximation space in which S “ pF, Eq is a soft set
over a universal set X; also, let there be an ideal L on X and A Ď X. For any subset A of X, the lower
approximation and the upper approximation, pSRLq˚pAq and pSRLq˚pAq, are defined respectively, as
follows:

pSRLq˚pAq “ YtFpeq, e P E : Fpeq X Ac
P Lu

pSRLq˚pAq “ rpSRLq˚pAc
qs

c, where Ac is the complement of A.

Proposition 3.3. Let P “ pX,S,Lq be a soft ideal approximation space A, B Ď X. Then, the following
conditions of the properties are fulfilled.

(1) pSRLq˚pAcq “ rpSRLq˚pAqsc;
(2) A Ď B ñ pSRLq˚pAq Ď pSRLq˚pBq;
(3) A Ď B ñ pSRLq˚pAq Ď pSRLq˚pBq;
(4) pSRLq˚rpSRLq˚pAqs “ pSRLq˚pAq;
(5) pSRLq˚rpSRLq˚pAqs “ pSRLq˚pAq;
(6) pSRLq˚pAX Bq Ď pSRLq˚pAq X pSRLq˚pBq;
(7) pSRLq˚pAq Y pSRLq˚pBq Ď pSRLq˚pAY Bq;
(8) pSRLq˚pAX Bq Ď pSRLq˚pAq X pSRLq˚pBq;
(9) pSRLq˚pAq Y pSRLq˚pBq Ď pSRLq˚pAY Bq.

Proof. (1) rpSRLq˚pAqsc “ rppSRLq˚pAcqqcsc “ pSRLq˚pAcq.

(2) Let A Ď B and x P pSRLq˚pAq “ YtFpeq, e P E : FpeqXAc P Lu. Then, DFpeq such that x P Fpeq,
where Fpeq X Ac P L. But, A Ď B; thus, x P Fpeq, Fpeq X Bc P L. Hence, x P pSRLq˚pBq and
pSRLq˚pAq Ď pSRLq˚pBq.

(3) Let A Ď B. Thus, Bc Ď Ac and then pSRLq˚pBcq Ď pSRLq˚pAcq. Hence,
rpSRLq˚pAcqsc Ď rpSRLq˚pBcqsc. Consequently, pSRLq˚pAq Ď pSRLq˚pBq.

(4) Let x P pSRLq˚pAq “ YtFpeq, e P E : Fpeq X Ac P Lu. Therefor for some e P E : x P Fpeq, we
have that FpeqXAc P L. So, Fpeq Ď pSRLq˚pAq which means that FpeqX rpSRLq˚pAqsc “ φ P L.

Hence, x P pSRLq˚rpSRLq˚pAqs.
Conversely, let x < pSRLq˚pAq. Then, for all e P E : x P Fpeq, we have that Fpeq X Ac <

L. Thus, Dy P Fpeq, y P Ac, tyu < L. So, y < pSRLq˚pAq, tyu < L, which means that tyu X
rpSRLq˚pAqsc < L and, for all e P E : y P Fpeq, we have that Fpeq X rpSRLq˚pAqsc < L. Hence,
x < pSRLq˚rpSRLq˚pAqs.
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(5) It follows directly by putting A “ Ac in part (4) and using part (1).
(6) Let x P pSRLq˚pAXBq “ YtFpeq, e P E : FpeqXpAcYBcq P Lu. Then, DFpeq such that x P Fpeq,

where Fpeq X pAc Y Bcq P L. Therefore, x P Fpeq, Fpeq X Ac P L and x P Fpeq, Fpeq X Bc P L.

Consequently, x P pSRLq˚pAq and x P pSRLq˚pBq. Hence, pSRLq˚pA X Bq Ď pSRLq˚pAq X
pSRLq˚pBq.

(7) Let x < pSRLq˚pA Y Bq “ YtFpeq, e P E : Fpeq X pAc X Bcq P Lu. Then, @e P E : x P Fpeq,
we have that Fpeq X pAc X Bcq < L. Therefore, @e P E : x P Fpeq, we have that Fpeq X Ac < L

and Fpeq X Bc < L. Consequently, x < pSRLq˚pAq and x < pSRLq˚pBq. Hence, pSRLq˚pAq Y
pSRLq˚pBq Ď pSRLq˚pAY Bq.

(8) It follows directly by putting A “ Ac, B “ Bc in part (6) and using part (1).
(9) It follows directly by putting A “ Ac, B “ Bc in part (7) and using part (1).

�

Remark 3.3. Let P “ pX,S,Lq be a soft ideal approximation space and A, B Ď X. Then, the next
examples ensure that

(1) pSRLq˚pXq , X and pSRLq˚pφq , φ;
(2) pSRLq˚pφq , φ and pSRLq˚pXq , X;
(3) pSRLq˚pAq * A,A * pSRLq˚pAq and pSRLq˚pAq * A, A * pSRLq˚pAq;
(4) pSRLq˚pAq Ď pSRLq˚pBq; A Ď B and pSRLq˚pAq Ď pSRLq˚pBq; A Ď B;
(5) pSRLq˚pAq * pSRLq˚rpSRLq˚pAqs and pSRLq˚pAq + pSRLq˚rpSRLq˚pAqs;
(6) pSRLq˚pAq * pSRLq˚rpSRLq˚pAqs and pSRLq˚pAq + pSRLq˚rpSRLq˚pAqs;
(7) pSRLq˚pAX Bq , pSRLq˚pAq X pSRLq˚pBq and pSRLq˚pAY Bq , pSRLq˚pAq Y pSRLq˚pBq.

Example 3.2. Let X “ tx1, x2, x3, x4, x5, x6u, E “ te1, e2, e3, e4, e5u, F : E ÝÑ PpXq, S “ pF, Eq be a
soft set of X, as given in Table 2, and L “ tφ, tx1u, tx6u, tx1, x6uu. From Table 2, we can deduce that

Fpe1q “ tx1, x6u,

Fpe2q “ φ,

Fpe3q “ tx3u,

Fpe4q “ tx1, x2, x3u

Fpe5q “ tx1, x2, x5u.

Hence, we obtain the following results:

Table 2. Boolean tabular representation of the soft set pF, Eq.

Object e1 e2 e3 e4 e5

x1 1 0 0 1 1
x2 0 0 0 1 1
x3 0 0 1 1 0
x4 0 0 0 0 0
x5 0 0 0 0 1
x6 1 0 0 0 0
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(1) pSRLq˚pXq “ YtFpeq, e P E : Fpeq X Xc P Lqu “ tx1, x2, x3, x5, x6u , X. Then, pSRLq˚pφq “
rpSRLq˚pXqsc “ tx4u , φ.

(2) pSRLq˚pφq “ YtFpeq, e P E : Fpeq X φc P Lqu “ tx1, x6u , φ. Then, pSRLq˚pXq “
rpSRLq˚pφqsc “ tx2, x3, x4, x5u , X.

(3) Let A “ tx4u. Then, pSRLq˚pAq “ tx1, x6u. Hence. pSRLq˚pAq * A and A * pSRLq˚pAq.
(4) From part (3), if A “ tx1, x2, x3, x5, x6u, then pSRLq˚pAq “ tx2, x3, x4, x5u. Hence, pSRLq˚pAq * A

and A * pSRLq˚pAq.
(5) Let A “ tx1, x2, x3u and B “ tx1, x2, x4u. Then, pSRLq˚pAq “ tx1, x2, x3, x6u and pSRLq˚pBq “

tx1, x6u. So, pSRLq˚pBq Ď pSRLq˚pAq, but B * A. Also, if A “ tx4, x5, x6u and B “ tx3, x5, x6u,

then
pSRLq˚pAq “ tx4, x5u and pSRLq˚pBq “ tx2, x3, x4, x5u. So, pSRLq˚pAq Ď pSRLq˚pBq but A * B.

(6) From part (4), if A “ tx1, x2, x3, x5, x6u, then pSRLq˚pAq “ tx2, x3, x4, x5u. So,
pSRLq˚rpSRLq˚pAqs “ X. Hence, pSRLq˚pAq + pSRLq˚rpSRLq˚pAqs.

(7) From part (6), if A “ tx1, x2, x3, x5, x6u, then pSRLq˚pAq “ A but
pSRLq˚rpSRLq˚pAqs “ pSRLq˚pAq “ tx2, x3, x4, x5u. Hence, pSRLq˚pAq * pSRLq˚rpSRLq˚pAqs
and pSRLq˚pAq + pSRLq˚rpSRLq˚pAqs.

(8) Consider that L “ tφ, tx4u, tx6u, tx4, x6uu and A “ tx1, x2, x5u. Then,
pSRLq˚pAq “ tx1, x2, x4, x5, x6u. So, pSRLq˚rpSRLq˚pAqs “ tx1, x6u. Hence, pSRLq˚pAq *
pSRLq˚rpSRLq˚pAqs.

(9) Consider that L “ tφ, tx4u, tx5u, tx4, x5uu. If A “ tx1, x2, x3, x5u and B “ tx1, x6u, then
pSRLq˚pAqXpSRLq˚pBq “ tx1, x2, x3, x5uXtx1, x6u “ tx1u but pSRLq˚pAXBq “ pSRLq˚ptx1uq “

φ. Also, if A “ tx2, x3u and B “ tx4, x5, x6u, then pSRLq˚pAq Y pSRLq˚pBq “ tx2, x3, x4, x5u Y

tx4, x6u “ tx2, x3, x4, x5, x6u but pSRLq˚pAY Bq “ X.

Definition 3.5. Let P “ pX,S,Lq be a soft ideal approximation space in which S “ pF, Eq is a soft
set of X; also, an ideal L is given and A Ď X. Based on P, the lower approximation and the upper
approximation, SRLpAq and SRLpAq, are defined respectively, as follows:

SRLpAq “ AX pSRLq˚pAq

SRLpAq “ AY pSRLq˚pAq.

Definition 3.6. Let P “ pX,S,Lq be a soft ideal approximation space and S “ pF, Eq a soft set of X
and let A Ď X. Then, the soft SRL-boundary region BndSRLpAq and the soft SRL-accuracy measure
AccSRLpAq are defined respectively by:

BndSRLpAq “ SRLpAq ´ SRLpAq, AccSRLpAq “
|SRLpAq|

|SRLpAq|
where A , φ.

Proposition 3.4. Let P “ pX,S,Lq be a soft ideal approximation space and A, B Ď X. Then, the
following conditions of the properties are fulfilled.

(1) SRLpφq “ φ and SRLpXq “ X;

(2) SRLpAq Ď A Ď SRLpAq;

(3) SRLpAcq “ rSRLpAqsc and SRLpAcq “ rSRLpAqsc;
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(4) A Ď B ñ SRLpAq Ď SRLpBq and SRLpAq Ď SRLpBq;

(5) SRLrSRLpAqs “ SRLpAq and SRLrSRLpAqs “ SRLpAq;

(6) SRLrSRLpAqs Ď SRLpAq and SRLpAq Ď SRLrSRLpAqs;
(7) SRLpAX Bq Ď SRLpAq X SRLpBq and SRLpAq Y SRLpBq Ď SRLpAY Bq;

(8) SRLpAX Bq Ď SRLpAq X SRLpBq and SRLpAq Y SRLpBq Ď SRLpAY Bq.

Proof. Straightforward. �

Remark 3.4. Any one can define different ideals to obtain an example that is analogous to Example 3.2
to prove that the inclusion in Proposition 3.4 parts (2), (4) and (6)–(8) could not be changed to the
equality.

In what follows, Table 3 summarizes the differences between the proposed properties of the two
styles.

Table 3. Comparison between the first style and the second style according to the properties
in Proposition 2.1. � means that the property holds, while � denotes that the property does
not hold.

The first method The second method
L1 � �
L2 � �
L3 � �
L4 � �
L5 � �
L6 � �
L7 � �
L8 � �
L9 � �
U1 � �
U2 � �
U3 � �
U4 � �
U5 � �
U6 � �
U7 � �
U8 � �
U9 � �

Corollary 3.1. Let P “ pX,S,Lq be a soft ideal approximation space and A Ď X. Then,

aprpAq “ SRpAq Ď aprLpAq “ SRLpAq.

Proof. Straightforward from Definitions 2.5, 2.8, 3.2 and 3.5. �

Theorem 3.1. Let S “ pF, Eq be a full soft set of X, P “ pX,S,Lq be a soft ideal approximation space
and A Ď X. Then,
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(1) aprpAq Ď aprLpAq “ SRLpAq Ď A Ď SRLpAq Ď aprLpAq Ď aprpAq;

(2) aprpAq “ SRpAq Ď SRLpAq Ď A Ď SRLpAq Ď SRpAq Ď aprpAq;
(3) BndSRLpAq Ď BndaprLpAq Ď BndaprpAq and BndSRLpAq Ď BndSRpAq Ď BndaprpAq;
(4) AccSRLpAq ě AccaprLpAq ě AccaprpAq and AccSRLpAq ě AccSRpAq ě AccaprpAq.

Proof.

(1) By Corollary 3.1 and Proposition 3.4, we have that aprpAq Ď aprLpAq Ď SRLpAq Ď A Ď SRLpAq.

To prove that SRLpAq Ď aprLpAq, let x < aprLpAq “ A Y tx P X : De P E, x P Fpeq, Fpeq X A < Lu.
Then, x < A and for all e P E; x P Fpeq we get that Fpeq X A P L. Thus, x < A and x P pSRLq˚pAcq.

That is, x < A and x < rpSRLq˚pAcqsc. Hence, x < SRLpAq. It follows that SRLpAq Ď aprLpAq. To
prove that aprLpAq Ď aprpAq, let x < aprpAq “ tx P X : De P E, rx P Fpeq, Fpeq X A , φsu. Then,
for all e P E : x P Fpeq we have that Fpeq X A “ φ, which means that Fpeq Ď Ac. Thus, x < A and
x < paprLq˚pAq. Therefore, x < aprLpAq. Hence, aprLpAq Ď aprpAq.

(2) The proof is similar to that of part (1).

(3), (4) It is immediately obtained by applying parts (1) and (2). �

Remark 3.5. According to Theorem 3.1, the second style described in Definition 3.5 is the best
technique to enhance approximations and increase the accuracy measure, which means that the
vagueness/uncertainty is decreased by this style more than the other styles given in Definition 3.2,
Definition 2.5 in [28] and Definition 2.8 in [29]. Hence, a decision made according to the calculations
of the style in Definition 3.5 is more applicable based on the decrease to the upper approximations and
the increase to the lower approximations; thus, we get a higher accuracy value than the accuracy values
given by the other styles discussed in [28, 29]. Consider the following as a special case:

(1) If L “ φ and S is a full soft set, then Definition 3.2 is consistent with the previous Definition 2.5
in [28].

(2) If L “ φ, then Definition 3.5 is consistent with the previous definition in [29].

4. Modified soft rough concepts via ideals

In this section, we redefine some soft rough concepts as modified soft rough concepts by utilizing
ideals. Comparisons between the present ideal soft rough concepts and the previous soft rough concepts
in [28, 29] are presented. Finally, some examples are used to explain the current definitions.

Definition 4.1. Let S “ pF, Eq be a full soft set of X and P “ pX,S,Lq be a soft ideal approximation
space. Then, A Ď X is referred to as follows:

(1) A totally SRL (resp. aprLq-definable set if SRLpAq “ SRLpAq “ A (resp. aprLpAq “ aprLpAq “
Aq.

(2) An internally SRL (resp. aprLq-definable set if SRLpAq “ A, SRLpAq , A (resp. aprLpAq “
A, aprLpAq , Aq.

(3) An externally SRL (resp. aprLq-definable set if SRLpAq , A, SRLpAq “ A (resp. aprLpAq ,
A, aprLpAq “ Aq.

(4) A totally SRL (resp. aprLq-rough set if SRLpAq , A , SRLpAq (resp. aprLpAq , A , aprLpAq.
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Definition 4.2. Let S “ pF, Eq be a full soft set of X and P “ pX,Sq a soft approximation space. Then,
A Ď X is referred to as follows:

(1) A totally apr-definable set if aprpAq “ aprpAq “ A.

(2) An internally apr-definable set if aprpAq “ A and aprpAq , A.

(3) An externally apr-definable set if aprpAq , A and aprpAq “ A.

(4) A totally apr -rough set if aprpAq , A , aprpAq.

Remark 4.1. From Definitions 2.10, 4.1 and 4.2 and by using Theorem 3.1, we have the following
diagrams:

(1)
Totally apr-definable totally aprL -definable totally SRL-definable

totally SR-definable

(2)
Totally SRL-rough totally aprL -rough totally apr-rough

totally SR-rough

The following example explains how the implications in the previous diagrams are not reversible.

Example 4.1. Let X “ tx1, x2, x3, x4, x5, x6u, E “ te1, e2, e3, e4, e5, e6, e7, e8u, F : E ÝÑ PpXq, and
S “ pF, Eq be a soft set of X as given in Table 3. From Table 4, we can deduce that

Fpe1q “ tx1, x4, x6u, Fpe2q “ tx6u

Fpe3q “ tx3, x4u, Fpe4q “ tx1, x2, x3u

Fpe5q “ tx1, x2, x4, x5u, Fpe6q “ tx1, x2, x4, x6u

Fpe7q “ tx2, x3, x5u, Fpe8q “ tx2, x3, x6u.

Hence, we obtain the following results:

Table 4. Boolean tabular representation of the soft set in Example 4.1.

Object e1 e2 e3 e4 e5 e6 e7 e8

x1 1 0 0 1 1 1 0 0
x2 0 0 0 1 1 1 1 1
x3 0 0 1 1 0 0 1 1
x4 1 0 1 0 1 1 0 0
x5 0 0 0 0 1 0 1 0
x6 1 1 0 0 0 1 0 1

(1) Consider that L “ tφ, tx2u, tx4u, tx2, x4uu. If A “ tx1, x3, x6u, then pSRLq˚pAq “ φ. So,
SRLpAq “ A Y pSRLq˚pAq “ A Y φ “ A. Also, pSRLq˚pAq “ tx1, x3, x4, x6u. So, SRLpAq “
A X pSRLq˚pAq “ tx1, x3, x6u “ A. Hence, A is a totally SRL-definable set. But aprLpAq “
SRpAq “ X , A. Therefore, A is neither totally aprL -definable nor totally SR-definable set.
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(2) Consider that L “ tφ, tx1u, tx2u, tx3u, tx1, x2u, tx1, x3u, tx2, x3u, tx1, x2, x3uu. If A “ tx1, x2u,

then aprLpAq “ aprLpAq “ A. Thus, A is a totally aprL-definable set. But aprpAq “ X , A.

Therefore, A is not a totally apr-definable set. Also, if A “ tx1, x4, x6u, then SRpAq “ SRpAq “ A.
Therefore, A is a totally SR-definable set. But aprpAq “ X , A. Hence, A is not a totally apr-
definable set.

(3) From part (1), if A “ tx1, x3, x6u, then SRpAq “ tx6u , A and SRpAq “ X , A. Thus, A is a
totally SR-rough set. But SRLpAq “ SRLpAq “ A. So, A is not a totally SRL-rough set.

(4) From part (2), if A “ tx1, x2u, then aprpAq “ φ , A and aprpAq “ X , A. So, A is a totally
apr-rough set. But aprLpAq “ aprLpAq “ A. Thus, A is not a totally aprL-rough set.

(5) Let A “ tx4, x5, x6u. Then, aprpAq “ tx6u , A and aprpAq “ X , A. So, A is a totally apr-rough

set. But SRpAq “ A. Therefore, A is not a totally SR-rough set. Note that A is an externally
SR-definable set.

(6) Consider that L “ tφ, tx2u, tx4u, tx2, x4uu and A “ tx1, x2, x4u. Then, aprLpAq “ φ , A and

aprLpAq “ X , A. So, A is a totally aprL-rough set. But SRLpAq “ A. Therefore, A is not a
totally SRL-rough set. Also, A is an externally SRL-definable set. If A “ tx1, x3, x5, x6u, then
aprLpAq “ A and aprLpAq “ X , A. Hence, A is an internally aprL-definable set.

Proposition 4.1. Let P “ pX,S,Lq be a soft ideal approximation space in which S “ pF, Eq is a soft
set of X and A Ď X. Then, the following holds:

(1) A is a totally SRL-definable set iff AccSRLpAq “ 1.
(2) A is a totally aprL-definable set iff AccaprLpAq “ 1.
(3) A is a totally apr-definable set ùñ AccaprpAq “ 1.

Proof.

(1) Let A be a totally SRL-definable set. Then, SRLpAq “ SRLpAq “ A. Therefore, AccSRLpAq “
|A|
|A| “

1.
On the other hand, if AccSRLpAq “ 1, then SRLpAq “ SRLpAq, but from Proposition 3.4, we have that

SRLpAq Ď A Ď SRLpAq; then, SRLpAq “ SRLpAq “ A. Hence, A is a totally SRL-definable set.

(2), (3) Similar to the proof of part (1). �

Remark 4.2. In this example, it is shown that the inverse of property (3) in Proposition 4.1 did not hold.

Example 4.2. In Example 3.1, if A “ X, then aprpAq “ aprpAq “ tx1, x2, x3, x5, x6u , X. Hence,
AccaprpAq “ 1, but A is not a totally apr-definable set.

Definition 4.3. Let P “ pX,S,Lq be a soft ideal approximation space such that S “ pF, Eq is a soft
set over X, A Ď X and x P X. Then, the SRL, aprL and apr-soft rough membership relations, denoted
respectively by PSRL

, PSRL , PaprL
, PaprL and Papr, Papr, are given as follows:

x PSRL
A iff x P SRLpAq, x PaprL

A iff x P aprLpAq and x Papr A iff x P aprpAq,

x PSRL A iff x P SRLpAq, x PaprL A iff x P aprLpAq and x Papr A iff x P aprpAq.

Proposition 4.2. Let P “ pX,S,Lq be a soft ideal approximation space in which S “ pF, Eq is a soft
set of X. If A Ď X, x P X, then
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(1) x PSRL
A ñ x P A and x PaprL

A ñ x P A.
(2) x <SRL A ñ x < A and x <aprL A ñ x < A.

Proof. It follows directly from Definition 4.3 and Propositions 3.2 and 3.4. �

Remark 4.3. Let S “ pF, Eq be a full soft set of the universal set X and P “ pX,S,Lq be a soft ideal
approximation space. Then, from Definitions 2.11 and 4.3, and by using Theorem 3.1, we have the
following diagrams:

x PSRL A x PaprL A x Papr A

x PSR A

x Papr A x PaprL
A x PSRL

A

x PSR A
The next example explains the irreversible parts of the implications in these diagrams.

Example 4.3. (1) In Example 4.1 part (1), we have that A “ tx1, x3, x6u, aprLpAq “ SRpAq “ X and
SRLpAq “ A. Hence, x2, x4, x5 PaprLpAq and x2, x4, x5 PSRpAq but x2, x4, x5 <SRLpAq.

(2) In Example 4.1 part (1), we have that A “ tx1, x2u, aprLpAq “ A,SRpAq “ tx1, x2, x5u and
aprpAq “ X. Hence, x3, x4, x5, x6 PaprpAq but x3, x4, x5, x6 <aprLpAq and x3, x4, x6 <SRpAq.

(3) In Example 4.1 part (3), we have that A “ tx1, x3, x6u, SRLpAq “ A and SRpAq “ tx6u. Hence,
x1, x3 PSRL

pAq but, x1, x3 <SR
pAq.

Definition 4.4. Let P “ pX,S,Lq be a soft ideal approximation space in which S “ pF, Eq is a soft set
of X and A, B Ď X. Then, the SRL, aprL and apr-soft rough inclusion relations, denoted respectively
by Ă

ãSRL
,
á
ĂSRL , Ă

ãaprL
,
á
ĂaprL and Ă

ãapr
,
á
Ăapr, are given as follows:

A Ă
ãSRL

B iff SRLpAq Ď SRLpBq, A Ă
ãaprL

B iff aprLpAq Ď aprLpBq,

A
á
ĂSRL B iff SRLpAq Ď SRLpBq, A

á
ĂaprL B iff aprLpAq Ď aprLpBq,

A Ă
ãapr

B iff aprpAq Ď aprpBq, A
á
Ăapr B iff aprpAq Ď aprpBq.

Proposition 4.3. Let P “ pX,S,Lq be a soft ideal approximation space in which S “ pF, Eq is a soft
set of X and A, B Ď X. Then, we have the following:

(1) A Ď B ñ A Ă
ãSRL

B, A Ă
ãaprL

B and A Ă
ãapr

B.

(2) A Ď B ñ A
á
ĂSRL B, A

á
ĂaprL B and A

á
Ăapr B.

Proof. It follows directly from Definition 4.4, Theorem 2.2 and Propositions 3.2 and 3.4. �

Remark 4.4. The following example explains how the converse of Proposition 4.3 did not hold.

Example 4.4. In Example 4.1, consider that L “ tφ, tx2u, tx4u, tx2, x4uu. Then, the following holds:

(1) If A “ tx1, x3u and B “ tx2, x4u, then aprpAq “ φ, aprLpAq “ tx1, x3u and aprpBq “ aprLpBq “
φ. Hence, B Ă

ãaprL
A and B Ă

ãapr
A. However, B * A.
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(2) If A “ tx1, x2u and B “ tx1, x4u, then aprpAq “ aprLpAq “ X and aprpBq “ aprLpBq “ X.
Hence, A

á
ĂaprL B and A

á
Ăapr B. However, A * B.

Definition 4.5. Let P “ pX,S,Lq be a soft ideal approximation space in which S “ pF, Eq is a soft
set of X and A, B Ď X. Then, the SRL and aprL-soft rough set relations, denoted respectively by hSRL ,
»SRL and haprL , »aprL are given as follows:

AhSRLB iff SRLpAq “ SRLpBq and AhaprLB iff aprLpAq “ aprLpBq,

A»SRLB iff SRLpAq “ SRLpBq and A»aprLB iff aprLpAq “ aprLpBq,

A«SRLB iff AhSRLB, A»SRLB and A«aprLB iff AhaprLB, A»aprLB.

Remark 4.5. The next example interprets Definition 4.5.

Example 4.5. In Example 4.1, consider that L “ tφ, tx3uu. If A “ tx1u and B “ tx2u, then
aprLpAq “ SRLpAq “ aprLpBq “ SRLpBq “ φ and aprLpAq “ SRLpAq “ aprLpBq “ SRLpBq “ X.
Consequently, AhSRLB, A»SRLB, A«SRLB and AhaprLB, A»aprLB, A«aprLB.

Proposition 4.4. Let P “ pX,S,Lq be a soft ideal approximation space and A, B, A1, B1 Ď X. Then,
the following applies:

(1) A “ B ñ A«SRLB and A«aprLB.
(2) AchSRLBc ñ AhSRLB and Ac»SRLBc ñ A»SRLB.
(3) A»aprLA1, B»aprLB1 ñ pAY Bq»aprLpA1 Y B1q.

(4) A»aprLB ñ A»aprLpAY Bq»aprLB and pAY Bcq»aprLX.
(5) AhSRLSRLpAq, A»SRLSRLpAq and AhaprLaprLpAq.
(6) A Ď B, BhSRLφñ AhSRLφ and A Ď B, BhaprLφñ AhaprLφ.

(7) A Ď B, B»SRLφñ A»SRLφ and A Ď B, B»aprLφñ A»aprLφ.

(8) A Ď B, AhSRLX ñ BhSRLX and A Ď B, AhaprLX ñ BhaprLX.
(9) A Ď B, A»SRLX ñ B»SRLX and A Ď B, A»aprLX ñ B»aprLX.

Proof. It follows directly from Definition 4.5 and Propositions 3.2 and 3.4. �

Lemma 4.1. Let P “ pX,S,Lq be a soft ideal approximation space and S “ pF, Eq be an intersecting
complete soft set of X. Then, we have

aprLpAX Bq “ aprLpAq X aprLpBq and SRLpAX Bq “ SRLpAq X SRLpBq for all A, B Ď X.

Proof. Usually, aprLpA X Bq Ď aprLpAq X aprLpBq. Thus, we need to prove the reverse inclusion
aprLpA X Bq Ě aprLpAq X aprLpBq. Let x P aprLpAq X aprLpBq. Then, there exist e1, e2 P E with
x P Fpe1q, Fpe1qXAc P L and x P Fpe2q, Fpe2qXBc P L.By assuming that S is an intersecting complete
soft set, we ensure that there is an e3 P E with x P Fpe3q “ Fpe1q X Fpe2q and Fpe3q X pAX Bqc P L.
Hence, we conclude that x P aprLpA X Bq. In a similar way, we can deduce that SRLpA X Bq “
SRLpAq X SRLpBq. �

Proposition 4.5. Let P “ pX,S,Lq be a soft ideal approximation space and S “ pF, Eq be an
intersecting complete soft set of X. Then, for A, B, A1, B1 Ď X, we have the following:

(1) AhaprLB ñ AX BchaprLφ and AhSRLB ñ AX BchSRLφ.
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(2) AhaprLB ñ AhaprLpAX BqhaprLB and AhSRLB ñ AhSRLpAX BqhSRLB.
(3) AhaprLA1, BhaprLB1 ñ pAXBqhaprLpA1XB1q and AhSRLA1, BhSRLB1 ñ pAXBqhSRLpA1XB1q.

Proof. It follows directly from Definition 4.5 and Lemma 4.1. �

Proposition 4.6. Let P “ pX,S,Lq be a soft ideal approximation space and S “ pF, Eq be a soft set of
X. Then, for all A Ď X we have the following:

(1) aprLpAq “
Ş

tB Ď X : AhaprLBu and SRLpAq “
Ş

tB Ď X : AhSRLBu.

(2) aprLpAq Ě
Ť

tB Ď X : A»aprLBu and SRLpAq “
Ť

tB Ď X : A»SRLBu.

Proof. (1) Let x P aprLpAq. If AhaprLB, then aprLpAq “ aprLpBq. But aprLpBq Ď B for any B Ď X.
It follows that x P aprLpAq “ aprLpBq Ď B. Hence, x P XtB Ď X : AhaprLBu, so aprLpAq Ď
XtB Ď X : AhaprLBu. Now, we deduce that the reverse inclusion also holds. Let x P XtB Ď X :
AhaprLBu. Then, by Proposition 4.4, we have that AhaprLaprLpAq, and it follows that x P aprLpAq.
Therefore, XtB Ď X : AhaprLBu Ď aprLpAq. Consequently, we conclude that aprLpAq “ XtB Ď
X : AhaprLBu. Similarly, we can deduce that SRLpAq “

Ş

tB Ď X : AhSRLBu.
(2) Let x P YtB Ď X : A»aprLBu. Then, there exists some B Ď X with x P B and A»aprLB. But

B Ď aprLpBq from Proposition 3.2; thus, x P B Ď aprLpBq “ aprLpAq. Hence, we conclude that
aprLpAq Ě

Ť

tB Ď X : A»aprLBu, as required. Similarly, we can prove that SRLpAq Ě
Ť

tB Ď
X : A»SRLBu. Also, we can deduce that the reverse inclusion

Ť

tB Ď X : A»SRLBu Ě SRLpAq
holds. Let x < YtB Ď X : A»SRLBu. Then, x < B for any B Ď X with A»SRLB. Thus, by
Proposition 4.4, we have that A»SRLSRLpAq, and it follows that x < SRLpAq. Consequently, we
conclude that SRLpAq “ YtB Ď X : A»SRLBu.

�

Remark 4.6. The following example explains Proposition 4.6.

Example 4.6. In Example 4.1, consider that L “ tφ, tx2u, tx4u, tx2, x4uu. For A “ tx3, x5u Ď X, we
have that aprLpAq “ SRLpAq “ tx3u, and aprLpAq “ tx1, x2, x3, x5u with SRLpAq “ tx2, x3, x4, x5u.

Then, one can see that aprLpAq “ SRLpAq “
Ş

tB Ď X : AhaprLBu “ tx3u and SRLpAq “
Ť

tB Ď
X : A»SRLBu “ tx2, x3, x4, x5u. Also,

Ť

tB Ď X : A»aprLBu “ tx2, x3, x5u & aprLpAq and
Ť

tB Ď X :
A»aprLBu “ tx2, x3, x5u & aprLpAq.

5. Two approaches for soft rough set approximations based on ideals

In this section, a new generalization derived as based on two ideals of the best method that has
been proposed in Definition 3.5, called soft bi-ideal rough set approximations, is presented. This
generalization is analyzed by using two distinct methods. Their properties are investigated, and the
relationships between these methods are studied.

Definition 5.1. The quadruple pX,S,L1,L2q is called a soft bi-ideal approximation space, S is a
soft set defined on X, L1,L2 are two ideals on X, and pX,S,ă L1,L2 ąq is called a soft ideal
approximation space related to pX,S,L1,L2q. For any subset A of X, the lower approximation and the
upper approximation, i.e., pSRq˚ăL1,L2ąpAq and pSRq˚

ăL1,L2ą
pAq, are defined respectively, as follows:

pSRq˚ăL1,L2ąpAq “ YtFpeq, e P E : Fpeq X Ac
Pă L1,L2 ąu
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pSRq˚ăL1,L2ą
pAq “ rpSRq˚ăL1,L2ąpA

c
qs

c.

Remark 5.1. The lower approximation and the upper approximation given in Definition 5.1 are
consistent with the approximations given in Definition 3.4 if L1 “ L2. Also, the confirmed properties
of the soft approximations in Definition 5.1 are those given in Proposition 3.3.

Definition 5.2. Let pX,S,L1,L2q be a soft bi-ideal approximation space. For any subset A of X, the soft
lower approximation and the soft upper approximation, SR

ăL1,L2ą
pAq and SRăL1,L2ąpAq, are defined

respectively, as follows:

SR
ăL1,L2ą

pAq “ AX pSRq˚ăL1,L2ąpAq

SRăL1,L2ąpAq “ AY pSRq˚ăL1,L2ą
pAq.

Remark 5.2. The lower approximation and the upper approximation given in Definition 5.2 are
consistent with the approximations given in Definition 3.5 if L1 “ L2. Also, the confirmed properties
of the soft approximations in Definition 5.2 are those given in Proposition 3.4.

Definition 5.3. Let pX,S,L1,L2q be a soft bi-ideal approximation space. For any subset A of X, the
soft lower approximation and the soft upper approximation, SR

L1,L2
pAq and SRL1,L2pAq, are defined

respectively, as follows:

SR
L1,L2

pAq “ SRL1pAq Y SRL2pAq,

SRL1,L2pAq “ SRL1pAq X SRL2pAq,

where SRL1pAq and SRL2pAq are the lower approximation and the upper approximation of A as related
to Li, i P t1, 2u as in Definition 3.5.

Remark 5.3. The lower approximation and the upper approximation given in Definition 5.3 are
consistent with the approximations given in Definition 3.5 if L1 “ L2. Also, it should be noted that the
operators SR

L1,L2
pAq and SRL1,L2pAq satisfy the conditions of the properties given in Proposition 3.4.

Definition 5.4. Let pX,S,L1,L2q be a soft bi-ideal approximation space and A Ď X. Then, the soft
boundary regions BndăL1,L2ąpAq and BndL1,L2pAq and the soft accuracy measures
AccăL1,L2ąpAq and AccL1,L2pAq are defined respectively, as follows:

BndăL1,L2ąpAq “ SRăL1,L2ąpAq ´ SR
ăL1,L2ą

pAq and BndL1,L2pAq “ SRL1,L2pAq ´ SR
L1,L2

pAq,

AccăL1,L2ąpAq “
|SR

ăL1,L2ą
pAq|

|SRăL1,L2ąpAq|
and AccL1,L2pAq “

|SR
L1,L2

pAq|

|SRL1,L2pAq|
.

Theorem 5.1. Let pX,S,L1,L2q be a soft bi-ideal approximation space and A Ď X. Then, the following
holds:

(1) SRăL1,L2ąpAq Ď SRL1,L2pAq.

(2) SR
L1,L2

pAq Ď SR
ăL1,L2ą

pAq.

(3) BndăL1,L2ąpAq Ď BndL1,L2pAq.
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(4) AccL1,L2pAq Ď AccăL1,L2ąpAq.

Proof. (1) Let x P SRăL1,L2ąpAq. Then, x P A or x P pSRq˚
ăL1,L2ą

pAq. So, x P A or @e P E : x P Fpeq,
and we get that FpeqXA <ă L1,L2 ą . First choice, if x P A, then x P SRL1pAq and x P SRL2pAq.
Thus, x P SRL1,L2pAq. Second choice, if @e P E : x P Fpeq, we have that Fpeq X A <ă L1,L2 ą;
then, Fpeq X A < L1 and Fpeq X A < L2 @e P E : x P Fpeq, and thus x < pSRL1q˚pA

cq and
x < pSRL2q˚pA

cq. That means that x P pSRL1q
˚pAq and x P pSRL2q

˚pAq by Definition 3.4. Thus,
x P SRL1pAq X SRL2pAq. This means that x P SRL1,L2pAq. Hence, SRăL1,L2ąpAq Ď SRL1,L2pAq.

(2) Let x P SR
L1,L2

pAq. Then, x P SRL1pAq or x P SRL2pAq. Therefore, for some e P E : x P Fpeq,
we have that Fpeq X Ac P L1 or Fpeq X Ac P L2. Since L1,L2 Ďă L1,L2 ą, then for some
e P E : x P Fpeq we have that Fpeq X Ac Pă L1,L2 ą . Thus, x P SR

ăL1,L2ą
pAq. Hence,

SR
L1,L2

pAq Ď SR
ăL1,L2ą

pAq.
(3), (4) It is immediately obtained by applying parts (1) and (2).

�

Proposition 5.1. Let pX,S,L1,L2q be a soft bi-ideal approximation space and A Ď X. Then, the
following holds:

(1) SRăL1,L2ąpAq Ď SRL1,L2pAq Ď SRLipAq @i P t1, 2u.
(2) SRLipAq Ď SR

L1,L2
pAq Ď SR

ăL1,L2ą
pAq @i P t1, 2u.

(3) BndăL1,L2ąpAq Ď BndL1,L2pAq Ď BndSRLi
pAq @i P t1, 2u.

(4) AccSRLi
pAq Ď AccL1,L2pAq Ď AccăL1,L2ąpAq @i P t1, 2u.

Proof. It directly follows from Definition 5.3 and Theorem 5.1. �

Remark 5.4. From Theorem 5.1, we deduce that the boundary region defined by Definition 5.2 is
smaller than that boundary region computed by applying Definition 5.3. Consequently, the accuracy
value computed based on Definition 5.2 is higher than the accuracy value computed based on
Definition 5.3. In the next section, we introduce two medical applications to clarify the advantages
of using these recent methods to make a decision.

6. Medical applications in decision-making problems

In this section, we show the good performance of the aforementioned approaches as compared to
their counterpart approaches that exist in literature [28, 29] by providing two practical applications.

Example 6.1. Medical application: Decision-making for influenza problem:
The aim of this example is to illustrate the advantage of the approximations defined in Definitions 3.2
and 3.5 as the best tools to detect the critical symptoms of influenza infections. The information in
Table 5 was adopted from [31, 32]. In this example, let pF, Eq describe the symptoms of patients
suspected of having influenza that any hospital would consider before making a decision. The most
common symptoms (set of attributes) of influenza are as follows: Fever, respiratory issues, nasal
discharge, cough, headache, lethargy and sore throat. It was taken from six patients under medical
examination. So, the set of objects is X “ tx1, x2, x3, x4, x5, x6u, and the set of decision attributes is
E “ te1, e2, e3, e4, e5, e6, e7u, such that

e1 “ the parameter “fever”,
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e2 “ the parameter “respiratory issues”,

e3 “ the parameter “nasal discharges”,

e4 “ the parameter “cough”,

e5 “ the parameter “headache”,

e6 “ the parameter “sore throat”,

e7 “ the parameter “lethargy”.

Consider the mapping F : E ÝÑ PpXq. From Table 5, we can deduce that

Fpe1q0 “ tx1, x3, x4, x5, x6u Fpe2q “ tx1, x2u,

Fpe3q “ tx1, x2, x4u Fpe4q “ tx1u,

Fpe5q “ tx3, x4u Fpe6q “ tx2, x4u,

Fpe7q “ tx1, x3, x5, x6u.

Therefore, Fpe1q indicates that patients have a fever, and the functional value is the set
tp1, p3, p4, p5, p6u. Thus, pF, Eq could be described as a set of approximations, as explained in Table 5.

Table 5. Tabular representation of the soft set pF, Eq in the above example.

Patients e1 e2 e3 e4 e5 e6 e7

x1 1 1 1 1 0 0 1
x2 0 1 1 0 0 1 0
x3 1 0 0 0 1 0 1
x4 1 0 1 0 1 1 0
x5 1 0 0 0 0 0 1
x6 1 0 0 0 0 0 1

Consider that L “ tφ, tx1u, tx2u, tx3u, tx1, x2u, tx1, x3u, tx2, x3u, tx1, x2, x3uu. A comparison
between the introduced methods and the previous methods is shown in Tables 6 and 7. For example,
take a set of patients A “ tx3, x4, x5u; then, the soft boundary region (BndSRLpAq) and soft accuracy
measure (AccSRLpAq) by Definition 3.5 are φ and 1, respectively. Alternatively, BndaprpAq and
AccaprpAq are tx1, x2, x5, x6u and 1{3, respectively. Also, BndSRpAq and AccSRpAq are tx5, x6u and 1{2,
respectively, BndaprLpAq and AccaprLpAq are tx1, x2, x5, x6u and 1{3, respectively. If we take another set
such that A “ tx2, x4, x5, x6u, then BndSRLpAq and AccSRLpAq) are φ and 1, respectively. Alternatively,
BndaprpAq and AccaprpAq are tx1, x3, x5, x6u and 1{3, respectively. Also, BndSRpAq and AccSRpAq
are tx3, x5, x6u and 2{5, respectively and BndaprLpAq and AccaprLpAq are tx1u and 5{6, respectively.
According to the above discussion, Definition 3.5 gives us a smaller boundary region and a higher
accuracy value than the ones computed using Definition 3.2 and the methods in [28,29]. Additionally,
it is clear that the proposed approach in Definition 3.2 and its counterpart introduced in [29] are
different in general. Hence, a decision made according to the calculations of our current technique in
Definition 3.5 is more accurate.

Example 6.2. Medical application: Decision-making for a heart attack problem:
The Cardiology Department in Al-Azhar University [33], in this example, saved the data showed in
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Table 8. We used these data and applied the techniques described in Definitions 5.2 and 5.3 to obtain
the best decision for heart attacks. Table 8 represents the set of objects (patients) as

X “ tx1, x2, x3, x4, x5, x6, x7u,

and the set of decision parameters (set of symptoms ) is E “ te1, e2, e3, e4, e5u, meaning that

e1 “ the parameter “Breathlessness”,

e2 “ the parameter “Orthopnea”,

e3 “ the parameter “ Paroxysmal nocturnal dyspnea”,

e4 “ the parameter “Reduced exercise tolerance”,

e5 “ the parameter “Ankle swelling ”.

The decision of a heart attacks is confirmed by“Decision” as explained in Table 8.
From Table 8, we can deduce that

Fpe1q “ tx1, x3, x5, x6, x7u Fpe2q “ tx1, x3, x6u Fpe3q “ tx1, x3, x7u

Fpe4q “ X, Fpe5q “ tx2, x3, x5, x6u.

Consequently, anyone can present two ideals to illustrate that the approximations given in
Definition 5.2 are superior to those ones given in Definition 5.3 by extending tables similar to Tables 6
and 7, and by comparing the resultant accuracy.
For example, let L1 “ tφ, tx2uu and L2 “ tφ, tx3u, tx5u, tx3, x5uu be two ideals on X. Therefore, we
have that ă L1,L2 ą“ tφ, tx2u, tx3u, tx5u, tx2, x3u, tx2, x5u, tx3, x5u, tx2, x3, x5uu.

From Table 8, the patients tx6, x7u were surely diagnosed with heart attacks. Thus, we respectively
computed the soft lower, soft upper, soft boundary and soft accuracy measure of A to be given as
follows:

(1) The approach in Definition 5.3 yields φ, X, X and 0. This means that the patients x6 and x7 did not
experienced heart attacks, which is a contradiction to the “yes” values in Table 8. So, we could
not determine whether a patient suffered a heart attack.

(2) The approach in Definition 5.2 yields tx6, x7u, X, tx1, x2, x4, x4, x5u and 2{7. This means that the
patients tx6, x7u surely experienced a heart attack according to the techniques of Definition 5.2
which is consistent with Table 8. As a result, we were able to determine whether a patient suffered
a heart attack. Additionally, the soft boundary region decreased and the soft accuracy measure
was higher.

At the end, it should be noted that the use of the soft rough technique utilizing ideals as detailed
in our new proposal in Definition 5.2 also refines the primary evaluation results of an expert group
and thus allows us to select the optimal object in a more reliable manner. Specifically, the soft lower
approximation can be used to add the optimal objects that have possibly been neglected by some
experts in the primary evaluation, while the soft upper approximation can be used to remove the objects
that have been improperly selected as the optimal objects by some experts in the primary evaluation.
Therefore, considering that the subjective aspect of decision making is considered and described by
using the evaluation soft set in our best method, as based the two ideals in Definition 5.2, the use of
soft rough sets could, to some extent, automatically reduce the errors caused by the subjective nature
of the evaluation given by an expert group in some decision-making problems.
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Table 7. Comparison of the accuracy measure results for a set A Ď X as obtained by using
the proposed approaches in Definitions 3.2 and 3.5 and the previous approaches [28, 29].

Approach in [28] Approach in [29] Our first approach Our second approach

Patients AccaprpAq AccSRpAq AccaprLpAq) AccSRLpAq
tx1u 1/6 1/3 1 1
tx1, x2u 1/3 1/2 1 1
tx1, a3u 1/6 1/4 1/2 1/2
tx1, x5u 1/6 1/3 1/5 1/3
tx2, x4u 1/3 1 1/3 1
tx3, x4u 1/3 1/2 1/3 1/2
tx1, x2, x5u 1/3 1/2 1/3 1/2
tx1, x3, x5u 1/6 1/4 1/5 1/4
tx1, x5, x6u 1{6 1/3 1/5 1/3
tx2, x3, x4u 1{2 3{5 1{2 3/5
tx2, x4, x5u 1{3 2{5 1/3 2/5
tx3, x4, x5u 1{3 1/2 1{3 1/2
tx1, x3, x5, x6u 2{3 1 4{5 1
tx2, x3, x4, x5u 1{2 3{5 1/2 3/5
tx2, x4, x5, x6u 1{3 2{5 5/6 1
tx3, x4, x5, x6u 1{3 1{2 2/3 1
tx2, x3, x4, x5, x6u 1{2 3{5 5/6 1

Table 8. Tabular representation of the soft set pF, Eq.

Patients e1 e2 e3 e4 e5 Decision
x1 1 1 1 1 0 yes
x2 0 0 0 1 1 no
x3 1 1 1 1 1 yes
x4 0 0 0 1 0 no
x5 1 0 0 1 1 no
x6 1 1 0 1 1 yes
x7 1 0 1 1 0 yes

7. Conclusions

This paper is a modification and could be a generalization of the roughness of soft sets.
Two new approximations called soft ideal rough approximations, which generalize the old soft
approximations [28, 29], have been proposed. It is proved that the two proposed approaches satisfy
the conditions of the main properties established in Pawlak’s model. Moreover, comparisons among
these approaches and previous ones [28, 29] have been discussed. Moreover, we proved that our
second approach defined in Definition 3.5, is the best one since it produces smaller boundary regions
and greater accuracy values than the corresponding boundary regions and accuracy values obtained
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via our first method in Definition 3.2 and those introduced in [28, 29]. Furthermore, two new soft
approximation spaces based on two ideals, called soft bi-ideal approximation spaces, have been
introduced in Definitions 5.2 and 5.3. The properties and results of these soft bi-ideal rough sets have
been presented. Also, the comparisons between these methods have been investigated. These methods
can be extended by using n-ideals. The importance of the introduced soft approximations is that they
are dependent on the concept of “ideal” which effectively minimizes the ambiguity raised in real-life
problems and results in better decisions. Therefore, two medical applications have been offered to
highlight the effect of incorporating ideals into the current approaches. We demonstrated in the first
proposed application that our strategies reduce border regions and increase the accuracy measure of
the sets more than the approaches shown in [28,29]. In the second medical application, we proved that
the approximations explained in Definition 5.2 yield a smaller boundary and a higher accuracy than
those obtained by applying Definition 5.3, and this was achieved by comparing the resultant boundary
and accuracy results. In the two medical applications, our techniques handled the imperfect data for
symptoms, which automatically made patient diagnosis simple and accurate. As a result, medical
personnel can make more accurate decisions about patient diagnosis. In future work, we will introduce
the notion of fuzzy soft ideal rough approximation and conduct further research in this direction.
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