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Abstract: Modern social networks are especially beneficial for spreading rumors since they perform 

as multichannel communication platforms. The spread of false information has a detrimental impact 

on people, communities, and businesses. Media reports significantly affect rumor propagation by 

providing inhibiting factors. In this paper, we propose a new ISCRM fractional-order model to analyze 

the law of rumor propagation and provide appropriate control strategies. First, under fractional 

differential equations, the boundedness and non-negativeness of the solutions are obtained. Second, 

the local and global asymptotic stability of the rumor-free equilibrium and rumor-permanence 

equilibrium are proved. Third, employing Pontryagin’s maximum principle, the conditions necessary 

for fractional optimum control are derived for the rumor model, and the optimal solutions are analyzed. 

Finally, several numerical simulations are presented to verify the accuracy of the theoretical results. 

For instance, while media reports can mitigate the propagation of rumors across various dynamic 

regions, they are unable to completely restrain rumor spread. 
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1. Introduction 

A rumor refers to unsubstantiated information, which has the potential to rapidly and extensively 

disseminate through various communication channels [1]. In the past, rumors were disseminated 

through oral communication as well as various forms of print media, radio broadcasts, and other 

mediums. Contemporary social networks can function as an appropriate platform for the rumor 
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propagation, while also satisfying individuals’ informational needs [2]. For example, individuals’ 

excessive salt consumption can be attributed to the panic of the Fukushima nuclear accident-related 

rumor. There have been numerous rumors that emerged a range of adverse impacts on the world since 

the outbreak of COVID-19 [3]. The security of individuals and their belongings is significantly 

compromised due to these rumors. Therefore, it is imperative to grasp the rules of communicating with 

scientists and create effective methods to intervene, defend, and prevent rumors from spreading. 

Since rumor spreading is the analogy to the disease’s transmission among individuals, many 

scholars employ similar rumor models. Early studies on rumor propagation focused a tiny community 

through individual interaction. According to rumor propagation, the crowd can be classified into three 

categories: ignorant, spreader, and stifler. In 1964, Daley and Kendall proposed the classic DK rumor-

spreading model, which is the first cabin model in rumor propagation [4]. Furthermore, in 1973, Maki 

and Thompson proposed the MT model as an extension of the DK model [5]. According to the MT 

model, once interpersonal communication occurs, the former will no longer propagate. According to 

several scholars, the complexity of rumor propagation processes cannot be adequately captured by DK 

and MK models across various network settings, especially in the context of large-scale social 

networks. Zanette proposed a conceptual framework to simulate the dynamics of rumor propagation 

in small-world networks [6]. By integrating the MK model and the SIR model, Moreno et al. developed 

a novel rumor propagation model, demonstrating that network topologies can significantly influence 

the spread of rumors on scale-free networks [7]. To gain a deeper comprehension of rumor propagation, 

an increasing number of factors are being taken into account through the development of more rational 

models; for instance, hesitating mechanisms [8], inhibiting mechanisms, and attitude adjustment [9], etc. 

The innovations of these scholars, to a certain extent, promote rumor propagation to advance research 

under a variety of changing factors. 

Nowadays, given the multiple channels of rumor propagation, individuals can quickly obtain 

information on social media platforms, thereby complicating the regulation of rumor propagation. Due 

to the significant damage caused by rumors, several control measures aimed at minimizing losses have 

been proposed by scholars; for instance, optimal control strategies [10], time-dependent controller [11], 

event-triggered control [12], and so on. In reality, when rumors prevail on social media platforms, the 

media coverage disseminates information to debunk these rumors and intervene in individuals’ 

behavior, thereby mitigating social panic and upholding social harmony. Cheng et al. incorporated a 

nonlinear factor into the contact rate by integrating optimal control and time delay [13]. Huo et al. 

introduced a nonlinear function to effectively capture the impact of misinformation and media reports 

on the spread of rumors [14]. Pan et al. investigated a novel rumor model that integrated media 

coverage and rumor refuters [15]. Further on, Guo et al. proposed two models considering media 

coverage and a refutation mechanism, respectively [16,17]. Numerous mathematical models are 

available to describe how media coverage affects rumor propagation. Therefore, our proposed model 

must account for the impact of media coverage on the dissemination of rumors among individuals. 

Evidently, the aforementioned models have predominantly explored the propagation mechanism of 

rumors in an integer order. 

However, the dynamic behavior of rumors is influenced by historical information. Fractional 

calculus, as an extension of integral calculus, provides innovative approaches for characterizing the 

memory effects, which is a generalization of integral calculus. Fractional order Caputo derivatives, 

extensively employed in various fields such as science, biology, engineering, computer science, chaos 

theory, and others, have witnessed significant advancements in recent decades [18–25]. The literature 
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offers a wide range of models described by fractional derivatives, such as the SIR or SIRS model [26, 27], 

the SEI model [28], the SEIR model [29–31], the SIQR model [32] and the SEIQRS model [33]. Rumor 

diffusion is similar to virus propagation and can be effectively modeled using fractional calculus. Singh 

proposed the dynamics of a rumor propagation in a social network, utilizing the Atangana-Baleanu 

derivative [34]. Ye et al. investigated a fractional-order reaction-diffusion rumor model in two linguistic 

contexts [35]. The impact of memory was investigated, and the findings clearly demonstrate that 

fractional calculus can be employed to more accurately characterize the process of rumor propagation. 

Revisiting the findings of the previous study, we establish an Ignorants-Spreaders-Calmness-

Removers-Media Reports (ISCRM) rumor propagation model with media reports under the Caputo 

sense by incorporating the memory effect. The subsequent sections of this manuscript are organized 

as follows: In Section 2, we provide a concise overview of fundamental definitions pertaining to 

fractional calculus. In Section 3, we propose an enhanced fractional-order ISCRM rumor model. In 

Section 4, the local and global asymptotic stability of the equilibria is investigated. In Section 5, the 

optimal control problem is addressed. In Section 6, numerical simulation is examined. In Section 7, the 

paper culminates with the presentation of our findings. 

2. Preliminaries for the Caputo sense 

Various definitions exist regarding fractional derivatives, with the Caputo sense being provided 

as follows [36]. 

Definition 2.1. For Riemann-Liouville fractional integration with respect to order  , the function 

( )f t  is presented as 

( ) ( )
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represents the Gamma function. 

Definition 2.2. Define 1 ,  l l l N−    . The Riemann-Liouville fractional derivative with respect 

to order   is presented as [36] 
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Remark 2.1. The combination of Definitions 2.1 and 2.2 yields ( )( ) ( )
0 0

,RL

t t t tD I f t f t  =  giving the 

Riemann-Liouville fractional integrations and derivatives with respect to order  . 

Definition 2.3. The Caputo fractional derivative with respect to order   is presented as follows: 

( )
( )

( )

( )

( )

0

0

1

1
,  1 ,

, ,

l
t

lt
C

t t
l

l

f
d l l

l t
D f t

d
f t l

dt






 

 



− +


−  

 − −
= 


=



     (2.3) 



9724 
 

AIMS Mathematics  Volume 9, Issue 4, 9721–9745. 

where l  denotes the smallest integer number such that l  . 

Remark 2.2. The equivalence between the definitions of Riemann-Liouville fractional integration and 

Caputo fractional integration are the same. Therefore, from Definitions 2.1 and 2.3, we obtain 

( )( ) ( )
0 0

,C

t t t tD I f t f t  =         (2.4) 

giving the Caputo fractional integrations and derivatives with respect to order  . 

In the subsequent sections of this paper, the notation D   represents the Riemann-Liouville 

fractional derivative. 

Lemma 2.1. Provide a definition for a function ( )f t  and a nonzero interval ( )0,t T , the condition 

( ) 1f t F , where 1 0F  , is a constant. Next, a positive constant is given 
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By referring to Eq (2.1), which defines fractional integration, the value of ( )
10 tI f t

  can be 

determined. Due to the condition ( ) 1f t F , for at least one nonzero interval ( )0,t T , it acquires 

( )
( )

( )

( ) ( )

( )

( ) ( ) ( ) ( )
1

1

1 1
0 1 1 10 0 0

1 1 1
.

1

t T T

t

f f F FT
I f t d d d

t t t




  

 
  

     
− − −

=   =
    +− − −

    (2.6) 

Therefore, the inequality ( )
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 holds for ( )f t . 

Definition 2.4. Let ( )F    be the Laplace transform of the function ( )f t  . Then, the Caputo 

fractional derivative Laplace transform is provided as [37] 

( ) ( ) ( ) ( )
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Definition 2.5. The expressions for the Mittag-Leffler functions in both one-parameter and two-

parameter forms are provided as [36] 
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where , , .z C    

Theorem 2.1. [36] Consider the autonomous linear fractional-order equation ( ) 0,  0 ,D x Ax x x = =  

where 0 1,  nx R    and .n nA R   The asymptotic stability of this system implies that 
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( )arg .
2

eigA


         (2.9) 

In this scenario, each component of the state’s decays toward 0  as t −
. 

Theorem 2.2. [38] Let 0x =  denote an equilibrium point for the equilibrium of the non-autonomous 

fractional-order equation 

( ) ( ), ,D x t f x t =         (2.10) 

where ( ),f x t  satisfies the Lipschitz constant 0l   and ( )0,1 .   Provided that it constitutes a 

Lyapunov function ( )( ),V t x t  and class- K  functions 1 ,
2  and 3  satisfying the condition 

( ) ( ) ( ) ( ) ( )1 2 3, ,   , ,x V t x x D V t x x      

where ( )0,1  , the equilibrium point of Eq (2.10) is asymptotic stable. 

3. Rumor propagation model under the Caputo sense 

The proposed framework in this section is an Ignorants-Spreaders-Calmness-Removers-Media 

Reports (ISCRM). All of the crowd are divided into four groups: Ignorants are those who are unfamiliar 

with the rumors but are willing to believe them, denoted by ( )I t ; Spreaders are those who acquire the 

rumors and spread them, denoted by ( )S t ; Calmness are those who calm down before they refrain 

from disseminating rumors [39], denoted by ( )C t ; Removers are those who are aware of the rumors 

and either refute them or have become disinterested in rumor, denoted by ( )R t  . Since rumor 

propagation varies over time, media reports will undergo changes over time. We employ a quantization 

method to measure the impact of media reports, denoted by ( ).M t  

The rules for rumor propagation are as follows: 

(i) When an ignorant contacts a spreader, it will be affected and become a spreader with the 

exposure rate of ( )/ 1 bS + , which reflects the reduced amount of contact rate due to the scale of the 

rumor propagation.   denotes the rumor contact rate and b  is the measure of inhibition. 

(ii) ( )/ k M +  represents the influence of the media reports, where 1   and 0k  . / k  

means the highest availability of media influence effect.   represents the rate of contact between the 

ignorant and the media reports and k  is the effect of media reports.   represents calm down rate of 

the spreader.   and   represent the forgetting rates. 

(iii) We define that the immigrate rate is   and the emigrate rate is   in our study. Furthermore, 

  represents the influence of rumors under the rumor control measures. 0m  represents the initial 

value of the media reports.   represents the influence of rumor propagation on media reports. The 

parameters of the model are assumed to be constant and positive. 

The mathematical dynamics of rumor propagation under the Caputo sense is derived based on the 

propagation rules in Figure 1 as follows: 
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where the initial conditions are denoted by ( ) ( ) ( ) ( ) ( )( )0 , 0 , 0 , 0 , 0I S C R M ( )0 0 0 0 0, , , ,I S C R M= . 
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Figure 1. Flow diagram of rumor propagation. 

In this model, the non-negative initial conditions of Eq (3.1) are obtained as 

( ) ( ) ( ) ( ) ( )0 0 0 0 00 0,  0 0,  0 0,  0 0,  0 0.I I S S C C R R M M=  =  =  =  =     (3.2) 

Theorem 3.1. The solution of the Caputo sense Eq (3.1) subject to the conditions (3.2) is non-negative 

within the closed set 
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Proof. For Caputo fractional derivatives (3.1), one obtains 
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Based on the Laplace transform, it can be demonstrated that  )0, , , , 0,  , .I S C R M t t T   

Additionally, the total population is determined as ( ) ( ) ( ) ( ) ( )N t I t S t C t R t= + + + . Thus, adding the 

first four equations of Eq (3.1), we obtain 
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By employing the Laplace transform, we obtain ( ) ( ) ( )0N t N E t  − ( )( )1 .E t 
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( )E t −  is the Mittag-Leffler function of parameter  . Since ( )0 1E t  −   , we obtain 
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 +  Subsequently, by applying the fifth equation of Eq (3.1), we obtain 

( ) ( )0 ,D M t m M t 





 + −  and then, ( ) ( )00 0 ,

m
M t M



 


  + −  where ( )0M   denotes the 

initial value of the message of media reports. Thus, ( ) 0sup
t

m
M t

 →


 + . This implies that ( )N t  is 

bounded, thus ( ) ( ) ( ) ( ), , ,I t S t C t R t  and ( )M t  are bounded in 

( ) ( ) ( ) ( ) ( ) ( ) ( )4 0, , , , : , .
m

I S C R M R N t I t S t C t R t M t


  
+

  
 =  = + + +   + 

 
 

So, all solutions of Eq (3.1) are non-negative. Now, we will show that equation has a unique 

solution. 

Theorem 3.2. For any given initial condition ( ) ( )0 0 0 0 00 , , , , ,  0X I H S R M t=    , Eq (3.1) has a 

unique solution ( )X t  . 

Proof. The approach employed in [40] is adopted to validate the existence and uniqueness. 
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Furthermore, for any given 1,X X  , a function can be constructed as follows: 
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( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )
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Therefore, ( )H X   satisfies the Lipschitz condition with any initial condition 

( ) ( )0 0 0 0 00 , , , , ,  0X I H S R M t=   . Equations (3.1) always have a unique solution. 

4. Analysis of the model 

In order to explore the rumor-free and rumor-permanence equilibrium points of the fractional 

order Eq (3.1), we solve the following equations: 
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By denoting the aforementioned Eq (3.1) with 0 0S = , the rumor-free equilibrium point can be 

calculated as: 
( )

0
0 ,0,0,0, .

m
E



     

  
= +  + + 

 By employing the next generation approach [41], 

the basic reproduction number 0R   is calculated. If ( ), ,
T

Q S C M=  , the original equation can be 
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reformulated as 
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( ) ( )

( )

( )

( ) ( )

( ) ( ) ( )

( ) ( )0

1

0 ,  .

0

I t S t I t M t

S tbS t k M t

x x C t S t

m M t S t

 

  

  

 

 
+ 

+ + + + 
 

 = = + − 
 

 
  + − 
 
 

 

The Jacobian matrices of ( )x  and ( )x  at the rumor-free equilibrium 
0E , respectively, are 

0
0

0 0

0 0 0
0 0 0 0

0 0 0 0 0 ,  0 0 0 .

0 0 0 0 0 0 0 0

I
I

k

F V




  

  

 

 
  + + 
   

= = − +   
   −  

 

 

The next-generation matrix for Eq (3.1) is presented as follows: 

( )
1 0 0 0

0 0

0 0 0

0 .

0 0 0

I I I
F V

k k

  

       

−

 
 
 = +
 + + + +
 
 
 

 

Subsequently, the basic reproduction number of Eq (3.1) is determined: 

( )
( )

( )

( )( )
1 0 0

0 0 0 .
kI I

R F V
k k

  


            

−
 +

= = + =
+ + + + + + +

 

The following theorem is utilized to analyze the local and global stability of the two equilibrium points. 

Theorem 4.1. Equation (3.1) exhibit local stability of the rumor-free equilibrium 0E  if 0 1R  , and 

if 0 1R   it is unstable. 

Proof. The stability of the equilibrium point is investigated by examining the Jacobian matrix of Eq (3.1). 
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( )

( )

0
0

0
0

0

0 0

0 0 0

0 0 0 .

0

0 0 0

I
I

k

I
I

k

J E


  


   

  

   

 

 
− − − − 
 
 − + +
 
 

= − − 
 −
 

− 
 
 
 

 

The characteristic polynomial of ( )0J E  is derived as follows: 

( )( ) ( )( )( ) ( )( )( ) 0
0 0 .

I
Det I J E I

k


               

 
− = + + + + + − + + + + − 

 
  (4.1) 

If all roots of ( )( )0Det I J E −  possess negative real parts, the rumor-free equilibrium 0E  can 

be considered asymptotically stable. 

When ( )( )0 0Det I J E − = , we obtain 

1 2 3,  ,  ,       = − = − − = − −  

and 

( ) ( )2 0
0 0 0.

I
I I

k


           + + + + − + + + − − =     (4.2) 

It is obvious that 1 2,     and 3  are negatives roots and thus, the real component of each of Eq (4.2) 

roots plays a crucial role. 

According to Eq (4.1), it defines 

( ) 0
0 1 0 2 01,  ,  .

I
b b I b I

k


         = = + + + − = + + − −  

Evidently, we obtain 

2

0 1 2 0.b b b + + =          (4.3) 

When 0 1R  , we acquire 

( ) 0
0 0.

I
I

k


    + + − −         (4.4) 

Thus, 2 0b   is deducted from Eq (4.2) by adding 0I

k


 to Eq (4.4), and we obtain 

( ) 0
0 0.

I
I

k


    + + −          (4.5) 

From Eq (4.5), we obtain 
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0
0 0.

I
I

k


   


+ + −           (4.6) 

By adding the parameter   to Eq (4.6), we obtain 

0 0.I     + + + −           (4.7) 

Therefore, 
1 0b   is deduced based on Eq (4.7). After evaluation of different coefficients of Eq (4.2), 

0 1 20,  0,  0b b b    and 
1 2 0bb   are obtained. According to the Routh-Hurwitz conditions [42], all 

eigenvalues of ( )0J E   have negative real part. The condition ( )arg
2

i


    is satisfied and the 

rumor-free equilibrium 0E  is locally asymptotically stable if 0 1R  , and unstable if 0 1R  . 

Theorem 4.2. The rumor-free equilibrium 0E  of Eq (3.1) is globally asymptotically stable if 0 1R  . 

Proof. Let ( ), , , ,V I S C R M , with positive constants 1c  and 2c , serve as a Lyapunov function 

( ) 0 0 0 0 0 0 1 2

0 0 0

, , , , ln ln ln .
I C R

V I S C R M I I I C C C R R R c S c M
I C R

     
= − − + − − + − − + +     
     

 

By differentiating the Lyapunov function with respect to time, we obtain 

( ) ( ) ( ) ( ) ( )0 0 0
1 21 1 1 ,

I C R
D V D I t D C t D R t c D S t c D M t

I C R

          
= − + − + − + +     
     

  (4.8) 

where 1 20,  0.c c    Substituting ( ) ( ) ( ) ( ), , ,D I t D S t D C t D R t     , and ( )D M t   in Eq (3.1) 

into Eq (4.8) yields 

( ) ( )

( )

( ) ( )

( )
( ) ( )

( ) ( ) ( )

( ) ( ) ( ) ( )

( ) ( )

( )

( ) ( )

( )
( ) ( ) ( )

( ) ( )

0

0

0

1

2

1
1

1

1

1

,

I t S t I t M tI
D V I t I t

I bS t k M t

C
S t C t C t

C

R
I t S t C t R t

R

I t S t I t M t
c S t S t S t

bS t k M t

c S t M t

  
 

  

   

 
  

 

  
= −  − − − −  

+ +   

 
+ − − −    
 

 
+ − + + −    
 

 
+ + − − − 

+ + 

+ −  

 

( )

( )
( )

( )

( )
( ) ( )1 1

2 1 2 .
1

c I t c I t
D V c M t c c S t

k M t bS t

  
    

   
 − + − + + +   

+ +   
  (4.9) 

From Eq (4.9), we obtain 

( )

( )

( )

( )
( )1 1

1 2 2 1 2,  .
1

c I t c I t
d c d c c

k M t bS t

 
   = − = − + + +

+ +
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Equating the coefficient 1d  to zero, we obtain 

( )

( )
1

2 .
c I t

c
k M t


=

+
 

At the rumor-free equilibrium 0E  , 0I I   and 
0 0M M =  , we obtain 1 0

2

c I
c

k


=    By 

considering 0
1 2,  ,

I
c c

k


= =   and substituting 1c   and 2c   into Eq (4.9), the obtained result is as 

follows: 

( )
( )

( ) ( )( )

( )( )

0 0
2

0
0

0

1

   1 1

1 .

I I
c

bS t k

I
I for bS t

k

R

 
   


    

   

= + − + +
+

 + − + + + 

= + + −

 

If 0 1R   , then ( ) 0D V t   . Specially, ( ) 0D V t =   if and only if ( ) 0S t =  . Therefore, the 

largest compact invariant set in ( ) ( ) , , , , : 0V I S C R M D V t    is the singleton set  0E  . 

According to LaSalle’s invariance principle [43], 0E   is globally asymptotically stable in    if 

0 0R  . 

Theorem 4.3. If  0 1R    and 
2 2

1 2 3 1 2 3 1 3 30,  0l l l l l l l l l−  − −   , Eq (3.1) exhibits local stability of 

rumor-permanence equilibrium 
*E . 

Proof. Equation (3.1) at the rumor-permanence equilibrium 
*E can be further simplified as follows: 

* * * *
* *

* *

* * * *
* * *

* *

* * *

* *

0

0,
1

0,
1

0,

0.

I S I M
I I

bS k M

I S I M
S S S

bS k M

S C C

m S M

 
 

 
  

  

 

 − − − − =
+ +

+ − − − =
+ +

− − =

+ − =

 

The Jacobian matrix evaluated at the rumor-permanence equilibrium 
*E  persistence is presented 

in [16] as 

( )

* * *

11 12 14

* * *

21 22 24*

* *

32 33

* *

42 44

0

0

0 0

0 0

J J J

J J J
J E

J J

J J

 
 
 

=  
 
 
 

， 

where 



9733 
 

AIMS Mathematics  Volume 9, Issue 4, 9721–9745. 

( ) ( )

( ) ( )

* * * *
* * *

11 12 142 2* * * *

* * * *
* * *

21 22 242 2* * * *

* * * *

32 33 42 44

,  ,  ,
1 1

,  ,  ,
1 1

,  ,  ,  .

S M I k I
J J J

bS k M bS k M

S M I k I
J J J

bS k M bS k M

J J J J

   
 

   
  

   

= − − − − = − = −
+ + + +

= + = − − − =
+ + + +

= = − = = −

 

The corresponding characteristic equation can be derived as 

4 3 2

1 2 3 4 0,l l l l   + + + + =        (4.10) 

where 

* * * *

1 11 22 33 44

* * * * * * * * * * * * * * * *

2 11 22 12 21 11 33 11 44 22 33 22 44 24 42 33 44

* * * * * * * * * * * * * * *

3 11 22 33 12 21 33 11 24 42 12 21 44 14 21 42

* * * * * * *

11 33 44 22 33 44 24 3

,

,

l J J J J

l J J J J J J J J J J J J J J J J

l J J J J J J J J J J J J J J J

J J J J J J J J

= − − − −

= − + + + + − +

= − + − + −

− − + * *

3 42

* * * * * * * * * * * * * * * *

4 11 22 33 44 11 24 33 42 12 21 33 44 14 21 33 42

,

.

J

l J J J J J J J J J J J J J J J J= − − +

 

For 0 1R   , ( )* *

12 1,2,3,4 ,iiJ i J=   and *

14J   are all negative, while * * *

21 24 32, ,J J J   and *

42J   are 

positive. Subsequently, we obtain 

* * * *

1 1 11 22 33 44

1

2 1 2 3

3 2

1

2 2

3 3 2 1 1 2 3 1 3 3

4 3

0,

1
,

1 0

.

0

l J J J J

l
l l l

l l

l

l l l l l l l l l

l l

 = = − − − − 

 = = −

 
 

 = = − − 
 
 

 

Obviously, it is 1 0  . If 2 2

1 2 3 1 2 3 1 3 30,  0l l l l l l l l l−  − −  , then 2 30,  0    . According to the 

Routh-Hurwitz criterion [42], it can be inferred that all eigenvalues of the eigenequation in Eq (4.10) 

possess negative real parts. 

Therefore, the rumor-permanence equilibrium 
*E  is proven to be locally asymptotically stable 

and Theorem 4.3 is proven. 

5. Fractional optimal control problem 

The objective of our study is to identify the optimal control method and approach in order to 

minimize the overall cost associated with rumor spreading. The feasible intervention method aims to 

minimize the dissemination of rumors by individuals. The primary objective of fractional optimal 

control is to mitigate the relative density of individuals who spread rumors. Furthermore, the 

consideration of cost control measures is imperative in light of the current circumstances. Therefore, 

the optimal control strategy for Eq (5.1) is proposed, and its investigation can be facilitated through 

the application of Pontryagin’s maximum principle [44]. 
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Equation (3.1), incorporating the control mechanism, is thus formulated as 

( )
( )( ) ( ) ( )

( )
( ) ( )

( )
( ) ( )

( )
( )( ) ( ) ( )

( )

( ) ( )

( )
( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( )

1

1

2

3

2 3

0

1
,

1

1
,

1

,

,

,

u t I t S t I t M t
D I t I t I t

bS t k M t

u t I t S t I t M t
D S t S t u t S t S t

bS t k M t

D C t S t u t C t C t

D R t I t u t S t u t C t R t

D M t m S t M t











 
 

 
  

  

   

 

−
=  − − − −

+ +

−
= + − − −

+ +

= − −

= + + −

= + −

  (5.1) 

where the control strengths to the rumor propagation are represented by ( ) ( )1 2,  u t u t   and ( )3u t  

through education or government management. The objective function of the optimal control is 

formulated as 

( ) ( ) ( )
22 2

31 2
1 2 3 1 2 1 2 3

0
, ,

2 2 2

T uu u
Minimize J u u u A S t A C t K K K dt

 
= + + + + 

 
 ，   (5.2) 

where 1A  and 2A  are the non-negative weights related to ( )S t  and ( )C t  in Eq (5.2). 1 2,  ,K K  

and 3K  are relative to cost of the measures. 

To determine the optimal interventions proposed in Eq (5.1), 

( ) ( ) ( )( ) ( ) ( ) ( ) (  max max max

1 2 3 1 1 2 2 3 3, , 0 ,0 ,0 , 0, ,U u t u t u t u t u u t u u t u t T         (5.3) 

where 
max max

1 21,  1,u u    and 
max

3 1u    are the upper bounds of ( ) ( )1 2 ,u t u t,   and ( )3u t  , 

respectively. Optimal controls 
* *

1 2 ,u u,   and 
*

3u   satisfy ( )* * *

1 2 2, ,J u u u   ( ) ( ) ( )( ) 1 2 3min , , :J u t u t u t=

( ) ( ) ( )( ) 1 2 3, ,u t u t u t U . 

We derive the optimal controls for minimizing the rumor propagation at minimal cost. 

Consequently, the following Lagrangian function is obtained: 

( ) ( )

( )( ) ( ) ( )

( )

( ) ( )

( )
( ) ( )

( )( ) ( ) ( )

( )

( ) ( )

( )
( )( ) ( )

( ) ( ) ( ) ( )( )

( ) ( ) ( ) ( ) ( ) ( )( )

( ) ( )( )

22 2

31 2
1 2 1 2 3

1

1

1

2 2

3 3

4 2 3

5 0

2 2 2

1
 

1

1
 

1

 

 

  

uu u
A S t A C t K K K

u t I t S t I t M t
I t I t

bS t k M t

u t I t S t I t M t
u t S t

bS t k M t

S t u t C t C t

I t u t S t u t C t R t

m S t M t

 
  

 
   

   

    

  

 = + + + +

 −
+  − − − − 

 + + 

 −
+ + − + + 

 + + 

+ − −

+ + + −

+ + − ，

    (5.4) 

where 1 2 3 4 5, , , ,      are adjoint variable functions. 

Theorem 5.1. There exists an optimal control with the solution ( ), , , ,I S C R M  corresponding to the 
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state equation in Eq (5.1) and the adjoint variables 1 2 3 4 5, , , ,     , we obtain 

( ) ( )

( )

( )

( )

( )
( )( ) ( )

( )( ) ( )

( ) ( )

1 1

1 1 2 4

1 1 1

2 2 2 3 4 2 52 2

3 3 3 4 3

4 4

5 1 2 52 2

1 1
,

1 1

1 1
,

1 1

,

,

,

u S u SM M
D

bS k M bS k M

u I u I
D u t u t

bS bS

D u t u t

D

k I k I
D M

k M k M











  
       

  
          

     

  

 
    

− −   
= − − + + − − +   

+ + + +   

 − − −
= + − + + − − − 

 + + 

= + −

=

= − +
+ +

 

with boundary conditions ( ) ( ) ( ) ( ) ( )1 2 3 4 5 0.t t t t t    = = = = =  According to the adjoint variables

( ) ( ) ( ) ( ), , ,I t S t C t R t  and ( )M t , we differentiate the Hamiltonian   in Eq (5.2) with respect to 

each variable. 

Proof. From the adjoint variables ( ) ( ) ( ) ( ), , ,I t S t C t R t  and ( )M t , we differentiate the Hamiltonian 

  in Eq (5.2) with respect to each variable: 

( ) ( )

( )

( )

( )

( )
( )( ) ( )

( )( ) ( )

1 1

1 1 2 4

1 1 1

2 2 2 3 4 2 52 2

3 3 3 4 3

4 4

5 1

1 1
,

1 1

1 1
,

1 1

,

,

u S u SM M
D

I bS k M bS k M

u I u I
D u t u t

S bS bS

D u t u t
C

D
R

k I
D

M











  
       

  
          

     

  


 

− −   −
= = − + + − − +   

 + + + +   

 − − −−
= = + − + + − − − 

  + + 

−
= = + −



−
= =



−
= =
 ( ) ( )

2 52 2
.

k I
M

k M k M


  − +

+ +

 

Moreover, the optimal control of the control variables set 1 2 3, ,u u u   is attained by partial 

differential equation as follows: 
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( )2 4*
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Therefore, 
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The uniqueness of the optimal control has been established based on the boundedness and adjoint 

variables. The standard control with a bound is obtained as follows: 
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6. Sensitivity analysis and numerical simulation 

6.1. Sensitivity analysis 

The sensitivity of the parameters in the rumor propagation model is investigated in this section. 

The following conditions are satisfied: 

( )

0

0

0

0

0

0

0

0

0,

0,

0,

0.

R k
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R k

R
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  

 

  


= = 

 +


= = 

 +


= = 

 +


= = − 

 +

 

In conclusion,  ,  , and   are sensitive, and  , analogous to   and   are not sensitive. 

Sensitivity analysis shows that it is possible to reduce the rumor contact rate   and parameters   

and  , thus lowering the value of 0R . 

6.2. Fractional Euler method 

In this section, we present the fractional Euler method [45], which is employed in solving 

fractional-order differential equations and obtaining a discretized equation, as described below: 
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for 1,2, ,p N=  where ( ) ( ), 1j pc p j p j
 

= − − − − . The fractional Euler method is employed for 

the subsequent numerical solutions of the fractional-order differential equations. 

6.3. Several numerical simulations 

In this section, we conduct numerical simulations to validate the findings presented in the 

preceding sections. The initial values are considered as ( ) ( ) ( )0 10500,  0 1500, 0 750,I S C= = =
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( ) 0 750,R =  and ( )0 1500M = . Additionally, the parametric values are listed in Table 1. Obviously, 

the basic reproduction number is 0R =0.4 1 . Figure 2 provides graphs of the evolution of (a) Ignorants, 

(b) Spreaders, (c) Calmness, (d) Removers, and (e) Media Reports in the rumor-free case for Eq (3.1), 

employing various values of the differentiation parameter 0.6,0.7,0.8,0.9,1. =  With the decrease 

of the order  , the convergence rate of the rumor propagation curve slows down and eventually tends 

to stabilize, which shows the memory effect. From the perspective of public opinion dissemination, it 

implies that such rumors tend to persist for an extended duration. Moreover, it demonstrates an 

anomalous propagation pattern at a lower order  , characterized by an exponentially rapid growth in 

the initial phase as depicted in Figure 3(b). Meanwhile, the subsequent phase exhibits a deceleration. 

When the order is 1 = , the fractional-order differential equation turns into an integer-order one. 

Table 1. Parameters under initial conditions 1. 

Parameter Value Parameter Value 

  0.4   0.4 

  0.1   0.2 

  0.2   0.5 

b  0.5 0m  0.2 

k  0.5   0.2 

  0.3   0.05 
  0.5   

 

Figure 2. Dynamical behavior around the rumor-free equilibrium 0E . 
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The initial values are also set to ( ) ( ) ( ) ( )0 10500,  0 1500,  0 750,  0 750,I S C R= = = =  and

( )0 1500M = . Furthermore, the parametric values are provided in Table 2. The calculation result of 

the basic reproduction number is 0R =1.32 1 . The results corresponding to the simulation of the 

rumors case are presented in Figure 3 using various values of the differentiation parameter 

0.6,0.7,0.8,0.9,1. =  The convergence rates of rumor propagation vary depending on the order value 

 . The impact of the fractional order is observed through numerical simulation in Figure 3, from 

which it is demonstrated that reducing the value   can enhance the stability range of model (3.1). 

The larger the order  , the more rapidly the curve approaches stability in the rumor-permanence 

case. Therefore, it is imperative to consistently and promptly disseminate scientific knowledge while 

actively debunking rumors in order to effectively suppress rumor propagation. 

Table 2. Parameters under initial conditions 2. 

Parameter Value Parameter Value 

  1.2   0.4 

  0.6   0.2 

  0.5   0.6 

b  1 0m  0.6 

k  1   0.2 

  0.3   0.3 
  0.5   

 

Figure 3. Stability of the rumor-permanence equilibrium *E   
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To illustrate the effectiveness of the media reports, for the basic reproduction number 

0 1,  =0.95R   is established with the parametric values in Table 2. The media reports have an impact 

on Eq (3.1) governing fractional-order =0.95  as illustrated in Figure 4. The peak of the Spreaders 

group decreases as the value of k  increases, as shown in Figure 4(b). The statement suggests that 

there is a positive correlation between the level of media reports and the influence on rumor 

propagation. Therefore, employing appropriate media strategies can effectively suppress the rumor 

propagation. 

 

Figure 4. Sample routes of ( ) ( ) ( ) ( ), , , ,I t S t C t R t and ( )M t  with different k  for 0.95 =   

To demonstrate the effectiveness of the fractional optimal control strategy, for the basic 

reproduction number 0 1,  =0.95R   is established with the parametric values in Table 2. Figure 5 

shows the populations of ( ) ( ) ( ) ( ), , , ,I t S t C t R t  and ( )M t  , with or without control mechanism. 

Compared with Eq (5.1), with or without control strategy, the populations of the Ignorants and the 

Spreaders are significantly influenced. This implies that implementing an effective control mechanism 

can significantly restrict the rumor diffusion. 
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Figure 5. Effect of different control strategies for 0.95 = . 

7. Conclusions and discussion 

A Caputo sense-based ISCRM rumor propagation model incorporating media reports is proposed. 

The existence of positive solutions is rigorously established in this study, and the equilibrium solutions 

are determined for both the rumor-free equilibrium and rumor-permanence equilibrium, along with 

their local properties. The rumor-free equilibrium 0E  is locally and globally asymptotically stable if

0 1R  . The instability of the unique rumor-permanence equilibrium *E  exists when 0 1R  , and for 
2 2

1 2 3 1 2 3 1 3 30,  0l l l l l l l l l−  − −  , it is locally asymptotically stable. The analytical research was validated 

by conducting numerical simulations, encompassing a range of fractional orders and initial 

compartment sizes. In the case of 0 1R   , stability is rapidly achieved at lower fractional orders, 

whereas in the case of 0 1R  , the attainment of stability is rapidly achieved at higher orders. The 

significance of fractional analysis has been underscored by the achievement of significantly improved 

and more realistic outcomes. Additionally, a comprehensive analysis of the impact of media reports 

and an optimal control strategy is presented. The effectiveness of rumor diffusion prevention can be 

significantly enhanced through the implementation of a control strategy and media reports, thereby 

mitigating the risk associated with rumor propagation. In future research, the investigation of time 

delay effects [46] and stochastic factors [47,48] could be expanded within the framework of complex 

networks in Caputo sense systems. 
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